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Virtual Knot Moves



Forbidden Moves



Rotational Virtual Knot Theory
 = 

VKT with Detour Move restricted to 
regular homotopy in the plane

 or on the two sphere.
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Figure 7: A rotational virtual knot and two rotational virtual links.

where the summation is over all states obtained by smoothing every crossing in the virtual diagramK
and < K|S > is the product of the weights A and A−1 just as before. An empty loop with no virtual

crossings (in its virtual equivalence class) will be evaluated as d = −A2 − A−2. The symbol [S] is
the planar class of the state S. By the planar class of the state we mean its equivalence class up to
virtual rotational equivalence. This means that each state loop is taken as a regular homotopy class.

These individual classes are in 1-1 correspondence with the integers, as shown in Figure 9 (via the
Whitney trick and the winding degree of the plane curves), and can be handled by using combinatorial

regular isotopy as in [25]. A configuration of loops (possibly nested) is equivalent to a disjoint union

of adjacent loops. We can thus regard each virtual loop as a variable dn where n is an integer and
d1 = d−1 = −A2 − A−2. Here we give an examples of a computation of [K] for a rotational virtual
knots in Figure 10. The reader will note that in this example, even if we let A = −1 = B and d = −2
the invariant is still non-trivial due to the appearance of the two loops with Whitney degree zero. Thus

the example in Figure 10 also gives a non-trivial flat rotational virtual knot. We shall look at cobordism

of rotational virtual knots later in the paper.

2.4 The Parity Bracket Polynomial

In this section we introduce the Manturov Parity Bracket [22]. This is a form of the bracket polynomial

defined for virtual knots and for free knots (unlabeledGauss diagrams taken up to abstract Reidemeister

move equivalence) that uses the parity of the crossings. To compute the parity bracket, we first make

all the odd crossings into graphical vertices. Then we expand the resulting diagram on the remaining

even crossings. The result is a sum of graphs with polynomial coefficients.

More precisely, let K be a virtual knot diagram. Let E(K) denote the result of making all the
odd crossings in K into graphical nodes as illustrated in Figure 11 . Let SE(K) denote the set of
all bracket states of E(K) obtained by smoothing each classical crossing in E(K) in one of the two
possible ways. Then we define the parity bracket

< K >P = (1/d)ΣS∈SE(K)A
i(S)[S]

where d = −A2 − A−2, i(S) denotes the product of A or A−1 from each smoothing site according

to the conventions of Figure 11, and [S] denotes the reduced class of the virtual graph S. The graphs
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All quantum link 
invariants extend to 

invariants of rotational 
virtual links.

Rotational Virtuals are the 
CORRECT DOMAIN  for 

studying quantum link 
invariants.
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Figure 28: The Virtual Stevedore is Rotationally Slice

Theorem. If L is a rotational virtual link, then L bounds a rotational virtual surface if and only if L
has even rotational parity, RotP (L) = 0.

Proof. Note that the parity of the number of virtual crossings is an invariant of rotational equivalence

of virtual knots and links and it is also an invariant of saddle moves, death and births since these moves

do not change the number of virtual crossings. We only allow deaths and births for circles that have no

virtual crossings - call these free circles. ThusRotP is an invariant of rotational cobordism. Therefore

if RotP (L) is odd, L cannot be cobordant to a disjoint union of free circles and so cannot rotationally
bound a virtual surface. Conversely, if RotP (L) = 0 then the same cobordism we used before, a

saddle move at every crossing, combined with isotopy, produces a collection of closed curves with

only virtual crossings. These curves can be made into a disjoint collection of curves by regular isotopy,

and then each curve is regularly isotopic to curve with only “external curls”, as illustrated in Figure 31.

Then each such curve can undergo saddle moves to transform it to a disjoint union of curls of the form

C of Figure 29. This is also illustrated in Figure 31. The final number of curls of type C is even since

we assumed that the parity is even. Therefore the curls cancel in pairs as explained above, and we

obtain a disjoint union of one-half their number as free circles. The circles bound disks. This finishes

the construction of the surface and hence finishes this proof. //

We do not expect all virtual slice knots to be rotationally slice. Consider the rotational knot K
from Figure 7. We proved in Section 1 that K is a non-trivial non-classical rotational virtual knot.

