Proceedings of ACTIVE 99, International Symposium on Active Control of Sound
and Vibration, Ed. Scott Douglas, pp. 1193-1204, Fort Lauderdale, Florida,
2-4 December 1999

A MAGNETOELASTIC MODEL FOR MAGNETOSTRICTIVE SENSORS

Marcelo J. Dapino,® Frederick T. Calkins,” Ralph C. Smith® and Alison B. Flatau?

a,d AEEM Department, lowa State University, Ames, IA 50011
b Boeing Phantom Works, Seattle, WA 98136
¢ CRSC, Department of Mathematics, North Carolina State University, Raleigh, NC 27695

INTRODUCTION

The interest in sensor technologies has grown considerably in recent years, due to the increasingly
important role that sensors play in sectors such as the aerospace, automotive and manufacturing
industries [1]. The high energy coupling factors of up to k = 0.76 achieved with certain magne-
tostrictive materials motivates the utilization of these materials in sensing applications involving
energy conversion between the mechanical and magnetic states. Of particular interest are the
highly magnetostrictive rare earth-iron compounds R-Fe; (R = Tb, Dy, Ho, Sm), of which at
present Terfenol-D is the most well known commercially available example.

A magnetostrictive transducer is here defined as a device which employs a magnetostrictive
material to convert between mechanical and magnetic energies. It is emphasized that this energy
exchange is bidirectional, that is both transduction processes (magnetic to elastic and elastic to
magnetic) occur simultaneously during operation. In actuation mode, the action of a magnetic field
and ensuing magnetization changes generates strains and forces in the magnetostrictive material.
In sensing mode, the application of forces creates substantial magnetization changes which can
be detected in a variety of ways. Both modes of operation are intrinsically coupled, and hence
a mechanism capable of addressing this coupling must be considered in models to be used in
design and control of magnetostrictive devices. In addition to providing actuation and sensing
capabilities, magnetostrictive materials are mechanically robust (when operated in compression),
they do not exhibit fatigue as other transducer technologies do, they are not frequency-limited and
their properties can be widely modified through both stoichiometric modifications and changes in
operating conditions.

Some of the earliest examples of the use of magnetostrictive materials in sensor applications
included the telephone receiver, hydrophone, and scanning sonar [2]. More recent sensor designs
include hearing aids, load cells, force transducers, accelerometers, proximity sensors, torque sensors,
magnetometers, and frost detectors [3]. Many of these devices rely on the Villari effect, which has
been the subject of extensive research [3, 4]. Other uses involve the utilization of both the actuation
and sensing modes simultaneously, such as in the simultaneous sensing and control of structural
vibrations in acoustical systems [5, 6].

While magnetostrictive transducers provide adequate performance at the low signal levels where
their behavior is quasilinear (magnetostrictions below A;/3), the demand for high performance
transducers often dictates that they be driven at the high operating regimes where hysteresis
and nonlinearities are intrinsic to magnetostrictive performance. In addition, the advantages of
magnetostrictive materials over alternative transducer technologies are typically realized at high
operating regimes. These factors motivate the development of models that accurately characterize
the hysteresis, nonlinearities and coupling effects intrinsic to magnetostrictive transduction.
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Material models based on the linear piezomagnetic equations are being extensively used to quan-
tify magnetostrictive transducer performance. These models are typically formulated as follows,

€:SHO'—|-d.33H (1)
B=d3;0+ u’H. (2)

In these equations, € is the strain, s is the compliance at constant applied magnetic field H, d33

and d35 are the magnetoelastic coupling coefficients, o is the stress, and p” is the permeability at
constant stress. It is emphasized that this model is in essence a generalization of two phenomeno-
logical relationships, namely the Hooke’s law for linearly elastic solids ¢ = so and the magnetic
constitutive equation B = p H. The total magnetoelastic strain ¢ given by equation (1) is inter-
preted as the superposition of the elastic or passive response ¢ = so and the magnetostrictive
component A = dz3 H associated with domain processes in the material. In a similar fashion, the
magnetic induction B of equation (2) is interpreted as due to the constant-stress magnetic compo-
nent p” H, and a term due to magnetoelastic interactions d%; 0. It is often assumed on the basis of
small reversible magnetostrictions that di; = ds3, which suggests that, for reversible processes, a
large magnetomechanical effect d5; = (0B / 00)y should be observed in materials with large axial
strain coefficient ds3 = (0 / OH),.

