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Abstract
Humans use regularities in the environment to facilitate learning, often without awareness or intent. How might such regularities
distort long-term memory? Here, participants studied and reported the colors of objects in a long-term memory paradigm,
uninformed that certain colors were sampled more frequently overall. When participants misreported an object’s color, these
errors were often centered around the average studied color (i.e., “Rich” color), demonstrating swap errors in long-term memory
due to imposed statistical regularities. We observed such swap errors regardless of memory load, explicit knowledge, or the
distance in color space between the correct color of the tested object and the Rich color. An explicit guessing strategy where
participants intentionally made swap errors when uncertain could not fully account for our results. We discuss other potential
sources of observed swap errors such as false memory and implicit biased guessing. Although less robust than swap errors,
evidence was also observed for subtle shift errors towards or away from the Rich color dependent on the color distance between
the correct color and the Rich color. Together, these findings of swap and shift errors provide converging evidence for memory
distortion mechanisms induced by a reference point, bridging a gap in the literature between how attention to regularities
similarly influences visual working memory and visual long-term memory.

Keywords Memory: Long-termmemory . Attention in learning

Introduction

Human memory is easily distorted and prone to false memo-
ries (Bartlett, 1932; Brainerd & Reyna, 2008; Loftus, 2003;
Wixted, Mickes, & Fisher, 2018). Memory distortions can
occur because information from multiple memory sources
was incorrectly combined. This can explain how leading ques-
tions can contaminate eyewitness testimony and induce strong
false memories for recent events (Loftus & Hoffman, 1989).
More recently, it has been proposed that memory errors can
prove adaptive for the memory system by maximizing overall
task performance at the expense of specific failures (e.g.,
Carpenter & Schacter, 2017; Guerin, Robbins, Gilmore, &
Schacter, 2012; Newman & Lindsay, 2009; Schacter,
Guerin, & St. Jacques, 2011; Yoo, Klyszejko, Curtis, & Ma,
2018). One source of information that the memory system

takes advantage of comes from regularities in our surround-
ings. Statistical learning refers to acquired knowledge of en-
vironmental patterns, which may be expressed via changes in
behavior (see Perruchet & Pacton, 2006, for review). These
patterns, or regularities, are automatically and implicitly incor-
porated by the memory system during unsupervised learning,
such as how visual attention is implicitly guided by spatial
probability (Geng & Behrmann, 2002; Jiang, Swallow,
Rosenbaum, & Herzig, 2013) or how infants learn word
boundaries based on the statistical relationships between
neighboring speech sounds (Saffran, Aslin, & Newport,
1996). Prior knowledge that an object category (e.g., apples)
generally contains similar features (e.g., size, color, texture) is
based on accumulated interactions with this kind of object.
We exploit knowledge of these regularities when retrieving
uncertain information about a single memory item, leading
to systematic memory distortions (e.g., biased reports of an
apple's size towards the average; Hemmer & Steyvers, 2009).

Research into the different types of memory distortions has
largely focused on visual working memory rather than visual
long-term memory, specifically in relation to swap errors and
shift errors (e.g., Bae & Luck, 2017; Bays, Catalao, &Husain,
2009; Brady & Alvarez, 2011; Golomb, 2015; Golomb,
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L’Heureux, & Kanwisher, 2014; Huang & Sekuler, 2010).
Swaps and shifts reflect distinct types of feature-binding errors
found in memory and attention paradigms. Swap errors refer
to the mistaken report of a non-target feature. For example,
you might report a target item as being colored blue when
presented with a red target and a blue distractor. Swap errors
can reflect “misbindings” or “misassociations” between items
(e.g., Bays et al., 2009; Bays, Wu, & Husain, 2011), though
the term is also used more generally to reflect a type of error
where the participant misreports the feature(s) of a different
object (e.g., Dowd & Golomb, 2019). Shift errors refer to
more subtle errors where the report is biased towards
(attraction) or away from (repulsion) a distractor feature. For
example, you might report the target as magenta when pre-
sented with a red target and a blue distractor.

Feature-binding errors have classically been described as
failures of the attentional system to "glue" object features to-
gether (Treisman, 1988, 1998; Treisman & Gelade, 1980).
Due to capacity limitations of the visual working memory
system, attentional resources may be misallocated and result
in feature-binding errors (Dowd & Golomb, 2019; Zokaei,
Heider, & Husain, 2014). Feature-binding errors can also be
observed in visual long-term memory, where memory items
can be forgotten at different rates (Brady, Konkle, Alvarez, &
Oliva, 2013) and are susceptible to recombination (i.e., swap
errors; Lew, Pashler, & Vul, 2016; Utochkin & Brady, 2019).
Notably, feature-binding errors can occur in long-term mem-
ory even when the attentional system is not near capacity
during encoding or retrieval (slow presentation time for
encoding objects one at a time, and subsequent unlimited time
to respond to each memory item during testing). This suggests
that while feature-binding errors observed in visual working
memory may represent constraints or errors of the attentional
system, feature-binding errors in visual long-term memory
may represent constraints or errors of the memory system
(although it is unclear when these errors arise during
encoding, storage, or retrieval).

We reasoned that such long-term memory feature-binding
errors could be influenced by a signal particularly important to
the long-term memory system: statistical regularities. Given
distinct mechanisms that may underlie feature-binding errors
in visual working memory and visual long-term memory, it
remains an open question how statistical regularities might
induce systematic memory distortions in visual long-term
memory. Previous studies showing swap errors in visual
long-term memory (e.g., Lew et al., 2016; Utochkin &
Brady, 2019) have focused on mistaken reports of a non-
target feature, but no one has examined how statistical learn-
ing might act as the reference point for swap errors, and if so,
what might be the underlying source of swap errors, including
explanations such as implicit biased guessing, explicit biased
guessing, and false memory (where false memory would in-
dicate swap errors due to true mis-binding of the target

feature). Regarding shift errors in visual long-term memory,
previous studies have focused on attraction bias (e.g., Brady,
Schacter, & Alvarez, 2018; Hemmer & Steyvers, 2009;
Huttenlocher, Hedges, & Vevea, 2000), but no one has exam-
ined how the direction of shift errors (repulsion or attraction)
in long-term memory might be dependent on the similarity
between the memory item and the reference point in feature
space.

We sought to address these questions by simultaneously
probing the existence of swap and shift errors in a long-term
memory paradigm where participants memorized and later
reported the colors of real-world objects. Unknown to partic-
ipants, we manipulated the regularity of shared visual infor-
mation among learned objects. Specifically, object colors
were more likely to be sampled from a certain region in color
space. During test, participants were instructed to recreate the
original color of every object and report how confident they
were in their color selection. We hypothesized that imposed
statistical regularities, namely the average studied color (here-
after referred to as the “Rich” color), might act as a reference
point for the memory system to systematically distort subse-
quent color reports.

We used probabilistic mixture modeling to characterize
memory responses according to one of four underlying distri-
butions: a target distribution (responses around the correct
color), a swap distribution (responses around the Rich color),
a swap-comparison distribution (responses around the color
180° away from the Rich color), and a random guessing dis-
tribution (uniform responding across all colors). The target
distribution included a flexible precision parameter as well
as a flexible mean parameter to assess shift errors.

We considered a few possible outcomes. First, regularities
may not bias long-term memory. If this were the case, we
would expect participants to report a mix of correct responses
and random guesses. The correct responses would be fit by the
target distribution (with individual variations in precision),
with a mean centered around 0° of error (no shift), and the
incorrect responses would be uniformly distributed and there-
fore well-fit by the random guessing distribution. In this no-
bias outcome, the proportion of trials fit by the swap and the
swap-comparison distributions would both be near zero and
not quantitatively different from each other.

A second possibility is that regularities induce swap errors
in long-term memory, causing participants to report the Rich
color instead of the correct color for some objects. This could
come in the form of a strategic guess, where the participant
does not remember the object color but has realized that most
objects are a certain color, hence responding near the Rich
color tomaximize accuracy (we refer to this as “explicit biased
guessing” from now on). Another interpretation of swap errors
might be that participants guessed a color near the Rich color
due to some kind of implicit, adaptive behavior (i.e., “implicit
biased guessing,” optimally guessing near the Rich color
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despite not explicitly knowing about statistical regularities).
Yet another interpretation is that swap errors could reflect the
participant truly misremembering the wrong color-pair asso-
ciation for the tested object (i.e., a “false memory” due to a
feature-binding error). In all three of these cases, we would
expect participants to report a mix of correct responses,
swapped incorrect responses, and random guesses, though
our confidence report analyses might reveal important differ-
ences in the relative proportions of these kinds of responses.

