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Abstract. This work presents a unified approach to model three dimensional magnetostrictive trans-
ducers. Generalized procedures are developed for incorporating nonlinear coupled constitutive behav-
ior of magnetostrictive materials into an electro-magneto-mechanical finite element modeling frame-
work. The finite element model is based on weak forms of Maxwell's equations for electromagnetics
and Navier's equations for mechanical systems. An implicit time integration scheme is implemented
to obtain nonlinear dynamic system responses. The model is implemented into a finite element (FE)
solver and applied to two case studies, a Galfenol unimorph actuator and a magnetohydraulic Terfenol-
D actuator for active engine mounts. Model results are compared with experiments, and parametric
analyses are conducted which provide guidelines for optimization of actuator design.

Introduction

Magnetostrictive materials exhibit coupling between the magnetic and mechanical energy domains.
They undergo lattice deformation in response to applied magnetic fields and change their magnetic
state when stressed. Short response times (in the millisecond range) combined with microstrain (or
better) resolution make these materials suitable for precision sensing and actuation mechanisms [1].

Modeling the behavior of magnetostrictive systems is challenging as these systems exhibit multi-
domain coupling both at the material and system level. Magnetostrictive transducer models aim at
quantifying the relationship between transducer input and output parameters such as voltage, current,
field, and displacement. This is done by formulating equations describing the coupled structural and
magnetic dynamics of the system. Complete magnetostrictive transducer models use constitutive laws
to couple three main components: voltage-field relationships, structural dynamics, and eddy currents.
Description of voltage-field relationships and eddy currents requires information of complete trans-
ducer geometry and solution of Maxwell's equations in three dimensions (3D). Simpler, less accurate
1D and 2D transducer models have been formulated in which magnetic field is an input and magne-
tostatic operation is assumed to avoid solving Maxwell's equations.

Eddy current losses are significant when dynamic magnetostrictive devices are operated at high
enough frequency. Eddy currents in a magnetostrictive driver can be incorporated into a constitutive
law or, for cylindrical drivers, quantified by solving 1D magnetic field diffusion equations. Huang et
al. [2] followed the former approach and coupled a lumped parameter vibratory model with the Jiles-
Atherton equations extended to model eddy currents [3]. Sarawate and Dapino [4] implemented the
second strategy by coupling a 1D magnetic field diffusion equation with a lumped-parameter model
describing the structural dynamics using the Jiles-Atherton model. Evans [6] formulated an energy-
averaged constitutive model in which a lumped-parameter vibratory model is coupled with a radial
diffusion equation for magnetic fields. The nonlinear two-way coupled model was solved numerically
using Newton-Raphson iterations.
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Many of the early two dimensional finite element models for magnetostrictive devices are mag-
netostatic to avoid the complexities involved in modeling eddy currents. Benbouzid [7] formulated
a 2D bidirectionally-coupled magnetostatic model formulated in terms of magnetic vector poten-
tials in which Terfenol-D constitutive behavior is incorporated using surface splines. The coupled
problem is solved through successive mechanical and magnetic finite element computations. Kan-
nan and Dasgupta [8] presented a 2D magnetostatic model based on scalar magnetic potentials with
bi-directionally coupled magnetomechanical relations, current induced magnetic fields, and electro-
magnetic body forces. A piecewise-linear solution process is used with constitutive laws incorporated
in an incremental manner. Material model coefficients are obtained from bi-cubic spline fits to mea-
surements. Zhou et al. [9] developed a dynamic finite element model of a unimorph actuator with
one-way magnetomechanical coupling. Applied magnetic fields are computed explicitly in axial co-
ordinates as a function of drive coil current. Constitutive nonlinearities are incorporated through the
Zheng-Liu model [10]. The one-way coupled 3D model of Kim and Jung [11] describes force due
to magnetostriction driving a coupled fluid-structural model for a sonar transducer. Magnetic fields
are computed a priori and magnetostriction is described by fitting sixth-order polynomials to strain
versus field curves.