A related modeling approach has been reported in [7]. This experimentally verified model
quantifies the output produced by a velocity sensor consisting of a magnetically biased Terfenol-D
core. The sensor is connected to a moving target that strains the core producing a change in
magnetic induction. The linear constitutive equations, Faraday-Lenz law, and empirical fits relate
the transducers open circuit output voltage to the target velocity. Kleinke and Uras describe the
single branch sensor model (SBSM) for magnetostrictive force sensors [8]. An applied force on the
sensor causes a strain in a magnetostrictive element. The magnetomechanical relationship between
the mechanical strain and magnetic circuit reluctance, measured by a receiving coil, is modeled by
a two dimensional magnetic moment rotation. Models have also been developed for a noncontact
torque sensor [9] and a magnetometer [10, 11].

While the linear piezomagnetic model (1)-(2) and related modeling techniques provide adequate
characterization of magnetostrictive performance in quasilinear regimes, general models and cor-
responding numerical methods appropriate for characterizing transducer nonlinearities, coupling
effects and hysteresis losses are still lacking. To address this problem, a nonlinear and hysteretic
magnetomechanical model for the strains and forces generated by magnetostrictive transducers in
response to applied magnetic fields was presented in [12, 13, 14]. The model was employed to
characterize the behavior of magnetostrictive transducers as employed in actuator mode. In this
paper, the model is applied to magnetostrictive transducers operated in sensor mode. Specifically,
the model is used to quantify the magnetization changes exhibited by magnetostrictive materials
in response to externally applied forces.

The model is illustrated in the context of the transducer design shown in Figure 1, which is
typical of control applications and illustrates the primary components needed to fully utilize the
magnetostrictive transducer capabilities. These components are a magnetostrictive rod, an excita-
tion/sensing solenoid which provides the bias magnetization and the sensing voltage V (¢) o< dB/dt,
a prestress mechanism consisting of a bolt and a spring washer, a permanent magnet which is used
in conjunction with the solenoid to fine-tune the bias magnetization, and magnetic couplers.

The model is presented in three stages. In the first stage, we consider the magnetization of the
magnetostrictive rod under an externally applied magnetizing field Hg and a stress field o. The
field-induced component of magnetization is quantified with the mean field model of ferromagnetic
hysteresis originally proposed in [15]. The stress-induced component of magnetization is modeled
with a law of approach to the anhysteretic magnetization as presented in [16]. The two components
considered together provide a magnetization model based on the energy dissipated when domain



walls attach to and detach from inclusions in the material.

The second stage involves the characterization of the magnetostriction A produced when the
magnetostrictive rod is magnetized. This is done through a phenomenological model consisting of
an even-terms series expansion depending on M. While A includes the active contribution to the
strain arising from the rotation of magnetic moments, it does not account for the passive or material
response of the kind found in ordinary elastic materials and modeled by s o in equation (1).

The passive effects are modeled in the third and last stage, through consideration of force
balancing in the magnetostrictive rod in the form of a PDE equation which includes the intrinsic
magnetostriction, system compliance, internal damping and boundary conditions associated with
the mechanical transducer design. The solution to this PDE provides the rod displacements and
corresponding total magnetoelastic strain €.

The accuracy of the model and approximation method are illustrated through comparison of
model simulations with experimental data collected from a Terfenol-D sensor.
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Figure 1: Magnetostrictive sensor used for model development and experimental verification.

MAGNETIZATION OF MAGNETOSTRICTIVE ROD

A magnetomechanical magnetization model was presented in [14] and employed to characterize
the magnetization changes which occur in magnetostrictive materials when operated in transducers
consisting of an excitation solenoid, a magnetic path and a preload mechanism. The model was
constructed on the assumption that the magnetization M is due to a slowly varying magnetic field H
and a magnetomechanical component associated with the stresses o arising as the magnetostrictive
material drives or is driven by external loads.

Magnetostrictive transducers are customarily operated under a magnetic bias. This facilitates
operation over the region of maximum output per input in the M-H and e-H curves and leads to
bidirectional operation around the bias point. The magnetic bias can be applied via DC currents
through the excitation solenoid or with permanent magnets. In order to provide a general model
of the performance of biased magnetostrictive sensors, the magnetization changes are assumed to
be dictated by the expression

dM  (OMY dH oM\ do 5

&= om) @+ (7)) & ®)
where the field contribution arises from the application of a bias magnetization of magnitude Hy
(relative to the demagnetized state) and the stress contribution provides the sensing mechanism.