A third possibility (non-exclusive to the second) is that
regularities induce shift errors in long-term memory. If this
were the case, we would expect participants to report a mix
of correct responses and random guesses, but the correct re-
sponses would actually be biased in color space, shifted sys-
tematically towards or away from the Rich color. This would
result in the flexible mean parameter for the target distribution
being shifted from zero, either away from (repulsion) or to-
wards (attraction) the Rich color. Shift errors are expected to
be small, likely biasing reports no greater than 10° in color
space from the correct response (Bae & Luck, 2017; Golomb,
2015; Golomb et al., 2014), meaning that it is unlikely that
shift errors would be falsely attributed to the swap or swap-
comparison distributions. It is also possible that both swap and
shift errors are observed, resulting in a shifted target distribu-
tion and a larger proportion of trials accounted for by the swap
distribution compared to the swap-comparison distribution.

Finally, an accompaniment to the shift hypothesis is that
the magnitude and direction of shift errors may depend on the
distance in color space between the correct color and the Rich
color. This prediction is motivated by the relational represen-
tation model described in the visual working memory litera-
ture (Bae & Luck, 2017; see also Golomb, 2015). The rela-
tional representation model explains that, given a short dis-
tance in feature space between a memory item and a reference
point, the memory item is often remembered as repulsed, or
farther away, from the reference point. In contrast, given a
long distance in feature space between a memory item and a
reference point, the memory item is often remembered as
attracted to, or towards, the reference point. These relational
mechanisms observed in working memory have never been
reported in long-term memory but may be analogously ex-
plained by the hippocampal computational processes of pat-
tern separation and pattern completion. Pattern separation is
similar to repulsion and refers to overlapping memory repre-
sentations becoming more distinct to reduce interference dur-
ing retrieval (e.g., Aimone, Deng, & Gage, 2011; Yassa &
Stark, 2011). Meanwhile, pattern completion is similar to at-
traction and refers to the generalization of new memories
based on an internal model of the learned structure of our
environment (e.g., S. Leutgeb & Leutgeb, 2007; Yassa &
Stark, 2011), where multiple memory signals may be gener-
alized into a single representation less prone to degradation.
We thus also separately modeled memory responses

depending on the distance in color space between each mem-
ory item’s color and the Rich color to test this relational rep-
resentation model for long-term memory.

Experiment 1: Regularities induce swaps
in long-term memory

In Experiment 1, participants studied and recalled the colors of
40 unique real-world objects per each of nine blocks, where
30% of objects shared the exact same color (with the remain-
ing objects randomly distributed across the remaining 359
colors in our circular color space). At the end of each block,
participants were instructed to recreate the original color of
every object in the preceding study block. Participants were
not informed that 30% of all objects (12 per block) shared the
exact same color (this Rich color was randomly determined
per subject and constant for all blocks), while the rest of the
objects were randomly sampled from the remainder of the
color wheel. We used probabilistic mixture modeling to char-
acterize memory responses according to four distributions
(target, random guess, swap, or swap-comparison).

Method

Open practices

The rationale, method, and the analyses for every experiment
were preregistered at the Open Science Framework (OSF)
(https://osf.io/n7c5e/). Analyses not mentioned in the
preregistration are declared as exploratory. All preregistered
analyses are reported in either the main text or the
supplemental text. For ease of exposition, Experiment 1 is
reported first despite being the last experiment conducted
(the chronological order was Experiment 2, Experiment 3,
and then Experiment 1). Any deviations made in regard to
analysis decisions are explicitly mentioned when relevant.

Participants

Experiment 1 included 44 participants (21 male, 23 female;
Mage = 34.98 years, SD = 9.91). An a priori simulation-based
power analysis estimated that we would need 44 participants
to credibly detect possible shift errors with our model-based
analysis described below. (This power analysis was based on
simulations of the data from Experiments 2 and 3, conducted
chronologically before Experiment 1; for the full details of the
simulation, see preregistration: https://osf.io/n7c5e/, section 7
of Preregistration_Details_ContLTM_EXPT3.docx). Fewer
subjects were estimated to be needed to detect swap errors.
All participants were recruited through Amazon Mechanical
Turk (MTurk) and were paid US$9 (plus bonus based on
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performance) for the experiment, which lasted roughly 1–1.5
h. All participants lived in the USA, held an MTurk approval
rating of ≥ 98%, and successfully completed over 750 MTurk
tasks prior to this experiment. All participants reported normal
or corrected-to-normal vision, were naive to the purpose of the
experiment, and provided informed consent in accordance
with The Ohio State University institutional review board.

Ten additional participants were excluded based on
preregistered exclusion criteria (https://osf.io/n7c5e/).
Exclusion criteria were based on pilot data and meant to
reflect the minimal threshold of performance expected from
an attentive participant. Individuals were excluded if their
target proportion was less than .10 or if their average
standard deviation across the target and biased guessing
distributions (weighted by respective proportion fits)
exceeded 70°. These fits were based on a mixture model that
included memory responses to objects originally sampled >
45° from the Rich color (i.e., excluding trials where the correct
color was near the Rich color).

Materials and procedure

Experiment 1 was conducted online using MTurk, meaning
that monitors could vary in size and viewing distance.
Therefore, we report stimulus sizes in pixels (px) and not

degrees of visual angle. Figure 1a illustrates an example trial
sequence for study and test blocks. Each study block consisted
of 40 unique real-world objects. A 250 x 250 px object was
presented in the center of a gray, square background (600 x
600 px) for 1 s, followed by a blank 1-s interval. A central 15 x
15 px black fixation cross appeared on the center of the screen
between image presentations. Participants were instructed to
memorize the color associatedwith every object, knowing that
they would be asked to recreate the original colors for all
objects at the end of each study block. A practice study and
test block of five objects (sampled evenly across the color
wheel) familiarized participants with the procedure. Stimulus
presentation was facilitated by a combination of HTML, CSS,
and JavaScript.

Object stimuli were acquired from two image sets.We used
images from Brady, Konkle, Alvarez, and Oliva (2008) and
from the Bank of Standardized stimuli (BOSS; Brodeur,
Dionne-dostie, Montreuil, & Lepage, 2010). Our resulting
image set used across all three experiments contained 365
objects. Posterization was applied to each image such that
pixel values could only be white, black, or a single color of
interest (one of 360 RGB color values drawn from a one-
dimensional selection of CIE Lab color space provided by
MemToolbox; Suchow, Brady, Fougnie, & Alvarez, 2013).
Specifically, each image was first converted to grayscale, with

Fig. 1 (A) Example trial sequences for study and test blocks. Participants
were instructed to memorize the color associated with all 40 objects
presented during each study block. Following a color-change detection
filler task, participants recreated the original color of all objects from the
previous study block. Objects were presented in grayscale until mouse
movement, where the object’s color dynamically adjusted to match the
color closest to the mouse pointer. After clicking to confirm their best
guess, participants highlighted the smallest region of colors that they

believed contained the original color (they were also instructed to high-
light the entire color wheel if they were completely guessing). Every test
trial ended with general feedback and bonus information. (B) Proportion
of colors sampled across objects and the color-distance segments (Short,
Medium, and Long) used to bin memory errors (separate models per bin).
Thirty percent of all objects shared the same (Rich) color, randomly
determined per subject, and all other objects were equally sampled from
the rest of the color wheel and then binned accordingly
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luminance values ranging from 0 to 255. Pixels with a lumi-
nance between 0 and 85 were colored white and pixels with a
luminance between 170 and 255 were colored black. All other
pixels were assigned to the specified object color. Objects
were individually selected from the above two image sets to
ensure the posterization process did not render objects unrec-
ognizable or without a reasonable number of colored pixels
(subjectively determined by PS).

Following each study block, two trials of a filler task
(color-change detection task) were presented (same
procedure as Brady, Konkle, Gill, Oliva, & Alvarez, 2013).
Our rationale was that a change detection task involving color
would occupy visual working memory (e.g., Allon & Luria,
2017; Luck & Vogel, 1997) and would help to ensure that we
were primarily testing passively stored, long-term memory
representations in our main experiment. A gray background
was presented for 800 ms, followed by the presentation of
eight colored squares for 200 ms. After a blank 900-ms reten-
tion interval, a single colored square appeared at one of the
previous item locations and participants were to indicate
whether the color was the same as the square that appeared
at the same location during the initial display. Colored squares
were 60 x 60 px each, and buttons indicating "same" or "dif-
ferent" were displayed immediately below the gray back-
ground after the retention interval.