The above models require as input externally applied fields or compute the magnetic field explic-
itly as a function of applied currents. The models described next aim at modeling the full coupling
between the electromagnetic and mechanical boundary value problems. Ghosh et al. [12] described a
magnetostatic finite element model for composite laminates incorporating magnetostrictive materials
modeled using a linear anhysteretic constitutive law. A comparison between a one-way coupled and
a two-way coupled implementation revealed significant differences emphasizing the need for fully-
coupled models. Aparicio and Sosa [13] presented a 3D, fully-coupled finite element model based
on vector magnetic potentials which does include dynamic effects; a very simple implementation was
given. Slaughter [14] implemented a model for magnetostrictive transducers in the finite element soft-
ware COMSOL by coupling the Structural Mechanics and AC/DC modules using linear piezomag-
netic relations for the magnetostrictive material. Mudivarthi et al. [15] used a fully-coupled, magneto-
static formulation to describe stress-induced flux density changes in Galfenol with no current-induced
fields. An updated version of the model includes current induced fields but is still magnetostatic in
nature [16]. Galfenol constitutive behavior is incorporated through look up tables generated a priori
by running the Armstrong model [17] for a large number of induction and stress values. Although the
Armstrong model is capable of describing 3D Galfenol behavior, look up tables were generated for 1D
induction and stress inputs. Evans and Dapino [18] presented a fully-coupled dynamic model for 3D
magnetostrictive transducers in which a vector magnetic potential is solved through a finite element
formulation. The model simultaneously describes the effects of eddy currents, structural dynamics,
and flux leakage on transducer performance, though displacement currents and electromagnetic body
forces are neglected. Due to the restriction of COMSOL Multiphysics being unable to handle vector-
ized functions, linear constitutive behavior is assumed.

This work develops generalized methodologies to incorporate nonlinear constitutive laws in the
finite element framework of Evans and Dapino [18]. The methods developed can be used for any
arbitrary constitutive model as long as it can be analytically or numerically differentiated. The pa-
per briefly reviews the finite element formulation followed by a description of the nonlinear dynamic
system equations, a generalized procedure to integrate nonlinear coupled constitutive behavior within
the framework, and the time integration methods implemented to obtain the nonlinear dynamic sys-
tem responses. The final two sections deal with implementation of this unified model on a Galfenol
unimorph and a Terfenol-D engine mount actuator.
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Finite Element Framework

The finite element model of Evans and Dapino [18] is based on weak form representation of the
Maxwell's laws and Navier's equation. The resulting finite element model equations can be expressed
as

NA

∑

e=1





∫

∆

He (Be, Se) · CeδqA
e Jed∆+

∫

∆

σeNA∂qA
e

∂t
· NAδqA

e Jed∆



 =

NA

S∑

b=1

∫

∆

HT,b · NAδqA
b Jb,Sd∆S +

NA

∑

e=1

∫

∆

Js,e · NAδqA
e Jed∆,

(1)

Nu

∑

e=1





∫

∆

Te (Be, Se) · Geδqu
e Jed∆+

∫

∆

ρeNu∂
2qu

e

∂t2
· Nuδqu

e Jed∆+

∫

∆

ceNu∂qu
e

∂t
· Nuδqu

e Jed∆



 =

Nu

S∑

b=1

∫

∆S

tb · Nuδqu
b Jb,Sd∆S,

(2)

where e denotes the element number over which the quantities are evaluated. The vectors He,Be, Se,Te

are the magnetic field, magnetic flux density, strain, and stress in element e; Ce and Ge are matrix
representations of the curl and gradient operator. Within every element the vector magnetic potential
Ae and the mechanical displacements ue are interpolated from the corresponding nodal degrees of
freedom qA

e and qu
e using the shape function matrices NA and Nu, respectively. Variables NA and Nu

are the number of elements in the magnetic and mechanical domains, respectively. The subscript b
refers to the element number on the boundary. The number of elements on the boundary in which a
magnetic field is applied is NA

S and the number of boundary elements to which a traction is applied is
Nu

S . The integral
∫

∆
Je d∆ is calculated over the element's volume in natural coordinates; the integral

∫

∆S
Jb,S d∆S gives the surface area of the element's face on the boundary.

Nonlinear Dynamic System Equations

The nonlinear dynamic system equations can be obtained by equating the coefficients of the virtual
quantities in (1) and (2),

MÜ + DU̇ = R(t)− F(U, t), (3)

where the mass matrix M, damping matrix D, and state vector U are of the form

M =

[
0 0
0 Mu

]

, D =

[
DA 0
0 Du

]

, U =

(
QA

Qu

)

. (4)

The vector of externally applied forces R(t) and the internal nodal force vector F(U, t) are

R =

(
RA

Ru

)

, F =

(
FA

Fu

)

, (5)

where RA includes contributions from coil source current density and externally imposed tangential
fields, and Ru includes contributions from surface tractions,

Advances in Science and Technology Vol. 77 13

Vincenzini, P., Hahn, Y., & Iannotta, S. (Eds.). (2012). <i>Adaptive, active and multifunctional smart materials systems</i>. Retrieved from http://ebookcentral.proquest.com
Created from ohiostate-ebooks on 2017-07-12 11:24:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 T

ra
ns

 T
ec

h 
P

ub
lis

he
rs

. A
ll 

rig
ht

s 
re

se
rv

ed
.



