# Tight-Binding Model in the Second Quantization Formalism 

Franz Utermohlen

April 3, 2018

## Contents

1 Second quantization ..... 2
1.1 Representations and bases ..... 2
1.2 Single-particle operators (side note) ..... 4
2 Tight-binding Hamiltonian ..... 4
2.1 Position-space representation ..... 4
2.2 Momentum-space representation ..... 5
2.3 Examples ..... 6
2.3.1 1D chain ..... 6
2.3.2 2D square lattice ..... 7

## 1 Second quantization

### 1.1 Representations and bases

Consider a lattice with $N$ sites labeled by the positions $\mathbf{r}_{j}(n=1, \ldots, N)$. We can express the state of the lattice in terms of the number of particles at each site:

$$
\begin{equation*}
\text { Occupation number representation: } \quad\left|n_{1}, \ldots, n_{N}\right\rangle . \tag{1}
\end{equation*}
$$

We can define creation and annihilation operators in position space that create or annihilate a particle in the $j$ th site:

$$
\begin{align*}
\hat{c}_{j}^{\dagger}\left|n_{1}, \ldots, n_{j}, \ldots, n_{N}\right\rangle & =\sqrt{n_{j}+1}\left|n_{1}, \ldots, n_{j}+1, \ldots, n_{N}\right\rangle \\
\hat{c}_{j}\left|n_{1}, \ldots, n_{j}, \ldots, n_{N}\right\rangle & =\sqrt{n_{j}}\left|n_{1}, \ldots, n_{j}-1, \ldots, n_{N}\right\rangle \tag{2}
\end{align*}
$$

where fermions satisfy the anticommutation relations

$$
\begin{array}{ll}
\text { Fermions: } \quad & \left\{\hat{c}_{i \sigma}, \hat{c}_{j \sigma^{\prime}}^{\dagger}\right\}=\delta_{i j} \delta_{\sigma \sigma^{\prime}}  \tag{3}\\
& \left\{\hat{c}_{i \sigma}, \hat{c}_{j \sigma^{\prime}}\right\}=\left\{\hat{c}_{i \sigma}^{\dagger}, \hat{c}_{j \sigma^{\prime}}^{\dagger}\right\}=0,
\end{array}
$$

where $\sigma, \sigma^{\prime}$ denote the spin state of the fermions (which we will ignore for simplicity in these notes), and bosons satisfy the commutation relations

$$
\begin{array}{ll}
\text { Bosons: } & {\left[\hat{c}_{i}, \hat{c}_{j}^{\dagger}\right]=\delta_{i j}}  \tag{4}\\
& {\left[\hat{c}_{i}, \hat{c}_{j}\right]=\left[\hat{c}_{i}^{\dagger}, \hat{c}_{j}^{\dagger}\right]=0}
\end{array}
$$

For fermions, the fact that they anticommute means that we need to establish a convention for how we are defining states. For example, we can choose the convention

$$
\begin{equation*}
\left|r_{1}, r_{2}, r_{3}\right\rangle \equiv \hat{c}_{1}^{\dagger} \hat{c}_{2}^{\dagger} \hat{c}_{3}^{\dagger}|0\rangle \tag{5}
\end{equation*}
$$

so if we permuted one of the creation operators, we would get a minus sign:

$$
\begin{equation*}
\hat{c}_{1}^{\dagger} \hat{c}_{3}^{\dagger} \hat{c}_{2}^{\dagger}|0\rangle=-\left|r_{1}, r_{2}, r_{3}\right\rangle \tag{6}
\end{equation*}
$$

We can also express the state of the lattice in terms of the number of particles containing different momenta:

Momentum space representation: $|\mathbf{k}\rangle$.
In this momentum space representation, we can define creation and annihilation operators in position space that create or annihilate a particle with momentum $\mathbf{k}$ :

$$
\begin{align*}
\hat{c}_{\mathbf{k}}^{\dagger}|0\rangle & =|\mathbf{k}\rangle \\
\hat{c}_{\mathbf{k}}|\mathbf{k}\rangle & =|0\rangle, \tag{8}
\end{align*}
$$

where $|0\rangle$ is the vacuum state.