Following the filler task, a memory test block was present-
ed. Test blocks consisted of the same 40 objects as the pre-
ceding study block. On each test trial, one object – selected
randomly without replacement from the study block objects –
was presented in grayscale (color was replaced with RGB
[128, 128, 128]), and a color wheel was presented around
the object. The color wheel was randomly flipped on half of
the trials and randomly rotated on each trial. Participants were
tasked with selecting the original color of the object by
clicking on the color wheel. As the mouse moved around the
color wheel, the initially grayscale object dynamically
changed to the color indicated by the mouse pointer’s position
on the color wheel. Following a mouse click to confirm their
selected color, participants made a confidence range report
highlighting the smallest portion of the color wheel that they
believed contained the true color (see Chen, Leber, &
Golomb, 2019). Participants were instructed to highlight the
entirety of the color wheel if they were completely guessing.
Highlighting involved two clicks to define the start and end
points of a black, highlighted region. This confidence range
report was our proxy for subjective memory strength, where a
larger highlighted region indicated less confident memory re-
trieval. There was no time limit imposed during the test block.

Following confidence range reports, general feedback was
presented for 1 s. If memory error was ≤ 15°, participants were
rewarded 1 cent ("Amazing! +$.01" displayed on screen), and
if memory error was > 15° and ≤ 30°, participants were
rewarded half a cent ("Good +$.005" displayed on screen).

Otherwise, "..." was presented on the screen and no bonus
was awarded. Importantly, no color information was
displayed on the screen during feedback; we used this general
feedback, rather than feedback showing the correct color of
the original object, to reduce the chance that memory distor-
tions emerged from incentivized feedback more so than stim-
ulus regularities. Feedback was based purely on the initial
color report; there was neither incentive nor feedback provid-
ed in regard to reporting confidence ranges.

There were nine study and test blocks total, consisting of
360 total studied/tested objects. Importantly, the colors of
studied objects were not equally sampled from the color
wheel. Specifically, 30% of objects across the experiment
(12 trials per block) shared the exact same (Rich) color, ran-
domly determined for each participant. The remaining 70% of
objects were randomly sampled from the remainder of the
color wheel. Participants were uninformed of our color-
sampling manipulation.

A post-experiment survey (following the final test block)
helped to assess whether participants were aware of imposed
statistical regularities. The questions included (in order):

& “What strategy (if any) did you use when selecting the
colors of objects?” Open-ended, typed response.

& “Do you think object colors were sampled randomly from
the color wheel or do you think objects often shared ap-
proximately the same color?” Two-alternative forced
choice between “each color chosen at random” and “ob-
jects often shared the same color.”

& “Thirty percent of objects shared the same color. Please
select the color you think matches our preferential color
sampling.” A color wheel was presented and participants
were instructed to click the most commonly studied color.

& “How confident are you that the color you selected is close
to the actual experimental manipulation?” 6-point scale
with 1 being “least confident” and 6 being “most
confident.”

Analyses

The memory response distributions were fit using Markov
chain Monte Carlo (MCMC), as implemented in
MemToolbox (Suchow et al., 2013). We used a modified
swap model (Bays et al., 2009; Golomb et al., 2014) to ac-
count for various sources of error. Each response was first
converted into an error measurement (i.e., the difference be-
tween the reported and correct color values). Errors in which
participants reported a color in the direction towards the Rich
color were signed positive, and errors in which participants
reported a color in the direction away from the Rich color (i.e.,
closer to the color 180° away from the Rich color) were signed
negative. In this way, we could observe a mean shift in the
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target distribution where responses were either towards or
away from the Rich color, as well as swap errors specific to
the Rich color. The model included four distributions: a target
distribution, a swap distribution, a swap-comparison distribu-
tion, and a random guessing distribution. The target distribu-
tion was a circular Gaussian (von Mises) probability density
function centered on the original, correct color (with flexible
mean and standard deviation). The swap distribution was a
circular Gaussian (von Mises) probability density function
centered on the Rich color, and the swap-comparison distri-
bution was a circular Gaussian (vonMises) probability density
function centered on the color 180° away from the Rich color.
The swap and swap-comparison distributions shared a flexible
standard deviation parameter. Note that a recent framework by
Schurgin, Wixted, and Brady (2018) criticizing mixture
models is not problematic for our purposes because we are
not relying on any theoretical distinctions between guess rate
and precision for our analyses. The difference between our
modified swap model and the original swap model (Bays
et al., 2009; Golomb et al., 2014) was that we gave the target
distribution a flexible mean, we included a swap-comparison
distribution, and we used separate precision parameters for the
target distribution and the swap/swap-comparison distribu-
tions. The probability distribution can be expressed as:

p θð Þ ¼ 1−S−C−γð Þϕμ;κ1
þ Sϕd;κ2

þ Cϕdþ180;κ2 þ γ
1

2π

� �
;

where θ is the difference between the reported and correct
color values, γ is the proportion of trials on which the partic-
ipant responded at random, ϕ is a von Mises distribution with
mean μ, d, or 180 + d, and concentration κ1 or κ2 (standard

deviation ¼ ffiffiffiffiffiffiffiffi
1=κ

p
), S is the proportion of “swap” trials on

which the participant responded around the Rich color (von
Mises distribution with mean d, the distance from the original
color to the Rich color, and concentration κ2), and C is the
proportion of “swap-comparison” trials on which the partici-
pant responded around the color 180° away from the Rich
color.

We separately modeled memory response distributions by
bin depending on the distance in color space between the
target color and the Rich color (Short, Medium, and Long;
see Fig. 1b). This is because the relational representation mod-
el predicts repulsion for closer distances and attraction for
farther distances. We also wanted to observe whether swap
errors might be more or less likely depending on color
distance.

In line with our preregistration, for this particular experi-
ment we created an aggregated “super-subject” that contained
trials across all participants, and the model was fit to this
dataset for each color-distance segment. We preregistered a
“super-subject”model, as opposed to fitting a model for every
participant, because we anticipated such an approach would

be necessary due to insufficient power to individually model
memory errors for each color-distance segment. (Note that
individual subject modeling procedures are employed in later
experiments.) For each color-distance segment, we sampled
three parallel chains across as many iterations as needed to
reach convergence, according to the method of Gelman and
Rubin (1992).We collected 15,000 post-convergence samples
and used the posterior distributions to compute the maximum
a posteriori estimates of the parameters μ, κ1, κ2, γ, S, and C.
We also computed 95% highest posterior density intervals
(HDIs), which indicate that the true parameter value has a
95% probability of lying within this interval (Kruschke,
2011). Swap errors were considered credible if the 95%
HDIs for the swap and swap-comparison distributions did
not overlap, and shift errors were considered credible if the
95% HDI for μ did not contain zero. Shift errors were char-
acterized as reporting a color close to the correct color but
slightly shifted either towards (attraction) or away from
(repulsion) the Rich color (μ ≠ 0), and swap errors were char-
acterized as misreporting the original color as the Rich color
more frequently than misreporting it as the color 180° away
from the Rich color (S > C). Additional exploratory analyses
designed to explore the relationship between memory distor-
tions and confidence range reports, as well as analyses on the
post-experiment survey, are reported in the Collapsed
experiments section.

Results and discussion

Swap errors

We examined whether statistical regularities, namely predis-
posing a certain color to occur most often among studied
objects, might distort subsequent long-term memory reports.
Figure 2a depicts histograms of memory errors, binned into
trials where the original object color was sampled from a Short
(23–67°), Medium (68–112°), or Long (113–157°) distance in
color space from the Rich color. The bump in memory errors
centered around the Rich color (swap errors) is visually obvi-
ous across all color-distance segments. Figure 2b depicts the
model parameter estimates for γ, S, and C for each color-
distance segment. The proportion of trials attributed to the
swap distribution (S) was credibly larger than the proportion
of trials attributed to the swap-comparison distribution (C) for
all color-distance segments, as indicated by non-overlapping
HDIs between the swap and swap-comparison parameters
(0% of posterior probability densities overlapped for each
comparison (Sshort = .163, 95% HDI: [.136 .201], Cshort =
.007 [.000 .021]; Smedium = .148 [.122 .173], Cmedium = .024
[.005 .040]; Slong = .106 [.088 .131],Clong = .005 [.000 .023])).
This indicates that participants made swap errors where they
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reported values around the Rich color instead of the correct
color.

Shift errors

We explored the existence of shift errors as indicated by cred-
ibly positive or negative μ parameter estimates for the target
distribution (see Fig. 3). No credible shift errors were ob-
served for the Short color-distance segment (μshort = -2.32 [-
4.28 0.60]), although it was close to passing the credible cutoff
because 92.8% of the posterior probability density was below
the threshold of 0° of error, towards repulsion (95%was need-
ed for us to consider the shift as credible). There was a credible
repulsion bias observed for the Medium color-distance seg-
ment (μmedium = -1.38 [-3.46 -0.03], 97.2% of the posterior
probability density below 0° of error, towards repulsion). No
significant shift errors were observed for the Long color-
distance segment (μlong = 0.42 [-1.06 2.19], 81.7% of the
posterior probability density above the critical threshold of
0° of error, towards attraction). Although not all of these

effects were credible, the direction of shift errors was in line
with the relational representation model (Bae & Luck, 2017;
see also Golomb, 2015), with repulsion away from the Rich
color for the Short and Medium color-distance segments and
attraction towards the Rich color for the Long color-distance
segment. These findings converge to form a weak but intrigu-
ing pattern, tentatively suggesting that reference-based shift
errors may arise from statistical regularities in long-termmem-
ory, but more conclusive evidence is needed to solidify this
claim. The more robust finding from Experiment 1 was that
swap errors were observed due to imposed statistical
regularities.

