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Sparse Matrix/Canonical Grid Method Applied to
3-D Dense Medium Simulations

Benjamin E. Barrowes, Chi O. Ao, Fernando L. Teixeira, and Jin A. Kong

Abstract—The sparse matrix/canonical grid (SMCG) Method, scatterers in a host medium. Even some materials which can in
which has been shown to be an efficient method for calculating the principle be conceptualized and realized by regular, periodic

scattering from one-dimensional and two-dimensional random 5.angements, are often subject to random perturbations, both
rough surfaces, is extended to three-dimensional (3-D) dense.

media scattering. In particular, we study the scattering properties In terms_of the positions, sizes, and/or constitutive properties
of media containing randomly positioned and oriented dielectric Of the discrete scatterers. _

spheroids. Mutual interactions between scatterers are formulated For dense random media, several analytical methods based
using a Method of Moments solution of the volume integral on wave theory, such as the quasi-crystalline approximation

equation. Iterative solvers for the resulting system matrix nor- i i i i i -
mally require O(IN?) operations for each matrix-vector multiply. (QCA) [1]. 2)), the quasi-crystalline approximation with co

The SMCG method reduces this complexity toO(N log N) her_ent potential (QCA'(_:P) [3], or other approxima?ions such
by defining a neighborhood distance, 74, by which particle as independent scattering and Foldys approximation [4], are
interactions are decomposed into “strong” and “weak.” Strong frequently employed. These analytical methods rely on basic
interaction terms are calculated directly requiring O(IN) opera-  simplifying assumptions about the media, such as tenuous media
tions for each iteration. Weak interaction terms are approximated (low permittivity and permeability contrast), sparse media, (low

by a multivariate Taylor series expansion of the 3-D background fracti | vol f tt tvoicallv | th 504
dyadic Green’'s function between any given pair of particles. ractional volume of scatterers, typically less than 5%), or

Greater accuracy may be achieved by increasingry, using a Particle shapeg.g., spherical). These assumptions facilitate
higher order Taylor expansion, and/or increasing mesh density tractable analytical solutions but are not able to capture the
at the cost of more interaction terms, more fast Fourier trans- essential physics of many real world problems. Moreover, it is

forms (FFTs), and longer FFTs, respectively. Scattering results, e gifficult to assess the range of validity of such analytical
computation times, and accuracy for large-scale problems withr 4 . L
techniquesa priori.

up to 2 gridpoints, 14 x 14 x 14 canonical grid size, fifth-order . . .
Taylor expansion, and 15 000 discrete scatterers are presented and  1he alternative approach to deal with more complex media
compared against full solutions. problems in a systematic manner is to resort to numerical tech-
Index Terms—Fast methods, random media, sparse ma- hiques. Numerical methods such as the method of moments
trix/canonical grid (SMCG), spheroid, three-dimensional (3-D) (MoM [5]), the finite-difference time-domain (FDTD [6], [7]),
scattering. and related ones have allowed a partial relaxation of some of the
limiting assumptions concerning the medium [8], [9]. In par-
I. INTRODUCTION ticular, the MoM provides a self-consistent solution which in-

cludes multiple interactions between discrete particles through

E LECTROMAGNETIC scattering from and wave propayp, interaction (impedance) matr The main disadvantages

gation in three-dimensional (3-D) discrete random medi the MoM are the computation time required for solving the
has been a topic of continued research due to its broad rage |arge and dense resulting system of equations and the com-

of apphcatmps. For mstange, in applications reIatgd tp ﬂb‘?#ter memory requirements for the storag&of
remote sensing of the environment, the characterization ol

the elect i int i ith natural media i 0 help alleviate these bottlenecks, several so-called fast
€ electromagnetic wave Interaction with natural media 1s RI merical methods have been developed in recent years for
great importance. Natural media (e.g., show, ice, and s

th two-dimensional (2-D) and 3-D electromagnetic problems
often consist of a large number of densely packed, electrica (2-D) g P

; o ) .g., [3], [10]-[16]). One of these fast methods, the sparse
small discrete scatterers that are randomly distributed in sopaes & /2 0o grid (SMCG) method [13], [14], [17]-[20]
backgrou_nd_ host me_d|um (dlscret_e random medl_a). Moreovg eeds up the solution of certain electromagnetic problems
many artificial materials (e.g., particulate composites) can aIB =

be characterized as being composed of randomly distributed dgcomposmg th_e |ntere_lct|on mitSrB( |n_to two sgparate
matrices: a strong interaction matrix which contains the

interactions of nearby elements calculated exactly, and a weak
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by a Taylor series expansion around a canonical grid [14], [2@hereP.V.stands for principal value. The exclusion volume de-
or through the use of translation addition theorems [3], [17endent term in (3) becomes important when calculating the self