We can change of basis by inserting the identity $\sum_{\alpha}|\alpha\rangle\langle\alpha|=\mathbb{1}$ (where $\alpha$ labels the states in any given basis):

$$
\begin{equation*}
|\beta\rangle=\sum_{\alpha}\langle\alpha \mid \beta\rangle|\alpha\rangle . \tag{9}
\end{equation*}
$$

In terms of creation and annihilation operators, this is

$$
\begin{equation*}
\hat{c}_{\beta}^{\dagger}|0\rangle=\sum_{\alpha}\langle\alpha \mid \beta\rangle \hat{c}_{\alpha}^{\dagger}|0\rangle, \tag{10}
\end{equation*}
$$

so we can see that we can also transform from one set of creation and annihilation to another through the relation

$$
\begin{equation*}
\hat{c}_{\beta}^{\dagger}=\sum_{\alpha}\langle\alpha \mid \beta\rangle \hat{c}_{\alpha}^{\dagger} . \tag{11}
\end{equation*}
$$

Using

$$
\begin{equation*}
\langle\mathbf{k} \mid j\rangle=\psi_{\mathbf{k}}^{*}\left(\mathbf{r}_{j}\right)=\frac{1}{\sqrt{N}} e^{-i \mathbf{k} \cdot \mathbf{r}_{j}} \tag{12}
\end{equation*}
$$

where $|j\rangle=\hat{c}_{j}^{\dagger}|0\rangle$ is the state in which we have a particle in the $j$ th site, we can thus express the creation and annihilation operators in position space in terms of those in momentum space:

$$
\begin{align*}
& \hat{c}_{j}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i \mathbf{k} \cdot \mathbf{r}_{j}} \hat{c}_{\mathbf{k}}^{\dagger} \\
& \hat{c}_{j}=\frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{r}_{j}} \hat{c}_{\mathbf{k}} \tag{13}
\end{align*}
$$

We can invert these expressions to obtain

$$
\begin{align*}
& \hat{c}_{\mathbf{k}}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{j} e^{i \mathbf{k} \cdot \mathbf{r}_{j}} \hat{c}_{j}^{\dagger} \\
& \hat{c}_{\mathbf{k}}=\frac{1}{\sqrt{N}} \sum_{j} e^{-i \mathbf{k} \cdot \mathbf{r}_{j}} \hat{c}_{j} \tag{14}
\end{align*}
$$

The total number of particles is also conserved going from position space to momentum space, and vice versa ${ }^{1}$

$$
\begin{equation*}
\sum_{j} \hat{n}_{j}=\sum_{\mathbf{k}} \hat{c}_{\mathbf{k}}^{\dagger} \hat{c}_{\mathbf{k}} \tag{15}
\end{equation*}
$$

The following orthogonality relations are also useful:

$$
\begin{align*}
\sum_{\mathbf{r}} e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{r}}= & \sum_{i} e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{r}_{i}}=N \delta_{\mathbf{k k}^{\prime}},  \tag{16}\\
& \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}=N \delta_{\mathbf{r r}^{\prime}} \tag{17}
\end{align*}
$$

[^0]
### 1.2 Single-particle operators (side note)

In first quantization, single-particle operators are operators that can be written as a sum over operators acting on single particles:

$$
\begin{equation*}
\hat{F}=\sum_{i} \hat{f}_{i}, \tag{18}
\end{equation*}
$$

where the operator $\hat{f}_{i}$ only acts on the $i$ th particle. For example, for a system of $N$ indistinguishable particles, the momentum operator of the system can be written as

$$
\begin{equation*}
\hat{\mathbf{p}}_{\mathrm{tot}}=\sum_{i=1}^{N} \hat{\mathbf{p}}_{i} . \tag{19}
\end{equation*}
$$

Single-particle operators are useful because it is unphysical to talk only about the momentum of the $i$ th particle, since the particles are indistinguishable. We can therefore only talk about sums, such as that in the above expression.

