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A B S T R A C T

Visual information is initially represented as 2D images on the retina, but our brains are able to transform this
input to perceive our rich 3D environment. While many studies have explored 2D spatial representations or
depth perception in isolation, it remains unknown if or how these processes interact in human visual cortex.
Here we used functional MRI and multi-voxel pattern analysis to investigate the relationship between 2D
location and position-in-depth information. We stimulated different 3D locations in a blocked design: each
location was defined by horizontal, vertical, and depth position. Participants remained fixated at the center of
the screen while passively viewing the peripheral stimuli with red/green anaglyph glasses. Our results revealed a
widespread, systematic transition throughout visual cortex. As expected, 2D location information (horizontal
and vertical) could be strongly decoded in early visual areas, with reduced decoding higher along the visual
hierarchy, consistent with known changes in receptive field sizes. Critically, we found that the decoding of
position-in-depth information tracked inversely with the 2D location pattern, with the magnitude of depth
decoding gradually increasing from intermediate to higher visual and category regions. Representations of 2D
location information became increasingly location-tolerant in later areas, where depth information was also
tolerant to changes in 2D location. We propose that spatial representations gradually transition from 2D-
dominant to balanced 3D (2D and depth) along the visual hierarchy.

1. Introduction

We live in a three dimensional (3D) world, yet visual input is
initially recorded in two dimensions (2D) on the retinas. How does our
visual system transform this 2D retinal input into the cohesive 3D
representation of space that we effortlessly perceive? A large body of
research has provided insight into how our visual systems use different
cues, such as binocular disparity, perspective, shading, and motion
parallax to perceive depth (Howard, 2012). What is less well under-
stood is how position-in-depth information (hereafter referred to as
depth location information) is integrated with 2D location to form a 3D
perception of space.

Past research has demonstrated that 2D spatial information is
represented throughout visual cortex and beyond. Both neurophysiol-
ogy and functional neuroimaging studies have revealed a large number
of regions in the brain sensitive to 2D visuo-spatial information: visual
cortex is organized into topographic maps of 2D spatial location (Engel
et al., 1994; Grill-Spector and Malach, 2004; Maunsell and Newsome,
1987; Sereno et al., 1995; Silver and Kastner, 2009; Wandell et al.,
2007), and 2D location information can be decoded from fMRI

response patterns in early, ventral, and dorsal visual areas (Carlson
et al., 2011; Fischer et al., 2011; Golomb and Kanwisher, 2012; Kravitz
et al., 2010; Schwarzlose et al., 2008).

Although often treated as a separate field, many studies have also
explored how and where depth information is represented in visual
cortex. Binocular disparity and/or depth-sensitive responses have been
reported in several visual regions in macaques (DeAngelis and
Newsome, 1999; Hubel et al., 2015; Tsao et al., 2003) and humans
(Backus et al., 2001; Ban et al., 2012; Dekker et al., 2015; Durand et al.,
2009; Neri et al., 2004; Preston et al., 2008; Tsao et al., 2003;
Welchman et al., 2005). Interestingly, while binocular disparity signals
are found as early as V1, these signals are not thought to correspond to
perception of depth until later visual areas (Barendregt et al., 2015;
Cumming and Parker, 1997, 1999; Preston et al., 2008). These later
visual areas (including V3A, V3B, V7, IPS, MT+, LO) have been shown
to be sensitive to 3D object structure (Backus et al., 2001; Durand
et al., 2009), differences in perceived depth (Neri et al., 2004; Preston
et al., 2008), and the integration of different depth cues (Ban et al.,
2012; Dekker et al., 2015; Murphy et al., 2013; Welchman et al., 2005).
However, the nature of position-in-depth (spatial) representations
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remains less explored. Specifically, none of these studies have explored
depth in the context of an integrated 3D representation of space, which
requires combining – and comparing – information about position in
depth with 2D location.

To our knowledge, our study is the first to combine and quantify
both 2D and depth location information to investigate the visual
representations and interactions of all three spatial dimensions. We
use human functional MRI (fMRI) and multivariate pattern analysis
(MVPA) to investigate how 3D spatial information is decoded through-
out visual cortex. By “information”, we mean explicit, large-scale
differences in neural response patterns that can be detected with
fMRI MVPA. Across two experiments we explored 3D spatial repre-
sentations throughout human visual cortex by comparing the amount
of MVPA information about horizontal, vertical, and depth position
and the dependence/tolerance between these dimensions. The first
experiment presented stimuli across the whole visual field, and was
more exploratory in nature. The second experiment presented stimuli
within one quadrant of the visual field, to control for possible hemifield
or quadrant-based effects, and to provide a replication test for the
effects found in Experiment 1.

2. Methods and Materials

2.1. Overview

Our approach used human fMRI to investigate how 3D spatial
information is decoded in visual cortex. By 3D spatial information, we
mean information about both 2D and depth location. Specifically, we
refer to stimulus locations that can be defined spatially in horizontal
(X), vertical (Y), and depth (Z) coordinates. We focus on the simplest
case where the observer’s eyes, head, and body remain stationary, and
spatial position in each dimension can be expressed in terms of
position relative to fixation. Observers were presented with dynamic
random dot stereogram (RDS) stimuli at different 3D locations
(Fig. 1A). For each participant, we used multivariate pattern analysis
(Haxby et al., 2001) (MVPA) to quantify the amount of X, Y, and Z
“information” that could be decoded in different parts of visual cortex.
Here we measure information as explicit (linearly decodable), large-
scale differences in neural response patterns that can be detected with
fMRI MVPA. It is important to note that a region’s sensitivity to
location information may be reliant on receptive field size and cortical
magnification, such that regions with larger receptive field sizes might
require larger distances between locations for position information to
be decoded (Dumoulin and Wandell, 2008; Grill-Spector and Malach,
2004; Rust and DiCarlo, 2010). In the current experiment we used a
fixed, equal distance between stimuli in all three dimensions, and
compared the amount of location information we were able to decode
for each dimension.

