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A B S T R A C T

Ultrasonic additive manufacturing (UAM) was applied to fabricate laminated carbon steel structures. The fea-
sibility of UAM to manufacture low-alloy carbon steel samples was proven. Interface investigation of the UAM
parts was conducted by SEM, EBSD and TEM analysis. Multiple defects at the interfaces of the as-printed parts
were observed. In order to improve the structural homogeneity and mechanical properties of the parts, spark
plasma sintering (SPS) and hot isostatic pressing (HIP) post-treatments were applied. As a result, after both
treatments, interface defects were healed and the shear strength of the welding interfaces was significantly
improved. Treatment by SPS apparatus showed higher shear strength improvements as compared to the HIP-
treated specimens.

1. Introduction

Flexibility in fabrication of parts with complex geometries and
ability to reduce weight by selective application of materials, along
with the capability of related cost reduction, make additive manu-
facturing (hereafter: “AM”) an attractive processing route for a wide
variety of materials. AM approach was successfully applied to a wide
range of metals, such as Al, Cu, Ni, Co, Fe, Ti, Ta, W and their alloys
(Inconel 625/718, Ti-6Al-4V, Co-26Cr-6Mo-0.2C, 17-4 PH stainless
steel, AlSi10 Mg etc.), as reported by Murr et al. (2012) and Vayre
(2012).

Because of the steel’s commercial availability, relatively low cost
and demanded properties, it is of the industry’s great interest to apply
AM on the steel. Numerous research works have been conducted on AM
of steel. The main AM techniques used for steel are electron beam
melting, selective laser melting, direct energy deposition and laser de-
position. The common physics behind these AM methods is to fabricate
parts by local melting and rapid solidification of powdered material.
The printed parts are subject to complex thermal cycles, which result in
dimensional and microstructural changes and undesired residual
stresses in parts. Moreover, large number of defects, namely gas por-
osity and lack of fusion, are frequently formed during this type of
fabrication process (Herzog et al., 2016). The above processing

technologies have been used for wide variety of steels including stain-
less steels 304 and 316L (Yu et al., 2013), 304L (Abd-Elghany and
Bourell, 2012), 308LSi (Abioye et al.,2016), 316 (Griffith et al., 1996),
H13 tool steel (Pinkerton and Li, 2005) and high-silicon steel (Garibaldi
et al., 2016). Recently, Hofmann et al. (2014) reported successful AM of
graded 304 steel/invar 36 structure. Rombouts et al. (2006) explored
the effect of oxygen, carbon, silicon, titanium and copper on the quality
of iron based printed objects. Evidently, main defects of the printed
parts are associated with melting and solidification.

Solid state processing techniques, such as ultrasonic additive man-
ufacturing (UAM), might avoid these defects. In UAM, 3D structures are
created by joining thin metal layers (as thin as 127 μm) on top of each
other by applying ultrasonic vibrations along with compressive normal
force. The heart of the UAM system contains two transducers, which
convert electrical power into high frequency (20 kHz) vibrations, and a
sonotrode horn. Commonly controlled parameters in UAM are the ul-
trasonic amplitude (∼ 5–50 μm), the applied normal force (∼500-9000
N) and the sonotrode horn travel speed (up to 105mm s−1), as reported
by Dehoff and Babu (2010). Dimensions of the fabricated parts may
vary from small to very large (as large as 1.8× 1.8× 0.9m). The UAM
process works at temperatures much lower than the melting tempera-
ture of raw materials and enables to weld dissimilar materials (Wolcott
et al., 2016), embed electronics, sensors and ceramic reinforcements,
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fiber optics (Friel and Harris, 2013), shape memory alloys (Hahnlen and
Dapino, 2014) and thermocouples (Hahnlen and Dapino, 2011), and
silicon carbide fibers (Li and Soar, 2008).