Other parameters

Exploratory analyses of the target proportion, random guess-
ing proportion, and the standard deviation of the target and
swap/swap-comparison distributions suggested that none of
these parameters differed as a factor of color distance (over-
lapping 95% HDIs). A full list of model parameter estimates
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Fig. 2 Response histograms and model fits according to color-distance
segments. "Short" trials contained objects originally sampled 23–67°
away in color space from the Rich color, "Medium" trials were 68 to
112° away, and "Long" trials were 113 to 157° away. Circle plots repre-
sent the analyzed color-distance segment, with red dots depicting the
location of the aligned, Rich color. (A) Response histograms where error
corresponds to the difference between the reported color and the correct,
originally presented color. Errors were signed positive if the memory

response was in the direction towards the Rich color and signed negative
otherwise. Gray shading around lines of best fit reflects 95% credible
intervals. A bump in the histogram is easily visible where participants
falsely reported a color centered around the Rich color. (B) Bar plots
depict maximum a posteriori mixture proportions. Error bars represent
95% highest posterior density intervals. Models were fit separately for
each color-distance segment, collapsed across subjects
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for Experiment 1 can be found in Table S1 (Online
Supplemental Material, OSM).

Experiment 2: Swaps with imprecise
regularities

Experiment 1 demonstrated long-term memory distortions
due to statistical regularities present during object encoding.
Regardless of the original color of the object, participants
sometimes misreported objects as being colored as the Rich
color (swap errors). Patterns in our environment are often
imprecise, however, in contrast to the regularity in
Experiment 1: A well-defined, single Rich color that may
have been easily exploited by the memory system.
Experiment 2 specifically focuses on whether swap errors
would persist given a less precise Rich color region as the
basis for statistical regularities. Moreover, we collected two
simultaneous datasets with this manipulation, one online
using Amazon Mechanical Turk (MTurk) and one offline in
the lab, to confirm the reliability of MTurk data collection.
Our preregistration stated that if results were similar, data
would be collapsed to increase statistical power.

Method

Participants

Two samples of 26 participants were simultaneously collect-
ed. Twenty-six participants (sixmale, 20 female;Mage = 23.88
years, SD = 5.48) were recruited from The Ohio State
University (US$15 plus bonus) and 26 participants (age/sex
not available due to experimenter error) were recruited
through Amazon Mechanical Turk (MTurk) (US$9 plus bo-
nus). All MTurk workers were from the USA, held an approv-
al rating of ≥ 98%, and had previously completed at least 750

MTurk tasks prior to this experiment. To determine sample
size for this preregistered experiment, we analyzed separate
pilot data using the statistical tool G*Power (Faul, Erdfelder,
Lang, & Buchner, 2007). We estimated that a sample size of
26 participants would be necessary to detect swap errors with
90% power, given a .05 criterion of significance and a
Cohen’s d of 0.666; more details are provided in the OSF
preregistration (https://osf.io/n7c5e/). We used a different
power analysis from Experiment 1 because Experiment 1
was conducted chronologically after Experiments 2 and 3,
and we used data from Experiments 2 and 3 in the power
analysis for Experiment 1.

Additional participants were excluded in accordance with
preregistered exclusion criteria (see Experiment 1, Methods):
one participant was excluded from the in-lab sample and eight
participants were excluded from the MTurk sample. All par-
ticipants reported normal or corrected-to-normal vision, were
naive to the purpose of the experiment, and provided informed
consent in accordance with The Ohio State University institu-
tional review board.

Materials and procedure

In Experiment 2, the biased color sampling was increased
from 30% to 40% of objects, and these objects’ colors were
randomly sampled from a constrained 90° quadrant of color
space (i.e., Rich quadrant) rather than a single color (see Fig.
4).

In-lab participants for Experiment 2 were tested in a con-
trolled environment. Participants were seated in a small room
without access to electronic devices and positioned approxi-
mately 56 cm from the monitor (head position was not fixed).
Stimuli were presented using MATLAB (Mathworks, Natick,
MA, USA) and Psychophysics Toolbox (Brainard, 1997) on a
24-in. widescreen LCD monitor with a screen resolution of
1,920 x 1,080 pixels. The monitor was color-calibrated with a
Minolta CS-100 colorimeter. All stimuli were presented on a
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Fig. 4 Model fits for Experiment 2 for each group (MTurk and in-lab).
Models were fit to each participant individually, including only memory
responses for objects originally sampled from the Neighboring quadrants
(objects sampled 46–135° from the center of Rich quadrant). Bar plots
depict average parameter estimates and error bars depict standard error of
the mean. The top panel depicts the absolute proportion of each mixture
distribution. The middle panel depicts the relative, non-target proportion

of each mixture distribution (relative proportion = absolute proportion /
(1-absolute target proportion)). The bottom panel depicts the remaining
parameter estimates. Overall, both groups similarly demonstrated signif-
icant swap errors (swap > swap-comparison). The only significant differ-
ences between groups were in the proportion of target responses and the
(absolute) proportion of random guessing: MTurk participants demon-
strated worse memory performance as indicated by these parameters
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white background. At the typical viewing distance, objects
subtended a visual angle of 10.24°, the fixation cross present-
ed between image presentations subtended 0.20°, and change
detection squares each subtended 1.23°. Aside from the above
changes, the materials and procedure for Experiment 2 were
the same as Experiment 1.

Analyses

Each participant’s memory response distribution was fit using
the same probabilistic mixture modeling approach described
for Experiment 1, with a few modifications. In contrast to
Experiment 1, where the swap distribution was centered on
each participant’s Rich color (which was a single value), in
Experiment 2, the swap distribution was centered on the cen-
ter of each subject’s Rich quadrant (i.e., the average studied
color, which we will refer to as the Rich color to keep termi-
nology consistent across experiments). Additionally, we could
not use the same “Short” (23–67°), “Medium” (68–112°), and
“Long” (113–157°) color-distance segments as Experiment 1
because of the use of a Rich quadrant (the “Short” color-
distance segment would have overlapped with the Rich quad-
rant). Thus, our main analyses focused on memory responses
from objects originally sampled from the Neighboring quad-
rants (objects sampled 46–135° from the Rich color, see Fig.
4), and later in the paper we report data collapsed across ex-
periments that examine shift errors as a function ofmore finely
binned color distances. This is a deviation from our preregis-
tration where we stated that we would fit separate models for
objects sampled from within the Rich quadrant and objects
sampled from outside the Rich quadrant (we realized such
modeling would be uninformative; for further details see
amendment.docx on OSF: https://osf.io/n7c5e/; note this
also applies to Experiment 3). The use of a Neighboring
quadrant afforded us sufficient statistical power to fit models
to individual participant data (see “Assessing parameter
reliability” section of the OSM), in contrast to Experiment 1,
so within-subjects statistics were used to assess significance.
Swapping was assessed by comparing the proportion of swap
(S) to swap-comparison (C) errors; shifts were considered sig-
nificant if μ significantly deviated from zero. We additionally
conducted between-subjects statistics to compare model pa-
rameter estimates between MTurk and in-lab participants.

Results and discussion

We first tested whether overall memory performance was dif-
ferent between groups. We observed that MTurk participants
showed worse overall performance as indicated by a signifi-
cant difference in the proportion of target responses (MMTurk=
.421, MIn-Lab = .554; t(50) = 2.57, p = .013, d = .71).

Because of this difference in target proportions, for the
subsequent analyses comparing the different types of errors
across groups, we examined both the absolute proportions
(directly from the mixture model) and the non-target, or
relative, proportions of each non-target distribution (guessing,
swap, swap-comparison). For example, the relative proportion
of random guessing was calculated by dividing the (absolute)
proportion of random guessing by the total proportion of all
non-target errors (1 – target proportion). (Note that our pre-
registrations only specified that we would examine “mixture
proportions” with no reference to absolute vs. relative propor-
tions.) The relative proportion of random guessing may be a
more informative measure than the absolute proportion of
random guessing here because it accounts for how changes
in the target proportion alter the proportions of the other mix-
ture distributions (i.e., mixtures are dependent on each other).
For example, the MTurk group demonstrated a decreased tar-
get proportion compared to the in-lab group. This means that
the sum of the non-target mixture proportions in the MTurk
group is larger than the sum of the non-target mixture propor-
tions for the in-lab group, and we need to correct for this
baseline difference to detect non-target proportional differ-
ences between groups. In other words, the difference in the
target proportion between groups could automatically lead to
a significant difference in the proportions for all the other
mixture distributions; we want to test whether these non-
target distributions are different between groups after account-
ing for the difference in the target proportions.