The advantage in doing this is that during the solutionZof interaction terms [see (4)]. Finally(7,7) is the scalar Green’s
using iterative solvers (as is frequently the case), the origirfanction

full matrix-vector multiply Z - 7 (O(N?) complexity) may be ikl |
replaced by a sparse matrix multipl, - Z(O(N)) plus a fast 9(7,7;) = prr—— 4

J

Fourier transform (FFT) assisted multighy -z(O(N log N)).
This FFT assisted matrix-vector multiply is possible becaug¥imed variables indicate those variables pertaining to the scat-
of the multilevel block Toeplitz (MBT) structure inherent interers while unprimed variables indicate quantities positioned

7 as a result of the canonical grid expansion of the we&kltside the scatterers (background or host medium). The in-
interactions. duced polarization inside each object due to the electric field

In this paper, we extend the SMCG method to a 3-D ca8é™; is given byP (7)) = (e(7;) — €) E(7}) [from (1)].
and consider its application to the scattering from complexTO solve (1) using the MoM, the electric field inside the each
media consisting of a collection of randomly positioned arR@rticle is expanded in a set 6f basis functionsg.g. for the
oriented dielectric spheroids in a homogeneous host mediui particle
In Section Il, we describe the MoM formulation &f derived N,
from a m_any-body volume integral quation. !n _Sectio_n I, E(;;,) - Z cjafja(ﬁj). (5)
we describe the 3-D SMCG method in detail, including a a1
discussion on the various tradeoffs associated with choosing ] o )
the method parameters as well as the Taylor series expansiof6f basis functions;, (7;) for each particle can be chosen
the background dyadic Green’s function around the canoni®@sed on particle size and geometry as detailed later on. For
grid gridpoints. In Section IV, scattering results from thesgUr PUrposes, we will also assume that these basis functions are
collections of spheroids calculated by the SMCG method apghonormal
presented and compared to results obtained from the full — =
MoM solution. Computation times, memory requirements, and /‘ dVifja(T) - F35(T5) = bap (6)
accuracy for the approximated and full MoM solutions for ’
cases of 500-15 000 particles, varying neighborhood distanoebgred, s is the Kronecker delta.
Taylor series expansion orders of 0-5, and grids af@x 6 To find the field inside each object, we substitute (5) into (1)
to 14x 14x 14 are also considered in Section IV. This igo arrive at
followed by conclusions in Section V.

Nb _ o
Z cipfis (77) | =Eine(77)
=1

Il. FORMULATION
The electric fieldZ (7) in a random medium consisting of 2
arbitrary dielectric objects (discrete scatterers) with permittivity + — Z dVj(e(T}) — )
¢(7;) excited by an incident electric field;,.(7) can be de- c =V
scribed by the volume integral equation (VIE) [21] through a _ Ny _
summation over each scatterer -G(T, 7)) - [Z Ciaf ja (F})] - (N
a=1

N .
E() = Fu(F) + k_2 Z/ de'(e(F’j) _ e)ﬁ(?,?}) -F(F’j) By inyoking the pr,thonorrr.]ality of the basis fqnctions [(6)] and
€ vy applying Galerkin’s technique, (7) can be written as

(1) . N N,
_ _ Cig = / AV{ Fis(7)) - Bine(T) + Y Y CjaZijap  (8)
whereV; is the volume of scattergy, k is the wavenumber of vi j=1a=1

the homogeneous background mediuns the permittivity of h
the background mediura(7;) is the permittivity inside thgth where

scatterer@(?,?}) is the background generalized dyadic Green’s . = _ p. / dV-’/ AV T, 4(7) '5(7'- ) - T (7))
. . . . A 17,3 Ja 7 gJ B\ R Jja\lj
function whose principal value is given by \% v!

©)
el = VV — =
G = [T+ 32 | o) @
2
which, to account for the singularity encountered whea 7, Bj, = k—(e(F;») —€). (10)
should be written as [3], [22], [23] €
The first term on the right-hand side of (7) is determined by
fé(r —7) the incident field and is known for a given configuration while

G(7,7;) = P.V.G(7,7)) — TJ (3)  the other two terms describe the interaction mafiwith ;.
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forming the unknown excitation vectar Suppose that the self collection. Also note that each individual particle need not

term (thatisj = j, o = G term) in (8) is be identical for the method described in Section Ill to be
valid. Each particle may differ in shape, size, permittivétc.
Zim,@b:j,a:,a = Cip (11) as long as the particle remains small enough compared to

the wavelength (size parametes < 1) so that its response

then (8) can be recast into the matrix to E;..(7) may be accurately modeled by a point response.

