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Historical background: Tait’s conjectures, Fox’s question

Tait’s conjectures (1898)

Let D and D ′ be reduced alternating diagrams of a prime knot L. (Prime
implies 6 ∃ T1 T2 ; reduced means 6 ∃ T .) Then:

(1) D and D ′ minimize crossings: | |D = | |D′ = c(L).

(2) D and D ′ have the same writhe: w(D) = w(D ′) = | |D′ − | |D′ .

(3) D and D ′ are related by flype moves:

T1 T2
T2

T1

Question (Fox, ∼ 1960)

What is an alternating knot?

Tait’s conjectures all remained open until the 1985 discovery of the
Jones polynomial. Fox’s question remained open until 2017.



Historical background: Proofs of Tait’s conjectures

In 1987, Kauffman, Murasugi, and Thistlethwaite independently proved
(1) using the Jones polynomial, whose degree span is | |D , e.g.
V (t) = t + t3 − t4. Using the knot signature σ(L), (1) implies (2).

In 1993, Menasco-Thistlethwaite proved (3), using geometric techniques
and the Jones polynomial. Note: (3) implies (2) and part of (1).

They asked if purely geometric proofs exist. The first came in 2017....

Tait’s conjectures (1898)

Given reduced alternating diagrams D,D ′ of a prime knot L:

(1) D and D ′ minimize crossings: | |D = | |D′ = c(L).

(2) D and D ′ have the same writhe: w(D) = w(D ′) = | |D′ − | |D′ .

(3) D and D ′ are related by flype moves:

T1 T2
T2

T1



Historical background: geometric proofs

Question (Fox, ∼ 1960)

What is an alternating knot?

Theorem (Greene; Howie, 2017)

A knot L ⊂ S3 is alternating iff it has spanning surfaces F+ and F− s.t.:

• Howie: 2(β1(F+) + β1(F−)) = s(F+)− s(F−).

• Greene: F+ is positive-definite and F− is negative-definite.

Using lattice flows, Greene applied his characterization to prove:

Theorem (Greene, 2017)

Any reduced alternating diagrams D,D ′ of the same knot satisfy
| |D = | |D′ and w(D) = w(D ′).

I will describe the first entirely geometric proof of the flyping theorem.
This also implies the theorem above. Related problems remain open.



Outline

• Spanning surfaces F

◦ Knot diagrams and chessboard surfaces
◦ Complexity β1(F ) and slope s(F )
◦ Gordon-Litherland pairing 〈·, ·〉 and signature σ(F ).
◦ Greene’s characterization

• (Generalized) plumbing and re-plumbing

◦ Essential surfaces
◦ Flyping and re-plumbing
◦ Crossing ball structures
◦ Re-plumbing definite surfaces

• Geometric proof of the flyping theorem

• Related problems



Spanning surfaces

Conventions: Let D,D ′ ⊂ S2 be reduced
alternating diagrams of a prime alternating
knot L ⊂ S3; νL, νF , and νS2 denote closed
regular neighborhoods.

Definition: A spanning surface is a properly

embedded surface F ⊂ S3 \ ◦νL such that ∂F
intersects each meridian on ∂νL transversally
in one point, and F is compact and
connected, but not necessarily orientable.

Definition: β1(F ) = rank H1(F ).

Observation

If α consists of properly embedded disjoint arcs in a spanning surface F

and F ′ = F \ ◦να is a disk, then β1(F ) = |α|.



Chessboard surfaces

Color the regions of S2 \ D black and white in chessboard fashion and
construct spanning surfaces B and W for L like this:

B and W are called the chessboard surfaces from D. They intersect in
vertical arcs which project to the the crossings of D:



The Gordon-Litherland pairing on a spanning surface F

Denote projection p : νF → F . Given any oriented simple closed curve
(s.c.c.) γ ⊂ F , denote γ̃ = ∂(p−1(γ)), and orient γ̃ following γ.