Ru =

Nu

S∑

b=1

∫

∆S

(Nu)T tbJb,Sd∆S, (6)

RA =

NA

S∑

b=1

∫

∆S

(
NA

)T HTJb,Sd∆S +
NA

∑

e=1

∫

∆

(
NA

)T Js,eJed∆. (7)

Similarly, FA and Fu include contributions from fields and stresses acting on the elements,

FA =
NA

∑

e=1

∫

∆

CT
eHe(Be, Se)Jed∆, (8)

Fu =
Nu

∑

e=1

∫

∆

GT
eTe(Be, Se)Jed∆. (9)

The tangent stiffness matrix is obtained by differentiating F with respect to U,

K =

[
∂FA/∂QA ∂FA/∂Qu

∂Fu/∂QA ∂Fu/∂Qu

]

, (10)

where

∂FA

∂QA
=

NA

∑

e=1

∫

∆

CT
e

∂He

∂Be

CeJed∆, (11)

∂FA

∂Qu =
Nu

∑

e=1

∫

∆

CT
e

∂He

∂Se

GeJed∆, (12)

∂Fu

∂QA
=

Nu

∑

e=1

∫

∆

GT
e

∂Te

∂Be

CeJed∆, (13)

∂Fu

∂Qu =
Nu

∑

e=1

∫

∆

GT
e

∂Te

∂Se

GeJed∆. (14)

Thus, determination of the internal nodal force vector requires computation of stress and field given
strain and induction while computation of the tangent stiffness matrix requires determination of the
derivatives ∂He/∂Be, ∂He/∂Se, ∂Te/∂Be, ∂He/∂Se each of which need to be supplied by the consti-
tutive law. The next section briefly reviews prior techniques to incorporate magnetostrictive material
constitutive behavior in finite element models and details a generalized procedure for integrating cou-
pled constitutive laws in the finite element framework described earlier.
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Incorporation of Nonlinear Constitutive Laws

Incorporation of nonlinear constitutive behavior poses a significant challenge in the formulation of
coupled finite element models for magnetostrictive systems. The most common method to describe
magnetostrictive material behavior has been by obtaining polynomial fits to data. For example, Ben-
bouzid et al. [19] used surface splines to fit experimental data while Kannan and Dasgupta [8] used
constitutive relations in an incremental form with coefficients obtained from bi-cubic spline fits to
measurements. Kim et al. [11] used sixth order polynomials to fit the strain-field behavior with a dif-
ferent set of coefficients for each preload condition. The use of spline functions has the advantages of
easy differentiability and implementation for 1D cases. However, the use of splines for 3D material
behavior is complex as it requires 3D measurements along with bulky splines with 9 components (3
for field and 6 for stress) that are fitted to the measurements. Graham et al. [16] implemented Galfenol
constitutive behavior through look-up tables generated a priori using the Armstrong model for a large
number of induction and stress values. Although the Armstrong model is three dimensional, look-up
tables were generated for 1D induction and stress inputs. As is the case with splines, extension to
a full 3D version will add significant complexity because it will require generation of bulky tables
with 9 inputs and 9 outputs. For these reasons, using an implicit constitutive law is beneficial for 3D
boundary value problems.

Most available constitutive laws take magnetic field (H) and stress (T) as inputs and compute flux
density B and strain (S) as outputs,

B = B (H,T) , S = S (H,T) . (15)

These models can be analytically or numerically differentiated to obtain the matrix of derivatives (or
the material Jacobian matrix), which has the form

J =

[

µ = ∂B/∂H (H0,T0) d = ∂B/∂T(H0,T0)

dT = ∂S/∂H(H0,T0) s = ∂S/∂T(H0,T0)

]

. (16)

The material Jacobian matrix inverse can be used not only for assembling the stiffness matrix but also
for inversion of the constitutive model using Newton's method. Computation of the Jacobian matrix
on every Newton-Raphson iteration requires significant computational effort causing large solution
times. Use of Quasi-Newton methods to invert the constitutive law eliminates the need to compute
the material Jacobian at every iteration. Further, the Jacobian inverse can be approximated during the
inversion process and stored to be used during the stiffness matrix assembly.

Time Integration

Once the constitutive model has been integrated into the framework such that the system matrices
can be computed, the last step in obtaining a dynamic solution is to select a suitable time-stepping al-
gorithm. Bathe [20] suggested various explicit and implicit time-integration algorithms for nonlinear
structural problems of similar form. In this case explicit methods are ruled out since the mass matrix is
singular. An implicit scheme based on the trapezoidal rule is implemented, combined with equilibrium
iterations. At the kth iteration the system equations can be written as

Mt+∆tÜ(k) + Dt+∆tU̇(k) + t+∆tK(k−1)∆U(k) = t+∆tR − t+∆tF(k−1), (17)
t+∆tU(k) = t+∆tU(k−1) +∆U(k). (18)
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According to the trapezoidal rule of time integration, the following assumptions are used:

t+∆tU = tU +
∆t

2

(
tU̇ + t+∆tU̇

)
, (19)

t+∆tU̇ = tU̇ +
∆t

2

(
tÜ + t+∆tÜ

)
. (20)