Many studies have been conducted in order to gain deep under-
standing of the UAM process. Most of the studies focus on aluminum
and include process parameters optimization (Wolcott et al. 2014),
characterization of microstructure (Dehoff and Babu, 2010), study of
weld mechanisms (Shimizu et al., 2014) and mechanical properties
(Sridharan et al., 2016a). Moreover, characterization and improvement
of UAM of multi-material systems, such as Al/Cu (Truog, 2012) and Al/
Ti (Wolcott et al., 2016), was reported. Recently, Sridharan et al.
(2016b) applied UAM to fabricate SAE1010 steel/Ta bilayer. However,
there are no published literature regarding UAM of laminated low-alloy
based steel structures with body centered cubic (BCC) crystal structure.
Preliminary investigations of UAM of 316L stainless steel by Tuttle
(2007) and Gonzalez and Stucker (2012) have shown bonding between
the steel foil and baseplate, while the bond quality was limited by the
low power (1 kW) and heat input. Since the bond quality of other
material systems has been improved with the increase of weld power
from 1 kW to 9 kW in recent developments, it is of a great interest to
investigate the capability of 9 kW UAM to achieve steel to steel joining
and characterize the mechanical and microstructural properties of UAM
steel samples. This need forms the motivation behind this research.

Mechanical properties of the UAM-fabricated parts mainly depend
on the characteristics of the interface region between the layers, thus
achieving continuous and strong interfacial bonding is necessary. Bond
formation between metal foils is attributed to plastic deformation,
collapsing of asperities, dispersion of oxides and metal to metal contact
under pressure. Currently, the UAM process does not always result in
robust and repeatable joining of metallic foils. Therefore, post-proces-
sing treatments are required to improve the mechanical properties of
the UAM parts. Recently, Wolcott et al. (2016) reported significant
improvement in shear strength of the UAM Al/Ti parts, achieved by
applying uniaxial pressure within spark plasma sintering (SPS) appa-
ratus. Miriyev et al. (2016) studied the Al/Ti interface after SPS treat-
ment and showed that the shear strength of the interface layer was
higher than that of the weaker joined material (aluminum). Since
bonding between metals with FCC and hexagonal close packed (HCP)
structure was successfully improved, the present work focuses on joints
between BCC crystal structures.

In the current study, the results of UAM of low-alloy carbon steel
(matrix with BCC structure), namely SAE4130, are presented. The
printed steel parts were subject to post-processing treatments using SPS
apparatus and hot isostatic pressing (HIP). The microstructure and
shear strength of the untreated UAM SAE4130, SPS- and HIP-treated
parts were investigated.

2. Experimental

The laminated 4130 steel/steel parts (Fig. 1a) were fabricated using
Fabrisonic “SonicLayer4000” 9 kW UAM machine (Fabrisonic LLC.) in
the Ultrasonic Additive Manufacturing Center at the Ohio State Uni-
versity. The additive ultrasonic welding and subtractive CNC stages are
integrated in the system and fully automated to create the samples.
Nine annealed 0.127mm thick and 25.4mm wide SAE4130 steel foils
were welded on to a 12.7 mm thick steel substrate (Fig. 1b). The sub-
strate was machined from a hot-rolled ASTM A36 steel stock. To per-
form ultrasonic additive manufacturing of the steel/steel structures,
screening tests were performed to find the viable weld parameters for
steel-steel welding. The process parameters, including vibration am-
plitude (5–50 μm), weld force (∼500-9000 N), weld speed (up to
50mm s−1) and baseplate temperature (up to 204 °C), were varied
during the experiments. It is well established that it is more difficult to
achieve desired bonding between the foil and the baseplate, than the
bonding between foils. Therefore, successful parameters to achieve foil
to baseplate welding can be extended to joining of foil to foil. The

SAE4130 steel foil was first deposited on the baseplate and subjected to
manual peeling test to estimate the weld quality. Only those weld trials
in which the steel foils could not be peeled off were considered suc-
cessful.