A domain wall model originally developed by Jiles and Atherton [15] is considered as a basis for
characterizing the field effect OM / OH , while a law of approach to the anhysteretic magnetization is
employed to quantify the magnetomechanical effect OM / do [16]. While the time rate of change of
magnetic field dH / dt is readily determined from the rate of application of the magnetic bias Hy, the
rate of change of stress do / dt must be determined from force balancing in the magnetostrictive rod.

Differential susceptibility. The model for the differential susceptibility dM /dH is formulated
through consideration of the energy lost when a ferromagnetic material is exposed to a cyclic
magnetic field. As the field is applied, magnetic moments in the material rotate into the direction of
the field, giving rise to the processes of domain wall motion and domain magnetization rotation [4].
Domains rearrange so as to minimize the total energy, and as a consequence the magnetization
changes.

In the idealized case of a defect-free material, on reversal of the field the magnetic moments
return to their original orientations and the magnetization returns to its original value. In real
engineering materials, however, defects such as crystal imperfections, cracks and voids are typically
present which provide pinning sites to which domain walls attach since the total energy is lowest
when pinning sites are intersected by a domain wall. For low magnetic field intensities about some
equilibrium value, the domain walls remain pinned and bow in a reversible fashion, producing re-
versible magnetizations. But when the field intensity is sufficiently high so that the magnetic energy
overcomes the pinning energy, domain walls detach irreversibly from the pinning sites and attach
to remote sites. This mechanism produces energy losses which lead to magnetization hysteresis.

Assuming no other loss mechanisms, the energy supplied to a ferromagnetic material is either
converted into magnetostatic energy (total magnetization) or dissipated in the form of irreversible
magnetization changes (hysteresis loss due to domain wall pinning). This is formulated through
an energy balance in which the total magnetization is calculated from the difference between the
maximum attainable magnetization energy, given by the anhysteretic condition, and the energy
lost to pinning. The anhysteretic magnetization is calculated using a modified formulation of the
Langevin equation [15], while the energy lost to pinning is calculated in terms of a pinning coefficient
k that quantifies the density and strength of pinning sites in the material. It is noted that if there
is no dissipation, the magnetization must necessarily follow the anhysteretic curve.

We first consider the anhysteretic magnetization M,,,, which is quantified using the Langevin
function £(z) = coth(z) —1/z, =1 < L£(2z) < 1. As detailed in [15], M,, has the form

M., = M;L(He/a),

in which Mj; is the saturation magnetization and the constant a, representing the effective domain
density, is treated as a parameter to be estimated through a least squares fit to data or through
adaptive parameter identification techniques. The effective magnetic field H. is found from mini-
mization of a suitable thermodynamic potential, and has the form

H.=H+aM+ H,,

where H is the applied magnetic field, a M is the Weiss interaction field responsible for the align-
ment of neighboring magnetic moments within domains, and H, = 1/pug {8 (%08) /8M} is the
field due to magnetoelastic interactions.

The differential equations for the irreversible M;,, and reversible M,., components of magneti-
zation (M = M., + M;,.) in the material can be shown to be [15]

dM,;
M, = My, — ko - 4
di. (4)
Me = ¢ (Man - Mirr)y (5)



where parameter § is +1 when dH /dt > 0 and -1 when dH /dt < 0 to ensure that pinning losses
always oppose the magnetization and c is a parameter that quantifies the amount by which domain
walls bulge before breaking away from pinning sites.

The total magnetization is then dictated by the superposition of the irreversible and reversible
contributions given by equations (4) and (5) respectively,

dM;
M = M;,, + M, = an_k(s(l_c)ﬁ-
This equation leads to the total differential susceptibility M / dH upon differentiation and subse-
quent application of the chain rule. As detailed in [14], the total differential susceptibility has the
form
oM Man - Mirr aMa’ﬂ

o = ) S TR0 o) (M= M) T Ol (6)

It is noted that in equation (6), the parameter &(M;,,, o) represents an effective coupling coef-
ficient which combines the interdomain coupling a and the magnetoelastic interactions,
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Magnetomechanical effect. We now consider the contribution of stress to the total magnetiza-
tion, or magnetomechanical effect 9M / do. A unifying description of the changes in magnetization
due to the action of stress has been recently developed [16]. In the theory presented in [16] and
implemented here, the main mechanism governing the magnetomechanical effect is the unpinning
of domain walls produced upon application of the stress. On the basis of the key model assump-
tion that hysteresis is originated mainly from domain wall pinning, the freeing of domain walls
from their pinning sites must cause the magnetization to change in such a way as to approach the
anhysteretic magnetization.

