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ROTATIONAL VIRTUAL KNOTS AND QUANTUM LINK
INVARIANTS

LOUIS H. KAUFFMAN

ABSTRACT. This paper studies rotational virtual knot theory and its relationship with
quantum link invariants. Every quantum link invariant for classical knots and links
extends to an invariant of rotational virtual knots and links. We give examples of non-
trivial rotational virtual links that are undetectable by quantum invariants.
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Virtual Knot Moves
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FIGURE 1. Moves
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FIGURE 2. Detour Move




Forbidden Moves
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Rotational Virtual Knot Theory

VKT with Detour Move restricted to
regular homotopy in the plane
or on the two sphere.

All quantum link
invariants extend to
invariants of rotational
virtual links.

Rotational Virtuals are the

y CORRECT DOMAIN for
studying quantum link
invariants.




In rotational virtual knot theory (introduced in [18] ) the detour move is restricted to
regular homotopy of plane curves. This means that the virtual curl of Figure 1 can not
be directly simplified, but two opposite virtual curls can be created or destroyed by using
the Whitney Trick of Figure 9. Another way to put this is to say that rotational virtual
knot theory is virtual knot theory without the first virtual move (thus one does not allow
the addition or deletion of a virtual curl).

Uacs!

Whitney Trick - all crossings are virtual.
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Immersed circles and their Whitney degrees.

FIGURE 9. Whitney Trick and Whitney Degrees




Rotational Virtual Knot Cobordism
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Figure 28: The Virtual Stevedore is Rotationally Slice
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Abstract Diagrams,

Surfaces and Gauss Codes
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Bare Gauss Code

O1+U2+U1+02+
Full Gauss Code




S(K)

V(K) = 2
L(K) =F(K) = 2
g(K) =1

g=1+(V-L)2
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V=2, L=2,g=1+(V-L)/2=1.

G(K') irreducible implies that
Rotg(K') = 1.

FIGURE 8. Genus of Rotational Virtual Diagrams




Rotational virtual knot theory is a theory of knots in
oriented ribbon surfaces (abstract link diagrams) with
twisting allowed in the bands of the surface. This
twisting is indexed by the virtual crossing structure in
the rotational diagram.




Bracket Polynomial for Rotational Virtuals

(X =A0X)+A4700) Keep track of the

regular homotopy
class of the state

loops.
(K Q) = (A% — A°)(K)
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[K] = (AA + BB + AB)d + AB[%%]




/\/X—ND—/V\’+ 8 Y
S~ C A\//\/\\,’ B\/'<><

YO »mea ) C
/\/XQ A2 \/_/\ +(2AB + Bzd)> C

OO
—> A%4 +(2AB + 820 (X)) GO

FIGURE 11. Expanding a Tangle
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L1
Oz<®< Ly> = -4"2 + OO +oo8 LI is detected by

bracket.

Evaluation of Rotational Bracket on a Link [,




L
b . Lo> =-d"2 + (B 0 + OO L2 is detected by
cﬂ) bracket.
A2 <> p? O

Evaluation of Rotational Bracket on a Link L,




O@z@ - <lg>=d CX) L3 not detected by

bracket.

Evaluation of Rotational Bracket on a Link L;




'.y. <ly,>=d?2 L4 not detected by
bracket.
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Pari
a t)’ Bare Gauss Code
1 2 1212

K Crossings 1 and 2 are
odd.

A crossing is odd
if it flanks an odd
number of symbols
in the Gauss code.

The odd writhe of K, J(K).
J(K) = Sum of signs of the odd crossings of K.
Here J(K) = -2.

Facts: J(K) is an invariant of vitual isotopy.
J(K) = 0is K is classical.
J{Mirror Image of K) = -J(K).

Hence this example is not classical and is
not isotopic to its mirror image.




The Manturov Parity Bracket Extends to
Rotational Virtual Knots and Links
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FIGURE 20. Parity Bracket Expansion




% Kishino Diagram

(all odd crossings)

This picuture is the
proof that the
Kishino diagram
represents a non-
trivial virtual knot.




Determining Genus for Odd Knots

All classical nodes are odd.
Graph is irreducible.

One parity bracket state.
Genus g = 2.




A B

c D
Parity State is
Irreducible

ABACDBDC All crossings are odd crossings.

FIGURE 19. Single State Detection of a Rotational Virtual Knot

Irreducibility Theorem.

For every virtual diagram K with all odd crossings,
there exists a decoration by virtual curls to form a
new diagram L where the graph obtained by
replacing all odd crossings in L by nodes is
irreducible, proving that L is non-trivial.
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All odd crossings.
R D' Knotted
Qg 8 Rotational

G(D')

& Irreducible




1234356465781872
All odd crossings.

Genus Two




The Parity Bracket can be extended to links.
This requires an extension of the notion of a
crossing that is selected for nodification.
Kauffman and Kaestner do this by making all
crossings between link components selected.
Then a wider choice of reduction relations is
needed.

Kaestner, Aaron M.; Kauffman, Louis H.

Parity, skein polynomials and
categorification. J. Knot Theory
Ramifications 21 (2012), no. 13,
1240011, 56 pp.
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Figure 33: Link Parity Bracket Polynomial Smoothing Relations







In the next slide, | have used a regular graphical node

at link crossings because there are no self-crossings
in these diagrams.

The reader can verify that the diagrams are
irreducible under the conditions for the parity
link bracket polynomial.




All Non-Trivial, All Pairwise Distinct Via Parity Bracket
for Links (Kaestner - Kauffman)

)l
LR
X ol
<o




Combinatorial Topology (parity) can show that many
rotational virtual links
undectectable by the bracket polyomial are
non-trivial and distinct.

What about Quantum Invariants!?
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Regular isotopy with respect to a vertical direction.
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FIGURE 25. Quantum Link Invariants
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Regular isotopy with respect to a vertical direction.




b a
= Mab Sd 52 - MdC - /d_\c

C d

FIGURE 26. Quantum Virtual Curl

In general, quantum invariants see the presence
of virtual curls.
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Quantum Link Invariants via the
Category of a Quantum Algebra
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FIGURE 37. Morphisms in Cat(A)

A quantum
algebra has
an antipode
and
a solution to
the algebraic
Yang-Baxter
equation.




Algebraic Yang-Baxter
Element and Its Inverse
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The antipode is an antimorphism of algebras.




FIGURE 38. Diagrammatics of the antipode







TR(ab) =TR(ba)

FIGURE 39. Formal trace




Basic Functor

F: Rotational Tangle Category ——> Category of Quantum Alg




FIGURE 40. The functor F' : VT'C — Cat(A)
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FIGURE 41. Inverse and antipode
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Algebraic Yang-Baxter
Element and Its Inverse

The structure of
the inverse of
the Yang-Baxter
element is implied
by the structure of
the category of the
quantum algebra.




Functor Applied to the Virtual Trefoil

F(K) =TR[e' s(f) s(s(e)) s(s(s(f"))) GG]
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Fi1GURE 43. First Rotational Link - Non-Trivial Invariants




A Non-Trivial Rotational Link with Trivial Quantum
Invariants.




Thus we find simple examples of non-trivial
virtual rotational links that are not detectable by any
quantum algebraic invariants.

This leads to many new questions and the prospect of using
rotational virtual links as a testing category for the
strength and properties of quantum invariants.