The goal is to use this technique to explore broad differences in how
2D location and depth information may be organized (and interact)
throughout visual cortex. We make no claims about the selectivity or
preferences of individual neurons or the resolution of spatial informa-
tion; but rather whether these preferences are organized in a spatially
coherent way that would carry information detectable with a linear
decoder, which is thought to reflect biologically meaningful neuronal
processing (deCharms and Zador, 2000).

2.2. Participants

Each experiment included 12 participants (Experiment 1: mean age
24yrs, range 19-29yrs, 7 females; Experiment 2: mean age 23yrs, range
18-30yrs, 8 females); four participants completed both experiments.
One participant was excluded from Experiment 1 due to excessive head
motion. All participants had normal or corrected-to-normal vision and

were screened for normal stereoacuity. Informed consent was obtained
for all participants, and the Ohio State University Biomedical Sciences
Institutional Review Board approved the study protocols.

2.3. Stimuli

In each experiment we stimulated 8 locations within the partici-
pants’ visual field (Fig. 1A) using dynamic random dot stimuli (RDS).
In Experiment 1, stimuli were small patches (2.5° square) of dynamic
RDS to the left or right, above or below, and in front of or behind a
central fixation point. In Experiment 2, stimulus patches were slightly
smaller (1.6° square), and were located within a single visual quadrant.

The fixation point was a black circle (0.06° radius) inside a white
dot (0.13° radius), superimposed on a static RDS background field
(10.97° square) placed at the central depth plane of the screen. The
background field consisted of light and dark gray dots on a mid-gray
background (21 dots/deg2, 37% contrast). Ground and ceiling line-
frames (13.4° × 3.2°) flanked this background RDS below and above,
respectively, to encourage perception of a 3D space, each spanning ±
20 arc min in front and behind the fixation depth plane.

The smaller dynamic RDS stimulus patches comprised black and
white dots (100% contrast), with the position of the dots randomly
repositioned each frame (60 Hz). For Experiment 1, the 8 stimulus
locations were positioned at the corners of an invisible cube centered
on the fixation point, displaced ± 2.7° vertically and horizontally (3.9°
eccentricity), and ± 18 arc min in front or behind fixation. For
Experiment 2, the stimulus locations were all positioned in the lower
right quadrant of the screen, centered on a point 2.4° from fixation. The
8 locations were displaced ± 1.1° vertically and horizontally from this
point, and ± 18 arc min in front or behind the fixation plane.

Each participant completed 8 runs of the task. Each run consisted
of 19 blocks (16 stimulus blocks: 2 per location condition, and 3
fixation blocks). One location was stimulated per block for 16 s, and
there was a 1.5 s inter-block gap. Location conditions were presented in
a pseudo-random order, with the fixation blocks occurring at the start
(block 1), middle (block 10), and end of each run (block 19). Including
an extra 22.5 s of blank fixation at the end, each run lasted a total of
355 s. Participants passively viewed the stimuli while performing a dot-
dimming task at fixation, detecting when the fixation frame filled into a
black dot.

Depth from binocular disparity was achieved using red/green
anaglyph glasses paired with Psychtoolbox’s (Brainard, 1997) stereo-
mode. The participants flipped the glasses halfway through the experi-
ment, after four runs, to control for low-level stimulus differences
based on the color presented to each eye (the red/green color assign-
ments were also reversed to account for this change, such that the
“front” and “back” percepts were preserved, while the eye-specific color
information was balanced). Accommodation and vergence were held
constant as participants maintained fixation at the same location (and
depth plane) for all conditions. In a pre-screening session we confirmed
that participants could accurately perceive and discriminate the two
depth planes with these stimuli. Differences in perceived distance for
stimuli in the 2D versus depth dimensions were measured in a
supplementary psychophysics experiment (see Fig. S1).

2.4. fMRI Acquisition

MRI scanning was carried out at the OSU Center for Cognitive and
Behavioral Brain Imaging with a Siemens TIM Trio 3T scanner using a
32-channel receiver array head coil. Functional data were acquired
with a T2-weighted gradient-echo sequence (TR = 2500 ms, TE = 28
ms, 90° flip angle). Slices were oriented to maximize coverage of the
occipital, parietal, and temporal cortices (41 slices, 2×2×2 mm voxels,
10% gap). A high-resolution MPRAGE anatomical scan (1 mm3) was
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also acquired for each participant.
Each participant was scanned in one 2-hour session, which included the

experimental runs (8 runs), functional localizers (Experiment 1: 3 runs,
Experiment 2: 4 runs), and retinotopic mapping (2-6 runs each). Stimuli

were generated with the Psychophysics toolbox extension (Brainard, 1997)
for MATLAB (MathWorks) and displayed with a DLP projector onto a
screen mounted in the rear of the scanner bore, which participants viewed
from a distance of 86 cm via a mirror at 45° above their heads attached to