7. 5=0 (12) For reference, the first three basis functions for the spheroid
corresponding to the dipole solutions of the Laplace equation
where are given as
[ fvlf dV{ f11(71) - Einc(T}) T 7 o1 (172)
— _ J— . :Zb;—
fVl’ dV{ f15(T1) - Einc(T) " ! Vi
- 1
o [z T (17b)
fvl/ dvllle,, (ﬂl) . Eim(ﬂl) . 1 !
b= : (13) fis :ﬁbj\/?~ (17¢c)
. — - — _ J
jv/ AV fn1 () - Eine(Ty) R R . ,
| N IV T s () Fane(7) Here,zy;, 45;, @andz,; are the principal axes of sphergidFor
Vi DINANZANS el N the expressions of the higher order basis functions and further
: details concerning this MoM solution for the case of small pro-
AV Faen (F) - Bune (7 late spheroids, the reader is referred to [8]. An example of one
B ny N fw, () ()] realization of a random medium filled with 30 spheroids with
Similarly elongatione = 1.8, and fractional volum¢, = 0.3, contained
T a unit cube test volume is illustrated in Fig. 1.
T = [[611./ 0127 ey Cle] ) [CN17 CN27 ey CNN(,]] (14)

and theN, x N, block of Z which describes the interaction _ “f' 3_[_) SMC.G METHO?
between particlesand; is given by (15) as shown at the bottom  Consider a medium filled with many discrete scatterers (e.g.

of the page, WherE is then understood to be SpherOidS, as in F|g 1) at random pOSitionS and with random
. . orientations contained in a cubic test volume. The dielectric
. Z1n  Zis . spheroids have a statistical distribution realized by a shuffling

Z = : - : . (16) process described in [8]. After a suitable distribution\of,e

?;r ) ' ?’V N particles are generated, anf the collection may be truncated
sem fes to any shape. In our case, we will truncate to a spherical test

The size o7 is N, N x N, N, and the lengths of vectorsands ~ Volume consisting ofVpper particles.
are N, N. The calculation of the self ternts; s are based on the
electrostatic solution of spheroids and are described in detaif% SMCG Model Parameters
[8, Appendix A]. The SMCG method achieves reduced complexity and
In this paper, we consider identical prolate spheroidal paeduced memory requirements by assuming that scatterers are
ticles at arbitrary locations and with arbitrary orientationssmall enough so that accuracy is maintained, though only point
Assuming electrically small particles, we choose the badi$eractions are considered, and by decomposing the interaction
functions to be the electrostatic solutions to the Laplace equmatrix Z into two separate matrices: the “strong” and “weak”
tion for a prolate spheroid. Equation (12) was derived aboimteraction matrices. This decomposition is governed by a
to show the generality of the method: for particles of differemteighborhood distance;, beyond which radius interactions
shapes, one need only choose appropriate basis functionsaf@sconsidered weak. The choice of the neighborhood distance
many as needed) in order to calculate scattering from ttsediscussed in more detail in Section III-B.

( Zij 11 Rij12 ..+ Zij, 1N,
Zij,21  %ij,22 . .
- P F ]
:< o Zij,N,1 <. Zij N, N,
Zi=yraleny o 0 (15)
0 (1-0Cy2)
. . 1=
\ 0 (1-0Ciny)
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Note that?j is the transpose &1 if i = 5. If £ denotes, y, or
z, then the terms of (21) are

1 92
Geye, (Rij) = g(Rij)og e, + ﬁmg(f%) (22)

whereg(R;;) is the scalar Green'’s function [(4)], agdif¢, iS
the Kronecker delta, and

Rij = \/(ﬂ?z’ )+ (i —y)? + (2 - 2)? (23)

If fis constructed by inserting. into the appropriate columns
(determined by gridpoint index) and rows (determined by par-
ticle index), then (19) can be expanded to include all particle
interactions as

khl’

-7-G (24)

where_?T denotes the transpose ¢f Note thatf is sparse,
while G is a densg[N N ) x (N N, ) matrix containing the exact
interactions between every pair of particles.

