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1 Second quantization

1.1 Representations and bases

Consider a lattice with N sites labeled by the positions rj (n = 1, . . . , N). We can express
the state of the lattice in terms of the number of particles at each site:

Occupation number representation: |n1, . . . , nN〉 . (1)

We can define creation and annihilation operators in position space that create or annihilate
a particle in the jth site:

ĉ†j |n1, . . . , nj, . . . , nN〉 =
√
nj + 1 |n1, . . . , nj + 1, . . . , nN〉 ,

ĉj |n1, . . . , nj, . . . , nN〉 =
√
nj |n1, . . . , nj − 1, . . . , nN〉 , (2)

where fermions satisfy the anticommutation relations

Fermions:
{ĉiσ, ĉ†jσ′} = δijδσσ′ ,

{ĉiσ, ĉjσ′} = {ĉ†iσ, ĉ
†
jσ′} = 0 ,

(3)

where σ, σ′ denote the spin state of the fermions (which we will ignore for simplicity in these
notes), and bosons satisfy the commutation relations

Bosons:
[ĉi, ĉ

†
j] = δij ,

[ĉi, ĉj] = [ĉ†i , ĉ
†
j] = 0 .

(4)

For fermions, the fact that they anticommute means that we need to establish a convention
for how we are defining states. For example, we can choose the convention

|r1, r2, r3〉 ≡ ĉ†1ĉ
†
2ĉ
†
3 |0〉 , (5)

so if we permuted one of the creation operators, we would get a minus sign:

ĉ†1ĉ
†
3ĉ
†
2 |0〉 = − |r1, r2, r3〉 . (6)

We can also express the state of the lattice in terms of the number of particles containing
different momenta:

Momentum space representation: |k〉 . (7)

In this momentum space representation, we can define creation and annihilation operators
in position space that create or annihilate a particle with momentum k:

ĉ†k |0〉 = |k〉 ,
ĉk |k〉 = |0〉 , (8)

where |0〉 is the vacuum state.
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We can change of basis by inserting the identity
∑

α |α〉 〈α| = 1 (where α labels the states
in any given basis):

|β〉 =
∑
α

〈α|β〉 |α〉 . (9)

In terms of creation and annihilation operators, this is

ĉ†β |0〉 =
∑
α

〈α|β〉 ĉ†α |0〉 , (10)

so we can see that we can also transform from one set of creation and annihilation to another
through the relation

ĉ†β =
∑
α

〈α|β〉 ĉ†α . (11)

Using

〈k|j〉 = ψ∗k(rj) =
1√
N
e−ik·rj , (12)

where |j〉 = ĉ†j |0〉 is the state in which we have a particle in the jth site, we can thus express
the creation and annihilation operators in position space in terms of those in momentum
space:

ĉ†j =
1√
N

∑
k

e−ik·rj ĉ†k ,

ĉj =
1√
N

∑
k

eik·rj ĉk . (13)

We can invert these expressions to obtain

ĉ†k =
1√
N

∑
j

eik·rj ĉ†j ,

ĉk =
1√
N

∑
j

e−ik·rj ĉj . (14)

The total number of particles is also conserved going from position space to momentum
space, and vice versa:1 ∑

j

n̂j =
∑
k

ĉ†kĉk . (15)

The following orthogonality relations are also useful:∑
r

ei(k−k
′)·r =

∑
i

ei(k−k
′)·ri = Nδkk′ , (16)∑

k

eik·(r−r
′) = Nδrr′ . (17)

1This can also be verified explicitly.
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1.2 Single-particle operators (side note)

In first quantization, single-particle operators are operators that can be written as a sum
over operators acting on single particles:

F̂ =
∑
i

f̂i , (18)

where the operator f̂i only acts on the ith particle. For example, for a system of N indistin-
guishable particles, the momentum operator of the system can be written as

p̂tot =
N∑
i=1

p̂i . (19)

Single-particle operators are useful because it is unphysical to talk only about the momentum
of the ith particle, since the particles are indistinguishable. We can therefore only talk about
sums, such as that in the above expression.