Experimental measurements demonstrate that both the magnitude and the direction of stress-
induced magnetization changes are profoundly influenced by the magnetic history of the speci-
men [16]. It has been observed that the direction in which the magnetization changes with applied
stress is independent of the sign of the stress, for small stresses and when the magnetization is suf-
ficiently distant from the anhysteretic. It is then inferred that the direction of change is dependent
not on the stress itself, but on a quantity which is independent of the sign of the stress. In this
context, it has been hypothesized in [16] that this quantity is the elastic energy per unit volume,
W = 0?/(2E), which is clearly independent of the sign of 0. The ‘law of approach’ to the anhys-
teretic condition is then formulated as follows: the rate of change of magnetization with elastic
energy is proportional to the displacement of the prevailing magnetization from the anhysteretic
magnetization, or dM / OW o M — M,,,. The concept of the law of approach is now applied to the
stress-induced magnetization of a magnetostrictive material.

As before, the law of approach may be modeled through irreversible and reversible components
of the magnetization. It is noted that to a first approximation, the application of stress produces
irreversible magnetization changes since AM arising from stress unloading is negligible. Thus, it is
reasonable to formulate the law of approach in terms of the irreversible magnetization M;,,,

O = ¢ (Mo = M), g
where £ is a coefficient with dimensions of energy per unit volume that needs to be identified for
magnetostrictive materials. Application of the chain rule OM;,../OW = (OM;,./0c) (0o /OW) in



equation (7), along with OW /do = ¢/ F, yields

8Mi7“7“ o L
do  E¢
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A similar argument to that used in the field-induced case yields the reversible component,

8Mrev —c <8Man . 8Mir7“)

— 9
do do do (9)
It is noted that the reversibility coefficient ¢ is the same as that defined in equation (5) because the
energy available for domain wall bulging should be independent of the mechanism that produces
the bulging, which can be either field- or stress-induced.
Summing the irreversible and reversible contributions given by equations (8) and (9) leads to
oM a 8Man
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(10)

which quantifies the stress-induced magnetization of the magnetostrictive material.

It is noted that on application of stress the magnetization approaches a state of global energy
equilibrium. This implies that the anhysteretic magnetization M,, must in this case be quantified
by iteration of the Langevin function (4) until a solution which satisfies the equation identically is
found. Further details regarding the differences between local and global solutions for equation (4)
can be found in [14].

ACTIVE COMPONENT OF STRAIN

In order to quantify the contribution of stress to the magnetization given by equation (10),
it is necessary to characterize the strain and stress states in the magnetostrictive material. To
this end, it is necessary to consider first the deformations which occur in the material when the
domain configuration changes. Several models exist for quantifying these deformations, including
phenomenological formulations [16], the quadratic law for domain magnetization rotation discussed
in [17], energy or thermodynamic formulations [23-25], elastomagnetic models [26-30], micromag-
netic theories [18] and magnetization rotation analysis [19]. At low to moderate operating levels,
or when material stresses are invariant, these deformations dominate over other material elastic
dynamics. In such cases, it is theoretically possible to quantify the bulk magnetostriction upon
knowledge of the domain configuration and the magnetostriction along easy crystallographic axes.
In the case of Terfenol-D, nominal values for the latter are A;;; = 1600 x 107% and Ajg0 = 90x 1076,
and \; &~ 1000 x 1075, In practical terms, however, the domain configuration cannot be known
apriori.

To motivate the approach followed here, we consider the particular case when the magnetic field is
applied perpendicular to the axis in which the magnetic moments have been aligned by application
of sufficiently large compression in the case of a polycrystalline material such as Terfenol-D, or
perpendicular to the easy crystallographic axis in a single crystal with uniaxial anisotropy. In
either case domain rotation is the prevailing magnetization mechanism, and the magnetostriction
along the field direction is given by [17]

/\(M):g/\5<]\]\;[s)2, (11)

which predicts a quadratic relation between A and M. Equation (11) is a single-valued functional,
while extensive experimental evidence demonstrates that the A-M relationship exhibits some de-
gree of hysteresis. For transducer modeling purposes, it is feasible to utilize a single valued A-M



functional to model the overall shape, and to let M provide the hysteresis through the hysteretic
mechanisms in M-H. This approach has proven effective in previous investigations [20].