The next step in the SMCG method involves approximating
* the weak interaction between particieandy in the interaction
Fig. 1. Densely packed medium consisting of 50 dielectric spherong'amxz by a multivariate Taylor series eXpanS‘IO”@(RU)
Elongation= 1.8, f, = 0.1. about the gridpoints nearest to the partlcdeandy, respec-
tively. Let this approximated matrix bé defined according

the following. Let a cubic lattice be superimposed onto the

y 0 o0

If the particles are small compared to the wavelength of the i : ; .
cident radiation, the induced electric field inside the particle ¢ ﬁ5t ;/olun:r? WithNV, a gg y» ANAN, . Iatt'cf pcl)ln::s Or”gr]'fih
be considered constant and may therefore be accurately mig Istm €. Y, ?jn Zd |m$hn3|ons respectively. Foraf otthe
eled by a dipole response located at the center of the partuﬁénu ations considered in this paper

In this case, the integrals in (7)—(13) may be replaced by the N,,=N,,=N,.=N (25)
volume of that particle as . oY - I
with
AV ~v; = é7r(142c: (18) (i—1)+1
v 3 Nyi= — (26)
g9

Wher_eaj is the Iength of the semiminoraxis angl= @55 with o gridpoints located in a unit cube. The spacing between grid-
e; being the elongation or aspect ratio. The assumptions st ts is themAr, = 1/N,. Al those interactions located fur-
above allow the separation ffinto three distinct matrices: 1) ather apart than the predetermined neighborhood distance are
premultiplying basis function matriy; dependent on particle considered “weak” interactions. Thus, decompodtiirough

i; 2) the Green'’s function kernél(7, ) (which now only de- the relation

pends on the distance separating the centers of partiated;, _ —cg

R;; [see (23)]); and 3) a post-multiplying basis function matrix G=G(R,)+G (Ru) (27)

[, dependent op. In rectangular coordinates this becomes foralli, j = 1... N whereR, denotes the set of distances

= =, = between pairs of particles whose interactions are considered
i = fi G(Fi,75) - f (19) strong, andR,, is a set containing all other pair interactions
(considered weak), (19) can be written as

Nl

where — —s —w
Z=7 +7
3 fire  fiay  fi: - — T = —c —T
Fo | 5 5 20) =[GR)-T +]-C (fw) )
fiN;,,m fiN;,,y fiNb,z ES ?
and where the superscript “cg” denotes an approximation based on
the distance between the particle and its associated gridpoint
o Greo(Rij) Guy(Rij) Gu-(Rij) located atr,. R, and R,, are mutually exclusive sets with
G(Rij) = | Gyu(Rij) Gyy(Rij) Gyu.(Rij)|. (1) R;URw = R. G(R,) contains the exact Green’s function
G.2(Rij) G.y(Rij) G..(Rij) between particles only in close proximity (closer thghwhile
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all other entries are set to E(RS) is the same size ﬁ; from

. —=cg . . =
(24), but is sparseZ (R,,) is also the same size & and
contains an approximation of the remaining weak interactior

G g(Rw) is actually a sum of as many matrices as is require o _(Rm)
for the expansion (see Table II). The derivatior(_big(Rw) as 08333 -

well as fast methods for the subsequent matrix-vector multig S - S‘ !
. . P - Str
will be discussed below. -7 I inte’ri’:tigon ,
: cloud .

. . 0.5
B. Parameter Considerations N

A natural question at this point is: beyond what distanc
should interactions be considered “weak”? The distance
which the separation occurs is called the neighborhood distai 0.1667
(rq) and is defined in terms of the number of gridpoints awa
from the gridpoint of interest. It is clear that the choice fgr
influences both the accuracy of the results using the SMC
method and the computation time required. On the one hal
for small r4 (<1 intergridpoint spaceAr,), approximation
errors tend to accumulate and cause the iterative solver of (.
either to not converge or converge to incorrect values. On t
other hand, a large; causes a greater number of interactior y
to be classified as “strong” and the SMCG method reverts to a
full iterative approach. Reasonablg values from simulations Fig. 2. Strong interaction cloud with, = 1.1. SpheroidsS; andSs are
are between 1 and 2 gridpoints. closest to the same gridpoint and thus their interaction is included in

The neighborhood distance must be defined in terms of gri%:emid% is beyond-, and thus its exact interactions with bdfh (G/(R1.)

0.8333

. . . . . shown as a thick solid line betweey andS,) andS; are approximated as
points because for weak interactions, particles interact throug (7211, 7192) and included inZ *
il a1 7l .