Swap errors

We performed a repeated-measures ANOVA with (absolute)
proportion (swap, swap-comparison) as the within-subjects
factor and group (MTurk, in-lab) as the between-subjects fac-
tor. Robust swap errors were observed as indicated by a sig-
nificant main effect of proportion (F(1,50) = 9.59, p = .003,
η2p = .161). The presence of swap errors did not significantly
vary across the two groups, as indicated by a non-significant
main effect of group and a non-significant distribution x group
interaction (all Fs < 1).

Similar results were observed when relative proportion was
used as the dependent variable instead of absolute proportion.
Robust relative swap errors were observed as indicated by a
significant main effect of proportion (F(1,50) = 16.68, p <
.001, η2p = .250), but the presence of relative swap errors
did not significantly vary across the two groups, as indicated
by a non-significant main effect of group (F < 1) and a non-
significant proportion x group interaction (F(1,50) = 1.47, p =
.231, η2p = .029).

Overall, the use of a Rich quadrant as a more imprecise
statistical regularity induced swap errors similar to those
induced by a single Rich color in Experiment 1.
Moreover, these swap errors were reliably observed using
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individual models per subject (in contrast to the “super-
subject” approach from Experiment 1). Swap errors were
similarly observed across MTurk and in-lab groups, indi-
cating that our findings can generalize across these popu-
lations and justifying the use of MTurk participants in our
other experiments.

Shift errors

We explored the existence of shift errors as indicated by
significant positive or negative μ parameter estimates for
the target distribution. There was no evidence for attrac-
tion or repulsion for the MTurk group (one-sample t-test
against 0; M = -1.93, SEM = 2.54; t(25) = 0.76, p = .455,
d = .21) or the in-lab group (M = 0.96, SEM = 2.90; t(25)
= 1.32, p = .194, d = .37), and no significant difference
between groups (t(50) = 1.31, p = .195, d = .36).
Collapsing across groups, there was evidence for neither
attraction nor repulsion (M = -0.01, SEM = 1.47; t(51) =
0.01, p = .995, d = .00). This null result is not particularly
surprising, given that we only analyzed trials where the
object color was sampled from the Neighboring quadrant
(46–135° from the Rich color), which spanned color dis-
tances that might be expected to produce repulsion
(shorter distances) and attraction (longer distances) in ac-
cordance with the relational representation model (Bae &
Luck, 2017; see also Golomb, 2015). In the later
Collapsed experiments section, we bin the memory re-
sponses from this experiment into smaller color-distance
segments to potentially observe systematic repulsion and
attraction.

Other parameters

We tested for a difference in the relative proportion of random
guessing between groups and observed that there was no sig-
nificant difference in relative proportions (MMTurk = .615,
MIn-Lab = .463; t(50) = 1.77, p = .082, d = .49), despite there
being a significant difference in absolute proportion of ran-
dom guessing (greater for the MTurk group compared to the
in-lab group:MMTurk = .369,MIn-Lab = .207; t(50) = 3.03, p =
.004, d = .84). This suggests that, while the MTurk partici-
pants demonstrated worse overall performance as measured
by a decreased proportion of target responses, there was not
unequal allocation of the remaining proportion of non-target
responses to the random guessing distribution. Exploratory
analyses of the standard deviation of the target and swap/
swap-comparison distributions revealed no significant differ-
ence between groups (MTurk, in-lab) in the target standard
deviation parameter (t(50) = 1.68, p = .100, d = .47) or the
swap/swap-comparison standard deviation parameter (t(50) =
0.87, p = .390, d = .24).

Experiment 3: Increased memory load

In Experiment 3, we increased the number of studied/tested
objects per block from 40 to 90 objects to explore the role of
memory load on systematic memory distortions.We predicted
that increasing the working memory load would further tax
the memory system, which could influence the likelihood of
swap and/or shift errors. Moreover, this manipulation might
help differentiate between the sources of swap errors. For
example, when memory load is increased, participants may
be less certain about the correct color of an object, which
could result in more guessing. If swap errors arise from an
implicit or explicit biased guessing strategy, then we might
expect to also see a greater proportion of swap errors with
higher memory load. We will further explore the source(s)
of swap errors in the Combined Experiments section, where
we analyze confidence range reports and the post-experiment
survey.

Here we collected two datasets, one where participants
studied 90 objects per block (four blocks total), and a control
dataset replicating Experiment 2 where participants studied 40
objects per block (nine blocks total). We simultaneously col-
lected these datasets to try to control for random variables
(e.g., time of day, day of the week).

Method

Participants

The 90-objects and 40-objects groups were simultaneously
collected on MTurk. The 90-objects group included 26 partic-
ipants (eight male, 18 female; Mage = 44.19 years, SD =
10.28), and the 40-objects group included 26 participants
(13 male, 13 female; Mage = 39.77 years, SD = 12.56). We
used the same preregistered sample size as Experiment 2
(more details are provided in the OSF preregistration: https://
osf.io/n7c5e/).

Additional participants were excluded in accordance with
preregistered exclusion criteria (see Experiment 1, Methods):
21 participants were excluded from the 90-objects group and
six participants were excluded from the 40-objects group. As
discussed below, the 90-objects task was intended to increase
memory load and be a harder task, but we were not expecting
such a large number of excluded participants, and it is unclear
whether these exclusions are participants who were non-
compliant or who were performing the task properly, just with
much lower accuracy. We thus report parameter estimates for
the subjects who passed our preregistered exclusion criteria as
well as parameter estimates when no participants were exclud-
ed. All MTurk workers were from the USA, held an approval
rating of ≥ 98%, had previously completed at least 750MTurk
tasks prior to this experiment, and were paid US$9 (plus
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bonus) for participation. All participants reported normal or
corrected-to-normal vision, were naive to the purpose of the
experiment, and provided informed consent in accordance
with The Ohio State University institutional review board.

Materials and procedure

The materials and procedure used for the 40-objects group
were identical to those for the MTurk group from
Experiment 2. The only difference for the 90-objects group
was that the number of objects per block increased from 40 to
90. The total number of studied and tested objects remained
the same at 360 objects (nine blocks for the 40-objects group
and four blocks for the 90-objects group).

Analyses

Each participant’s memory response distribution was fit using
the probabilistic mixture modeling approach described for
Experiment 2. Like in Experiment 2, the swap distribution
was centered on the center of each subject's Rich quadrant,
and only memory responses from objects originally sampled
from the Neighboring quadrants were analyzed. Swapping
was assessed by comparing the proportion of swap (S) to
swap-comparison (C) errors; shifts were considered signifi-
cant if μ significantly deviated from zero. We conducted
between-subject statistics to compare model parameter esti-
mates between the 40-objects and 90-objects groups.

Results and discussion

We first tested whether overall performance was different
between groups. Somewhat surprisingly, our initial anal-
ysis showed no significant difference in the proportion of
target responses between groups (M40 = .468, M90 = .383;
t(50) = 1.66, p = .103, d = .461), suggesting that there
was similar overall performance despite a difference in
memory load between groups. However, as noted above,
our preregistered exclusion criteria prompted the removal
of 21 participants in the 90-object group and six partici-
pants in the 40-object group. While we implemented the
exclusion criteria to eliminate inattentive and/or non-
compliant individuals, it appears likely that the increased
difficulty for the 90-object group led to more exclusions
in that group. We thus looked at overall performance dif-
ferences across groups when not excluding any partici-
pants (N = 79). Results here showed the 40-objects group
indeed demonstrated better overall performance compared
to the 90-objects group as indicated by a larger target
proportion (M40 = .379, M90 = .241; t(77) = 2.95, p =
.004, d = .67). Although our preregistered exclusion
criteria may have been inappropriate because it excluded

too many participants, to provide an unbiased analysis of
the data, we will proceed to report all analyses for the
subjects who passed our preregistered exclusion criteria
in addition to reporting all analyses when no participants
were excluded (see Fig. 5 for model parameter estimates
when no participants were excluded and see Tables S3
and S4 (OSM) for complete parameter estimates when
participants were excluded and not excluded).