It should be noted that equation (11) is not sufficiently general when domain wall motion is
significant, such as when the operating stress acting on the Terfenol-D material is not extreme
(60 < —6.9 to —20.7 MPa). In order to provide a more general magnetostriction model, we
consider a series expansion symmetric about M = 0,

=0

in which the coefficients v; need to be identified from experimental data. It is noted that quadratic
relation (11) is achieved for i = 1 with 79 = 0 and v; = (32s)/(2M?2). For implementation
purposes, we consider in this study a quartic law in which the series is truncated after ¢+ = 2,

AM) =~y M?* 4 v M*, (12)
ELASTIC RESPONSE OF THE MAGNETOSTRICTIVE SENSOR

The magnetostriction A given by equation (12) quantifies the reorientation of magnetic moments
towards the direction of applied bias magnetization Hg. It was shown in [13] that this magnetostric-
tion is a generalization of the term ds3H in linear models. It ignores, however, the elastic properties
of the magnetostrictive material as it vibrates, as represented in the linear models by s7o. In this
section, a PDE system is formulated which models the elastic response of the magnetostrictive
material and relevant transducer components located in the load path. The input to this PDE is
formulated through the magnetostriction A and the external forces F.;; acting on the sensor. The
solution to the PDE is the longitudinal displacements u(t, z) relative to the prestressed position.

The structural dynamics are modeled through consideration of the magnetostrictive rod, pre-
stress bolt, prestress washer, and mass load for the transducer in Figure 1. The prestress bolt
provides a stress g9 < 0 by compressing the magnetostrictive rod against the washer, modeled by
a linear spring kr, and dashpot c;. The rod is assumed to have length L, cross sectional area A,
and longitudinal coordinate x. The material density is p, the elastic modulus is F, the internal
(Kelvin-Voigt) damping is ¢p, and the external load is modeled by a point mass my,. It should be
noted that parameter £ lies between the elastic modulus at constant H, E¥, and at constant B,
EB. Since EH and EP depend upon the field intensity [21], so does E. However, for simplicity £
is treated as a nominal or operational material stiffness.

Assuming linear elasticity and small displacements, force balancing yields the wave equation for
the rod vibrations,

0%u

do
p W(u ‘r) - _(tv $)
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Here, the stress at cross sections z in the rod is given by [13]

0 0?

o(t,a) = B (t,2) + ep 53— (t2) = EA(t,2) + oo, (13)
where A is given by (12) and o¢ is the applied prestress. When integrated over a cross section,
equation (13) yields the total inplane resultant N (N > 0 in tension, N < 0 in compression),

Ju 0%u
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To obtain appropriate boundary conditions, it is first noted that at the fixed end of the rod
u(t,z) = 0. At the end z = L, force balancing over an infinitesimal cross section of the rod
yields [13]

2
N(t, L) = 8&2 (t,L) - ‘?; (t, L) — kp u(t, L) — Fup(t), (14)
where F..; is the force applied to the sensor. The negative sign implies that F.,; > 0 produces a
compressive force in the rod.

For implementation purposes, the model is formulated in weak or variational form by multiplying
the strong form by test functions ¢ followed by integration throughout the length of the rod.
This reduces the smoothness requirements on the finite element basis since displacements and test
functions need to be differentiated only once compared to the second derivatives present in the
strong form. The space of test functions is V = H}(0,L) = {¢ € H'(0,L) ]| ¢(0) = 0}, so that for
all ¢p(z) € V,

o¢

L 2u L 2u
/OpA(Z?(t,m)qb(m)d;r _ —/0 l (jat(t .r)—l—EAg( )—EA/\(t,a;)] ey da

_ l gig(t L)‘|‘CL88 (t, L)+ kru(t,L) + Fexe(t )] o(L). (15)

The solution u(t, z) to this equation defines the longitudinal displacements about the prestressed
position and completely defines the elastic state through the strain, given by e(¢,z) = du / 0z(t, z),
and the stress o (¢, z), given by equation (13).