. .=¢8g . . .
the Green’s function matrix; (R,,) which is defined only
in terms of the number of gridpoints and their respective lo- TABLE |
; ; ~ ; ; ++-INUMBER OF SURROUNDING GRIDPOINTS, ¢, , INCLUDED IN THE STRONG
Ca,tlon$ (See Section [l C) ThUS, a" .partlcles aSSOCIat?d WII:lﬂ{\IINTERACTION CLOUD AS A FUNCTION OFN(IIEIGHBORHOODDISTANCE rq
gridpoints closer tham; (measured with respect to the inter-

gridpoint distance) will have strong interactions with the par- Range of rq

ticle under consideration, while those particles associated with (# of Ar,) Iry
gridpoints which are located further away thagrare classified 0<rqa<1 1
as weak interactions. In this way; defines the strong interac- 1<rg<v2 7
tion cloud (or molecule) which is illustrated in Fig. 2 for three \/§<rd22 19
spheroidsS;, S», andSs with N, = 3. Table | lists the number 2<7'42\/5 33

of gridpoints included in the strong interaction clofud,) for
the first few ranges of,.

One related question is, how fine or coarse of a grid is nec-
essary or optimum for a given collection of scatterers? At the 3 e =8
very least, there must be as many or fewer undulations (Iod89th e 8N, for G (N,), see (43)] and the number of ex-

extrema) inG between gridpoints as the order of the Taylor s&- > 01 matrices\r, see, Table II, Section IlI-C). Thus, if we
. . . . =cg . estimate the number of multiplies required forsiFength FFT
ries expansiorty) for it to be possible folG ~ to approximate ) w

= o asN logy, N, M"v is

G adequately. In terms of computation time, the number of mul-

tiplies M* required during each iteration of the iterative solver MY = 8N§’ (log2(8N3)) Nr. (30)

Z)vrerzaéj r:LOr:]nbéer())flsiriéi\Qﬁiﬁs (ﬁi?hbga?:%pg;);lt?;ﬁetef?o? g:ﬁ‘gr perefore, the total number of multiplidg for one iteration can
e estimated by/ = M™ + M*. The N, which minimizes this

particles asspmated W'th the same grldpqmt, multiplied by tI?Snction can be found by solving the following transcendental
number of gridpoints in the strong interaction cloud, and multi-

plied again by the number of spheroids equation forN, giveng,, andNr:
—BNZg,«d

o N
M = N (m) g"’(l' (29) N;
g9

+ 24N2 Ny <1og2(8N§) + ﬁ) =0. (31
Equation (31) provides an estimate of the number of gridpoints
Becausd /N < 1, M*®is O(N) unlessN, is small and/og,, which minimizes computation time as a function of the neigh-
is large. borhood distance and the expansion order.
The number of multiplies/™ required during each iteration  The approximation error due to the SMCG method decreases
of the iterative solver foZ - 7 in (28) depends on the FFTif a largerr, is chosen because more terms are being counted
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TABLE I
NUMBER OF EXPANSION TERMS AND TOTAL NUMBER OF FFTS (BOTH
FORWARD AND INVERSE) FOR EXPANSION ORDER ¥

Expansion Number of expansion

TABLE I
COMPUTATION TIMES AND RELATIVE SPEEDUP FOR THESMCG METHOD
COMPARED TO THEFULL METHOD. FOR ALL CASES N up. = 15000