Swap errors

To identify whether swap errors (S > C) were observed in
either group, we performed a repeated-measures ANOVA
with (absolute) proportion (swap, swap-comparison) as a
within-subjects factor and group (40-objects, 90-objects) as a
between-subjects factor. Robust swap errors were observed as
indicated by a significant main effect of proportion (subjects
passed exclusion criteria: F(1,50) = 22.42, p < .001, η2p =
.310; all subjects: F(1,77) = 9.30, p = .003, η2p = .108). The
presence of swap errors did not significantly vary across the
two groups, as indicated by a non-significant main effect of
group (subjects passed exclusion criteria: F(1,50) = 1.17, p =
.285, η2p = .023; all subjects: F(1,77) = 0.72, p = .400, η2p =
.009) and a non-significant interaction between proportion
and group (subjects passed exclusion criteria: F(1,50) =
0.17, p = .682, η2p = .003; all subjects: F(1,77) = 0.04, p =
.839, η2p = .001).

Results were similar between groups when relative mixture
proportions were used as the dependent variable instead of
absolute proportions. Figure 5 shows that the 90-objects group
seemed to increase the non-target mixtures proportionally. A
repeated-measures ANOVA with relative proportion (relative
swap, relative swap-comparison) as the within-subjects factor
and group (40-objects, 90-objects) as the between-subjects
factor revealed that robust relative swap errors were observed
as indicated by a significant main effect of proportion (sub-
jects passed exclusion criteria: F(1,50) = 25.54, p < .001, η2p =
.338; all subjects: F(1,77) = 13.71, p < .001, η2p = .151).
Again, the presence of relative swap errors did not significant-
ly vary across the two groups, as indicated by a non-
significant main effect of group and a non-significant propor-
tion x group interaction (all Fs < 1).

Together, these results suggest that while increased
memory load seemed to induce poorer overall memory
performance (as demonstrated by a smaller target pro-
portion if we include all participants), the remaining
mixtures seemed to increase proportionally, suggesting
that memory load did not interact with the relative pro-
portion of swap errors. The lack of an interaction be-
tween overall memory performance and relative swap
errors is in line with the results of Experiment 2, where
the MTurk group demonstrated poorer memory perfor-
mance compared to the in-lab group. If an explicit or
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implicit biased guessing strategy was the predominant
source of swap errors, then increasing memory load
should have led to a larger proportion of swap errors.
The lack of an increase in swapping suggests that swap
errors may reflect more than an implicit or explicit bi-
ased guessing strategy, perhaps reflecting some portion
of responses where participants reported around the Rich
color because they truly believed that it was the correct
color (i.e., false memory). We further explore the idea
of different sources of swap errors in the Collapsed

experiments section, where we examine confidence
reports.

Shift errors

Like Experiment 2, systematic repulsion or attraction was not
observed for items sampled from the Neighboring quadrants.
There was no evidence for either attraction or repulsion over-
all for either the 40-objects group (one-sample t-test against 0;
subjects passed exclusion criteria: M = -0.36, SEM = 1.73,
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Fig. 5 Model fits for Experiment 3 for each group (40-objects and 90-
objects), not excluding any participants. Models were fit to each
participant individually, including only memory responses for objects
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average parameter estimates and error bars depict standard error of the
mean. The top-left plot depicts the absolute proportion of each mixture
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mixture (relative proportion = absolute proportion / (1-absolute target
proportion)). The bottom panel depicts the remaining parameter esti-
mates. Overall, both groups similarly demonstrated significant swap er-
rors (swap > swap-comparison). The only significant difference found
between groups was in the proportion of target responses: the 90-
objects group showed overall worse memory performance as indicated
by a smaller target proportion
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t(25) = 0.21, p = .835, d = .06; all subjects:M = 1.02, SEM =
1.65, t(31) = 0.62, p = .540, d = .13) or the 90-objects group
(subjects passed exclusion criteria: M = 1.65, SEM = 1.85;
t(25) = 0.89, p = .382, d = .25; all subjects:M = 0.58, SEM =
2.08; t(46) = 0.28, p = .782, d = .13). As noted in Experiment
2, the lack of shift errors could be because the Neighboring
quadrants (46–135° from the Rich color) spanned color dis-
tances that might be expected to produce repulsion (shorter
distances) and attraction (longer distances) in accordance with
the relational representation model (Bae & Luck, 2017; see
also Golomb, 2015).

Other parameters

The absolute proportion of random guessing was similar be-
tween groups (subjects who passed exclusion criteria: M40 =
.271,M90 = .301; t(50) = 0.54, p = .594, d = .15; all subjects:
M40 = .336,M90 = .430; t(77) = 1.57, p = .120, d = .37). After
accounting for the difference in the proportion of target re-
sponses, we did not observe unequal allocation of the remain-
ing proportion of non-target responses to the random guessing
distribution between groups, as indicated by a non-significant
difference in the relative proportion of random guessing (sub-
jects who passed exclusion criteria: M40 = .499, M90 = .473;
t(50) = 0.33, p = .740, d = .09; all subjects:M40 = .533,M90 =
.553; t(77) = 0.30, p = .764, d = .07). Exploratory analyses of
the standard deviation of the target and swap/swap-
comparison distributions revealed no significant difference
between groups (40-objects, 90-objects) in the target standard
deviation parameter (subjects passed exclusion criteria: t(50)
= 1.01, p = .315, d = .28; all subjects: t(77) = 1.56, p = .122, d
= .36) or the swap/swap-comparison standard deviation pa-
rameter (subjects passed exclusion criteria: t(50) = 0.86, p =
.394, d = .24; all subjects: t(77) = 1.16, p = .250, d = .27).

Collapsed experiments analyses

Sources of swap errors (confidence range reports and
post-experiment survey)

In the Introduction, we posed a distinction between three pos-
sible sources of swap errors: explicit biased guessing, implicit
biased guessing, and false memory. Did participants make
swap errors because they explicitly realized that most objects
were of a certain color and that reporting the Rich color was
the “best” guess when uncertain, to improve overall memory
performance and reward (explicit biased guessing)?Were par-
ticipants explicitly unaware of statistical regularities and yet
still reported the Rich color when uncertain due to statistical
learning (implicit biased guessing)? In these two cases, swap
errors are occurring only when participants feel like they do
not remember the correct color. A third possibility is that

participants truly thought that the correct color of an object
was the Rich color (i.e., false memory). One critical difference
between false memory and implicit/explicit biased guessing is
that only false memory should lead participants to confidently
commit swap errors. As a reminder, there was no incentive or
feedback provided in regard to confidence range reports, so
participants had no reason report a narrow, highly confident
range of colors if they were actually using biased guessing
(also see the OSM for an analysis on the time-course of swap
errors, which argues against swap errors emerging from feed-
back). To explore if a potential mixture of these sources un-
derlies swap errors, or whether one source could fully account
for swap errors in our datasets, we examined confidence range
reports and the post-experiment survey results.

Participants were instructed to provide confidence ranges
for every color report by highlighting the smallest portion of
the color wheel they believed contained the original color and
to highlight the entirety of the color wheel when they were
completely guessing. When participants committed swap er-
rors, were their confidence ranges more similar to the confi-
dence ranges of correct reports (i.e., narrower confidence
range, in support of false memory) or more similar to the
confidence ranges of random guessing reports (i.e., wider con-
fidence range, in support of implicit/explicit biased guessing)?

We did not preregister any confidence analyses except for
Experiment 1, where we stated that we would separately mod-
el participants’most and least confident reports (by taking the
median confidence width for each participant and grouping
their trials into more and less confident groups). This analysis,
in addition to other exploratory confidence analyses, is de-
tailed in the OSM. Here we report an exploratory, “super-
subject” analysis that combined data across experiments to
increase statistical power (N = 148). We included memory
reports for objects originally sampled 23–157° (encompassing
Short, Medium, and Long color-distance segments) away
from the Rich color. We separately modeled trials on which
participants responded with very high confidence (confidence
range < 30°) and trials on which participants responded with
very low confidence (confidence range report > 90°). Note
that the Rich quadrant extended 90°, so highlighting the entire
rich quadrant would be classified as a low confidence re-
sponse. Also note that if a participant were selecting confi-
dence ranges by highlighting entire color categories, then this
would span more than 30° (e.g., Hardman, Vergauwe, &
Ricker, 2017). For instance, selecting all the “red” parts of
our color wheel would span roughly 60–70°.

As an initial check of the data, we confirmed that partici-
pants were using the confidence range report as intended:
there was a reliably larger proportion of correct target re-
sponses for the high-confidence (< 30°) trials compared to
the low-confidence (> 90°) trials (high confidence: .411
[.399 .426], low confidence: .226 [.202 .253]; 0% overlap-
ping). There was also a reliably smaller proportion of random
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guesses for the high-confidence trials compared to the low-
confidence trials when using absolute proportions (high con-
fidence: γ=.526 [.502 .545], low confidence: γ=.683 [.657
.705]; 0% overlapping) but not relative proportions (high con-
fidence: rel γ=.894 [.859 .918], low confidence: rel γ=.883
[.857 .901]; 56% overlapping).