Fig. 1. A, Schematic illustration of the stimuli. Stimuli were high contrast dynamic random dot patterns on a lower contrast static random dot background. Stimuli were presented in a
block design, with two blocks per each of the eight location conditions per run. Each block lasted 16 s with 1.5 s between each block. Participants performed a dot-dimming task at
fixation, pressing a button whenever the fixation dot flashed black. Inset illustrates the possible stimulus locations. For Experiment 1 locations were either to the left or right of fixation,
above or below fixation, and in front of or behind fixation. In Experiment 2 all stimulus locations were in the lower right quadrant of the display; X and Y distances were smaller, but Z
distance was the same as Experiment 1. B, Correlation matrices were created for each searchlight or ROI (shown here: actual data from Experiment 1 V7). This matrix is created by
correlating the voxel-wise pattern of response for each of the 8 conditions in the first half of the session with each of the 8 conditions in the second half. The red-green 3D glasses were
flipped halfway through the session. C, Matrices illustrate hypothetical correlation patterns for pure X, Y, and Z location information. For each dimension, we transformed the
correlations to z-scores and quantified the amount of location information by subtracting the difference between same-location comparisons (black) and different-location comparisons
(white).
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the head coil.

2.5. Eye Tracking

Eye position was monitored using an MR compatible Eyelink 1000
Eye Tracker, with the camera and infrared source reflected in the
mirror attached to the head coil and recorded at 500 Hz. The eye
tracker was calibrated at the beginning of the session and re-calibrated
as necessary. Occasionally, the eye tracker signal in the scanner was too
noisy to achieve reliable calibration, and the eye position was mon-
itored via video observation.

2.6. Functional Localizers and Retinotopic Mapping

For each participant, we identified regions of interest (ROIs) using
standard retinotopic mapping and functional localizer procedures. We
focused on visual regions with known 2D spatial representations, as
well as category-selective regions LOC and MT+ known to be sensitive
to 2D location (Golomb & Kanwisher, 2012) and depth stimuli (Neri
et al., 2004; Preston et al., 2008; Welchman et al., 2005). Retinotopic
areas V1, V2, V3, V3A, V3B, V7, V4, and V8 were defined using rotating
wedge and expanding concentric ring stimuli (Engel et al., 1994;
Sereno et al., 1995). High-contrast radial checkerboard patterns were
presented as 60° wedges or rings and flickered at 4 Hz. Maximal
eccentricity was 16° and the central 1.6° foveal region was not
stimulated (except for a central fixation point). Each run rotated
clockwise or counter-clockwise or expanded or contracted through 7
cycles with a period of 24 s/cycle. Participants fixated at the center of
the display and pressed a button every time the black fixation dot
dimmed to gray.

Additional localizer tasks were used to identify the object-selective
Lateral Occipital Complex (LOC: Kourtzi and Kanwisher, 2001; and
motion-sensitive area MT+: Tootell et al., 1995) in each participant
individually. The LOC localizer task included blocks of objects and
scrambled objects (Experiment 1) and objects, scrambled objects,
faces, scenes, and bodies (Experiment 2) presented at the center of
the screen. Participants performed a one-back repetition task, where
they pressed a button whenever the exact same stimulus image was
presented twice in a row. The object-selective LOC region was defined
with an object > scrambled contrast. For the MT+ localizer task,
participants fixated at the center of the screen and passively viewed
blocks of either stationary or moving random dot displays. The stimuli
were full screen dot patterns, and the moving patterns alternated
between concentric motion towards and away from fixation at 7.5 Hz.
The motion-sensitive MT+ area was defined with a moving >
stationary contrast. We also localized an area along the intraparietal
sulcus (IPS) using data from the LOC localizer task (All > Fixation
contrast) in conjunction with anatomical landmarks to select a visually
active region in IPS.

For some analyses, ROIs were grouped according to whether they
were in dorsal or ventral streams, as well as their relative positions
along the visual processing hierarchy (early visual areas V1, V2, and
V3; intermediate visual areas V3A, V3B, and V4; later visual areas V7,
V8, and IPS; and category selective areas MT+ and LOC). Each
grouping contained both dorsal and ventral stream areas. In
Experiment 2, the data were separated by hemisphere to account for
the stimuli being presented only in the right visual field, and the
primary analyses were conducted on data from the left hemisphere.

2.7. fMRI Preprocessing and Analysis

We used Brain Voyager QX (Brain Innovation) to preprocess the
fMRI data. All data were corrected for slice acquisition time and head
motion, temporally filtered, and normalized into Talairach space
(Talairach and Tournoux, 1988). Each participant’s cortical surface
for each hemisphere was inflated and flattened into cortical surface

space for retinotopic mapping and ROI selection. Spatial smoothing of
4mm FWHM was used for the functional localizer data, but no spatial
smoothing was performed on the data used for the multivariate
analysis.

A whole-brain random-effects general linear model (GLM), using a
canonical hemodynamic response function, was used to calculate beta
weights for each voxel, for each condition and participant. For the
multivariate (MVPA) analyses, separate GLMs were run for runs 1-4
(“RG”; participants had the red filter over their left eye, and green over
their right) and runs 5-8 (“GR”; red/green filters flipped). Data were
exported to Matlab using BrainVoyager’s BVQXtools Matlab toolbox,
and all subsequent analyses were done using custom code in Matlab.