SUMMARY OF MAGNETOSTRICTIVE SENSOR MODEL

The model under consideration characterizes the behavior of a magnetostrictive sensor in re-
sponse to two excitations: (i) a bias magnetic field Hq applied at a known rate dH /dt and (ii)
a stress o originated from both the externally applied force and the strain produced by the ma-
terial as it is magnetized. It is emphasized that in this formulation the magnetic and elastic
regimes, represented by M and o respectively, are coupled in accordance with the bidirectional
energy transduction process exhibited by magnetostrictive materials. The model addresses both
the actuation and sensing regimes by means of a unified mechanism. In actuator mode, externally
applied magnetic fields produce magnetization changes which lead to strains and forces produced
by the transducer as it drives external loads. In sensor mode, externally applied forces produce
magnetization changes in the material which can be detected through the emf created in a sensing
coil. The model quantifies the relationship between input and output in either case.

In the presence of a magnetic field H and a stress distribution o, the magnetization of the magne-
tostrictive material is dictated by the superposition of the field- and stress-dependent components
given by equations (6) and (10),

AM B Man(t, 2) — Mi (1, 2) OMan ., ,
o b = {(1_0)5k—a( o 0) (Man(t, ) = M (6,2)) + ¢ oH (t’x)} o o)
+{0- 0 B Mont,0) = M2 + e 20,00 | T2 16)

To characterize dH / dt, it is necessary to quantify first the quasistatic field H (¢, z) generated
by the solenoid when a current [(t) circulates through it. To this end, it is often assumed that
H(t) = (No. turns /length) I(¢t). However, this model is only valid in the idealized case of a



lossless, infinitely long solenoid in a lossless magnetic circuit. A more accurate modeling approach
consists of identifying H-I by solving numerically Ampeére’s law or the Biot Savart law, using for
instance finite element methods. For purposes of implementing the coupled magnetomechanical
model, the approach followed here consisted of determining the H-I relationship experimentally.
The corresponding solenoid model is then written in the form,

H(t,z) = N, U I(t), (17)

where N, is the number of turns in the solenoid and parameter W, which needs to be identified
from the experimental data, is a parameter which accounts for solenoid end effects, demagnetizing
factors, ohmic losses and flux leakage.

Upon substitution of equation (17) into (16), the final form for the time rate of change of
magnetization is determined,

dM M (t,2) — My, (8, ) oM, dI

_ ) — |
T = {(1_6)5k—a( oer ) (onlt,2) — Mo (62)) 0 (“)} o g )
+ {(1 — 0 "%’;) (Man(t,2) — My (t,2)) + ¢ agﬁ““ (t,x)} %(t,x), (18)

which yields M(t,z) upon integration. It should be noted that in the case of constant stress
(do / dt = 0) or constant field (dI /dt = 0), the expression reduces to the individual components
characterized by expressions (6) and (10).

After the magnetization M (t,z) arising from the application of H(¢,z) and o(¢,z) has been
identified, the active component of strain is computed from equation (12),

/\[M(t7 'r)] =N M2(t7 'r) +72 M4(t7 ;r),

where it is noted that since A depends on the applied magnetic field, it is not homogeneous through-
out the rod. Hence, the magnetostriction varies along z.
The longitudinal rod displacements u(t, z) are computed from equation (15)

2
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To approximate the solution to this equation, a Galerkin discretization in z is used to reduce
the system to a temporal system which is then solved with finite difference approximations. De-

tails regarding the solution method used are provided in [13]. Once the displacements have been
characterized, the strain is computed directly using

ou
e(t,z) = (?_ac(t’ z),

and the corresponding stresses acting on the rod are computed directly from the strain using
equation (13),

2
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It is emphasized that the model was built so that the process M <= ¢ <= o is bidirectional.
This means that both the direct effect M = o and the inverse effect ¢ = M are treated
simultaneously, which is in agreement with the physical considerations discussed in the Introduction.

— EA(t,z) + o9.



EXPERIMENTAL VALIDATION

The model summarized in the previous section is now employed to characterize the magneti-
zation changes produced by a Terfenol-D sensor with configuration as illustrated in Figure 1 in
response to an externally applied force. The force was generated with a PZT-5A piezoelectric stack
and its magnitude was measured with a PCB 086C03 load cell arranged as indicated in Figure 2.
The complete device was rigidly clamped to the wall at each end.