Critically, we observed credible swap errors in both the
very-high-confidence and very-low-confidence trials, as indi-
cated by nonoverlapping HDIs between the swap and swap-
comparison parameters for both high-confidence trials (S =
.052, [.041 .072], C = .010, [.002 .020]) and low-confidence
trials (S = .090, [.069 .109], C = .000, [.000 .008]). However,
participants made more swap errors on the low-confidence
trials, in terms of both absolute and relative proportions of
swap errors. The absolute proportion of swap errors (swap
minus swap-comparison model parameters) was credibly dif-
ferent across confidence splits (high confidence: S-C = .047
[.033 .059]; low confidence: S-C = .088 [.069 .109]; 1.5%
overlapping), as was the relative proportion of swap errors
equating for overall performance differences (high confi-
dence: relS – relC = .079 [.057 .101]; low confidence: relS –
relC = .150 [.112 .181]; 1.5% overlapping). These results are
consistent with at least some observed swap errors reflecting a
type of biased guessing, where participants make relatively
more of these errors on trials on which they felt uncertain of
the true color. However, this confidence analysis cannot dif-
ferentiate between explicit versus implicit guessing accounts,
nor does it completely rule out false memory as an additional
potential source of swap errors, because credible swap errors
were observed even when participants were highly confident
in their color reports.

To specifically investigate explicit versus implicit biased
guessing, we ran another exploratory “super-subject” model
that included only trials with a confidence range > 90° (i.e.,
trials where participants were more likely to be guessing) and
compared participants who reported being explicitly aware of
the statistical regularity against participants who were not ex-
plicitly aware of the statistical regularity, classified based on
responses to the post-experiment survey (see Experiment 1,
Materials and procedure). The post-experiment survey results
for each question and each experiment are detailed in the
OSM. When participants were asked if they believed objects
often shared approximately the same color, 21/44 participants
said yes in Experiment 1, 16/26 (MTurk) and 19/26 (in-lab)
participants said yes in Experiment 2, and 26/32 (40-Objects)
and 34/47 (90-Objects) participants said yes in Experiment 3.
That is, 66.3% (116/175) of participants across all experi-
ments responded that objects often shared approximately the
same color, suggesting that this subset of participants pos-
sessed explicit knowledge of the statistical regularity by the
end of the experiment.

Credible swap errors were observed in both groups (those
who said “yes” vs. “no” regarding their knowledge of the

regularities), as indicated by nonoverlapping HDIs between
the swap and swap-comparison parameters (“yes” partici-
pants: S = .066, [.057 .097, 95% HDI], C = .000, [.000
.015]; “no” participants: S = .090, [.079 .108], C = .013,
[.006 .026]). Importantly, the ratio of swap errors was similar
between groups, as indicated by the lack of a credible differ-
ence between posterior probability densities for the difference
of posteriors (swap minus swap-comparison) (“yes”: S-C=
.067 [.055 .086]; “no”: S-C = .078 [.064 .090]; 40.5% over-
lapping). There was also no credible difference between the
difference of posteriors for relative swapping (“yes”: relS-relC
= .095 [.068 .135]; “no”: relS-relC = .158 [.104 .240]; 8.8%
overlapping). We also found similar results (data not shown)
when we further restricted the subset of participants who re-
ported “yes” to those who also subsequently selected a color
close to the Rich color on the second survey question. Thus,
explicit knowledge did not seem to be necessary to produce
swap errors on low-confidence trials because both groups of
participants similarly exhibited swap errors.

Finally, we conducted one more exploratory analysis to test
whether swap errors may have sometimes reflected false
memory.We only included high-confidence trials (confidence
range < 30°) and also only included participants who did not
exhibit explicit knowledge of the Rich color in the post-
experiment survey (“no” on question 1: N = 59). Despite these
strict cutoffs meant to eliminate swap errors driven by
implicit/explicit biased guessing, credible swap errors were
still observed on these trials (S = .068, [.054 .092], C = .002,
[.000 .010]).

Shift errors as a function of color distance

We began this study with the hypothesis that both swap errors
and shift errors might emerge in long-term memory due to
statistical learning. While we found robust evidence for swap
errors across all of our datasets and analyses, the shift errors
may be more condition-dependent. Specifically, for
Experiment 1, we hypothesized that there might be attraction
for the Long color-distance segment and repulsion for the
Short segment. While we observed a trend for attraction and
repulsion effects in Experiment 1, we did not find significant
shift effects in Experiments 2 and 3 (possibly due to binning
across a large Neighboring quadrant, which could obscure
repulsion/attraction depending on how shift effects varied as
a function of color distance). Given that all experiments in-
volved a similar paradigm and showed similar mixture-
proportion results, we performed an exploratory analysis
where we collapsed data across all experiments and fit our
modified swapmodel to memory errors, binned into five color
distances (angular distance from the memory item’s color to
the participant’s Rich color: bin 1: <23°, bin 2 [23-67°, i.e.
“Short”], bin 3 [68-112°, i.e. “Medium”], bin 4 [113-157°, i.e.
“Long”], and bin 5: >157 deg). We utilized the aggregate
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“super-subject” approach described in Experiment 1 and cal-
culated 95% HDIs for the μ parameter of the target distribu-
tion for each bin (Fig. 6).

The direction of shift errors followed the predictions from
the relational representation model (see Fig. 6; Bae & Luck,
2017; see also Golomb, 2015). Credible repulsion bias was
observed for bins 1 and 2 (95% HDI not overlapping with the
critical threshold of zero° of error), no credible shift errors
were observed for bin 3, and credible attraction bias was ob-
served for bin 4. Bin 5 showed attraction bias overall but had a
95% HDI that was not credibly above the critical threshold;
note that recent work suggests that color distances are not
psychologically scaled in a linear fashion and are less mean-
ingful at these large distances (Schurgin et al., 2018), which
would predict that bin 5 would be less likely to demonstrate
reliable bias. These findings mirror the relational

representation model described in visual working memory
literature: similar features between the memory item and a
reference point are more likely to produce repulsion (repre-
sentations become more distinct) and dissimilar features be-
tween the memory item and a reference point are more likely
to produce attraction (representations become generalized).

General discussion

The present three experiments consistently demonstrated
swap errors in long-term memory due to statistical regularities
present during object encoding. While less robust than swap
errors, subtle shift errors were also observed in some cases,
where the direction of errors was dependent on how far apart
the memory item’s color and the Rich color were in feature

Fig. 6 Parameter estimates of the mean of the target distribution (μ)
demonstrate repulsion (negative shift) and attraction (positive shift),
dependent on the distance in color space between the original color of
the memory item and the Rich color. Circles displayed under the x-axis
represent the analyzed color-distance segment, with red dots depicting the
location of the aligned Rich color. We binned trials according to their
color distance (angular distance from the memory item’s color to the
participant’s Rich color): bin 1: <23°, bin 2 (23–67°, i.e. “Short”], bin 3
(68–112°, i.e. “Medium”), bin 4 (113–157°, i.e. “Long”), and bin 5:

>157°. Split-violin plots illustrate the posterior probability distributions
of the mean shift parameter for the target distribution over 15,000 post-
convergence samples. Black dots mark maximum a posteriori estimates,
with whiskers representing 95% highest density intervals.Models were fit
separately for each color-distance segment, collapsed across subjects.
Memory responses for trials where the object was originally colored with
the Rich color (0° color difference) or the color 180° away from the Rich
color were not included
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space. We elaborate on different possible sources of swap
errors (explicit biased guessing, implicit biased guessing,
and false memory) and their underlying mechanisms in the
following paragraphs. We then relate the subtle attraction/
repulsion effects observed across experiments to visual work-
ing memory literature and discuss limitations and overall im-
plications for our findings.

To our knowledge, no previous studies have demonstrated
swap and shift errors in long-term memory due to imposed
statistical regularities. In visual working memory paradigms,
however, the influence of prior experience on biased recall has
been repeatedly observed. Prior experience is a useful cue for
the memory system because it can trigger reinstatement and
integration processes that allow for strengthened memories
due to associative knowledge (van Kesteren, Brown, &
Wagner, 2016). When a participant cannot accurately recall
a memory item, learned regularities can (explicitly or implic-
itly) bias memory reports towards previously experienced
stimuli. For example, in a visual working memory task,
Pratte (2018) showed participants an array of colored squares
and then asked them to report the location of a probed color.
When the color probed had not originally appeared in the
study array, participants’ reports were still centered around
study locations. This suggests that participants were using
information about where memory items could appear to bias
their guesses. Even during a perception task, Fan, Hutchinson,
and Turk-Browne (2016) demonstrated that color reports can
be biased by task-irrelevant past experience: when asked to
report the color of a stimulus that was never presented, partic-
ipants often chose the color associated with the stimulus in a
previous, irrelevant portion of the experiment. The results
from both of these examples may be due to participants using
prior experience to maximize performance when memory cer-
tainty is low. This pattern of biased guessing could have been
due to a conscious (explicit) decision on behalf of the partic-
ipant to use prior experience to try to improve performance
(explicit biased guessing), and/or it could have been due to the
memory system automatically and implicitly incorporating
prior experience to subsequently optimize behavior (implicit
biased guessing; e.g., Perruchet & Pacton, 2006; Saffran et al.,
1996).