2.8. Multivoxel Pattern Analysis

Multivoxel pattern analyses (MVPA) were performed for both
whole-brain (searchlight) and ROI-based analyses.

2.8.1. ROI-based Analyses
MVPA was performed separately for each participant and ROI

following the split-half method (Haxby et al., 2001), similar to Golomb
and Kanwisher (Golomb and Kanwisher, 2012). To control for low-
level color differences between eyes, we had participants reverse the
direction of their anaglyph glasses to the opposite eyes after the first
half of the experiment (between runs 4 and 5), and we conducted the
split-half correlation analysis across these two halves. The data from
each ROI were first split into two data sets (RG runs and GR runs). For
each data set separately, the mean response across all conditions was
subtracted from the responses to individual conditions, normalizing
each voxel’s response. Next, the voxelwise response patterns for each of
the 8 conditions in the RG run were correlated with each of the 8
conditions in the GR run, generating an 8 x 8 correlation matrix
(Fig. 1B & Fig. S2). The correlations were converted to z-scores using
Fisher’s r-to-z transform. All subsequent analyses were performed on
the z-scored data.

To quantify the amount of X, Y, and Z information contained within
an ROI, along with the interactions between these dimensions, the cells
in the correlation matrix were characterized according to whether they
reflected the same or different position in X, Y, and Z location. For
example, the Left-up-back(RG) x Left-down-back(GR) correlation
would be characterized as same X, different Y, same Z (1 0 1). For
each type of location, we averaged across all of the cells that reflected
the “same” position, and all of the cells reflecting the “different”
position (Fig. 1C), and the “same” minus “different” correlation
difference was taken as a measure of the amount of “information”
about that property. E.g., X-information was quantified as the differ-
ence in correlation between all conditions that shared the same X
position (1 - - ) versus differed in X position (0 - - ). This standard
approach (Haxby et al., 2001) is based on the rationale that if an ROI
contains information about a certain type of location, then the
voxelwise response pattern should be more similar for two conditions
that share the same location than differ in location. This approach is an
alternative to calculating decoding accuracy using machine-learning
techniques, and generally produces highly similar patterns of results to
those obtained from support vector machines (SVM) (Golomb and
Kanwisher, 2012).

2.8.2. Searchlight Analyses
MVPA “searchlight” analyses (Kriegeskorte et al., 2006) were

performed using the approach described above to search across our
entire slice coverage for voxel clusters showing significant X, Y, and Z
information. Our slice prescription included full coverage of occipital
and parietal cortices and posterior coverage of temporal and frontal
cortices, but did not cover regions such as prefrontal cortex. For each
participant, we iteratively searched through the brain conducting
MVPA within a “moving” ROI defined as a sphere of radius 3 mm
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(~100 voxels). On each iteration, the ROI was chosen as a sphere
centered on a new voxel, and multivoxel correlation analyses were
performed exactly as described above. The magnitudes of X, Y, and Z
information (as defined by the z-transformed “same” – “different”
correlation differences) were then plotted for each voxel, creating a z-
map for each type of information for each participant. These maps were
then spatially smoothed with a 3 mm FWHM kernel and combined
across subjects using one-sample t-tests to identify clusters containing
significant information about each property. The resulting t-maps were
thresholded at p < .05 and cluster size > 25 contiguous voxels.

2.8.3. Hybrid Searchlight
We also conducted an additional searchlight analysis to directly

compare 2D versus depth location decoding across the brain. To do this,
we first created a 2D (XY) information map for each participant by
averaging the amount of X and Y information (z-transformed correlation
differences). The XY and Z maps were then averaged across participants
and compared by subtracting the magnitude of Z information from the
magnitude of XY information for each voxel. The resulting difference maps
were thresholded to include only voxels that showed significant (p < .05,
cluster corrected) location information for at least one of the dimensions
(XY and/or Z). This thresholding criteria was chosen to ensure that voxels
exhibiting near-zero values in the difference map were voxels in which both
XY and Z information were present (balanced 3D representation) as

opposed to neither (no location information).

2.8.4. Tolerance Analyses
To assess whether the X, Y, and Z information in a given ROI was

tolerant of or dependent on the other dimensions, correlation differ-
ences were calculated on different subsets of the data. E.g., using the
same [X Y Z] coding system as above, we would calculate the amount of
“dependent” X information as the difference in same-X minus differ-
ent-X when both Y and Z were the same ([1 1 1] – [0 1 1]), and the
amount of “tolerant” X-information as the difference in same-X minus
different-X when both Y and Z were different ([1 0 0] – [0 0 0]). We
then calculated a location-tolerance index for each dimension (Fig. 4
inset):

Tolerance Index z dependent z tolerant
z dependent z tolerant

=1 − ( ) − ( )
( ) + ( )

A larger index (close to 1) means that the selected dimension is
highly tolerant of changes in location along the other dimensions. A
smaller index (close to 0) indicates the location information is highly
dependent on the other dimensions. Because individual subjects had
occasional negative values for the tolerant or dependent scores, it
would have been problematic to calculate this index for each subject
(Simmons et al., 2007), so we calculated the tolerance index on the
group-averaged data only.