Heat treatments were performed in the SPS apparatus HP D5/1 (FCT
System, Rauenstein, Germany) and hot isostatic press (HIP) apparatus
(American Isostatic Press, AIP, USA). The process in SPS apparatus was
carried out at 950 °C for 30min holding time under argon atmosphere
(10-2 torr) and uniaxial pressure of 25MPa. Pulse-mode DC current
(pulse 5ms, pause 2ms) was applied. Cooling rate in SPS apparatus was
0.85 °C/sec (Fig. 1c). The HIP process was carried out at 950 °C for
30min holding time under isostatic 100MPa argon pressure. Cooling
rate in HIP apparatus was 0.25 °C/sec. Characterization of the micro-
structure was conducted by optical microscopy (Zeiss, Aalen, Ger-
many), High Resolution Scanning Electron Microscope (HRSEM JEOL
JSM-7400F, Japan) and High Resolution Transmission Electron Mi-
croscope (HRTEM JEOL JEM-2010F, Japan). Electron backscatter dif-
fraction (EBSD) analysis was performed using the JEOL 6500F SEM FEG
microscope with 25 kV acceleration voltage and 4 nA probe current.
EBSD samples were sectioned using a low speed saw to prevent mi-
crostructural changes. Samples were mounted and polished using
standard metallographic techniques.

Shear strength was tested before and after the heat treatments using
specially designed tooling (Supplementary Fig. 1). Four samples with
5×5mm dimensions were tested for each treatment condition. Cross-
section area of the samples was precisely measured. The shear test
specimens were mounted between specially-designed test modules in a
way that ensures that shear happened inside the layered structure. The
specimen within the test modules was mounted in 50 kN LRX Plus
mechanical testing apparatus (Lloyd Instruments, Fareham Hants, UK).
Micro hardness test was conducted by using Vickers indenter under 2
Kgf load.

3. Results and discussion

After the screening tests, one set of process parameters, listed in
Table 1, was selected for building all samples in this study. Based on the
results of the screening tests, possible effect of the baseplate tempera-
ture on the microstructure and properties of the UAM-fabricated steels
should be further studied. UAM allowed to consistently produce steel to
steel bonding at the coupon level. However, some challenges and limits
have to be addressed to build high performance UAM laminated steel
structures. First, cracks are found along the interface between the steel
baseplate and the first layer of the steel foil if the number of layers is
larger than 15. Stress concentrations associated with the applied pro-
cess parameters are, probably, the reason of cracking. Of note that
cracking is a key issue that needs to be addressed. Second, SAE4130
steel foils tend to stick to the maraging tool steel-made (grade 18Ni
(350)) sonotrode. Nuggets have been accumulated on the surface of the
sonotrode after prolonged (more than 15 h) steel foils welding (Fig. 2)
and affected the bond quality of the subsequent welds. Thus, mod-
ifications to the sonotrode material and coating solutions for the ex-
isting one should be further investigated.

Cross-section microstructure examinations of the fabricated UAM
parts show that the interfaces between the steel layers are dis-
continuous and contain a large number of defects (Fig. 3a and b). The
defects which are formed during the UAM process mainly depend on
the presence of oxides on foils’ surface and roughness of top side of (n-
1)th foil. The oxide layer and varied roughness may prevent continuous
bonding between the bottom surface of the nth layer and top surface of
(n-1)th layer. In addition, high normal force, which is applied by the
sonotrode horn (6000 N), plastically deform the steel foils. When one
succeeding layer is added, cavities are most likely to form where the
steel plastic deformation flow is not sufficient. It has to be mentioned
that excessive deformation may also result in breaking of already
formed bonds, as reported by Sridharan et al. (2016a, b).
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SPS-treated specimens display only relatively small discontinuity
region and small round-shaped voids at the interfaces (Fig. 3c and d). A
relatively larger number of discontinuity regions were detected at the
sample interfaces after HIP treatment (Fig. 4).