The vectors Ü(k) and U̇(k) can be written using (18) to (20) as

t+∆tÜ(k) =
4

∆t2

(
t+∆tU(k−1) − tU +∆U(k)

)
−

4

∆t
tU̇ − tÜ, (21)

t+∆tU̇(k) =
2

∆t

(
t+∆tU(k−1) − tU +∆U(k)

)
− tU̇. (22)

Substitution into (17) yields the equation of motion for the system,

[

t+∆tK(k−1) +
4M
∆t2

+
2D
∆t

]

∆U(k) = t+∆tR − M
[

4

∆t2

(
t+∆tU(k−1) − tU

)
−

4

∆t
tU̇ − tÜ

]

−D
[
2

∆t

(
t+∆tU(k−1) − tU

)
− tU̇

]

− t+∆tF(k−1). (23)

The starting values for the internal force and state vector are considered to be same as the correspond-
ing final values of the previous time step,

t+∆tF(0) = tF, t+∆tU(0) = tU. (24)

The convergence criteria used in this work are based on energy and norm of the out-of-balance load
vector [20]. Mathematically, these criteria can be written as

∥t+∆tR − t+∆tF(k−1) − M t+∆tÜ(k−1) − D t+∆tU̇(k−1)∥

RNORM
≤ RTOL, (25)

∆U(k) ·
(
t+∆tR − t+∆tF(k−1) − M t+∆tÜ(k−1) − D t+∆tU̇(k−1)

)

∆U(1) ·
(
t+∆tR − tF − M tÜ − D tU̇

) ≤ ETOL. (26)

The mass and damping matrix are state-independent and hence are assembled only once for the entire
simulation. The internal nodal force vector F and the tangential stiffness matrix K are assembled
in every iteration as they are state-dependent. Thus, efficient computation of F and K is critical to
the performance of the model. The next two sections show the application of the developed unified
methodologies to Galfenol and Terfenol-D actuators.
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Galfenol Transducers

Magnetostrictive iron-gallium alloys (Galfenol) possess structural-grade mechanical properties in ad-
dition to exhibiting moderate magnetostriction. Galfenol can be machined, rolled, welded, and ex-
truded into intricate shapes, thus enabling magnetostrictive transducers with 3D functionality. Galfenol
is capable of withstanding tension, compression, and shock loads making it uniquely well-suited
for application in load-bearing sensors and actuators. This section deals with integrating a nonlin-
ear energy-averaged constitutive law for Galfenol with the finite element framework of Evans and
Dapino [18] using the generalized procedures described in the previous section. The full nonlinear
coupling between the electrical, magnetic, and mechanical domains in Galfenol systems is described.

Discrete energy-averaged constitutive model for Galfenol. The energy-averaged models describe
macroscopic material response based on an energy weighted summation of contributions from domains
aligned along different orientations. Mathematically this is represented as

M = Ms

r∑

k=1

ξkmk, (27)

S = sT +
r∑

k=1

ξkSk
m, (28)

where M and S are the macroscopic magnetization and strain, Ms is the saturation magnetization,
mk is the domain orientation vector and ξk is the volume fraction of domains aligned along orientation
mk. The vector Sk

m represents the strain as a function of the domain orientation. For a cubic material
it is given by

Sk
m =







(3/2)λ100

(
mk

1

)2

(3/2)λ100

(
mk

2

)2

(3/2)λ100

(
mk

3

)2

3λ111m
k
1m

k
2

3λ111m
k
2m

k
3

3λ111m
k
3m

k
1







. (29)

The type and number of possible domain orientation vectors mk greatly affects the accuracy and ef-
ficiency of the model. With homogeneously distributed fixed orientations (as in Armstrong's model
[17]), obtaining high accuracy requires a large number of possible orientations to be considered which
results in significant computational load. Atulasimha et al. [21] improved the efficiency of these
models by tracking the volume fractions of domains aligned along ninety eight fixed orientations. To
preserve accuracy along with computational efficiency, Evans and Dapino [22] restricted the number
of possible orientations to six by considering only the directions which minimize an energy function
defined locally around each easy axis.

The total free energy of a domain close to the kth easy axis ck is formulated as the sum of local
anisotropy energy, magnetomechanical coupling energy, and Zeeman energy as

Gk =
1

2
Kk|mk − ck|2 − Sk

m · T − µ0Msmk · H. (30)
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Fig. 1: Comparison of model outputs with and without normalizing mk. Simulations run at constant
prestresses of 20, 50 and 80 MPa.

