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Visual Working Memory Items Drift Apart Due to Active,
Not Passive, Maintenance

Paul S. Scotti, Yoolim Hong, Andrew B. Leber, and Julie D. Golomb
Department of Psychology, The Ohio State University

How are humans capable of maintaining detailed representations of visual items in memory? When
required to make fine discriminations, we sometimes implicitly differentiate memory representations
away from each other to reduce interitem confusion. However, this separation of representations can in-
advertently lead memories to be recalled as biased away from other memory items, a phenomenon
termed repulsion bias. Using a nonretinotopically specific working memory paradigm, we found stron-
ger repulsion bias with longer working memory delays, but only when items were actively maintained.
These results suggest that (a) repulsion bias can reflect a mnemonic phenomenon, distinct from percep-
tually driven observations of repulsion bias; and (b) mnemonic repulsion bias is ongoing during mainte-
nance and dependent on attention to internally maintained memory items. These results support theories
of working memory where items are represented interdependently and further reveals contexts where
stronger attention to working memory items during maintenance increases repulsion bias between them.

Keywords: working memory, mnemonic bias, repulsion bias, attentional competition, hierarchical bayes-
ian mixture model
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Task-irrelevant information such as the visual similarity
between memory items (e.g., Golomb, 2015), ensemble statistics
(e.g., Brady & Alvarez, 2011), and spatial context (e.g., Awh &
Jonides, 2001; Jiang et al., 2000) can all bias how a memory item
is remembered mere seconds after encoding. It has been argued
that such biases emerge due to the memory system optimally com-
bining various sources of information to increase overall perform-
ance (e.g., Carpenter & Schacter, 2017; Guerin et al., 2012;
Huttenlocher et al., 2000; Newman & Lindsay, 2009; Schacter et
al., 2011; Yoo et al., 2018). For instance, in a task where you
memorize several squares and then report the size of a target

square that is cued after a blank delay, it might be beneficial for the
memory system to calculate the average size during encoding. This
average size can act as a reference point that biases your report to-
ward the average feature when uncertain (Brady & Alvarez, 2011).
While this would induce systematic biases in memory reports
throughout the experiment, it could also benefit overall performance
in terms of absolute error away from the target feature.

Interestingly, such memory biases can be adaptive both toward
and away from a reference point. The previous example described
memory reports biased toward a reference point (i.e., attraction
bias), a phenomenon thought to arise from the combination of
item-level and group-level information, perhaps arising from a
Bayesian process of combining prior information with an uncer-
tain stimulus (e.g., Brady & Alvarez, 2011; Brady et al., 2018;
Hemmer & Steyvers, 2009; Huttenlocher et al., 2000). A bias
away from a reference point (i.e., repulsion bias) can also be
observed. For both attraction and repulsion bias, any task-relevant
feature can serve as a reference point, encompassing properties
such as the feature of a competing memory item (e.g., Golomb,
2015), ensemble statistics (Brady & Tenenbaum, 2013; de Fockert
& Wolfenstein, 2009; Haberman & Whitney, 2009), statistical reg-
ularities (Honig et al., 2020), subjective category labels (Bae et al.,
2015; Huttenlocher et al., 1991), and the perceptual average of se-
quential stimuli (Bae & Luck, 2017; Huang & Sekuler, 2010).

Repulsion bias could serve to help minimize confusability with
a reference point by subtly biasing the representation in feature
space away from the reference point, and is most often observed in
tasks that require a few easily confusable items to be maintained
in fine detail (Bae & Luck, 2017; Chen et al., 2019; Golomb,
2015). For example, if one colored square was light blue and
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another was dark blue, it may be optimal for the memory system
to push apart these representations in color space to ensure that
these squares are not confused with each other. Repulsion bias
could be implemented in the brain by the neural mechanisms of
lateral inhibition (Johnson et al., 2014; Johnson et al., 2009; Wei
et al., 2012) and/or optimal gain (Navalpakkam & Itti, 2007; Sco-
lari & Serences, 2009). We discuss these theories more in the Gen-
eral Discussion.
Attraction and repulsion bias can be observed in the absence of

any mnemonic processing. For example, in the direction illusion,
subjects estimate the direction of two transparent and overlaid ran-
dom dot patterns and mutual attraction or repulsion is observed
depending on the relative difference in direction (e.g., Blakemore
et al., 1970; Levinson & Sekuler, 1976; Marshak & Sekuler, 1979;
Mather, 1980; Rauber & Treue, 1998; Wiese & Wenderoth, 2007;
Yo & Wilson, 1992). Likewise, the tilt illusion can perceptually
induce repulsion or attraction bias: Subjects view an oriented gra-
ting that is surrounded by another oriented grating, and the center
grating is perceived to be either repulsed by or attracted to the sur-
rounding grating depending on the relative difference in orienta-
tion (e.g., Gibson & Radner, 1937; O’Toole & Wenderoth, 1977).
Direction aftereffects (e.g., Hiris & Blake, 1996; Wenderoth &
Wiese, 2008; Wiese & Wenderoth, 2007) and tilt aftereffects (e.g.,
Gibson, 1937; Wenderoth & Johnstone, 1988) are extensions of
these illusions, where visual adaptation induces retinotopically
specific perceptual biases on subsequent visual input.
These perceptual illusions might be related to the attraction/