Fig. 2. A, Results from the searchlight analysis projected onto inflated brains. Maps of significant X location information (red), Y location information (yellow), and Z location
information (green) averaged across subjects for Experiment 1 (N=11) and 2 (N=12). All maps were thresholded at p < .05, cluster-corrected. B, Hybrid searchlight map of 2D versus
3D spatial representations, averaged across subjects for Experiment 2 (N=12). Map shows the difference in magnitude between 2D information (averaged X and Y information from
Fig. 2) and Z information at each voxel. Data are thresholded to show only voxels with significant (p < 0.05) information for either XY and/or Z maps.
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2.8.5. Representational Similarity Analysis (RSA) and Multidimensional
Scaling (MDS)

To analyze the similarity between the full pattern of location
information across brain regions, we conducted a Representational
Similarity Analysis (RSA; Kriegeskorte et al. 2008). First, we created 8
x 8 correlation matrices for each participant for each of our 11 ROIs
based on the full set of data (not split-halves). We z-transformed the
correlation data and averaged across all participants to get a single
matrix for each ROI. We then correlated these correlation matrices
with each other to create an 11 x 11 Representational Similarity Matrix
across ROIs. Each cell was calculated as the distance (or dissimilarity)
between a pair of ROIs (quantified by 1 – r). We then used
Multidimensional Scaling (MDS; Kruskal and Wish, 1978) to calculate
a set of inter-point distances in N-dimensional space and visualize how
ROIs clustered together in similarity space.

3. Results and Discussion

3.1. Whole-brain comparison of X, Y, and Z location information

We first conducted an MVPA “searchlight” analysis (Kriegeskorte
et al., 2006) to test where in the brain horizontal (X), vertical (Y), and
depth (Z) information could be decoded (Fig. 2A). Searchlight maps
were largely consistent across Experiments 1 and 2, with the exception
that X information was more widespread in Experiment 1, likely
reflecting regions that exhibit broad contralateral, hemisphere-based
information.

As expected, most of the location information for all three dimen-
sions was found in visual cortex. In both experiments there was
widespread coverage of X and Y location information throughout visual
cortex, whereas Z information was absent in the earliest (most poster-
ior) visual areas and only appeared in intermediate and later regions.
The Z information was spread throughout both dorsal and ventral
visual areas, and largely overlapped with the X and Y coverage.
Additionally, Z information could be decoded in some higher parietal
regions, as well as a region in the frontal cortex possibly corresponding
to Frontal Eye Fields (FEF; Ferraina et al., 2000). Although there were
some parietal and frontal clusters for X and Y information, they tended
to be less consistent across experiments, and this area was outside of
the slice prescription for some participants.

3.2. Evidence for a gradual transition

The searchlight results described above suggest that the relative
amounts of 2D and depth information may vary along the visual
hierarchy, with only 2D information decodable in the earliest visual
areas but all three dimensions decodable in later visual areas. Might
visual cortex contain a gradual transition from 2D-dominant to
balanced 3D (2D and depth) spatial representations? To more directly
explore this question, we next conducted a hybrid searchlight analysis
comparing the relative amounts of X/Y versus Z information. We
focused this analysis on the within-quadrant Experiment 2 design. We
first created a single 2D map (XY average) and then subtracted the Z
information map to visualize relative differences in the amount of 2D
versus depth information that could be decoded (Fig. 2B). The results
revealed a striking gradient. The most posterior occipital regions were
very heavily weighted toward XY information (2D), but this weighting
gradually shifted moving into intermediate and later visual areas,
which exhibited increasingly balanced decoding of all three dimensions
(roughly equal XYZ information). Finally, certain higher-level areas
were weighted more heavily toward the depth dimension (more Z
information than XY information), though these clusters appear more
isolated.

3.3. ROI analysis: Comparison of 2D vs depth location decoding
across visual cortex

The searchlight results suggest a gradual, systematic transition
from 2D-dominant to balanced 3D (2D and depth) spatial information
along the visual hierarchy – but is this transition driven simply by
reduced decoding of 2D information? To quantify and test this account,
we identified multiple ROIs for each participant using standard
retinotopic mapping and functional localizer procedures (see Fig. S3
for ROI locations relative to the searchlight), and examined the
amounts of X, Y, and Z information that could be decoded in each of
these ROIs. Results for each of the individual ROIs are shown in Fig. S4
and Table S1. All regions demonstrated significant X and Y location
information decoding, and significant Z decoding was found in both
experiments in regions V3A, V7, IPS, and MT+ (for full breakdown see
Tables 1–3).

3.3.1. Visual hierarchy effects
To test if the gradual pattern seen in the searchlight was driven by a

decrease in 2D information along the hierarchy, an increase in depth
information, or both, we classified the ROIs into four groups (V1/V2/
V3, V3A/V3B/V4, V7/V8/IPS, MT+/LOC), according to their relative
location in the standard visual hierarchy (Felleman and van Essen,
1991), with each group containing both dorsal and ventral stream
areas.

Fig. 3A and B illustrate how the patterns of X, Y, and Z information
changed across the visual hierarchy. Several patterns become apparent.
First, in both experiments, the earliest visual areas contained almost
exclusively 2D information, in line with our searchlight results. Second,
in Experiment 1, the amount of X information remained high across all
ROI groups, dominating the response even in later areas. As discussed
earlier, this effect is likely driven by large contralateral, hemisphere-
based preferences that persist throughout visual cortex (Carlson et al.,
2011; Hemond et al., 2007); indeed, this effect was mitigated in
Experiment 2, when the stimulus locations were all presented within
a single quadrant. Third, and most notably, the amount of Z informa-
tion gradually increased along the hierarchy in both experiments.