Minimization of the energy function and linearization of the unity norm constraint on the orienta-
tion vectors (mk · mk = 1 ≈ ck · mk = 1) yields the following analytical expression for the kth local
minimum

mk =
(
Kk

)
−1

[

Bk +
1− ck ·

(
Kk

)
−1 Bk

ck ·
(
Kk

)
−1 ck

ck
]

, (31)

where the magnetic stiffness matrix Kk and force vector Bk are

Kk =





Kk − 3λ100T1 −3λ111T4 −3λ111T6

−3λ111T4 Kk − 3λ100T2 −3λ111T5

−3λ111T6 −3λ111T5 Kk − 3λ100T3



 , (32)

Bk =
[
ck1K

k + µ0MsH1 ck2K
k + µ0MsH2 ck3K

k + µ0MsH2

]T
. (33)

The anhysteretic volume fractions are calculated using Boltzmann-type averaging,

ξkan =
exp

(
−Gk/Ω

)

∑r

j=1 exp (−Gj/Ω)
, (34)

where Ω is an averaging factor. As a result of linearization of the unity norm constraint, at very high
fields well in the saturation regime, the norm of mk can become much greater than unity thus yielding
unphysical magnetization and strain calculations. To circumvent this issue, mk is divided by its norm
to maintain stability in the model. Figure 1 shows how normalization of the domain orientation vectors
yields stability at saturation fields and at the same time preserves the accuracy of the original model
at the non-saturation zones.

An advantage of having analytical expressions for the minimum energy orientations as opposed
to an iterative numerical root finding algorithm is that the constitutive law can be analytically differ-
entiated to obtain the material Jacobian matrix. Details of the Jacobian computation can be found in
Chakrabarti and Dapino [23].

Case study: Galfenol unimorph actuator. The finite element model is validated using the Galfenol
unimorph actuator shown in Figure 2(a). The actuator consists of a composite beam having a Galfenol
layer bonded to a brass substrate, a drive coil, and steel flux return components. The system is excited
by applying a voltage input to the coil; the vertical tip deflection of the beam is measured with a laser
displacement sensor. Figure 2(b) shows the mesh geometry used for finite element calculations. The
lower surface of the stainless steel piece to which the beam is clamped is mechanically fixed (u = 0)
to remove rigid body modes. The actuator is surrounded by a sufficiently large air volume such that
the magnetic potential is negligible at its outer boundaries, A = 0.
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(a) (b)

Fig. 2: Galfenol unimorph actuator used for model validation, (a) actuator configuration, and (b)
finite element mesh.

To validate the nonlinear dynamic solution procedure, harmonic excitations ranging from 10 Hz
to 200 Hz are applied to the system in the form V (t) = −Vbias + V0(1 − cos(ωdrt)), where ωdr

is the excitation frequency and the finite element model is run for the first few cycles. In order to
obtain appreciable displacement response from the beam at higher frequencies, a negative bias voltage
(Vbias) is applied first before applying the harmonic signal. This ensures that the effective bias point
of the cyclic signal is in the burst region. In the model the bias point is obtained in similar fashion
by applying the bias voltage smoothed using a hyperbolic tangent function for ease of convergence.
Figure 3 shows the transient response of the transducer for harmonic inputs at 10, 50, 100, and 200 Hz.
The model shows good correlation with the experiments particularly for the tip deflection response.
An interesting outcome of nonlinear Galfenol behavior can be seen where the quadratic nonlinearity
of the magnetostrictive strain at zero field causes frequency doubling in the tip deflection response.

Terfenol-D Transducers

Magnetostrictive Terfenol-D (Tb0.7Dy0.3Fe2) is attractive for practical actuators due to its large mag-
netostriction (1600 ppm) and moderate saturation fields (200 kA/m). Due to its poor machinability,
Terfenol-D is mostly available in 1D geometries like cylindrical rods. As a result, most Terfenol-D
transducers are axisymmetric with the permanent magnet and flux return components concentric with
the Terfenol-D driver. Thus, the 3D finite element model is reduced to a 2D axisymmetric form. The
basic formulation is combined with a fully-coupled energy-averaged model for Terfenol-D. It is then
used to model the steady state dynamic response of a Terfenol-D engine mount actuator.
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Fig. 3: From top to bottom, tip displacement and current drawn under harmonic excitation of: (a)
10 Hz, (b) 50 Hz, (c) 100 Hz, and (d) 200 Hz, respectively.
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Axisymmetric finite element formulation. Terfenol-D transducers are commonly built with the cylin-
drical magnetostrictive rod at the core with concentric components like coil, permanent magnets, and
flux return. An axisymmetric formulation can efficiently model such transducers without sacrificing
accuracy. The formulation is developed by imposing axisymmetric approximations on the three di-
mensional formulation described earlier. The current density J and magnetic potential A are defined
as having only an out-of-plane component Jφ and Aφ (written for convenience as J and A). To avoid
singularities in computation, the variables used in the formulation are the modified magnetic potential
(A′ = A/r), modified radial displacement (u′ = u/r), and axial displacement (w). The magnetic flux
density vector (B) and the strain vector (S) are kinematically related to A′, u′, and w through