repulsion biases observed in previous working memory studies.
Previous working memory studies have used paradigms where
items are encoded and tested in the same spatial location, such that
working memory maintenance might have relied on retinotopically
specific, sustained sensory activation (Czoschke et al., 2020). In
other words, persistent neural firing in sensory areas after stimulus
offset could induce visual adaptation effects similar to those
observed in the aforementioned perceptual illusions.
In the current study, we first tested whether attraction/repulsion

bias can be observed mnemonically, in the absence of a purely per-
ceptual explanation, by testing for such biases in a nonretinotopi-
cally specific working memory paradigm. Specifically, we designed
an experiment where memory items were encoded and tested in

different spatial positions. Instead of using simple geometric shapes
that are cued based on spatial location (e.g., Golomb, 2015) or tem-
poral position (e.g., Bae & Luck, 2017), we used real-world objects
that were cued based on object identity (see Figure 1). Participants
viewed two real-world objects with colors sampled either 45 ° or
90 ° apart in color space, and then reported the color of the cued
object after a short working memory delay.

Using this paradigm, we conducted a series of four preregistered
experiments aiming to provide a better understanding of how and
when working memory representations interact with each other.
Working memory is capacity-limited (Luck & Vogel, 2013), and
the canonical theory of working memory capacity is that all items
are represented independently (Luck & Vogel, 1997; Zhang &
Luck, 2008). Mnemonic bias provides support for interdependent
memory items, in line with more recent theories of working mem-
ory (e.g., Brady & Alvarez, 2015; Johnson et al., 2014; Oberauer
& Lin, 2017). We tested if mnemonic bias is present independent
of perceptual bias, and if so, when it emerges, by manipulating the
duration and active versus passive nature of the working memory
delay. If representations do interact with each other in working
memory, an important question is when biased representations
emerge during the stages of encoding, maintenance, and retrieval.
We offer three (nonexclusive) possibilities. (a) The target memory
is biased as soon as or very soon after the study array disappeared
(i.e., bias during encoding). (b) The target memory becomes biased
during the working memory delay (i.e., bias during maintenance).
(c) The target memory becomes biased after the participant is told
which memory item needs to be reported (i.e., bias during retrieval).

In Experiments 1–3, all trials had identical encoding and re-
trieval demands, but varied in the duration of the working memory
delay. To preview our primary results, we did not observe a credi-
ble main effect of repulsion bias with a blank working memory
delay of 1 s, but we did observe credible repulsion bias with a
blank working memory delay that was 3 s long, suggesting that
mnemonic bias can be observed independent of perceptual bias,
and it emerges during the maintenance period. In Experiment 4,
we attempted to disambiguate two potential reasons why mne-
monic bias might emerge over longer delays, asking whether
active attention to the items in memory during the delay is
required. Previous studies have found that working memory

Figure 1
Example Trial Sequence for Experiment 1

Note. Participants were instructed to memorize the colors of both real-world objects. Following a blank inter-
val, participants recreated the original color of one of the two objects (randomly selected), cued by presenting
the object in the center of the screen in grayscale. Objects were displayed in grayscale until mouse movement,
at which point the objects color dynamically adjusted to match the color closest to the mouse pointer. After
clicking to confirm their best guess, participants highlighted the smallest range of colors that they believed con-
tained the original color. Every test trial ended with general feedback and bonus information. See the online ar-
ticle for the color version of this figure.
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representations deteriorate over time (Barrouillet & Camos, 2009;
Barrouillet et al., 2012; Pertzov et al., 2013; Vergauwe et al.,
2009), and poorer quality representations may lead to interitem
confusability, prompting the memory system to distinguish the
representations in feature space (Bae & Luck, 2017; Chunharas et
al., 2019). Thus, one might expect repulsion bias to increase with
longer memory delays, even—or perhaps more so—when people
are not actively attending to the items during the delay. However,
an alternative account predicts that active maintenance of compet-
ing representations induces repulsion bias over time, and stronger
repulsion bias should be observed during longer delays only when
the items are actively attended during the delay. In Experiment 4,
we compared a 3-s blank working memory delay (where the task
was to actively maintain the working memory items) to a 3-s delay
that involved a separate filler task (attend to something else during
the memory delay) to disambiguate these accounts, ultimately sup-
porting the active maintenance account, allowing us to better
inform theories of working memory.