Interestingly, continuous ferrite layer was observed at the interfaces
after both post-processing treatments, which was better distinguished
by optical microscopy of the etched samples (Fig. 5). The formation of
this ferrite layer is a result of the presence of small defects (mostly
porous and nonmetallic inclusions) that provide preferential sites for
ferrite grains nucleation from austenite, as described below. At elevated
temperature (∼900 °C) the steel transforms into homogeneous auste-
nite grains. Large voids and defects, presented along the interface, start

to "heal", like diffusion bonding mechanisms. In the next step, during
cooling from austenite field, the ferrite grains may nucleate at pre-
ferential sites, i.e. surrounding the relatively small "healed" voids at the
interface. This nucleated ferrite is expected to grow preferentially along
the bonded interface and ultimately lead to the observed ferrite-ferrite
microstructure. This hypothesis was further investigated using EBSD
analysis.

Pearlite is observed only in the interior region of the foils while no
pearlite structure is detected at the interface (Fig. 6). The EBSD pattern
quality at the interface also shows significant deterioration, which may
be attributed to a significant plastic deformation and high dislocation
content at the interface (Fig. 6b and c). EBSD image detects a non-
symmetric grains refinement across the interface (Fig. 6a). During the
UAM process, the sonotrode horn is only in contact with the upper side
of the deposited layer and in order to alter the grain size at the bottom
side of the foil, a good contact with adjacent layer must be established.
However, only partial refinement at the bottom side of the foils was
observed in EBSD analysis. It means that during the process the foils
were in temporary contact, which was not sufficient to establish ade-
quate bonds and resulted in an interface with large number of defects.

Fig. 1. Steel/Steel laminated part (9 layers on top of the base plate) fabricated using UAM technique (a) and sample prepared for the SPS post-treatment (b); (c) SPS post-treatment
parameters (950 °C, 30min.). Bar size is 1 cm in (a) and 5mm in (b).

Table 1
UAM process parameters for SAE4130 steel.

Weld Force Weld Speed Amplitude Nominal
Temp.

Horn Texture
(Ra)

Level 6000 N 0.021m/s 30.87 μm 204 °C
(400 °F)

14 μm

Fig. 2. Newly retextured sonotrode (a) and a sonotrode after approximately 15 h of welding (b).
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The discontinuities at the interface were, probably, caused by excessive
deformation resulting in breaking of the formed bonds.

In the post-treated parts, continuous laminated cross-section was
obtained and interfaces between the foils could not be distinguished by
the EBSD analysis. Fig. 6d shows the interface region of the as-printed
parts compared to that of the HIP-treated ones (Fig. 6e). Similar results
were obtained for the samples after the SPS treatment. During both
post-treatments, an intimate contact was established between the foils
and grain growth took place at the interfaces.

TEM analysis confirmed the presence of BCC ferrite phase with a
lattice parameter of 0.292 nm at the interface- value, which is in a good
agreement with that reported by Howell and Honeycombe (1982)
(Fig. 7a). In addition, grain distribution from very fine grains at the
interface to larger grains in the bulk was observed (Fig. 7b). Ad-
ditionally, TEM analysis indicated the presence of nano-scale inclusions
of alumina near the interface (Fig. 7c). These inclusions are typical for
steels, already formed during steels fabrication and, generally, homo-
geneously distributed in steels volume. These inclusions flow, probably,

Fig. 3. Macro- and micro-scale scanning electron microscope (SEM) images (secondary electron/backscattered electron) of the specimens’ cross-section before (a,b) and after (c,d) the SPS
treatment.

Fig. 4. SEM image of the specimen’s cross-section after HIP treatment.

Fig. 5. Optical microscope images (x200) of the SPS-treated (a) and HIP-treated samples (b) after etching. Interfaces between the layers are marked with black arrows at the edges.
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to the interface due to the plastic deformation of the steel during the
UAM process (Fig. 7d).