B = [Br, Bz]
T =

[

−r
∂A′

∂z
, r

∂A′

∂r
+ 2A′

]T

, (35)

S = [Srr, Szz, Srz, Sφφ]
T =

[

r
∂u′

∂r
+ u′,

∂w

∂z
, r

∂u′

∂z
+

∂w

∂r
, u′

]T

. (36)

The corresponding work conjugates (magnetic field H and stress T) are related to B and S through
constitutive laws and have the form

H =
[
Hr Hz

]T
, (37)

T =
[
Trr Tzz Tφφ Trz

]T
. (38)

Since Terfenol-D transducers work primarily under axial loading, the main quantity of interest is the
axial deformation w. Thus, w is solved for in all structurally active domains (i.e., they are `axially
active'). For some components, radial deformation may occur due to the geometry of the transducer.
In such components, radial deformation u is also computed. These components are both `axially active'
and `radially active'. Domains that are only `axially active' (such as Terfenol-D) have a reduced stress
and strain vector with only two components (axial and in-plane shear). This significantly reduces the
computation time for the constitutive model inversion.

The reduced finite element system equations can be obtained by transforming the volume integrals
in (1) and (2) via the transformation

∫

Ve

(F )dV = 2π

∫

Ae

(rF )drdz. (39)

Discrete energy-averaged constitutive model for Terfenol-D. Terfenol-D has eight minima along
the ⟨111⟩ directions. When energy averaged models such as the Armstrong model [24] or the Discrete
Energy Averaged Model (DEAM) [22] are compared with measurements, two major discrepancies
are observed. First, these models introduce an unphysical kink in the magnetization and magnetostric-
tion, and secondly, the experimentally observed slow approach to saturation is absent. Chakrabarti
and Dapino [25] formulated a modified energy-averaged model by superimposing a weighted global
anisotropy energy on the local anisotropy energy and using an implicit definition for the smoothing
factors.

The total free energy of a domain close to the kth easy axis ck is formulated as

Gk = wkGk
A0

+
1

2
Kk∥mk − ck∥2

︸ ︷︷ ︸

Gk

A

− Sk
m · T

︸ ︷︷ ︸

Gk

C

−µ0Msmk · H
︸ ︷︷ ︸

Gk

Z

, (40)
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where Gk
A0

is the global anisotropy energy and wk is an empirical weighting factor which adjusts
the anisotropy energy along the kth easy axis. The expression for the minimum energy orientations
remains unchanged from the Galfenol constitutive law as the m-dependent portion of the energy is the
same. The volume fractions are computed using Boltzmann-type averaging (34), the major difference
being that the smoothing factor Ω is defined as a function of the deviation of the anhysteretic domain
volume fractions ξan from a homogeneous distribution ξ̄ as

Ω = a0 + a1∥ξan − ξ̄∥2. (41)

This implicit definition for Ω implies that the smoothing factor increases as the domain distribution
moves farther away from a homogeneous distribution. This enables the model to describe the slow
approach to saturation in Terfenol-D magnetostriction. However, the implicit relationship demands a
suitable iterative solution scheme to converge to consistent values of Ω and ξan which satisfy (34) and
(41) simultaneously. In this work, (34) and (41) are combined to form a single scalar equation which is
solved using Newon-Raphson iterations. Figure 4 shows the performance of the model in describing
the measurements presented by Moffett et al. [26].
Case study: Terfenol-D engine mount actuator. The Terfenol-D engine mount actuator also known
as the magneto-hydraulic actuator (MHA) consists of a fluid chamber with a large diameter piston at
one end driven by a Terfenol-D rod and a small diameter driven piston at the other end (Figure 5).

The magnetic circuit consists of a permanent magnet to provide magnetic bias, a coil to generate
the dynamic fields with Terfenol-D at its core, and iron pieces for flux return. Figure 6 shows the
2D axisymmetric version used for modeling. Some components like the stainless steel body and the
preload plate have not been modeled as they only serve a geometrical purpose. The device is sur-
rounded by air so that the magnetic potential boundary condition can be applied to the outer boundary
of air. In general, flux density measurements are taken by winding a pick-up coil around the middle
of the rod and strain measurements are taken by bonding a strain gage close to the midpoint of the
rod. Breaking the magnetostrictive rod domain into three parts allows us to evaluate the variables in
the central region separately and compare the behavior of the model against measurements. In this
actuator, all components are considered to be `magnetically active' meaning that the magnetic degree
of freedom (A) is calculated in all the domains. Of these, the base plate, Terfenol-D rod, end caps,
pistons, and casing are considered to be structurally active also which means that the mechanical de-
grees of freedom are calculated in only these components. This partitioning of the solution domain
reduces the total degrees of freedom in the model thus shortening the solution time. We now describe
the additional physics that was combined with the finite element model to describe the fluid-structure
interaction and friction at the fluid seals.
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Fig. 4: Comparison of the proposed anhysteretic energy averaged model with measurements by Mof-
fett et al. [26]. All calculated curves have been obtained with the same set of model parameters.
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Fig. 5: Physical magneto-hydraulic actuator actuator (left) and cutout (right).