Gordon-Litherland define a symmetric bilinear pairing

〈·, ·〉 : H1(F )× H1(F )→ Z

〈[α], [β]〉 = lk(α, β̃).

The framing of a s.c.c. γ ⊂ F is 1
2 〈[γ], [γ]〉.

Examples: The pairings for B
and W shown left are
represented by[
3
]

and

[
−2 1
1 −2

]
,

that for B right by

2 1 0
1 3 1
0 1 3

.



Boundary slopes

The euler number e(F ) is the algebraic self-intersection number of the
properly embedded surface obtained by perturbing F in B4. Alternatively,

−e(F ) =
1

2

m∑
i=1

〈[`i ], [`i ]〉,

where ∂F = `1 t . . . t `m. Call
s(F ) = −e(F ) the slope of F .

Example: B and W shown right
have s(W ) = 0 and s(B) = 6. This
is because W is orientable and,
denoting a generator of H1(B) by g :

s(B) = 1
2 〈[∂B], [∂B]〉 = 1

2 〈2g , 2g〉 = 2〈g , g〉 = 6.



Boundary slopes and signatures

If F spans a knot L and L̂ is a pushoff of L in F , then the slope of F is

s(F ) = −1

2
〈[L], [L]〉 = lk

(
L, L̂
)
,

which equals the framing of L in F . The
signature of F , denoted σ(F ), is the
number of positive eigenvalues of 〈·, ·〉
minus the number of negative eigenvalues.

Gordon-Litherland show that the quantity
σ(F )− 1

2 s(F ) depends only on L. This is
called the knot signature, denoted σ(L).

Example: The surfaces B and W shown have slopes s(B) = 6 and
s(W ) = 0 and signatures σ(B) = 1 and s(W ) = −2. Thus

σ
( )

=

{
σ(B)− 1

2 s(B) = 1− 3 = −2

σ(W )− 1
2 s(W ) = −2− 0 = −2.



Definite surfaces and Greene’s characterization

Definition: F is positive-definite if 〈α, α〉 > 0 for nonzero α ∈ H1(F ).
This holds iff σ(F ) = β1(F ), also iff for each s.c.c. γ ⊂ F :

• The framing of γ in F is positive, or
• γ bounds an orientable subsurface of F .

Greene’s characterization of alternating diagrams

A knot diagram is alternating iff its chessboard surfaces are definite
surfaces of opposite signs.

Greene’s characterization of alternating links

If B and W are positive- and negative-definite spanning surfaces for a
knot L ⊂ S3, then L has an alternating diagram D whose chessboard
surfaces are isotopic to B and W .

Moreover, D is reduced iff 〈α, α〉 6= ±1 for all α in H1(B), H1(W ).

Convention: The chessboard surfaces from D and D ′ are B,W and
B ′,W ′, with B, B ′ positive-definite and W , W ′ negative-definite.



Recall that the knot signature σ(L) = σ(F )− 1
2 s(F ) depends only on L,

and that ±-definite surfaces F± satisfy σ(F±) = ±β1(F±). This implies:

Slope difference lemma

If F±, respectively, are ±-definite spanning surfaces for L, then

s(F+)− s(F−) = 2(β1(F+) + β1(F−)).

I use the slope difference lemma and cut-and-paste arguments to prove:

Definite intersection lemma (K)

If α is a non-∂-parallel arc of B ∩W , then i(∂B, ∂W )ν∂α = 2.



Two notions of essential surfaces

Definitions:

• F is geometrically essential if 6 ∃:

• F is π1-essential if F ↪→ S3 \ L induces an injection of fundamental
groups, and F is not a mobius band spanning the unknot.

Remarks: The following facts are classical applications of Dehn’s Lemma:

(1) If F is π1-essential, then F is geometrically essential.

(2) If F is 2-sided and geometrically essential, then F is π1-essential.



Plumbing and re-plumbing

Let V ⊂ S3 \ \F be a properly embedded disk s.t.