It should be emphasized that the critical question here is not
whether there is overall more X and Y information than Z information,
but whether the relationship between these dimensions changes along
the hierarchy. Two-way repeated-measures ANOVAs with Hierarchy
(V1/V2/V3, V3A/V3B/V4, V7/V8/IPS, MT+/LOC) and Dimension (X,
Y, Z) revealed a significant interaction between hierarchy and spatial
dimension in both experiments (Experiment 1, F6,60 = 27.16, p < .001,
ηp

2 = .73; Experiment 2, F6,66 = 11.25, p < .001, ηp
2 = .51). Follow up

tests revealed that this interaction was driven by both a decrease in 2D
information (Experiment 1: F3,30 = 65.65, p < .001, ηp

2 = .87;
Experiment 2: X: F3,33 = 17.48, p < .001, ηp

2 = .61; Y: F3,33 =
11.45, p < .001, ηp

2 = .51), and an increase in Z information (F3,33 =
5.89, p = .002, ηp

2 = .35) along the hierarchy. Importantly, these
results demonstrate that the transition is not driven solely by a
decrease in 2D information. This overall pattern of results was largely
similar in both dorsal and ventral streams (Supplemental Analysis S1).

3.4. Interactions between spatial dimensions

3.4.1. How dependent/tolerant is each dimension to changes in the
other dimensions?

Our results so far have focused on overall location information for
each of the three dimensions. However, our design also allows us to
explore important questions about the interactions between dimen-
sions. For example, can depth information be decoded even when X
and Y location are different?

Fig. 4 shows X, Y, and Z information broken down in terms of how
tolerant or dependent it was on the other two dimensions for
Experiment 2 (see Fig. S7 for additional interaction analyses). First,
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as noted earlier, the overall amount of X and Y location information
decreased along the hierarchy while Z information increased
(Dimension x Hierarchy interaction: F6,66 = 11.25, p < .001, ηp

2 =
.51). Interestingly, the tolerance varied as well (Tolerance x Hierarchy
interaction: F3,33 = 9.78, p < .001, ηp

2 = .47; 3-way interaction: F6,66 =
12.82, p < .001, ηp

2 = .54). Follow-up tests found this to be primarily
driven by an increase in tolerance for X and Y (Tolerance x Hierarchy
interaction for X: F3,33 = 7.44, p < .001, ηp

2 = .57; Y: F3,33 = 21.9, p <
.001, ηp

2 = .67; Z: F3,33 = 0.89, p = .457, ηp
2 = .08). As illustrated by

Fig. 4 inset, X and Y location information were moderately dependent
on the other dimensions in early visual cortex, and became relatively
more tolerant in higher visual areas, consistent with prior reports
(Carlson et al., 2011; Rust and DiCarlo, 2010). Interestingly, when Z
location information was present, it was overall more tolerant to
location changes in the other dimensions than X or Y information was.

3.4.2. Are these spatial representations globally decoded?
A related question is whether these representations are global –

that is, can information about the horizontal, vertical, or depth position
of a stimulus be decoded in the un-stimulated hemisphere? Fig. S5
illustrates decoding for each dimension in Experiment 2 in the
contralateral and ipsilateral hemispheres. Overall the amount of
location information was substantially weaker in the ipsilateral hemi-
sphere. In some areas, X and Y information could still be decoded
above chance, though receptive fields that occasionally extend across
the meridian might drive this. Strikingly, no Z information could be
decoded in any region from the ipsilateral hemisphere (Table S3).
Thus, while depth information seems to be tolerant to changes in X and
Y location, it is not global.

3.4.3. Representational similarity across visual cortex
As a final exploratory analysis, we conducted a Representational

Fig. 3. A, Average X, Y, and Z location information within each ROI group for Experiment 1 (N=11) and B, Experiment 2 (N=12). Experiment 2 data is shown for the left (contralateral)
hemisphere only; data from individual ROIs, including the ipsilateral right hemisphere, are in Figs. S4 and S5. Error bars represent SEM.

Fig. 4. A, Tolerance analysis. Average X, Y, and Z location information within each ROI group for Experiment 2 (N=12), separated into comparisons where the other two dimensions
were the same (dependent information, “dep”) or different (tolerant information, “tol”). Note that each bar is a difference in correlations (as in Fig. 3), but calculated for a different subset
of cells in the matrix (see Methods). The inset shows the tolerance index for X, Y, and Z location information, calculated as 1 – [ (dependent – tolerant) / (dependent + tolerant) ].
Tolerance index was only calculated when there was significant information that could be decoded (i.e., not for Z in early visual areas). A larger index (close to 1) means that the location
information for the selected dimension was highly tolerant; a smaller index (close to 0) indicates the location information was highly dependent on the other dimensions. Error bars
represent SEM. Data from ungrouped ROIs are shown in Fig. S6.
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Similarity Analysis (RSA; Kriegeskorte et al. 2008) with
Multidimensional Scaling (MDS; Kruskal and Wish, 1978), comparing
the full 8x8 pattern of data for all of our regions of interest. Most
regions generally clustered with other regions similarly positioned in
the visual hierarchy (Fig. 5), consistent with the hypothesis that the
relationship between 2D and depth location information varies along
the visual hierarchy.