In second quantization, single-particle operators can be written in the form

$$
\begin{equation*}
\hat{\Omega}=\sum_{\alpha, \beta}\langle\alpha| \hat{\omega}|\beta\rangle \hat{c}_{\alpha}^{\dagger} \hat{c}_{\beta} . \tag{20}
\end{equation*}
$$

## 2 Tight-binding Hamiltonian

### 2.1 Position-space representation

Consider a system of free, non-interacting fermions given by the Hamiltonian

$$
\begin{equation*}
\hat{H}_{\text {free }}=\sum_{\mathbf{k}, \sigma} \epsilon_{\mathbf{k}}^{\text {free }} \hat{c}_{\mathbf{k} \sigma}^{\dagger} \hat{c}_{\mathbf{k} \sigma} \tag{21}
\end{equation*}
$$

where $\sigma$ labels the spin states (for example, for spin- $1 / 2$ fermions, $\sigma \in\{\uparrow, \downarrow\}$ ) and

$$
\begin{equation*}
\epsilon_{\mathbf{k}}^{\text {free }}=\frac{p^{2}}{2 m}=\frac{\hbar^{2} k^{2}}{2 m} \tag{22}
\end{equation*}
$$

is the energy dispersion relation of a free particle. We can express this Hamiltonian in position space (using Eqs. 14) as

$$
\begin{equation*}
\hat{H}_{\text {free }}=\frac{1}{N} \sum_{i, j, \sigma} \sum_{\mathbf{k}} \epsilon_{\mathbf{k}}^{\text {free }} e^{i \mathbf{k} \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)} \hat{c}_{i \sigma}^{\dagger} \hat{c}_{j \sigma}, \tag{23}
\end{equation*}
$$

where $N$ is the number of available $\mathbf{k}$ states (or equivalently, the number of positions the fermions can be in), $\hat{c}_{i \sigma}^{\dagger} \hat{c}_{j \sigma}$ annihilates a fermion in the spin state $\sigma$ at $\mathbf{r}_{j}$ and creates one
in the spin state $\sigma$ at $\mathbf{r}_{i}$, which we can physically interpret as a fermion in the spin state $\sigma$ going from $\mathbf{r}_{j}$ to $\mathbf{r}_{i}$. Defining

$$
\begin{equation*}
\tilde{t}_{i j} \equiv \frac{1}{N} \sum_{\mathbf{k}} \epsilon_{\mathbf{k}}^{\mathrm{free}} e^{i \mathbf{k} \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)} \tag{24}
\end{equation*}
$$

the Hamiltonian then reads

$$
\begin{equation*}
\hat{H}_{\text {free }}=\sum_{i, j, \sigma} \tilde{t}_{i j} \hat{c}_{i \sigma}^{\dagger} \hat{c}_{j \sigma} \tag{25}
\end{equation*}
$$

Let's now consider the case where these non-interacting fermions live on a Bravais ${ }^{2}$ crystal lattice with a potential well located at each of the lattice sites. Note that these potential wells will change the energy dispersion relation of the fermions, so $\tilde{t}_{i j}$ will also change too; we will refer to this new parameter as the hopping amplitude $t_{i j}$. The fermions will now tend to become more localized to the lattice sites and it will be harder for a fermion to "hop" to sites that are far away ( $t_{i j}$ will be very small if $\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|$ is large). In the tight-binding approximation, we assume

$$
t_{i j}= \begin{cases}-t, & i \text { and } j \text { are nearest neighbors }  \tag{26}\\ 0, & \text { otherwise }\end{cases}
$$

so we obtain the tight-binding Hamiltonian

$$
\begin{equation*}
\hat{H}_{\mathrm{tb}}=-t \sum_{\langle i j\rangle, \sigma}\left(\hat{c}_{i \sigma}^{\dagger} \hat{c}_{j \sigma}+\hat{c}_{j \sigma}^{\dagger} \hat{c}_{i \sigma}\right) . \quad \text { (Bravais lattice) } \tag{27}
\end{equation*}
$$