False memory is a third potential source of our observed
swap errors. False memory has been repeatedly observed and
shown to be remarkably easy to induce (e.g., Deese, 1959;
Loftus, 2003; Roediger & McDermott, 1995; Wixted et al.,
2018). For example, Loftus, Miller, and Burns (1978) demon-
strated that people are likely to mistakenly remember a stop
sign for a previously encountered yield sign. The Deese-
Roediger-McDermott paradigm is a reliable method for induc-
ing false memories, where participants study a list of related
words and later recall a related but non-presented word at the
same frequency as actual studied words (Deese, 1959;
Roediger & McDermott, 1995). While previous work has

demonstrated that people are generally good at reporting their
own memory quality (Fougnie, Suchow, & Alvarez, 2012;
Rademaker, Tredway, & Tong, 2012; Suchow, Fougnie,
Brady, & Alvarez, 2014), false memories are nonetheless
present in spite of high confidence. Swap errors could reflect
a type of false memory where participants recall the wrong
color-pair association for an object with high confidence
(Chen et al., 2019). While explicit/implicit biased guessing
uses prior information to optimize behavior when memory
strength is low, false memories occur when someone truly
misremembers an item, offering potential insight to how items
are represented in memory.

Although we cannot conclusively establish the source of
our swap errors, the pattern of evidence suggests that the swap
errors we observed due to our imposed statistical regularities
(i.e., Rich color) likely reflected a mixture of implicit biased
guessing, explicit biased guessing, and false memory. We
reasoned that implicit and explicit biased guessing should oc-
cur most frequently when overall performance was low (such
that guessing was more frequent) and when trials were report-
ed with low confidence, and that our post-experiment survey
results could be used to further help to delineate explicit and
implicit biased guessing. Meanwhile, we reasoned that false
memory should be associated with high confidence trials and
should be observed even across participants who were explic-
itly unaware of statistical regularities. To summarize our re-
sults (including the collapsed experiments analyses that ex-
plored confidence and post-experiment survey reports, the
results of Experiment 2 where MTurk participants showed
overall worse performance than in-lab participants, and the
results of Experiment 3 meant to explore swap errors as a
function of memory load), we found the following: First, cred-
ible swap errors were similarly observed regardless of overall
performance differences between groups, memory load, and
online versus in-person task context. Second, swap errors
were credibly observed across both low- and high-
confidence trials but were more frequently observed on low-
confidence trials, suggesting that implicit/explicit biased
guessing accounted for swap errors more than false memory;
however, false memory likely accounted for at least some
portion of swap errors because swaps were credibly observed
even across very high-confidence trials with explicitly un-
aware participants. Finally, swap errors were found regardless
of post-experiment survey responses meant to gauge explicit
awareness of statistical regularities. Thus, we were not able to
delineate explicit and implicit biased guessing, but at the very
least, explicit biased guessing could not fully account for the
proportion of swap errors in our data by itself, and some por-
tion of swap errors may have reflected true false memories.
Regardless of their source, the core observation of swap errors
is still important because it shows how statistical regularities
can induce a reference point for subsequent long-term mem-
ory reports. Previous studies showing swap errors in long-
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term memory have not involved statistical regularities (e.g.,
Lew et al., 2016; Utochkin & Brady, 2019). Moreover, previ-
ous visual working memory papers have generally not
attempted to investigate these different sources of memory
distortions, so these analyses might also be of use for future
experiments linking errors in visual working memory and
long-term memory contexts.

In regard to shift errors, several visual working memory
studies have observed attraction and repulsion effects for ac-
tively maintained memory items dependent on the distance in
feature space between the memory item and a reference point
(Bae & Luck, 2017; Golomb, 2015; Golomb et al., 2014). Bae
and Luck (2017) described a relational representation model
in which working memory items close in feature space to the
reference point are easily confused and therefore need to be
distinguished from each other, resulting in a negative shift
(repulsion). Meanwhile, working memory items farther apart
in feature space to the reference point may be generalized in
order to decrease memory noise, resulting in a positive shift
(attraction). These visual working memory findings are also
conceptually related to the direction illusion and the tilt illu-
sion, as well as their respective visual aftereffects (e.g.,
Gibson, 1937; Gibson & Radner, 1937; Hiris & Blake,
1996; Wenderoth & Johnstone, 1988; Wenderoth & Wiese,
2008; Wiese & Wenderoth, 2007). These are perceptual phe-
nomena that similarly demonstrate attraction and repulsion
dependent on the distance in feature space between perceptual
stimuli (although the shift errors observed in working memory
cannot be explained by the same perceptual mechanism; see
Scotti, Hong, Leber, & Golomb, 2020). Another related per-
ceptual phenomenon, serial dependence, refers to how items
presented in close temporal succession may be perceived as
biased towards or away from recently seen items (e.g., Fischer
& Whitney, 2014; Kiyonaga, Scimeca, Bliss, & Whitney,
2017). Linking these findings from working memory and per-
ception to long-term memory, long-term memory researchers
have outlined two distinct computational processes in the hip-
pocampus, pattern completion and pattern separation, that
would predict attraction and repulsion respectively (see
Yassa & Stark, 2011, for review). Therefore, the perceptual,
working, and long-term memory systems can all be adapted to
a similar relational framework, and this experiment demon-
strates how it is possible to translate the relational memory
distortions previously only observed in the visual working
memory (and perception) domain over to the visual long-
term memory domain.

It is important to note that while shift errors observed in the
present study were consistent with the relational representa-
tion model, effects were small and only observed when exper-
iments were collapsed. In addition, aggregate data can some-
times lead to results that are not representative of any single
individual, which is one downside to the “super-subject”
modeling approach (Estes, 1956; Heathcote, Brown, &

Mewhort, 2000). The weak effects that we observed with shift
errors may imply that shift errors are less prominent and less
likely to occur than swap errors, but this may be heavily de-
pendent on the experimental design. The weak effects we
observed may also be influenced by the role of categorical
colors in memory: there are inherent biases in color recall
where responses are sometimes attracted towards prototypical
colors (see Bae, Olkkonen, Allred, & Flombaum, 2015;
Hardman, Vergauwe, & Ricker, 2017), and these color cate-
gory effects may have introduced noise into our data that
obscured attraction/repulsion in reference to the Rich color.
Importantly, color category effects would introduce noise, not
systematic attraction or repulsion bias, because it was equally
likely that the nearest canonical color would be towards or
away from the Rich color on any given trial. Nonetheless,
the present findings suggest that the relational representation
model may generalize to passively stored memory items, with
similar relational mechanisms being able to account for per-
ceptual, working memory, and long-term memory systems.

There are several possible future directions to extend and
confirm the present findings. Confidence ratings could be
more complex than can be accounted for by simple cutoffs.
For example, in a visual working memory experiment, Honig,
Ma, and Fougnie (2018) showed attraction towards the most
frequent color given decreasing memory certainty. We could
not sufficiently explore the role of confidence on shift errors in
the present experiments because of the small effect size we
observed for shift errors. Another future direction regards
when memory distortions, including swap errors and shift
errors, emerged during the stages of encoding, storage, and
retrieval. This is of particular interest because pattern comple-
tion is thought to occur during encoding whereas pattern sep-
aration is thought to occur during retrieval (Duncan,
Sadanand, & Davachi, 2012; O’Reilly & McClelland, 1994).
New experimental designs and better model fitting procedures
will allow for deeper investigations into how memory distor-
tions arise.

Conclusion

The present findings demonstrate that visual long-term mem-
ory is easily distorted by implicitly learned patterns in our
environment. Statistical regularities imposed while studying
object colors resulted in systematic biases during subsequent
memory retrieval. Many participants were not explicitly aware
of the imposed regularities, and yet a significant proportion of
responses were centered around the Rich color for these par-
ticipants.Many of these swap errors were also high in reported
confidence, suggesting that some portion of swap errors arose
from false memories where a stored memory was incorrectly
represented as the Rich color. In addition, responses were
sometimes shifted away from or towards the Rich color,
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depending on the distance in feature space between the Rich
color and the original object color. These shift errors mirrored
the relational representationmodel observed in visual working
memory, suggesting that similar memory distortion mecha-
nisms may be present in working and long-term memory sys-
tems. In real-world situations where reliable memories are
paramount, future work exploring how prior experience influ-
ences memory retrieval may yield crucial insights.
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