Experiment 1: 1-S Maintenance Duration

We first tested for memory distortions in a visual working mem-
ory experiment where memory items were encoded and tested in
different spatial positions. We started with a 1-s blank working
memory delay in Experiment 1, to facilitate comparison with more
perceptually based working memory studies reporting shift errors
(also known as feature bias, either attraction or repulsion from a
nontarget feature) and swap errors (reporting a nontarget feature;
e.g., Golomb et al., 2014).
Regarding shift errors, if repulsion and/or attraction bias is

observed, this would provide initial evidence that such distortions
are not retinotopically specific and can be attributed to a mne-
monic, not a perceptual, explanation. We were also curious
whether repulsion might be stronger when objects are separated in
color space by 45 °, compared with 90 °. The previously discussed
perceptual illusions and relational representation model claim that
the relative difference in feature space is an important factor that
can influence whether repulsion or attraction bias is observed (e.g.,
Bae & Luck, 2017; O’Toole & Wenderoth, 1977; Wiese & Wen-
deroth, 2007). We hypothesized that, if mnemonic distortions
were observed, repulsion bias would be present for the 45 ° color
difference and that either repulsion bias or attraction bias might be
present for the 90 ° color difference.
We were also curious whether swap errors (reporting the feature

of the nontarget object, also known as “misbindings” or “misasso-
ciations”; e.g., Bays et al., 2009; Bays et al., 2011) might be
observed. It is possible that swap errors previously observed in
visual working memory experiments (e.g., Chen et al., 2019;
Dowd & Golomb, 2019; Golomb et al., 2014) were only observed
because they used perceptually similar stimuli. For example, if a
participant needs to memorize the colors of two squares, this is an
example where the target and the nontarget items are identical
except for the task-relevant color. Swap errors may be less likely
to occur if the stimuli are two real-world objects, where the objects
contain different task-irrelevant features (e.g., low-level features
such as shape and high-level features such as semantic identity).

Method

Open Practices Statement

The rationale, method, and parts of the analyses for this and
subsequent experiments were preregistered at the Open Science
Framework (OSF; https://osf.io/usrxq/?view_only=6d1f075517
3f43b3b6d8e8d161dd7fdc).

All analysis code and data are also available on OSF. Any analy-
ses not mentioned in the preregistrations are declared as explora-
tory. Analyses reported in the main text deviated from the
preregistration in the following ways: (a) We preregistered a spe-
cific nonhierarchical mixture model and stated that we may instead
(or in addition) use a hierarchical Bayesian mixture model
(HBMM). Because hierarchical Bayesian modeling offers substan-
tial advantages over nonhierarchical modeling (Estes, 1956; Heath-
cote et al., 2000; Oberauer et al., 2017), we present the HBMM
results as our primary focus in the main text, and the non-HBMM
model results in the online supplemental material. In making the
HBMM, we also deviated partially in the model parametrization
(explained in the online supplemental material). The two modeling
approaches were highly consistent in their findings. (b) For Experi-
ments 1 and 2, when analyzing shift errors separately for the two
color-difference conditions, we made an additional simplification to
the within-subject HBMM model to make the model fits more reli-
able for this lower-powered analysis. The unsimplified model still
showed consistent results, as reported in the online supplemental
material in Tables S7 and S8. (c) Analyses involving confidence
reports are presented in the online supplemental material, and our
preregistered confidence analyses within experiments were replaced
with a more powerful set of analyses across experiments (explained
further in the online supplemental material).

Participants

Experiment 1 included a preregistered sample size of 50 partici-
pants (32 male, 17 female, one nonbinary; M = 37.32 years, SD =
10.51). All participants were recruited through Amazon Mechani-
cal Turk (MTurk) and were paid $6 USD per hour (plus bonus
based on performance) for the experiment, which lasted roughly 1
hr long. All participants lived in the United States, held an MTurk
approval rating of $98%, and successfully completed over 750
MTurk tasks prior to this experiment. All participants reported
normal or corrected-to-normal vision, were naive to the purpose of
the experiment, and provided informed consent in accordance with
The Ohio State University institutional review board. Ten partici-
pants were excluded based on preregistered exclusion criteria (..5
guessing proportion based on a basic, nonhierarchical mixture
model composed of a target and a guessing distribution; see Bays,
et al., 2009; Golomb et al., 2014; Zhang & Luck, 2008).

Stimuli and Procedure

Experiment 1 was conducted online using MTurk, meaning that
monitors could vary in size, viewing distance, color calibration,
and so forth. We report stimulus sizes in pixels and not degrees of
visual angle because of these variable environments. Figure 1
illustrates an example trial sequence. Each of 14 blocks consisted
of 20 trials and 40 unique real-world objects. On each trial, two
200 3 200 pixels objects were presented to the left and right of a
central 15 3 15 pixels black fixation cross. The center of each
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object was 150 pixels away from the central fixation cross. All
stimuli were displayed inside of a 600 3 600 pixels white square.
Objects were displayed for 1 s, followed by a 200-ms mask and
then an 800-ms blank interval. The mask was sized 200 3 200 pix-
els and composed of 400 10 3 10 pixel squares, with each square
sampling a color randomly drawn from the color wheel. Partici-
pants were instructed to memorize the colors associated with every
object, knowing that they would be asked to reproduce the color
one of the two objects at the end of every trial.
Object stimuli were acquired from Brady et al. (2008). Objects