In second quantization, single-particle operators can be written in the form

Ω̂ =
∑
α,β

〈α|ω̂|β〉 ĉ†αĉβ . (20)

2 Tight-binding Hamiltonian

2.1 Position-space representation

Consider a system of free, non-interacting fermions given by the Hamiltonian

Ĥfree =
∑
k,σ

εfreek ĉ†kσ ĉkσ , (21)

where σ labels the spin states (for example, for spin-1/2 fermions, σ ∈ {↑, ↓}) and

εfreek =
p2

2m
=

~2k2

2m
(22)

is the energy dispersion relation of a free particle. We can express this Hamiltonian in
position space (using Eqs. 14) as

Ĥfree =
1

N

∑
i,j,σ

∑
k

εfreek eik·(ri−rj)ĉ†iσ ĉjσ , (23)

where N is the number of available k states (or equivalently, the number of positions the
fermions can be in), ĉ†iσ ĉjσ annihilates a fermion in the spin state σ at rj and creates one
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in the spin state σ at ri, which we can physically interpret as a fermion in the spin state σ
going from rj to ri. Defining

t̃ij ≡
1

N

∑
k

εfreek eik·(ri−rj) , (24)

the Hamiltonian then reads
Ĥfree =

∑
i,j,σ

t̃ij ĉ
†
iσ ĉjσ . (25)

Let’s now consider the case where these non-interacting fermions live on a Bravais2 crystal
lattice with a potential well located at each of the lattice sites. Note that these potential
wells will change the energy dispersion relation of the fermions, so t̃ij will also change too;
we will refer to this new parameter as the hopping amplitude tij. The fermions will now tend
to become more localized to the lattice sites and it will be harder for a fermion to “hop”
to sites that are far away (tij will be very small if |ri − rj| is large). In the tight-binding
approximation, we assume

tij =

{
−t , i and j are nearest neighbors

0 , otherwise
, (26)

so we obtain the tight-binding Hamiltonian

Ĥtb = −t
∑
〈ij〉,σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) . (Bravais lattice) (27)

We can apply this position-space representation of the tight-binding Hamiltonian to non-
Bravais lattices too if we are careful enough. For example, for a crystal with a bipartite
lattice, such as graphene, we must distinguish fermions on the two sublattices by assigning
them different fermionic operators, so the tight-binding Hamiltonian reads

Ĥtb = −t
∑
〈ij〉,σ

(â†iσ b̂jσ + b̂†jσâiσ) . (bipartite lattice) (28)

2.2 Momentum-space representation

In order to obtain a momentum-space representation of the tight-binding model, we will first
rewrite the sum over nearest neighbors as∑

〈ij〉,σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) =
1

2

∑
i,σ

∑
δ

(ĉ†iσ ĉi+δ,σ + ĉ†i+δ,σ ĉiσ) , (29)

where the sum over δ is carried out over the nearest-neighbor vectors δ1, δ2, . . . , δq, the
operator ĉi+δ,σ annihilates a fermion in a spin state σ at the site whose position is ri + δ,

2A Bravais lattice is a lattice in which there is only one atom per unit cell, so all atoms in the lattice are
equivalent.
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and the factor of 1/2 is to avoid double counting. Then, rewriting the fermionic operators
in momentum space using Eqs. 13 gives

Ĥtb = − t

2N

∑
i,σ

∑
δ,k,k′

(e−ik·rieik
′·(ri+δ)ĉ†kσ ĉk′σ + e−ik

′·(ri+δ)eik·ri ĉ†kσ ĉk′σ)

= − t
2

∑
δ,k,σ

(eik·δ + e−ik·δ)ĉ†kσ ĉkσ

= −t
∑
δ,k,σ

cos(k · δ)ĉ†kσ ĉkσ ,

where N is the number of sites on the lattice, and in the second line we have used Eq. 16.
We therefore find that the momentum-space representation of the tight-binding Hamiltonian
is

Ĥtb =
∑
k,σ

εtbk ĉ
†
kσ ĉkσ , (30)

where
εtbk = −t

∑
δ

cos(k · δ) (31)

is the system’s energy dispersion relation.

2.3 Examples

2.3.1 1D chain

For the 1D chain, the nearest-neighbor vectors are

δ1 = a , δ2 = −a , (32)

where a is the lattice constant, so the energy dispersion relation is

εtbk = −t[cos(ka) + cos(−ka)]

= −2t cos(ka) . (33)

A plot of this is shown below.
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Tight-binding energy dispersion relation for the 1D chain
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The tight-binding Hamiltonian thus reads

Ĥtb = −2t
∑
k,σ

cos(ka)ĉ†kσ ĉkσ . (34)

2.3.2 2D square lattice

For the 2D square lattice, the nearest-neighbor vectors are

δ1 = ax̂ , δ2 = −ax̂ , δ3 = aŷ , δ4 = −aŷ , (35)

where a is the lattice constant, so the energy dispersion relation is

εtbk = −t[cos(kxa) + cos(−kxa) + cos(kya) + cos(−kya)]

= −2t[cos(kxa) + cos(kya)] . (36)

A plot of this is shown below.

The tight-binding Hamiltonian thus reads

Ĥtb = −2t
∑
k,σ

[cos(kxa) + cos(kya)]ĉ†kσ ĉkσ . (37)
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