53

= total time/ Eq. speed

ordeg ) terms (?%7’”') ]\;T N, Nppr iters iter (44) up
1 3 8 o 6 11979 28.0 24 2485 124.45
9 6 20 a — 8 30375 20.5 1.8 0.958 163.88
3 10 10 =10 61731 195 29 0708 10304
4 15 70 n 12 109503 18.0 4.3 0.507 70.40
5 21 112 > _14 177147 175 62 0380 48.38
g 6 11979 28.0 34 0.800 87.12
S 8 30375 20.5 3.5 0.339 85.24
in the strong interaction cloud and computed exactly. This & |?L 10 61731 18.5 7.1 0.139 41.99
error will also decrease iV, is chosen larger because a finer : 12 109503 18.0 11.0 0.044 2731
mesh implies that the Taylor series will estimate functions g 14 177147 180 164 0.046 18.31
over smaller regions. In other words, the Taylor approximatior & 6 11979 20.0 73 0.080 41.15
will have less error because it is fitted to a smoother function é o~ 8 30375 18.0 6.8 0.085 44.09
The effect on computation time and accuracy of the expansic 10 61731 195 151 0116 19.83
order,r4, andN, can be seen in the results listed in Table IIl. Z, 12 109503 20.5 238 0.141 12.59
14 177147 25.0 35.1 0.150 8.53
C. 3-D Dyadic Green’s Function Approximation . 6 11979 240 118 1.926  25.49
After the parameters of the 3-D SMCG method have 5.~ 8 30376 195 62 0647 4815
been chosen, weak particle interactions are approximate — I 10 61731 185 54 0519 55.96
by expanding the background dyadic Green’s function abot 12 109503 18.0 5.7 0390 52.42
distance between the gridpoints nearest to each pair of particle ~~ _14 177147 180 7.2 0308 41.37
Let each particle located & be associated with its nearest g 6 11979 20.5 128 0.628 23.50
gridpoint g'™" located atr,; ™" wherel;, m;, andn, are S~ 8 30375 180 80 0270 37.51
gridpoint indices in ther, y, and 2 dimensions, respectively, & 1 10 61731 175 9.7 0133  30.92
and are integers in the range '_g 12 109503 17.0 125 0.069  23.98
g 14 177147 170 173 0.030 1735
1 <A{li;mi,ni} <Ny Vi=1,...,N. (32 £ 6 1979 175 20T 012 1419
Ifl F:SF;ELIC|ESL andj a}ri issomatc—}:‘gl va:th gridpoingg ™™ and E"G‘i lg g(l)%? igg }.1(.2 ggfz f‘;’gg
g'™im located at; ™™ and7y respectivelyG(R;;), Z 12 109503 16.0 265 0.015 11.31
defined in rectangular coordmates by (21) can be apprOX|mate 14 177147 150 364 0.009 8.23
by a~th order Taylor series expansnﬁﬁ as 5 11979 195 294 1177 1021
. 1 5? 8 30375 205 149 0467 20.14
o5 R N w10 61731 185 98 0372 30.44
o R ;0 (UZJ i g ) =712 10053 175 85 0296 3540

14 177147 17.5 9.0 0.247  33.33

g -}
G( s ) o 6 11979 200 297 0280 10.09
o (33) S 8 30375 175 160 0089 1868
. _ _ % él_ 10 61731 16.0 14.3 0.085 20.90
or via the trinomial theorem as ° 12 109503 16.0 15.3 0.055 19.58
—cg B 0 1 § 14 177147 17.0 19.2 0.033 15.60
Ru)=d_ > <ﬁ> £ T6 11979 175 315 0155 952
120 ey ey N TP S, 8 30375 160 201 0018 14.94
ﬁo g 10 61731 16.0 219 0.016 13.68
x T (agy) 2 T 12 109503 150 281 0.009 10.65
E=zy,z 14 177147 16.0 38.6 0.007 7.76
e o g =
where and agairg is a placeholder for, y, or . G (R.,) from (28)
Abi; =A& — AE; is realized by (33) over all values H&nd; and depends only on
! ’ IJ Lmin gridpoint locations, and therelative distance of each particle
= (F;,,s T ) - (7"1 £ Tge’ J) (35)  from its associated gridpoint.
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Note that the relative distanceS¢; in (33), are the only and, for example, the, = 2, Yy = 0,7 = ()(7;00) term
quantities which are particle specific and that they are scalafguld be [from (39)]
Accordingly, we move these particle dependent quantities into

- . . v i —=w = = =T = = =T = = =T
f by mU|t|p|ylng ‘fi by AE‘ overf [Cf(lg)_(24)] Z200 = f200G200f000 - 2170100(;20010100 + f000G200f200
_ _ (42)
_ _ with foo = f from (36). Lastly, if(e(7)) — ¢) is particle de-
Fomr. = ] Q&)™ | f; Vi=1,...,N. (36) pendent(k?/€)(¢(7;) — ¢) from (10) should also be multiplied
E=ay.2 into either the pre- or posif multiplication in a fashion similar

to that of (36).
Th_e remaining terms in (34) are dependent only upon the grid-The reéluc)tion in computational complexity and memory
points, we define requirements is realized by exploiting the structure inherent to
G+.~,~.. As mentioned earlier, the Green’s function matrix
G = ( 1 ) o= 9w = i(FAlAmAn) is highly redundant if the grid is ordered sequentially. In
T \ ey lye! ) Owe 0yrv 027 fact, G.,.,~. can be classified as a multilevel block Toeplitz
A o (37) * (MBT) matrix with M = 3 levels, of sizeN, .., N, ., Ny ..
whereG/(7 ) isan3N x 3N matrix defined by (21) with (o5 ectively, with the final level being a dense 3 block [24].
R;; defined by (23)1 being the distance between gridpoints g4ty vector multiplies of MBT matrices can be achieved
cated ary, ™" andr; """ . Because of the translational invari-in ©( Nepr log Nrrr) operations, instead ab(N?), where
ance of the dyadic Green’s function, the entrie&¢f>'2™2")  Npp is the FFT length defined as
depend only on the differential number of gridpoirt$, Am,
andAn if the ordering ofl, m, andn are sequential along the
axes. Nepr =9 J] @Noe—1)] - (43)
__Thes subscript in (36) corresponds to a premultiplication of E=xy,z
G, ~,~. and can be thought of as a “source” particle from which

