

Designing DIA Experiments for Phosphoproteomics

Brian C. Searle brian.searle@osumc.edu

Creative Commons Attribution

Speaker Disclosures Brian C. Searle

Relevant financial relationships:

- Employed as an Assistant Professor at the Ohio State University
- Founder and shareholder at Proteome Software

Research funding sources for this work:

Fragment m/z

Fragment m/z

The instrument only has so much time before the next batch of peptides

60 seconds of peptides (~1% of the gradient)

controllerType=0 controllerNumber=1 scan=53899

60 seconds of peptides (~1% of the gradient)

Retention Time

Contents

- Considerations when designing DIA experiments for phosphoproteomics
- Peptide-centric searching for peptides in DIA data and generating PTM libraries
- Complications when interpreting PTMs with DIA

ToF acquisition

- Very fast! (1000s of pushes / sec)
- True profile scans
- Always see "signal" after averaging sufficient scans

ToF acquisition

Orbitrap acquisition

- Very fast! (1000s of pushes / sec)
- True profile scans
- Always see "signal" after averaging sufficient scans

• Relatively slow (10-20 MSMS/sec)

10 Hz * 25 windows = 2.5 sec

Orbitrap acquisition

- Relatively slow (10-20 MSMS/sec)
- Pseudo-profile from FT (built-in denoising)
- Segmented quad: flat(ish) transmission

Amodei et al, J Am Soc Mass Spectrom. 2019 Apr;30(4):669-684.

Orbitrap acquisition

- Relatively slow (10-20 MSMS/sec)
- Pseudo-profile from FT (built-in denoising)
- Segmented quad: flat(ish) transmission

...staggering is incompatible with both variable width windows and margins

"Forbidden zones" take advantage of m/zs where peptides don't exist

• Peptides are made of H C N O S

"Forbidden zones" take advantage of m/zs where peptides don't exist

Phosphopeptides have different forbidden zones (-0.18 m/z)

Optimize M/Z ranges to a specific proteome

Contents

- Considerations when designing DIA experiments for phosphoproteomics
- Peptide-centric searching for peptides in DIA data and generating PTM libraries
- Complications when interpreting
 PTMs with DIA

HHAAYVNNLNVTEEK (+2H) SODM_HUMAN

Extracted fragment ions: 800,000 Vitensity 400,000 200,000 0+0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Retention Time (min) 120,000 100,000 Intensity 80,000 60,000 40,000 20,000 0 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 Retention Time (min)

FNGGGHINHSIFWTNLSPNGGGEPK (+3H) SODM_HUMAN

What's in a library?

Constructing a massive phosphopeptide library

Lawrence, Searle et al, Nat Methods. 2016; 13, 431–434.

Peptide-centric searching with PECAN scores peptides across retention time

Contents

- Considerations when designing DIA experiments for phosphoproteomics
- Peptide-centric searching for peptides in DIA data and generating PTM libraries
- Complications when interpreting PTMs with DIA

What's going on here?

Modified peptides share fragment ions

Precursor = 626.26 m/z

Same 24 m/z
isolation window!

Precursor = 634.26 m/z

Modified peptides share fragment ions

What's going on here?

• HPLC retention times MAY differ

Using site specific ions to identify phosphopeptides

Ascore (and Maxquant, PhosphoRS...) assumes a random likelihood of seeing every ion

Estimating a null distribution for interference

Localizing using site specific ions

Searle et al, Nat Methods. 2019; 16, 703–706.

Some phosphopeptides don't resolve chromatographically

Resources for DIA best practices

- DIA Perspective: "Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries" https://www.mcponline.org/article/S1535-9476(20)34974-4/fulltext
- Quickstart guide for setting up DIA:
 https://bitbucket.org/searleb/encyclopedia/downloads/dia_methods_setup_v1.4.pdf
- Recommended settings for DIA on Orbitraps: <u>https://docs.google.com/spreadsheets/d/1A8AQImLroAkQcAcsiGTNvnGBE2IGpkMwhh0YLTBHXKA</u>

Contents

- Considerations when designing DIA experiments for phosphoproteomics
- Peptide-centric searching for peptides in DIA data and generating PTM libraries
- Complications when interpreting PTMs with DIA

Acknowledgements

The Ohio State University

• Damien Wilburn

University of Washington

- Mike MacCoss
- Deanna Plubell
- Judit Villén
- Rob Lawrence

Penn State University

Lindsay Pino

Proteome Software

Seth Just

Institute for Systems Biology

Kristian Swearingen

Novo Nordisk Research Seattle

Christopher Barnes

Technical University of Munich

- Mathias Wilhelm
- Tobias Schmidt
- Siegfried Gessulat
- Bernhard Küster