Sensing Coil Load Cell
Voltage V(t) Signal F(t)
| (—
[ ] -
MOTION
MAGNETOSTRICTIVE SENSOR PIEZOELECTRIC STACK

Figure 2: Schematic representation of the assembly used to drive the magnetostrictive sensor.
Measured input was driving force F(t), while measured output was sensing voltage V' (t).

The measured output from the sensor during operation included sensing voltage V (¢) and im-
pressed force F..;(t). The prestress level in the magnetostrictive rod was op = —3.45 MPa. A
magnetization bias of magnitude Hy = 75.8 kA/m was applied with an Alnico V permanent mag-
net which was slit longitudinally to reduce eddy current losses. Steel end caps and a Belleville
compression washer completed the magnetic circuit.

The magnetostrictive material was a 50 mm long, 6.35 mm diameter monolithic Thg 3Dyq.7Feq g2
rod manufactured by the Iree Stand Zone Melt process. The sensing signal was provided by a 1100-
turn solenoid wound with AWG26 magnet wire. The magnetic induction B;(f) was calculated by
integration of the sensing signal V(¢). Following the Faraday-Lenz law of magnetic induction,
Bs(t) = —1/(Ns A,) [V (r)dr. Here, A, is the mean cross sectional area and Nj is the number
of turns of the sensing solenoid. Figures 3(a-c) show respectively the 50 Hz applied force, sensing
voltage and magnetic induction data obtained in the case of 550 V volts applied to the PZT stack.

For simulation purposes, the material was magnetized by applying a quasistatic (1 Hz) sinu-
soidal current until the magnetization value Hyg was reached. The current level remained unchanged
thereafter to ensure a constant magnetization bias during operation. The magnetic induction was
calculated from the model magnetization M and the applied field H via the magnetic constitutive
relation B = uo (M + H), where pg is the permeability of free space. It is noted that while the
derivative dB / dt provides a characterization of the sensing voltage through V = —N; A;dB; / dt,
derivatives of quantities involving experimental data typically exhibit significant noise, thus preclud-
ing a proper comparison of measured and calculated sensing voltages. In this paper, a comparison
is established between measured and calculated induction, B, and B respectively.

The performance of the model is illustrated in Figure 3(d). The model provides a very accurate
representation of the magnetic induction in the magnetostrictive rod in both the shape and ampli-
tude of the measured response. The minor phase lag of the model with respect to the data may be
explained by eddy current losses in the rod arising due to the 50 Hz frequency of operation.
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Figure 3: Experimental data: (a) force applied to sensor, (b) sensing voltage from sensor and (c)
magnetic induction computed from (b). Model performance: (d) comparison of magnetic induction
from model with data shown in (c). The parameters used for model simulation are: ¢ = 7000 A/m,
k = 7000 A/m, ¢ = 0.2, a = 0.065, F = 40 GPa, p = 9250 Kg/m3, v; = 2.95 x 10715 m2/A2
vy = —6x1072 m*/A% £ = 8x10° Pa, cp = 1x10° Ns/m, ¢z, = 1x10% Ns/m, kr, = 2.66x10° N/m,
mr, = 0.1 Kg, 09 = —3.45 MPa, L = 50 mm, D = 6.35 mm.

CONCLUDING REMARKS

A magnetomechanical model for the behavior of magnetostrictive materials as used in sensors has
been presented and validated. The model addresses the bidirectional energy transduction between
the magnetic and elastic regimes by means of a coupling mechanism which is posed in terms of a
PDE system. This PDE system treats indistinctly the case of a magnetostrictive material driving
external loads (actuator mode) or being driven by external loads (sensor mode). While some
model components are ultimately based on phenomenological observation, crucial aspects of the
model are based on thermodynamic principles. In this light, it is expected that a near-constant
set of parameters will provide accurate characterization of sensor performance over a wide range of
regimes, including the highly nonlinear regimes where prior models provide inaccurate results.

The example demonstrated the use of the model to quantify the magnetic induction changes
exhibited by a magnetically biased and mechanically preloaded Terfenol-D rod subjected to external
forces. This example provides a template for applications based on magnetostrictive materials in
which the induction changes created in a magnetostrictive rod are used to generate voltages in a
surrounding sensing coil. It was shown that the model accurately characterizes the relationship
between input force and output magnetic induction under low-signal steady state conditions. Work
is in progress to evaluate the performance of the model in nonlinear magnetostrictive regimes and
to extend the scope of the model by adding transient operation capabilities.
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