were posterized such that pixel values could only be white, black,
or a single color of interest (one of 360 RGB color values drawn
from a circle of 60° radius in CIE L*a*b* color space, centered at
L = 70, a = 20, and b = 38). CIE colors were converted to gamma-
corrected RGB values, color-calibrated using a Chroma Meter CS-
100 on a MacBook Pro. Specifically, each image was first converted
to grayscale, with luminance values ranging from 0 to 255. Pixels
with a luminance between 0 and 85 were colored white and pixels
with a luminance between 170 and 255 were colored black. All other
pixels were assigned to a color in CIE L*a*b* space. Author PS sub-
jectively curated the objects such that they remained recognizable,
contained a reasonable number of colored pixels, were not associated
with a canonical color (e.g., no firetrucks because their canonical
color is red), would not provoke a strong emotional reaction, and
were categorically distinct from the other objects in the folder (e.g.,
we would not allow two exemplars of an apple).
Following the 800-ms blank interval, one of the two studied

objects was randomly selected and displayed in luminance-cor-
rected grayscale on the center of the screen. A randomly rotated
color wheel (flipped on half the trials) was presented around the
object. As the mouse moved around the color wheel, the initially
grayscale object dynamically changed to the color closest to the
mouse pointer. Participants were tasked with selecting the original
color of the object by clicking on the color wheel. Following a
mouse click to confirm their selected color, participants highlighted
the smallest portion of the color wheel that they believed contained
the original color (see Chen et al., 2019). Highlighting involved
dragging with the mouse to define the start and end points of a
black, highlighted region. This confidence report was our proxy for
subjective memory strength, with the assumption that a larger high-
lighted region indicated that a participant was less certain about
their memory retrieval. Confidence analyses are detailed in the
onilne supplemental material. There was no time limit to respond.
Following confidence reports, general feedback was presented for
750 ms, followed by a 500-ms blank intertrial interval (ITI).
A monetary bonus was presented during feedback, dependent

on the subject’s performance. The bonus for each trial was calcu-
lated according to (a) degrees of error (distance from the subject’s
reported color to the correct color) and (b) confidence range report.
For the bonus calculated based on degrees of error, cents awarded
equaled 1 � x/45 (where x is absolute degrees of error), such that
more fractions of a penny were awarded for less degrees of error
but nothing was awarded if x $ 45. For the confidence range
report, cents awarded equaled (360 � y)/359 (where y is the confi-
dence range where y = 360 is a highlight of the entire color wheel),
such that smaller ranges awarded more money (the minimum high-
lighted range was 1 °). However, if the highlighted region did not
contain the true original color, then no bonus was awarded for this
part. The maximum bonus that could be awarded on a trial was 2

cents and the minimum bonus was 0 cents. Subjects were informed
about how their bonus was calculated before starting the experiment.

On each trial, the colors of one of the two objects was randomly
sampled from the color wheel, while the other object was equally
likely to be sampled 645 or 690 ° away from the other object in
color space. Participants were uninformed of this color sampling
manipulation. A practice block of five trials familiarized partici-
pants with the procedure. Stimulus presentation was facilitated by
a combination of HTML, CSS, and JavaScript.

Analyses

For all experiments, memory response distributions were fit
using a hierarchical Bayesian mixture model (HBMM) in JAGS
(Plummer, 2003), results from a nonhierarchical model are presented
in the online supplemental material. HBMMs are advantageous
because they provide accurate group-level and individual-level pa-
rameter estimates within a single model (Lee & Wagenmakers,
2014). In contrast to HBMMs, more traditional approaches to fit-
ting memory response distributions have downfalls. For instance,
group-level maximum likelihood estimation does not take into
account individual differences. Meanwhile, individual-level maxi-
mum likelihood estimation can lead to unreliable estimates, and
frequentist statistics on such estimates disregards the variability of
each individual’s parameter estimates. An advantage of HBMMs
is that data from all participants in the study can inform individ-
ual-level estimates, allowing for more robust parameter estimates
and increased statistical power without having to average data
across participants (for more information see Estes, 1956; Heath-
cote et al., 2000; Oberauer et al., 2017). Analyses for all experi-
ments were supported by an allocation of computing resources
from the Ohio Supercomputer Center (1987). Please see the
onilne supplemental material for a more complete description of
our HBMM and our OSF project (https://osf.io/usrxq/?view_only=
6d1f0755173f43b3b6d8e8d161dd7fdc) for the R and JAGS code
for implementing the HBMM.