Tule O ! . . - ) .. .. For each unique vector, the matrix-vector multiply involving
radiation is being emitted, while the similar posiqmulhpllcauorén MBT matrix requires another FFT with length given by (43).

matrix corresponding to the subscript would bef and . remains unchanged for the

) L2 X . : v=y- 0 In terms of (39), becausé.,, -,
is analogous to a “sink” particle with an induced electric f'elgameNg and baikground wavenumbgr the FFT of the ex-
nsion matricesr.,, . may be performed once and stored.

caused (in part) by particle
Using the def|n_|t1|Uons above, we can now expand the We‘%‘Een for each step in the iterative solutiog, one FFT must be
performed for each unique combinationfn;x yyay., AN,

interaction matrixZ as
. . . 2 lya Iz2 .
T and likewise an inverse FFT must be calculated for each unique

7 =7-G (Ru)-T

- S oy ey - Table Il lists the total number of transforms per-
= Z Z ?: o (38) formed for a single?w - multiply using the canonical grid
VN expansion(Nr).
Utilizing this 3-D SMCG method, the total complexity of
where solving (12) is reduced fron®(K N?) to O(K NN log N)
whereK is the number of steps required for the iterative solver
Sw = = =T to converge. In Section IV, the 3-D SMCG method is shown to
Zovevy v Z Z ZAf%ﬂyﬂn FCrersre F s miareg indeed realize results which require much less computation time
Yzi1 T Voo = Va while maintaining a desired tolerance.
Vyr T Vy2 = Yy
Yo 72 =72 IV. RESULTS
39 . . L
(39) Inthis section, we apply the 3-D SMCG method to finding the
scattering from a large collection of randomly distributed and
and where

oriented spheroids contained in a spherical test volume. Each
of the N.ube = 500—15 000 spheroids considered are identical

A= (=1)=2Fr+r= < Te ) ( Ty > < 2 ) . (40) with respect to size, shape, and permittivity7;)). The size

Va> Yoo Ve parameteka for each spheroid is 0.2. Likewise, the fractional
volume of the spheroids in the test volume is 20%. Only the
dipole basis functions of (17) are employed, i’é,,= 3. Thus,
there are a maximum of 45000 unknown coefficieats to
solve for. For a giveV,,;,., the same randomly generated con-
figuration was used for all combinations 9f r4, andN,. All
e —w w o —w W w results were computed on a Compaq Alphaserver DS20E with
Z = Zyo+ Z110+ Z101 + Zozo + Zorr + Zoo2  (41) 4 GB of RAM.

The~e, and~,, in (39) are integers which take on all combina
tions in the interval0, v¢] which satisfyye, + ve, = 7. For
example, in the second ordey = 2) Taylor series expansion,

?w would be approximated by six terms as
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Fig. 3. Computation times and Kullback—Leibler distances for SMCG methddg- 4. Computation times and Kullback-Leibler distances for SMCG method

fory = 0-5 with 7, = 1.1Ar, and Ncype = 10000.

Four parameters dictate the resulting accuracy and compu-
tation time of the SMCG method as compared to the full MolM*
method. While the computation time of the full method depent
only on the number of spheroids in the test voluMgher., the

SMCG method additionally depends on the neighborhood d
tancer,, the Taylor series expansion orderand the number of
gridpointsN, in each dimension. The relationship between e
pansion order and computation time and accuracy is illustrat
in Fig. 3, where expansion orders from= 0 to vy = 5 were
considered. Note that = 0 corresponds physically to approx-

imating all of the spheroids as actually being located at the

respective (nearest) gridpoints.