In order to assess the mechanical properties of the UAM parts and
the effect of the post-treatments, shear testing was conducted (Fig. 8).
Specimens after the SPS post-treatment exhibit shear strength of about
twofold higher than that of the as-printed ones (Fig. 8a and Table 2).
Similar observation was obtained by Wolcott et al. (2016) for SPS post-
treatment of Al/Ti system fabricated using UAM.

As-printed specimens delaminated and some layers were bent
during the shear test. This may be caused by surface roughness of the
layers or as a consequence of their small thickness (Fig. 8b). SPS- and
HIP-treated samples showed significantly higher resistance to shear.
This observation is in a good agreement with the microstructure fea-
tures obtained after both treatments (Figs. 3 and 4). SPS-treated sam-
ples remained mostly intact with some partial deformations (Fig. 8c),
while the HIP-treated samples formed “Z-shaped” step (Fig. 8d). Frac-
ture surfaces should be further investigated to gain understanding of
the failure mechanisms.

The average micro-hardness of the as-printed samples was measured
at 206 ± 20 HV. The hardness values of the SPS-treated samples varied
significantly (from 159 to 443 HV) along the Z direction (height). The
layers which are close to the base plate exhibit lower hardness values
(Table 3). This phenomenon is attributed to the SPS process, in which
the top layer is in contact with a graphite punch and some carburization
may take place (see the resulted microstructure in the Supplementary
Fig. 2). This phenomenon does not occur during the HIP treatment. The
average micro-hardness of the HIP-treated samples (153 ± 9 HV) did
not depend on layer location. These results are in a good agreement
with data reported by Bramfitt (1997) for annealed SAE4130 steel.

4. Conclusions

Laminated low-alloy carbon steel parts were successfully fabricated
for the first time using ultrasonic additive manufacturing, opening the
door to solid-state layer-by-layer fabrication of steel structures. As-

printed parts exhibited numerous defects at the interface affecting the
bond quality. SPS- and HIP-post-treatments allowed to significantly
decrease the number and size of the defects and to improve the prop-
erties of the UAM parts. Shear strength of the SPS-treated samples was
almost twofold higher than that of the as-printed parts. Hardness of the
SPS-treated samples depended on the layer location with lower values
close to the base plate due to intimate contact of the top layer with
graphite die, resulting in steel carburization. Average hardness of the
HIP-treated samples was about 153 ± 9 HV and did not depend on the
layer location. Small ferrite grains are presented along the interface of
the post-treated specimens, while inner parts of the layers are mainly
comprised larger pearlite grains. The formation of this ferrite layer is a
result of the presence of small defects, mostly porous and nonmetallic
inclusions, which provide preferential sites for ferrite grains nucleation.
TEM analysis indicated the presence of nano-scale inclusions of alumina
near the interface. Finally, it was established that laminated carbon
steel parts may be fabricated using UAM approach and both SPS- and
HIP treatments are suitable for improvement of the mechanical prop-
erties of the UAM-fabricated steel parts.
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Fig. 7. TEM images of samples’ interface. (a) General overview of as-printed interface; (b) magnified image showing alumina particle near the interface; (c) alumina particles close to the
joint region (the latter is marked with arrows at the edges); (d) electron diffraction from ferrite grains region near the interface (zone axis [111]).

Fig. 8. Shear test. (a) Typical load/displacement curves of the shear test specimens. Two curves are shown for each condition; (b–d) shear test specimens after the test: as-printed
specimen (b), SPS-treated specimen (c), HIP-treated specimen (d).

Table 2
Average maximal shear load for as-printed and post-treated specimens.

Sample condition Average maximal load, N Standard deviation, N

As-printed 1690 154
SPS-treated 4921 277
HIP-treated 3727 200

Table 3
Hardness values of the UAM laminate after the SPS treatment.

Distance from the lowest layer, μm Hardness, HV

0 158.6
15 184.7
30 210.2
45 231
60 361.4
70 430.6
90 442.9
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