4. General Discussion

Our study provides the first direct investigation of the interactions
between 2D location and position-in-depth information in human
visual cortex. While many previous studies have explored the decoding
of 2D location information in different visual areas, here our focus was
on how the decoding of depth location varies along the visual hierarchy,
particularly with respect to how it compares to (and interacts with) 2D
location information. We found that depth location information was
not reliably decoded in the earliest visual regions, but gradually
increased into intermediate and higher-level regions, while 2D location
information simultaneously decreased. Rather than a few isolated
position-in-depth “modules” or decoding differentiating along dorsal/
ventral visual streams, our results are most consistent with a wide-
spread, gradual transition along the visual hierarchy.

4.1. 2D location information

Most studies that have explored location representations in the

brain have focused on 2D location (Carlson et al., 2011; Fischer et al.,
2011; Golomb and Kanwisher, 2012; Kravitz et al., 2010; Schwarzlose
et al., 2008), and our general findings regarding 2D location informa-
tion are consistent with this prior literature. We find that 2D location
information is present in all visual areas and decreases in magnitude
(or sensitivity) along the visual hierarchy (except when horizontal
locations are divided across hemisphere). These findings fit with
evidence that receptive fields become larger and less precise along
the hierarchy (Dumoulin & Wandell, 2008; Grill-Spector and Malach,
2004; Rust and DiCarlo, 2010), although contralateral bias may remain
(Carlson et al., 2011; Hemond et al., 2007).

4.2. Depth representations

A number of studies have looked at how different aspects of depth
are represented in human visual cortex (Backus et al., 2001; Ban et al.,
2012; Dekker et al., 2015; Neri et al., 2004; Preston et al., 2008; Tsao
et al., 2003; Welchman et al., 2005). Most have focused on non-spatial
aspects of depth, e.g., neural representations of 3D object structure
(Backus et al., 2001; Durand et al., 2009), or the integration of different
depth cues (Ban et al., 2012; Dekker et al., 2015; Murphy et al., 2013;
Welchman et al., 2005), although a few recent studies have examined
fMRI sensitivity to differences in depth from disparity, finding regions
that are sensitive to absolute vs relative (Neri et al., 2004) or metric vs
categorical (Preston et al., 2008) depth differences. Neurophysiology
studies have also reported neurons with different depth preferences in
various visual areas (DeAngelis and Newsome, 1999; Hubel et al.,

Fig. 5. Representational similarity across ROIs. (a) Representational Similarity Matrices for Experiment 1 (N=11) and Experiment 2 (N=12) for the 11 ROIs. Each cell represents the
correlation between MVPA patterns for a pair of ROIs (symmetric across diagonal). For Experiment 2 only the contralateral (left hemisphere) ROIs were used. (b) Multidimensional
Scaling visualizations for each experiment. Inter-point distances were calculated using ROI dissimilarity (1 – r) matrices, and plotted along the two most informative dimensions.
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2015; Tsao et al., 2003). We found significant position-in-depth
information in similar regions, including V3A, V7, IPS, and MT+. Yet
strikingly, no research had addressed the fundamental question of if/
how depth information compares and interacts with 2D spatial
information. Whereas most depth studies had used large-field stimuli
consisting of front versus back depth planes spanning most of the
visual field (e.g., Ban et al. 2012), our stimuli varied in all three
dimensions, allowing us to measure 2D and depth information for the
same stimuli, as well as comparing sensitivities to depth information
across 2D locations. Furthermore, while most studies have focused on
whether there is any significant depth information in a given region,
our approach allows us to explore possible large-scale organization
schemes across visual cortex. Indeed, the finding that explicit depth
information gradually increases from early to later visual cortex while
2D information decreases suggests a gradient of depth information
throughout visual cortex. We also find that this depth information is
relatively tolerant to changes in 2D location, indicating that those
regions may represent whether an object is near or far regardless of
where in 2D space it is.

It is worth noting that while neurons in early visual areas respond
to binocular disparity, here the test was whether the fMRI pattern
could differentiate between relative disparities of equal size but
opposite sign, to explore representation of position-in-depth. It is
possible that our results reflect neural representations of disparity sign,
rather than perceived depth per se, but this seems unlikely given our
pattern of results and the lack of depth decoding in early visual cortex.
Neurons in early visual cortex have been shown to respond to binocular
disparity without depth perception (Cumming and Parker, 1997,
1999), but perceptually-relevant depth representations tend to not
emerge until later. For example, one recent fMRI study found that
integrated binocular perception (cyclopean representation) does not
emerge until after V1 (Barendregt et al., 2015), and another study
using MVPA also found that representations in early visual cortex were
not directly related to perceptual estimates of depth, whereas several
intermediate and later visual areas exhibited preferential decoding for
perceptually-relevant depth from disparity cues (correlated versus anti-
correlated stimuli; (Preston et al., 2008). Furthermore, because the
binocular disparities we used were small horizontal location shifts in
opposite directions in each eye, we might predict that if our results
were driven by decoding these horizontal differences, the pattern of
decoding should mimic what we found for the horizontal dimension,
decreasing in magnitude along the hierarchy in Experiment 2, but
instead we found the opposite pattern. Although we are not able to
definitively generalize our results to the representation of depth from
other cues, our results lay a crucial foundation for understanding how
the brain might integrate information about an object’s position in
depth with 2D location on the retina to form perceptually relevant 3D
spatial representations.