Fig. 6: Geometry of the transducer used in this study.

Fluid-structure coupling. Due to the extremely small volume of fluid used in the actuator, inertial
effects in the fluid have been neglected. Also, since the seal friction forces are much higher com-
pared to viscous forces in the fluid, damping in the fluid is assumed to be negligible. Thus, only fluid
compliance is modeled. The change in volume of the fluid domain ∆Vf can be written as a sum of
contributions from the drive piston ∆VP , the driven piston ∆VL, and the casing ∆VC as

∆Vf = −∆VP +∆VL +∆VC , (42)

where each of these volume changes are calculated using the integral

∆Vi =

∫

li

2πrwdr, (43)

over the length of the edge li exposed to the fluid domain. The pressure change in the fluid is

∆p = −
β

Vref

∆Vf , (44)
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which is coupled to the structural model through traction on the edges exposed to the fluid. The model
describes the effect of compliance of the fluid chamber components. Here, β is the effective bulk
modulus of the fluid, while in a previous lumped parameter model [5], βeff represented an effective
modulus describing the combined compliance of the fluid and fluid chamber components.
Seal friction. Friction forces are present at the o-ring seals in the two pistons. At the smaller (driven)
piston seal, actuation forces are low and velocities are high. Hence, even a small friction force at this
seal has a significant impact on the dynamic performance of the actuator. On the other hand, at the
larger (drive) piston, actuation forces are high and velocities are low. Hence a small frictional force at
this end does not affect the dynamic response of the actuator. Thus, friction has been modeled only at
the smaller piston seal.

In the LuGre model [27], friction between two sliding surfaces in contact is described as an inter-
action force between microscopic bristles on both surfaces. The bristle deflection state ZL is governed
by a nonlinear first-order differential equation,

ŻL + σ0
|vL|

g(vL)
ZL − vL = 0, (45)

where vL is the relative sliding velocity between the two surfaces, which in this case is the average
velocity of the driven piston calculated by integrating 2πrẇ over the edge of the piston adjacent to the
casing, divided by the area of that surface. Function g(vL) is given by

g(vL) = Fc + (Fs − Fc)e
−(vL/vs)

2

, (46)

where Fs and Fc are the static and Coulomb friction forces and vs is the Stribeck velocity. The friction
force is given by

FRL = σ0ZL + σ1ŻL + σ2vL, (47)

where σ0 and σ1 are the bristle stiffness and bristle damping coefficient, respectively. This force is
applied as traction on the boundary of the smaller piston adjacent to the casing.
Boundary conditions. Boundary conditions for an axisymmetric problem must be implemented care-
fully such that none of the variables become infinite at the r = 0 boundary. In this case, the axial sym-
metry condition is enforced using (∂A/∂r)(r=0) = 0 in the magnetically active domains, u(r=0) = 0
in the radially active domains, and (∂w/∂r)(r=0) = 0 in the axially active domains. These conditions
remove shear stresses and constrain the radial displacement at the r = 0 boundary. The magnetostric-
tive system is encapsulated by a large volume of air. At the outer boundaries of this air volume, the
magnetic potential is set to zero. The bottom face of the base plate and the casing are considered to be
mechanically fixed.
Obtaining the bias point. Computation of the dynamic response of the actuator requires accurate deter-
mination of its bias point. The actuator is biased both mechanically and magnetically. The mechanical
bias is due to the compression of the wave spring whose force is transmitted (and amplified) through
the fluid to the Terfenol-D rod. The stress developed in the Terfenol-D under an axial load can be
assumed to be uniform. Therefore, this stress is superimposed directly on the applied stress in the con-
stitutive model. The magnetic bias is due to the residual flux density in the permanent magnet. This
field depends on the geometry of the magnetic circuit and cannot be assumed to be homogeneously
distributed in the rod. The magnetic bias point is obtained by increasing the residual flux density of the
magnet from zero to its actual value using a hyperbolic tangent function and storing the solution from
the final step. Figure 7 shows that the axial magnetic field at the bias point is uniformly distributed in
the central region of the rod with a somewhat lower value at the ends. The average magnetic field in
the Terfenol-D rod is ≈ 30 kA/m.
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Response to harmonic inputs. Figure 8 shows the actuator response at 20, 50, 100, and 200 Hz. As
expected the phase between voltage and displacement increases with increasing frequency resulting
in counter-clockwise rotation of the loops. One shortcoming of the model is the assumed anhysteretic
Terfenol-D behavior which causes a discrepancy in the phase of the response. At lower frequencies
this is not visible but at 200 Hz the phase difference is significant.

