MATH 2162 Stokes and Divergence Theorem SP 2020

Recall:!
1. Some facts:
(a) For a differentiable function f, curl(Vf) =0

(b) If F is conservative, then curlF' = 0.

(c) If F is a vector field defined on all of R and curlF = 0, then F is a
conservative vector field.

(d) If F = Pi+ Qj + Rk is a vector field on R3, then
div(curlF) = 0

2. The curl of a vector field F = Pi + Qj + Rk is given as

curlF = V x F = det
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3. The divergence of a vector field F=Pi+ Q;+ Rk is given as
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4. (Surface Integrals of a vector field) If F is a continuous vector field defined
on an oriented surface S with unit normal 77, then the surface integral of F' over

S is
//ﬁ-d§://ﬁ-ﬁds
S S

This integral (on the left side of the equality) is also called the flux of F across
S. Remember that flur means the rate at which F' flows through S.
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5. (Surface Integrals of a vector field continued) If we parameterize S by
7(u, v) with parameter domain D, then the unit normal 7 is given by 7 = %

and the surface integral of a vector field F' over a surface .S is then given by

//gﬁ.dgz//jjﬁ(F(U,U))°(FuXFv)dA.

THIS IS THE FORMULA YOU WANT TO USE TO COMPUTE SURFACE
INTEGRALS OF VECTOR FIELDS.

Theorem 1. (Stokes’ Theorem) Let S be an oriented piecewise-smooth sur-
face that is bounded by a simple, closed, piecewise-smooth boundary curve C with
positive orientation. Let F be a vector field whose components have continuous
partial derivatives on an open region in R® that contains S. Then

/ﬁ-d?z//curlﬁ-dg
c s

Theorem 2. (Divergence Theorem) Let D be a simple solid region and let
S be the boundary surface of D, given with positive outward orientation. Let F
be a vector field whose component functions have continuous partial derivatives
on an open region that contains D. Then

//Sﬁ.dgz///deﬁdv



MATH 2162 Stokes and Divergence Theorem SP 2020

1 Stokes’ and Divergence Theorem Examples:

/ﬁ-df
C

where F(z,y,2) = (x+12)i + (y+ 22)] + (z+22)k and C is the triangle with vertices
(1,0,0), (0,1,0), and (0,0,1).

Problem 1. Evaluate
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Problem 2. Use Stokes’ Theorem to evaluate

/ / curlF - dS
s

where ﬁ(:v, Y, z) = y?— :vj—l— yx?’l; and S is the part of the part of the sphere 22 +y2 +
2% = 4 for z > 0, with upwards orientation. Assume that C is the circle 22 + % = 4
(in R3), with counterclockwise orientation.
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Problem 3. Verify that Stokes’ Theorem is true for the vector field F (x,y,2) =
y%i 4+ xj + 2%k and S is the part of the paraboloid z = 22 + y2 that lies strictly
below the plane z = 1, oriented upwards. Furthermore, C' is the curve in which
the the surface of the paraboloid z = 22 + y? intersects the plane z = 1, oriented
counterclockwise.
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Problem 4. Use Stoke’s Theorem to evaluate

/ﬁ-df
C

where ﬁ(:v, Y, z) = e + 6wf+ k. Here, C' is the boundary of the part of the plane
2x 4+ y + 2z = 2 in the first octant, and is oriented counterclockwise as viewed from
above.
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Problem 5. Verify that the Divergence theorem is true for the vector field F (x,y,2) =
2yi +yzj + zxk and S is the part of the cylinder 22+ 32 =1 for 0 < z < 1.
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Problem 6. Use Divergence theorem to evaluate

//ﬁd§
S

where F(z,y,z) = 2% + zyj + zk and S is the part of the paraboloid z = 4 — 2 — 1/
that lies above the zy plane.

Problem 7. Use the Divergence Theorem to evaluate

//ﬁd§
S

where F(z,y,z) = ztan™(42)i + 2 In(2? + 1)] + zk and S is the part of the cone
z =2 — y/x? + y? that lies above the plane z = 1, oriented upwards.
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2 Vector Identities:

Problem 8. Prove the following identity

//curlﬁ-dgz()
S

assuming S satisfies the conditions of Divergence Theorem.

Problem 9. Suppose that S and C' satisfies the condition of Stokes’ Theorem and f
and g are smooth functions. Use Stokes” Theorem to prove the following identity.

/C(ng)-dfz//S(fovg).d§
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Problem 10. Assume that S and D satisfy the conditions of Divergence Theorem F
is a smooth funtion such that F(z,y, z) = xi+ yj + zk. Use the Divergence Theorem
to prove the following identity:

Vol(D):%//ﬁ-dg
S
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Problem 11. Assume that S and E satisfy the conditions of Divergence Theorem
and both f and ¢ are smooth functions. Use the Divergence Theorem to prove the
following identity:

// fVg)-ads = /// (fV%g+Vf-Vg)adV

where V2 is the differential operator (called the Laplacian)
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