• ∂V bounds a disk U ⊂ F .
• Denoting S3 \ \(U ∪ V ) = Y1 t Y2, neither Fi = F ∩ Yi is a disk.

Then V is a plumbing cap for F , and U is its shadow.

= along

Say that F is obtained by (generalized) plumbing F1 and F2 along U,
denoted F1 ∗ F2 = F . This operation is also called Murasugi sum.

The operation F → F ′ = (F \ U) ∪ V is called re-plumbing, and can
also be realized via proper isotopy through the 4-ball:



Murasugi sum is a natural geometric operation

A Seifert surface is an oriented spanning surface.

Theorem (Gabai 1985 [3, 4])

Let F1 ∗ F2 = F be a Murasugi sum—i.e. (generalized) plumbing—of
Seifert surfaces, ∂Fi = Li , ∂F = L. Then:

(1) F is essential if F1 and F2 are essential.

(2) F has minimal genus iff F1 and F2 both have minimal genus.

(3) L is a fibered knot with fiber F iff each Li is fibered with fiber Fi .

(4) S3 \ ◦νL has a nice codimension 1 foliation iff both S3 \ ◦νLi do.

Property (1) also holds for arbitrary (1- and 2-sided) spanning surfaces:

Theorem (Ozawa 2011 [15])

Let F1 ∗ F2 = F be a Murasugi sum of spanning surfaces. If F1 and F2

are π1-essential, then F is π1-essential.

Changing “π1-essential” to “geometrically essential” makes this false. . .



Plumbing needn’t respect geometric essentiality

Theorem (K)

A Murasugi sum of geometrically essential surfaces need not be
geometrically essential.

plumbing

isotopy

plumbing

isotopy



Irreducible plumbing caps V for F

A plumbing cap V is acceptable if no arc of ∂V ∩ F is ∂-parallel and no
arc of ∂V ∩ ∂νL is parallel in ∂νL to ∂F .

If there is a properly embedded disk X ⊂ S3 \ \(νL ∪ F ∪ V ) like the one
shown below, then then V is reducible; if not, then V is irreducible.

Lemma

If F and F ′ are related by a sequence of re-plumbing moves, then each
move in some such a sequence follows an acceptable, irreducible cap.



Apparent plumbing cap theorem

If V is an irreducible plumbing cap for B in “standard position,” then V
is apparent in D, as shown top-left:

Sketch of proof.

Let V0 be an outermost disk of V \W (bottom row). If |V ∩W | = 1,
done. Else, (top-right), and V is reducible.



Apparent plumbing caps correspond to flypes.

Proposition

If a flype D0 → D1 follows a plumbing cap V for B0, then re-plumbing
B0 along V gives a surface isotopic to B1; also, W0 is isotopic to W1.

Proof.

T2

T1

T2

T1

T2



We have shown that apparent plumbing caps correspond to flypes and:

Lemma: Any re-plumbing sequence can be refined to one in which each
move follows an acceptable, irreducible cap.

Apparent plumbing cap theorem: If V is an irreducible plumbing cap
for B in standard position, then V is apparent in D.

Proposition: If D0 → D1 is a flype (along an apparent plumbing cap),
then W0 and W1 are related by re-plumbing or isotopy, as are B0 and B1.

Flyping re-plumbing theorem

D and D ′ are related by flypes iff B and B ′ are related by re-plumbing
and isotopy moves, as are W and W ′.

Proof.

The proposition gives one direction. For the converse, the lemma and
theorem give re-plumbing sequences B = B0 → · · · → Bm = B ′ and
W = Wm → · · · →Wn = W ′ along apparent plumbing caps. The
proposition then gives a flyping sequence

D
B,W

= D0 → · · · → Dm
B′,W

→ · · · → Dm+n
B′,W ′

.



Logical interlude: how to prove the flyping theorem

Flyping re-plumbing theorem (shown)

D and D ′ are related by flypes if and only if B and B ′ are related by
isotopy and re-plumbing moves, as are W and W ′.