4.3. Transition from 2D to 3D along hierarchy

The most notable conclusion from our findings is how the relation-
ship between 2D location and position-in-depth information changes
along the visual hierarchy. Although the three dimensions of location
information are similar in some ways – e.g., all become location-
tolerant in later visual areas – the pattern of decoding along the visual
hierarchy varies strikingly. While decoding of 2D location information
decreases, depth location decoding increases along the visual hierar-
chy. This supports the interesting possibility that spatial representa-
tions in visual cortex gradually transition from 2D-dominant to
balanced 3D (2D and depth). Interestingly, while our results reveal
that the three dimensions may be equally decodable in these later
areas, the tolerance data suggests that the three dimensions are at least
somewhat independent of each other in these later visual regions.

Such a transition makes sense given that the visual system is
organized hierarchically and might be expected to shift from more

simple to more complex visual processing (Felleman and van Essen,
1991; Grill-Spector and Malach, 2004). However, widespread transi-
tions are not found for all aspects of visual processing. For example,
similar transitions have been hypothesized for other types of visuo-
spatial information, notably the question of whether visual cortex
transitions from native retinotopic (eye-centered) spatial representa-
tions to more perceptually relevant spatiotopic (world-centered) re-
presentations. However, a previous paper (Golomb and Kanwisher,
2012) using the same approach as here failed to find any evidence of a
transition from early to later areas, instead finding that even higher-
level visual areas still contain a purely retinotopic representation. The
current results are somewhat surprising in this context, and raise the
interesting suggestion that depth information may be more funda-
mental than spatiotopic information. While the visual system appears
to adopt a strategy of continually updating spatiotopic position on the
fly (rather than converting 2D retinotopic information into explicit
spatiotopic representations), the visual system does seem to transform
2D information into explicit representations of depth position in later
visual areas. One reason this might be is that position-in-depth may be
more likely to be coded relative to the self, in an egocentric reference
frame. Because our 3D stimuli were eye- and head-centric, the
position-in-depth information may reflect differences relative to the
fixation plane, which in a sense may be more analogous to “retinotopic”
representations. Further research would be needed to investigate
whether the 2D to 3D transition we report here holds for the
representation of absolute position-in-depth, following up on other
studies exploring relative versus absolute disparity (Cumming and
Parker, 1997, 1999; Neri et al., 2004).

Why didn’t we find depth information in early visual areas, given
that that disparity information is present in early visual cortex (Ban
et al., 2012; Dekker et al., 2015; Poggio et al., 1988; Preston et al.,
2008)? First, it is important to note the difference between disparity
information and position-in-depth. As discussed above, while binocular
disparity signals are found as early as V1, these signals are not thought
to correspond to perception of depth until later visual areas
(Barendregt et al., 2015; Cumming and Parker, 1997, 1999; Preston
et al., 2008). Moreover, in our study all of the stimuli contained equal
amounts of binocular disparity; we compared one direction of disparity
with an equal but opposite direction of disparity, so we would not
expect to pick up on the presence of binocular disparity itself. Of
course, it is still possible that position-in-depth information also exists
in earlier visual regions, just at a finer or more spatially distributed
scale than can be detected with these techniques (Freeman et al., 2011;
Op de Beeck, 2010). It is also worth noting that the amount of
“information” we can decode with MVPA may be dependent on the
presented stimulus distances (although we found similar patterns of
results in Experiments 1 and 2 which had different xy distances). The
increase in depth information we report along the hierarchy could be
driven by an increase in the number of depth-sensitive neurons, an
increase in selectivity or sensitivity of individual neurons, and/or an
increase in the spatial separation of neurons with different depth
preferences (resulting in a more detectable population response). The
same could be said for the decrease in 2D location information. In
other words, it’s possible that individual neurons in a given area might
respond just as strongly to depth information and 2D information, but
this location information may be organized differently, resulting in
different patterns of decoding. Crucially, it is clear that (1) the
representation of depth information is changing along the visual
hierarchy, becoming increasingly detectable (explicitly decodable) in
the large-scale pattern of fMRI response, and (2) this pattern is in
direct contrast to the reduced decoding seen along the hierarchy for 2D
spatial information.

Our results suggest that spatial representations shift from primarily
2D to balanced 3D along the hierarchy, although there may be some
alternative explanations for this transition. One possibility is that
attentional effects (e.g. Roberts et al., 2015) may drive the decoding
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of Z information. E.g., attending more to front than back stimuli (or
vice versa) could result in overall signal differences that might inflate
decoding, particularly as attentional effects are known to increase along
the hierarchy However, we conducted a univariate (mean response
magnitude) analysis in addition to our MVPA analysis (see Fig. S8),
and found a mix of both front-preferring and back-preferring regions,
arguing against an overall attentional bias. Another possibility is that
the depth representations may not necessarily reflect spatial informa-
tion in the same way as 2D spatial information, but rather that depth is
being represented more as a feature of an object. In the past, the
investigation of depth has often focused on 3D object structure (Todd,
2004; Welchman et al., 2005), though behavioral studies have demon-
strated 3D position to be important for perception (Aks and Enns,
1996; Finlayson and Grove, 2015). The current results cannot con-
clusively answer whether depth is a spatial dimension or a feature (or
whether this differs across brain regions), but they provide a crucial
first step in characterizing the nature of depth position information
relative to 2D information, and how these signals might interact to
form a 3D representation of space.
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