We can apply this position-space representation of the tight-binding Hamiltonian to nonBravais lattices too if we are careful enough. For example, for a crystal with a bipartite lattice, such as graphene, we must distinguish fermions on the two sublattices by assigning them different fermionic operators, so the tight-binding Hamiltonian reads

$$
\begin{equation*}
\hat{H}_{\mathrm{tb}}=-t \sum_{\langle i j\rangle, \sigma}\left(\hat{a}_{i \sigma}^{\dagger} \hat{b}_{j \sigma}+\hat{b}_{j \sigma}^{\dagger} \hat{a}_{i \sigma}\right) . \quad \text { (bipartite lattice) } \tag{28}
\end{equation*}
$$

### 2.2 Momentum-space representation

In order to obtain a momentum-space representation of the tight-binding model, we will first rewrite the sum over nearest neighbors as

$$
\begin{equation*}
\sum_{\langle i j\rangle, \sigma}\left(\hat{c}_{i \sigma}^{\dagger} \hat{c}_{j \sigma}+\hat{c}_{j \sigma}^{\dagger} \hat{c}_{i \sigma}\right)=\frac{1}{2} \sum_{i, \sigma} \sum_{\delta}\left(\hat{c}_{i \sigma}^{\dagger} \hat{c}_{i+\delta, \sigma}+\hat{c}_{i+\delta, \sigma}^{\dagger} \hat{c}_{i \sigma}\right), \tag{29}
\end{equation*}
$$

where the sum over $\boldsymbol{\delta}$ is carried out over the nearest-neighbor vectors $\boldsymbol{\delta}_{1}, \boldsymbol{\delta}_{2}, \ldots, \boldsymbol{\delta}_{q}$, the operator $\hat{c}_{i+\boldsymbol{\delta}, \sigma}$ annihilates a fermion in a spin state $\sigma$ at the site whose position is $\mathbf{r}_{i}+\boldsymbol{\delta}$,

[^1]and the factor of $1 / 2$ is to avoid double counting. Then, rewriting the fermionic operators in momentum space using Eqs. 13 gives
\[

$$
\begin{aligned}
\hat{H}_{\mathrm{tb}} & =-\frac{t}{2 N} \sum_{i, \sigma} \sum_{\delta, \mathbf{k}, \mathbf{k}^{\prime}}\left(e^{-i \mathbf{k} \cdot \mathbf{r}_{i}} e^{i \mathbf{k}^{\prime} \cdot\left(\mathbf{r}_{i}+\boldsymbol{\delta}\right)} \hat{c}_{\mathbf{k} \sigma}^{\dagger} \hat{c}_{\mathbf{k}^{\prime} \sigma}+e^{-i \mathbf{k}^{\prime} \cdot\left(\mathbf{r}_{i}+\boldsymbol{\delta}\right)} e^{i \mathbf{k} \cdot \mathbf{r}_{i}} \hat{c}_{\mathbf{k} \sigma}^{\dagger} \hat{c}_{\mathbf{k}^{\prime} \sigma}\right) \\
& =-\frac{t}{2} \sum_{\delta, \mathbf{k}, \sigma}\left(e^{\mathbf{k} \cdot \boldsymbol{\delta}}+e^{-i \mathbf{k} \cdot \boldsymbol{\delta}}\right) \hat{c}_{\mathbf{k} \sigma}^{\dagger} \hat{c}_{\mathbf{k} \sigma} \\
& =-t \sum_{\delta, \mathbf{k}, \sigma} \cos (\mathbf{k} \cdot \boldsymbol{\delta}) \hat{c}_{\mathbf{k} \sigma}^{\dagger} \hat{c}_{\mathbf{k} \sigma},
\end{aligned}
$$
\]