Each trial’s memory response was first converted into an error
measurement (i.e., the difference between the reported color and
the correct color of the target object, measured in radians along the
color wheel; we later converted from radians to degrees when
reporting results). The sign of this error measurement was deter-
mined relative to the nontarget object’s color: Error measurements
were aligned such that the nontarget object’s color was always in
the positive direction (aligned to þ45° or þ90° on the color
wheel). In this way, we could observe a mean shift in the target
distribution where responses were either toward (attraction) or
away from (repulsion) the nontarget color.

Memory response distributions were then fit as a mixture of
three distributions: a target distribution (expressed as Ptarget), a
nontarget (swap) distribution (Pswap), and a random guessing dis-
tribution (Pguess). The target distribution was a von Mises distri-
bution (equivalent to circular normal distribution) intended to
characterize memory reports where the subject correctly reported
the original color of the target (with some room for error, charac-
terized by the concentration parameter). The nontarget, or swap,
distribution, was a von Mises intended to characterize memory
reports where the subject mistakenly reported the color of the non-
target item (Bays et al., 2009; Golomb et al., 2014; Scotti et al.,
2021). The random guessing distribution was characterized by a
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circular uniform distribution and was intended to characterize
memory reports where the subject was randomly reporting a color
on the color wheel.
We implemented a similar hierarchical three-component mix-

ture model as Oberauer et al. (2017), but modified it to allow the
center of the target distribution to flexibly shift up to 15 ° in either
direction, such that we could assess repulsion bias (negative shift)
or attraction bias (positive shift). Allowing the target distribution
to flexibly shift has previously been used in nonhierarchical mod-
els to observe subtle attraction or repulsion bias (e.g., Chen et al.,
2019; Golomb, 2015; Golomb et al., 2014). We restricted the tar-
get distribution to shift a maximum of 615 ° because this would
ensure that nontarget responses (45° or 90° from the target color)
were not accidentally attributed to the target distribution. We also
fit separate concentration parameters (equivalent to the inverse
variance and often called “precision”) to the target and swap distri-
butions to allow for the possibility that swap errors may be associ-
ated with lower precision.
The HBMM can be described according to its hierarchical levels

(in descending order): group-level, condition-level, and subject-
level. We used a HBMM with only two levels (group-level and
subject-level) when testing for overall, group-level effects (e.g.,
overall repulsion bias across subjects) and we used a HBMM with
three levels when testing for condition-level differences (e.g., dif-
ference in repulsion magnitude between color-distance condi-
tions). At each level, there are parameters that define the relative
proportion of target responses, relative proportion of swap
responses, relative proportion of random guessing, shift in mean
(bias) of the target distribution, and precisions of the target and
swap distributions. The parameters of the lower levels have priors
that are based on the respective parameter from the immediate
higher level; that is, the condition-level has parameters with priors
depending on the respective group-level parameters and the sub-
ject-level has parameters with priors from the respective condi-
tion-level parameters (or group-level for the two-level model).
The full details and formulas for our HBMM can be found in the
online supplemental material.
For each model fit, we collected 15,000 postconvergence sam-

ples and used the posterior distributions to compute the maximum
a posteriori (MAP) group-level and individual-level parameter
estimates. In computing the MAP estimate we used Silverman’s
kernel density estimation (Silverman, 1986) to obtain the mode of
the posterior distribution. (Note that the PTarget, PGuess, and
PSwap parameters summed to 1 within each of the 15,000 sam-
ples, but they did not always sum to 1 in the reported MAP esti-
mates due to this process. The nonhierarchical model results in the
online supplemental material report maximum likelihood estima-
tion and do sum to 1, which show consistent findings to the
HBMM). We verified convergence with the Gelman-Rubin con-
vergence diagnostic (Gelman & Rubin, 1992).
For each parameter, we further use the 15,000 postconvergence

samples to calculate the 95% highest density interval (HDI). 95%
HDIs indicate that the true parameter value has a 95% probability
of lying within this interval. Values outside the intervals may be
considered sufficiently implausible (Lindley, 1965). For example,
when we test for a shift in mean (bias) of the target distribution
across all participants, we use the group-level parameter shift. If
we find that the 95% HDI does not overlap with zero and is
entirely negative, we conclude that repulsion bias was credibly

observed across participants (a nonoverlapping positive HDI
would be evidence for attraction bias). To quantify swap errors,
we followed a similar approach using the group-level parameter
Pswap (proportion of swapping).

When we test if one condition demonstrated credibly stronger
bias or swapping than another condition, we use the HBMM with
three levels. The aforementioned group-level shift parameter
becomes two separate condition-level parameters, shift1 and shift2,
referring to each condition (e.g., trials with 45° color distance use
shift1 and trials with 90° color distance use shift2). We compare
the posteriors for these condition-level parameters by computing
the difference between shift1 and shift2 for every sample and then
calculate the 95% HDI of this difference of posteriors (this
approach is hereafter referred to as the “within-subject” HBMM).
If the resulting HDI does not overlap with 0, we consider this to
be a credible difference between conditions (Kruschke, 2014).

