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The Challenges of Human-Machine T&E

As machines continue to behave more like active cognitive agents (e.g., able to make
recommendations, interjections, etc.) than passive tools, human-machine systems have become
significantly more difficult to evaluate in both laboratory and naturalistic settings. The increasing
interconnectedness and interdependence of human-machine systems renders testing and
evaluation (T&E) of individual components (i.e., the human or machine alone) increasingly
inadequate for understanding joint system performance. For example, machines that provide
recommendations can have a strong influence on human cognitive processes and produce
behaviors that are both better and substantially worse than if the human operators had been
working unaided (Smith et al., 1997). Consequently, these systems are often far more brittle in
the real world than their designers intendended, as highlighted by a number of recent
high-profile incidents involving highly automated technologies (NTSB, 2017; Eubanks, 2018;
Obermeyer et al., 2019; FAA, 2020).

The creeping complexity of these human-machine systems has far outpaced T&E methods,
e.g., usability tests (Rayo, 2017). No singular discrete set of observations can capture the full
range of difficulties a system will face during operational use. Yet the high costs of running
high-fidelity human-machine studies means testing sets will remain inevitably limited. Therefore,
the ability to extend T&E insights beyond the limits of testing sets, holistically compare the
performance of joint system architectures, and extrapolate trends of brittleness or extensibility
becomes critical to mitigate the risks of introducing unintended consequences.

The Joint Activity Testing (JAT) Methodology

We are developing Joint Activity Testing (JAT) as a T&E method to directly compare the
performance of multiple competing system alternatives, including the performance of individual
components (i.e., unaided human, unsupervised Al) as well as the joint human-machine system,
in a way that enables insights to extend beyond testing boundaries (Morey et al., 2020). The
method compares alternatives across multiple, continuous measures of performance (e.g.,
efficiency, accuracy, etc.) and challenge to the system (e.g., workload, required tempo of activity,
accuracy of available data, etc.) which are built from empirically-based patterns of difficulties in
distributed cognitive work (Patterson et al., 2010). Plotting the results of discrete testing cases
within this performance-challenge space then facilitates a more confident interpolation,
extrapolation, and abstraction beyond the boundaries of the testing set. This analysis can help
evaluators anticipate how system performance will change as challenge to the system



increases, holistically compare alternatives across the entire range of potential challenges,
assess the sufficiency of the testing set itself, and identify regions of performance and challenge
that are likely to yield maximally informative results.

We have now begun to operationalize JAT in multiple intelligence analysis and healthcare
settings by pursuing two parallel lines of inquiry: (1) plotting discrete testing cases within the
frame of reference performance vs. challenge and (2) modeling performance as challenge
increases. Using the results of a recent human-machine teaming study, we showed the
feasibility of both aspects of JAT with one dimension of performance and one dimension of
challenge (Morey et al., 2020). In several other ongoing projects, we have begun to implement
this methodology with multiple dimensions of performance and challenge. The following steps
outline the general process of conducting JAT.

1. Define Performance Measures. Select meaningful outcomes (often capturing aspects
of efficiency, accuracy, or thoroughness) of the joint system that can be measured to
assess performance. This becomes the y-axis of each plot.

2. Define Challenge Measures. Select meaningful aspects of the domain that can be
measured to quantify the degree of challenge the system faces (e.g., Patterson et al.,
2010). This becomes the x-axis of each plot.

3. Identify a Reference. To contextualize results, it is advantageous to compare the
performance of at least two different configurations of the joint system (e.g., with and
without machine recommendations).

4. Select a Testing Set. A central purpose of JAT is to assess how system performance
changes as challenge to the system increases; therefore, the testing set should include
a wide range of challenge degrees along the x-axis.

5. Run the Study. Ideally, studies should simulate real-world tasks and tools as closely as
possible.

6. Plot the Results. Each testing case for each participant can be associated with a
specific degree of challenge and degree of performance, which can be directly plotted on
the graph (figure 1) and used to derive insights.

7. Fit a Model of Performance (ongoing research). We continue to explore methods to
model how system performance changes as challenge to the system increases.

8. Compare Model Characteristics (ongoing research). With a model of performance, it is
possible to compare higher-level properties of system performance (e.g., net benefit or
slope of decline).
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Figure 1. Example graph resulting from JAT (Morey et al., 2020)

Future Directions

Modeling Performance Curves

We are actively exploring ways to fit a model to the quasi-continuous data collected from T&E.
This acts as a model of system performance as challenge to the system increases. In addition
to the net area (e.g., between the model curves and the reference line), higher-level
characteristics like slope may become increasingly informative. We expect two of the high-level
parameters of system performance proposed in Morey et al. (2020) to be particularly
informative:

e Net area between two curves (e.g., model of HMT performance and reference line),
calculated as the difference between the integrals of each curve across the entire range
of challenge.

e The point at which the slope is maximal and/or the steepness of the curve, calculated
as the point at which the second derivative is zero and/or the value of the first derivative.
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Figure 2. Example graph with performance model

Such a model enables several capabilities crucial for human-machine T&E: (1) interpolating and
extrapolating system performance beyond the boundaries of the testing set, (2) holistically
comparing alternative system architectures, and (3) assessing the sufficiency of the testing set
itself to guide future testing.

Extrapolating System Performance

The model provides a prediction of system performance at any degree of challenge within or
outside the range tested in the testing set. While system performance is likely to be noisy, we
believe even a crude estimate beyond the boundaries of the testing set is valuable data for
evaluators and decision-makers.

Holistically Comparing Alternatives

Calculated characteristics from the model of performance can help evaluators holistically
compare competing system architectures. The net area between two curves informs the extent
to which one system architecture outperforms another across the entire spectrum of potential
challenges. The rate at which performance declines can help inform the degree to which a
system exhibits performance that is characteristic of brittleness.

Assessing the Testing Set

Without knowing a priori which regions of challenge are maximally informative, it is important to
be able to assess the sufficiency of the testing set to guide future testing. Regions of



performance that appear undersampled or particularly volatile are regions where additional
testing would be maximally informative to the model. On the other hand, regions of performance
where the curve is relatively flat or performance is more stable may not yield results that
significantly reduce the uncertainty in the testing.

Multidimensional JAT

Performance and challenge are not unidimensional; therefore, JAT should include multiple
dimensions of performance and challenge. To construct multiple plots, testing sets will need to
be constructed so that the differential effects of different challenges can be analyzed. Therefore,
the performance curves will likely need to become models of the effects determined by
statistical analyses. Figure 3 shows notional examples of JAT in multiple dimensions. We
believe that by integrating multiple perspectives of systems, evaluators can better understand to
which classes of challenges systems seem to be particularly vulnerable.
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Figure 3. Notional example of multidimensional JAT, adapted from Morey et al. (2020)
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