Definite re-plumbing theorem (still need to show)

Any essential positive- (resp. negative-) definite surface spanning L is
related to B (resp. W ) by isotopy and re-plumbing moves.

Flyping theorem (will then follow)

All reduced alternating diagrams of L are related by flypes.

Proof of the flyping theorem (assuming definite re-plumbing theorem).

Let D,D ′ be reduced alternating diagrams of a prime knot L with
respective chessboard surfaces B,W and B ′,W ′, where B,B ′ are
positive-definite. The definite re-plumbing theorem implies that B and B ′

are related by re-plumbing and isotopy moves, as are W and W ′. Thus,
by the flyping re-plumbing theorem, D and D ′ are related by flypes.



Crossing ball setup

Construct a tiny closed crossing ball Ct at each crossing point ct of D,
and denote C =

⊔n
t=1 Ct . Adjust D to embed L in (S2 \ int(C )) ∪ ∂C .

Denote the two balls of S3 \ \(S2 ∪ C ∪ νL) by H±, with ∂H+ = S+ and
∂H− = S−.

To prove the definite re-plumbing theorem, we will put an arbitrary
essential positive-definite surface F in a “standard position” and consider
innermost disks, etc.



Example: a spanning surface in the crossing ball setting



If F is in standard position, then:

• Each component of F ∩ C is a crossing band or a saddle disk:

• Each crossing band in F is disjoint from S+:

Define the complexity of F to be

||F || = #(crossings without crossing bands) + #(saddle disks).



Definite re-plumbing theorem

Any essential positive-definite spanning surface F for L is related to B by
isotopy and re-plumbing moves.

Sketch of proof.

Isotop F into standard
position with ||F ||
minimized. Modify an
innermost circle of
F ∩ S+ to get an
annulus A ⊂ S2. Cut A
it into rectangles Ai .
Each prism π−1(Ai )
intersects F as shown
left. As shown, there is
a re-plumbing move
which decreases ||F ||.
Repeat this process
until ||F || = 0, whence
F is isotopic to B.



Flyping re-plumbing theorem (shown)

D and D ′ are related by flypes if and only if B and B ′ are related by
isotopy and re-plumbing moves, as are W and W ′.

Definite re-plumbing theorem (shown)

Any essential positive- (resp. negative-) definite surface spanning L is
related to B (resp. W ) by isotopy and re-plumbing moves.

Flyping theorem (shown)

All reduced alternating diagrams of L are related by flypes.

The flyping theorem immediately gives a new proof of the same part of
Tait’s conjectures that Greene proved:

Theorem

Any two reduced alternating diagrams of the same knot have the same
crossing number and writhe.

Yet, it does not follow that any reduced alternating diagram minimizes
crossings. All existing proofs of this fact use the Jones polynomial.



Geometric proofs: open problems
Theorem

Any two reduced alternating diagrams of the same knot have the same
crossing number and writhe.

Open problem

Give an entirely geometric proof that any reduced alternating knot
diagram realizes the underlying knot’s crossing number.

Open problem

Give an entirely geometric proof that any
reduced alternating tangle diagram realizes
the underlying tangle’s crossing number.

Open problem

Give an entirely geometric proof that any
adequate knot diagram realizes the
underlying knot’s crossing number.



Open problem

Give an entirely geometric proof that any (reduced alternating knot /
reduced alternating tangle / adequate) diagram minimizes crossings.

One approach to these problems is to translate statements about
diagrams to statements about chessboard surfaces, a la:

Howie’s characterization of alternating knots

A knot in S3 is alternating iff it has spanning surfaces F± which satisfy

2(β1(F+) + β1(F−)) = s(F+)− s(F−).

Alternatively, using the flyping theorem, one can extend any alternating
knot to a spatial graph in a way that captures all symmetries, and all
alternating diagrams, of the knot. Crossings become geometric objects:
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