In addition to this preregistered HDI approach to assess whether
shift and swap errors were credibly present, we employed explora-
tory model comparison to assess the contributions of the shift and
swap parameters to the model fits. We did this using the widely
applicable information criterion (WAIC; Watanabe, 2010), which
is computed by estimating how well a model fits the input data
while penalizing more complex models. WAIC was chosen because
it is fully Bayesian and was previously observed to be more robust
than the deviance information criterion (DIC) in similar working
memory models (Oberauer et al., 2017). WAIC closely approxi-
mates Bayesian cross-validation and is more stable than DIC
because variance is separately computed for each sample and then
summed, yielding increased stability (Vehtari et al., 2017). To be
comparable to AIC or DIC, we report WAIC estimates on the devi-
ance scale, such that the expected log pointwise predictive density
for each sample is multiplied by �2. To approximate the uncer-
tainty of WAIC estimates, we calculated the standard error of the
difference in WAIC values for each sample (WAIC estimation was
performed using the “loo” R package; Vehtari et al., 2019). To
assess the contribution of the shift parameter, we compared the
(full) HBMM model to the same model without a flexible target
mean by examining the difference in WAIC estimates. If the full
model demonstrates a smaller WAIC estimate than the nested
model then this suggests that the full model better fits the data; that
is, the shift parameter explained nontrivial variance in the memory
response distribution. We apply the same procedure comparing the
full model to the analogous model without a swap parameter to
assess the contribution of the swap parameter.

Results and Discussion

Model Results: Overall Shift Errors

We first report overall shift error results before proceeding to
shift errors dependent on color distance. Figure 2 depicts the raw
histogram of memory response errors across participants, and Fig-
ure 3 depicts the group-level (shift) and individual-level estimates
for the center (bias) of the target distribution from the hierarchical
Bayesian mixture model (HBMM). Table 1 depicts the MAP and
95% highest density interval (HDI) for group-level parameters.
The HDI for the shift parameter contained zero; therefore, we did
not find credible evidence for shift errors (repulsion or attraction).
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Exploratory model comparison supported the full model com-
pared with the nested model that lacked a flexible target mean, as
indicated by a smaller WAIC (full model: 14943.9, nested model:
15261.7; D: 317.8, SE: 27.8). While model comparison suggested
that the shift parameter was an important addition to the model,
we lacked evidence for practically meaningful shift errors as indi-
cated by the HDI overlapping with zero. One possibility is that
shift errors were not consistent across subjects, such that the addi-
tional parameter improved fits for many individual subject esti-
mates but failed to result in a consistent group-level shift
parameter. In other words, allowing the target distribution to flexi-
bly shift improved the fit of the model, but the magnitude of this
shift was not large or consistent enough to be considered credible.

Shift Errors as a Function of Color Distance

To determine whether shift errors interacted with the color dif-
ference between the target and nontarget objects, we fit a within-
subject HBMM with color difference (45°, 90°) as the within-sub-
ject conditions. We observed no credible shift errors in the 90°
(MAP: �.30, HDI: [�1.70, .91]) condition; however, we did
observe credible shift errors (repulsion bias) in the 45° condition
(MAP:�1.67, HDI: [�2.93, �.42]).

The HDI for the difference in shift posteriors between the two
conditions overlapped with zero (MAP: 1.33, HDI: [�.51, 3.05]),
so we cannot claim that the 45° color difference was associated
with credibly more repulsion than the 90° condition. That said, the
presence of a subtle repulsion bias in the 45° color difference is
notable in the sense that it demonstrates the capacity for our para-
digm to produce shift errors, and the direction of the bias (repul-
sion) was predicted by the relational representation model (Bae &
Luck, 2017; see also Golomb, 2015). In addition to shift errors,
there were also no credible differences between conditions for any
of the other model parameters (see Table 1 and online supplemental
material).

Swap Errors

The HDI for the swap parameter, Pswap, did not contain zero
(see Table 1), so we concluded that swap errors were credibly pres-
ent in Experiment 1. In addition, exploratory model comparison
supported the full model compared with the nested model that
lacked a swap parameter, as indicated by a smaller WAIC (full
model: 14943.9, nested model: 16579.0; D: 1635.1, SE: 72.2). This
demonstrates that swap errors can be observed with real-world
objects and are not restricted to paradigms using perceptually simi-
lar stimuli (e.g., Chen et al., 2019; Dowd & Golomb, 2019; Golomb
et al., 2014).

Figure 2
Raw Histogram of Responses Across All 50 Participants,
Depicting Degrees of Error (Distance Between Reported Color
and Actual Color)

Note. Aligned such that the nontarget colors (swap locations) are centered
at þ45 and þ90, depicted as vertical black lines. See the online article for
the color version of this figure.