where $N$ is the number of sites on the lattice, and in the second line we have used Eq. 16 . We therefore find that the momentum-space representation of the tight-binding Hamiltonian is

$$
\begin{equation*}
\hat{H}_{\mathrm{tb}}=\sum_{\mathbf{k}, \sigma} \epsilon_{\mathbf{k}}^{\mathrm{tb}} \hat{c}_{\mathbf{k} \sigma}^{\dagger} \hat{c}_{\mathbf{k} \sigma} \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\epsilon_{\mathbf{k}}^{\mathrm{tb}}=-t \sum_{\boldsymbol{\delta}} \cos (\mathbf{k} \cdot \boldsymbol{\delta}) \tag{31}
\end{equation*}
$$

is the system's energy dispersion relation.

### 2.3 Examples

### 2.3.1 1D chain

For the 1D chain, the nearest-neighbor vectors are

$$
\begin{equation*}
\delta_{1}=a, \quad \delta_{2}=-a, \tag{32}
\end{equation*}
$$

where $a$ is the lattice constant, so the energy dispersion relation is

$$
\begin{align*}
\epsilon_{k}^{\mathrm{tb}} & =-t[\cos (k a)+\cos (-k a)] \\
& =-2 t \cos (k a) . \tag{33}
\end{align*}
$$

A plot of this is shown below.


The tight-binding Hamiltonian thus reads

$$
\begin{equation*}
\hat{H}_{\mathrm{tb}}=-2 t \sum_{k, \sigma} \cos (k a) \hat{c}_{k \sigma}^{\dagger} \hat{c}_{k \sigma} . \tag{34}
\end{equation*}
$$

### 2.3.2 2 D square lattice

For the 2D square lattice, the nearest-neighbor vectors are

$$
\begin{equation*}
\delta_{1}=a \hat{\mathbf{x}}, \quad \delta_{2}=-a \hat{\mathbf{x}}, \quad \delta_{3}=a \hat{\mathbf{y}}, \quad \delta_{4}=-a \hat{\mathbf{y}}, \tag{35}
\end{equation*}
$$

where $a$ is the lattice constant, so the energy dispersion relation is

$$
\begin{align*}
\epsilon_{\mathbf{k}}^{\mathrm{tb}} & =-t\left[\cos \left(k_{x} a\right)+\cos \left(-k_{x} a\right)+\cos \left(k_{y} a\right)+\cos \left(-k_{y} a\right)\right] \\
& =-2 t\left[\cos \left(k_{x} a\right)+\cos \left(k_{y} a\right)\right] . \tag{36}
\end{align*}
$$

A plot of this is shown below.


The tight-binding Hamiltonian thus reads

$$
\begin{equation*}
\hat{H}_{\mathrm{tb}}=-2 t \sum_{\mathbf{k}, \sigma}\left[\cos \left(k_{x} a\right)+\cos \left(k_{y} a\right)\right] \hat{c}_{\mathbf{k} \sigma}^{\dagger} \hat{c}_{\mathbf{k} \sigma} . \tag{37}
\end{equation*}
$$

## References

[1] Christophe Mora. Introduction to Second Quantization. http://www.phys.ens.fr/ ~mora/lecture-second-quanti.pdf.
[2] Sandeep Pathak. An Introduction to Second Quantization. http://www.phys.lsu.edu/ ~jarrell/COURSES/ADV_SOLID_HTML/Other_online_texts/Sandeep_Pathak/second_ quantization_orig.pdf, 2010.


[^0]:    ${ }^{1}$ This can also be verified explicitly.

[^1]:    ${ }^{2}$ A Bravais lattice is a lattice in which there is only one atom per unit cell, so all atoms in the lattice are equivalent.