In Figure 30 we illustrate a cobordism of K to the disjoint union of two circles, each of which has

curl. Neither of these circles can bound a rotational virtual disc by our rules. So this cobordism stops

short of exhibiting K as a rotational slice knot. On the other hand, the two curls can interact through

a saddle point to produce a free circle. ThusK does rotationally bound a virtual surface of genus one.

We conjecture thatK is not rotationally slice and that its least four-ball genus is one.

Clearly much more work needs to be done in the study of cobordisms of rotational virtual knots and

links. Since there are many invariants of rotational knots and links (all the quantum link invariants), we

can ask how do quantum link invariants behave under rotational cobordism? This will be the subject

of subsequent papers.
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Abstract Diagrams, 
Surfaces and Gauss Codes







Rotational virtual knot theory is a theory of knots in 
oriented ribbon surfaces (abstract link diagrams) with 

twisting allowed in the bands of the surface. This 
twisting is indexed by the virtual crossing structure in 

the rotational diagram. 



Bracket Polynomial for Rotational Virtuals

Keep track of the 
regular homotopy 
class of the state 

loops.

B = A

d = -A   -  A

-1

2 -2







L1 is detected by 
bracket.



L2 is detected by 
bracket.



L3 not detected by 
bracket.



L4 not detected by 
bracket.



Parity



The Manturov Parity Bracket Extends to 
Rotational Virtual Knots and Links



Kishino Diagram

(all odd crossings)

This picuture is the 
proof that the 

Kishino diagram 
represents a non-
trivial virtual knot.
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All classical nodes are odd.
Graph is irreducible.
One parity bracket state.
Genus g = 2.

Determining Genus for Odd Knots



Irreducibility Theorem.
 For every virtual diagram K with all odd crossings, 
there exists a decoration by virtual curls to form a 

new diagram L where the graph obtained by 
replacing all odd crossings in L by nodes is 

irreducible, proving that L is non-trivial.





Genus Two



The Parity Bracket can be extended to links. 
This requires an extension of the notion of a 

crossing that is selected for nodification. 
Kauffman and Kaestner do this by making all 
crossings between link components selected. 
Then a wider choice of reduction relations is 

needed.

Kaestner, Aaron M.; Kauffman, Louis H. 
Parity, skein polynomials and 
categorification. J. Knot Theory 
Ramifications 21 (2012), no. 13, 
1240011, 56 pp. 







In the next slide, I have used a regular graphical node

at link crossings because there are no self-crossings 
in these diagrams.

The reader can verify that the diagrams are 
irreducible under the conditions for the parity 

link bracket polynomial.



All Non-Trivial, All Pairwise Distinct Via Parity Bracket 
for Links (Kaestner - Kauffman)



Combinatorial Topology (parity) can show that many 
rotational virtual links

undectectable by the bracket polyomial are 
non-trivial and distinct.

What about Quantum Invariants?



Tangle 
Category





III.



In general, quantum invariants see the presence 
of virtual curls.



Virtual Rotational Tangle Category





Quantum Link Invariants via the 
Category of a Quantum Algebra

A quantum 
algebra has
an antipode

and
a solution to 
the algebraic 
Yang-Baxter 

equation.



e e’

s(f) f ’
=

Algebraic Yang-Baxter 
Element and Its Inverse



The antipode is an antimorphism of algebras.









F: Rotational Tangle Category              Category of Quantum Alg         

Basic Functor







e e’

s(f) f ’
=

Algebraic Yang-Baxter 
Element and Its Inverse

The structure of 
the inverse of 

the Yang-Baxter 
element is implied 
by the structure of 
the category of the 
quantum algebra.



Functor Applied to the Virtual Trefoil





A Non-Trivial Rotational Link with Trivial Quantum 
Invariants.



Thus we find simple examples of non-trivial
virtual rotational links that are not detectable by any 

quantum algebraic invariants.

This leads to many new questions and the prospect of using
rotational virtual links as a testing category for the 

strength and properties of quantum invariants.