Figure 3
Split Violin Plot Depicts the Posterior Distribution for the Group-Level Estimate
of Shift Errors (Shift) in Experiment 1

Note. The interval underneath represents the 95% HDI, which contained zero, meaning that we
did not have credible evidence to support the presence of shift errors (repulsion or attraction).
See the online article for the color version of this figure.
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Experiment 2: 3-S Maintenance Duration

It is possible that we did not observe a main effect of shift errors
or interaction between shift errors and color distance in Experiment
1 because such memory biases reflect a process that builds during
the maintenance interval, and a 1-s working memory delay was too
short for this process to be adequately observed. Other experiments
have observed attraction/repulsion bias using shorter working mem-
ory delays (e.g., Bae & Luck, 2017; Chen et al., 2019; Golomb,
2015), but these studies used simple geometric shapes and spatial
or temporal cuing (any of which could explain a shorter time-course
for repulsion bias). For Experiment 2, we increased the mainte-
nance duration from 1 s to 3 s. In addition to attraction and/or repul-
sion bias, we also hypothesized that swap errors would again be
present, and might even be larger, with a longer maintenance delay.
To preview the results, we observed both repulsion bias and swap
errors in this experiment (for both color distances), and we then
directly compared the two maintenance durations using a within-
subjects manipulation in Experiment 3.

Method

Like Experiment 1, Experiment 2 included a preregistered
(https://osf.io/usrxq/?view_only=6d1f0755173f43b3b6d8e8d161dd
7fdc) sample size of 50 participants (28 male, 22 female; M = 35.62
years, SD = 8.91).
All participants were recruited using MTurk in the same manner

as Experiment 1. Two participants were excluded based on the
same preregistered exclusion criteria as Experiment 1. The stimuli,
procedure, and analyses for Experiment 2 were identical to Experi-
ment 1 except that the blank interval was increased from 800 ms to
2,800 ms (i.e., working memory delay increased from 1 s to 3 s).

Results and Discussion

Model Results: Overall Shift Errors

With the 3-s working memory delay, credible repulsion bias
was observed where subjects reported a target color biased slightly

away from the nontarget color. Figure 4 depicts the raw error his-
togram across participants, and Figure 5 depicts the group-level
(shift) and individual-level estimates for the center of the target
distribution. (Note that it may be difficult to visually detect shift
errors in the raw histogram because of the opposing push and pull
of repulsion bias and swapping.) Table 2 depicts the MAP and 95%
HDI for group-level parameters. The HDI for the shift parameter
contained only negative values, and exploratory model comparison
supported the full model compared with the nested model that
lacked a flexible target mean, as indicated by a smaller WAIC (full
model: 20761.0, nested model: 21000.4; D: 239.4, SE: 29.4).

Shift Errors as a Function of Color Distance

To determine whether shift errors interacted with the color dif-
ference between the target and nontarget objects, we fit a within-
subject HBMM with color difference as the within-subject condi-
tions. We observed repulsion bias in both the 45° (MAP: �2.78,
HDI: [�3.66, �1.62]) condition and the 90° condition (MAP:
�.94, HDI: [�1.71, �.03]).

Table 1
Group-Level Parameter Estimates for Experiment 1, Including the Maximum a Posteriori (Point
Estimate) and the Lower and Upper Bounds of the 95% Highest Density Interval (HDI2.5 and
HDI97.5, Respectively)

Condition Ptarget Pswap Pguess Shift SDtarget SDswap

All color differences
MAP .780 .104 .141 �0.932 23.599 27.446
HDI2.5 .719 .062 .088 �2.138 21.431 24.257
HDI97.5 .825 .107 .197 0.229 26.769 30.967

45° color difference
MAP .785 .086 .126 �1.665 23.739 23.739
HDI2.5 .714 .051 .044 �2.930 21.084 21.084
HDI97.5 .866 .125 .197 �0.418 28.879 28.879

90° color difference
MAP .785 .072 .138 �0.301 24.525 24.525
HDI2.5 .728 .050 .079 �1.699 21.848 21.848
HDI97.5 .846 .099 .202 0.907 28.752 28.752

Note. Ptarget, Pswap, and Pguess refer to the proportion of target, nontarget, and random guessing responses,
respectively. Shift refers to the degrees the target distribution was shifted either towards (attraction; positive
values) or away from (repulsion; negative values) the nontarget color. SDtarget and SDswap reflect the kappa(1)
and kappa(2) parameters, converted to degrees of standard deviation. See online supplemental material for non-
hierarchical parameter estimates. MAP = maximum a posteriori.

Figure 4
Raw Histogram of Responses Across All 50 Participants, Depicting
Degrees of Error (Distance Between Reported Color and Actual Color)

Note. Aligned such that the nontarget colors (swap locations) are centered
at þ45 and þ90, depicted as vertical black lines. See the online article for
the color version of this figure.
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The 45° condition produced credibly stronger repulsion bias
than the 90° condition, as indicated by the HDI for the difference
in shift posteriors not overlapping with zero (full: MAP: 1.23,
HDI: [.01, 2.68]; simplified: MAP: 1.77, HDI: [.43, 3.07]). This
suggests that the smaller relative difference in color space led to
stronger repulsion bias, in accordance with the relational represen-
tation model (Bae & Luck, 2017; see also Golomb, 2015). Even
with the relatively larger 90° difference in color space, however,
repulsion bias was still observed.