Fig. 7: Axial magnetic field distribution in the magnetic circuit due to the permanent magnet.

An interesting feature that is observed in both the experimental and modeled voltage-current loops
is that the actuator draws a biased current even though it is driven with an unbiased sinusoidal voltage
input. This happens because of the nonlinear behavior of Terfenol-D. Because the permeability of the
material is field-dependent, the back emf in the coil also varies with voltage giving rise to an asymmet-
ric current signal. Such effects can only be described accurately with models where electromagnetic
and mechanical responses are fully coupled.
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Fig. 8: Comparison of modeled voltage-displacement and voltage-current loops with measurements.
(a) 20 Hz, (b) 50 Hz, (c) 100 Hz, and (d) 200 Hz.
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Parametric Study. The proposed finite element model can be a useful tool for optimizing device ge-
ometry and material selection. To illustrate, the effect of fluid bulk modulus, thickness of the fluid
chamber components, and seal friction force on the unloaded displacement response of the actuator
are studied at 20, 50, 100 and 200 Hz. The effective fluid bulk modulus can have a significant effect
on the dynamic performance of hydraulic devices. To investigate the effect of stiffening up the fluid
(by degassing), the model is run for β = 2β0 and β = 4β0, where β0 is the bulk modulus value tuned
to describe the actuator behavior. Figure 9 shows that increasing the bulk modulus four times achieves
a mere 2 to 3% increase in the unloaded stroke of the actuator below 100 Hz while a more noticeable
8.5 % increase is observed at 200 Hz. This weak dependence of the actuator performance on the fluid
bulk modulus suggests that the performance of the MHA is limited by structural compliance and not
the fluid compliance, which is very low as a small volume of fluid is used (≈ 1.3 c.c).

Next, the effect of structural compliance of the fluid chamber components on transducer perfor-
mance is investigated. The model is run with the thickness of the larger piston and the casing doubled.
A significant 30 to 35% stroke increase is estimated in the 20 to 100 Hz range while a large 143%
increase is obtained at 200 Hz. Thus, it is concluded that the primary source of compliance in the
transducer comes from the components enclosing the fluid.
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Fig. 9: Percentage improvement in the unloaded stroke of the actuator with variation in model param-
eters.

Another factor which influences the performance of hydraulic devices is seal friction. The friction
force at the smaller piston seal is reduced to fr = 0.5 fr0 and fr = 0.25 fr0 where fr0 is the friction
force value tuned to describe the experimentally observed transducer behavior. With the friction force
reduced by half, the stroke increases by 10 to 12% in the 20 to 100 Hz range while a 60% increase is
calculated at 200 Hz. With the friction force reduced to one fourth of the original value, a 15 to 20%
stroke increase is calculated below 100 Hz and a substantial 85% increase is observed at 200 Hz. Thus,
as expected, reduction in seal friction can significantly improve the unloaded stroke of the actuator.

Concluding Remarks

Magnetostrictive materials possess the potential to be applied in novel three dimensional sensors and
actuators. Efficient design of such transducers requires an adequate modeling framework which fully
describes the nonlinear electro-magneto-mechanical coupling exhibited by these devices. This paper
addressed the development of a unified finite element tool whose application is not restricted to a par-
ticular magnetostrictive material or transducer configuration. The framework allows for incorporation
of any nonlinear constitutive behavior and is able to simultaneously model the effects of structural dy-
namics, eddy currents, flux leakages and transducer geometry changes on the response of the system.
The unified concepts were extended to model transducers employing the two most common magne-
tostrictive materials: Galfenol and Terfenol-D. For Galfenol, a discrete energy averaged model was
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employed with minor refinements to ensure stability in saturation regimes, while for Terfenol-D a
modified energy-averaged model with an implicit volume fraction definition was incorporated into a
reduced 2D axisymmetric formulation to take advantage of axisymmetric geometries of Terfenol-D
actuators. Model results were validated with experiments conducted on a Galfenol unimorph actua-
tor and a Terfenol-D engine mount actuator. The model accurately describes the transient dynamic
tip deflection of the unimorph. Results for the Terfenol-D actuator show that the model can describe
the steady state dynamic response of the device below 200 Hz. At higher frequencies there are phase
errors since hysteretic Terfenol-D material behavior is approximated by an anhysteretic constitutive
law. Finally, a parametric study on the mount actuator illustrates the use of this model as a design
optimization tool. Significant improvements can be obtained in the unloaded stroke of the actuator by
increasing the thickness of the components enclosing the fluid and reducing seal friction.
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