As a measure of the "distance” of the approximated sce
tering results from those given by the full method, the Kulli;?

back-Leibler distance [25] is used

5* Jor(n) log

plorllo) = "=

wherec is the radar cross section (RCS) resulting from the fu .
solution andrr is the approximated RCS calculated using th éomm

o

=

8

ar(n) =]
o(n) -g
(44) =

8

=

Q

—

SMCG method. The RCSs are computed from the dipole excii 2

tion strengths [8] afVy = 200 distinct angles. An example can Q le—05

be seen in Fig. 6. As expected, for increasing expansion or(
and grid size, computation time increases dramatically until i

approaches the computation time of the full solution. Howeve;

Time/iteration(s)

forry, = 0.1-2.1Ar, with~ = 2 andN, = 8.

100

o
-

[=4
(=4
—_

o
g

—»— Full Solution

-G 6x6x6 mesh
-% 8x8x8 mesh
-3 10x10x10 mesh
—> 12x12x12 mesh
|| =% 14x14x14 mesh

T —
6.6~ -

@ e--3 £ -8- -

L L L 1 !

051

Nouse(%1000)

10

for v = 2, most grid sizes maintain a small Kullback—Leiblefor N, = 6-14 with v = 2 andr, = 1.1Ar,.

12.5

15

g.5. Computation times and Kullback-Leibler distances for SMCG method
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Fig. 6. Radar cross sectigwr) for increasing accurate approximations.

distance, while realizing an substantial reduction in computa-Memory requirements can be estimated by the number of ex-
tion time. pansion matrice§?.,, ., . stored (times 2 including) multi-

The effect of varying the neighborhood distamgds shown plied by the length of each of those matrices given by (43).
in Fig. 4. As the neighborhood distance increases foaith,  The memory required for the SMCG method is thus seen to be
to2.1Ar,, the marginal speed of the SMCG method approach@g V) as compared t@(N?) for the full method. As a final
the marginal speed of the full method (i.e. the slope of the curveste, this SMCG algorithm is easily adapted to other types of
are similar) due to many strong inte_rgctions being included prarticles such as spheres, crystals, dust grains, etc., for which
Z instead of being approximated i . As a general trend, the basis functions are known. This method may be used in a
the Kullback-Leibler distance in Fig. 4 is smaller for larggr way which imitates the discrete dipole approximation (DDA)
for the same reason. [24], [26], [27], and the authors have used this method to find

Fig. 5 shows computation times and Kullback-Leibler dighe effective permittivity of collections of randomly distributed
tances for the same set of data as Fig. 4, exceptsthas spheroids [9].
kept atry = 1.1Ar,, while the number of gridpoints is varied
from N, = 6 to N, = 14. Note that for finer meshes, the
FFT computation time dominates the overall computation time,
which results in very flat curves with respect M. .. This The SMCG method has been extended to 3-D and illustrated
also illustrates the tradeoff between grid size and the neidby finding the scattering from random media filled with dielec-
borhood distance discussed in more detail in Section IlI-Bic spheroids at random positions and orientations. The 3-D
The final figure, Fig. 6, shows the convergencesgfto o for SMCG method achieve®(N log N) complexity instead of
successively accurate model parameters, and Table 11l recofdfgV?) for the matrix-vector multiply when using an iterative
pertinent computation times and Kullback—Leibler distanceslver by decomposing the interaction mat#x generated by
for a number of cases. an MoM solution to the many-body volume integral equation,

V. CONCLUSION



BARROWESet al. SPARSE MATRIX/CANONICAL GRID METHOD APPLIED TO 3-D DENSE MEDIUM SIMULATIONS

into strong and weak interaction matrlcﬁs andZ , respec- [13]
tively. The matrixZ contains only those interactions which
are between partlcles closer than the neighborhood distgnce
Therefore, 7 is very sparse and the matrix-vector multiply [14]
7 -7is accomplished ifO(N) complexity. The matrixz

is formed by expanding the dyadic Green’s function between
each pair of particles whose associated gridpoints are locat Ps
further apart tham,; in a yth-order multivariate Taylor series
expansion around a canonical grid superimposed onto the test
volume. The prolate spheroidal particles considered in thit®!
paper were electrically small so that their response to electro-
magnetic excitation could be adequately approximated witfil7]
a point response. Therefore, the Green’s function interaction
expansion matrices?., . exhibit a MBT structure. MBT  [1g]
matrices can be multiplied with an arbitrary : vector using the
only one forward and one inverse FFT. Thﬂs - T can be
accomplished i@O (N7 N log N) complexity, whereVr is the
number of FFTs and depends on the expansion oyddte
3-D SMCG method was demonstrated to indeed realize thg
predicted reduction in complexity and memory requirements
through large-scale examples including up to 15000 discrete
scatterers. [21]
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