Swap Errors

The HDI for the swap parameter, Pswap, did not contain zero
(see Table 2), suggesting that swap errors were again credibly

present in Experiment 2. Exploratory model comparison also sup-
ported the full model compared with the nested model that lacked
a swap parameter, as indicated by a smaller WAIC (full model:
20761.0, nested model: 22888.4; D: 2127.4, SE: 83.8).

Experiment 3: 1-s Versus 3-s Maintenance Duration

Experiments 1 and 2 suggest that repulsion bias may be modulated
by maintenance duration, such that a main effect of repulsion bias
was found in our paradigm with a 3-s, but not a 1-s, maintenance du-
ration. In Experiment 3, we test this more directly by recruiting more
participants and using a within-subject design where the working
memory delay could be either 1 s or 3 s long on a given trial.

Table 2
Group-Level Parameter Estimates for Experiment 2

Condition Ptarget Pswap Pguess Shift SDtarget SDswap

All color differences
MAP .831 .090 .076 �1.994 24.358 33.421
HDI2.5 .795 .068 .044 �2.793 21.197 25.511
HDI97.5 .867 .112 .115 �1.084 28.179 82.920

45° color difference
MAP .856 .064 .075 �2.778 25.101 25.101
HDI2.5 .813 .039 .042 �3.661 21.638 21.638
HDI97.5 .898 .091 .115 �1.621 31.999 31.999

90° color difference
MAP .838 .077 .087 �0.944 23.974 23.974
HDI2.5 .794 .057 .047 �1.708 21.321 21.321
HDI97.5 .878 .100 .129 �0.026 29.056 29.056

Note. Ptarget, Pswap, and Pguess refer to the proportion of target, nontarget, and random guessing responses,
respectively. Shift refers to the degrees the target distribution was shifted either towards (attraction; positive
values) or away from (repulsion; negative values) the nontarget color. SDtarget and SDswap reflect the kappa(1)
and kappa(2) parameters (see online supplemental material), converted to degrees of standard deviation. For the
separate 45° and 90° color difference models, the standard deviation was shared between the target and swap
distributions because of otherwise unreliable parameter estimates (see online supplemental material for parame-
ter estimates with separate precision parameters and for nonhierarchical parameter estimates). MAP = maxi-
mum a posteriori; HDI = highest density interval.

Figure 5
Split Violin Plot Depicts the Posterior Distribution for the Group-Level Estimate
of Shift Errors (Shift) in Experiment 2

Note. The interval underneath represents the 95% HDI, which contained only negative val-
ues, meaning that repulsion bias was credibly observed. See the online article for the color
version of this figure.
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In addition, a within-subject design helped to control for the
possible confound of participants anticipating the end of the
working memory delay. That is, participants might not have
evenly focused on maintaining the two representations through-
out the working memory delay if they had prior knowledge of
how long the delay would last. A within-subject design ensures
similar expectation between conditions by randomly altering
the length of the working memory delay to either a 1- or 3-s
duration.

Method

Experiment 3 included a preregistered (https://osf.io/usrxq/
?view_only=6d1f0755173f43b3b6d8e8d161dd7fdc) sample size
of 81 participants (39 male, 42 female; M = 40.22 years, SD =
12.19) based on power analyses of Experiments 1 and 2. All par-
ticipants were recruited using MTurk in the same manner as
Experiments 1–2. Four participants were excluded based on the
same preregistered exclusion criteria as Experiments 1–2.
The stimuli, procedure, and analyses for Experiment 3 were

identical to Experiment 1 except that the working memory delay
could be either 1 s or 3 s long (200-ms mask followed by either
800-ms or 2,800-ms blank interval). Each trial condition combina-
tion (1s/45° color difference, 1s/90°, 3s/45°, 3s/90°) was presented
for 70 trials each (280 total trials), with presentation order random-
ized for each subject.

Results and Discussion

Model Results: Overall Shift Errors as a Function of
Maintenance Duration

Mirroring the results of the first two experiments, when collaps-
ing across color distance, credible repulsion bias was observed in
the 3-s condition (MAP: �2.34, HDI: [�3.09, �1.76]) but not the
1-s condition (MAP: �.45, HDI: [01.01, .22]). Table 3 depicts the
MAP and 95% HDI for group-level parameters, Figure 6 depicts
the raw error histogram across participants for each condition (as
noted above, it may be difficult to visually detect shift errors in the
raw histogram), and Figure 7 depicts the group-level (shift) and
individual-level estimates for the center of the target distribution.

The within-subject HBMM confirmed that repulsion bias was
modulated by maintenance duration, where repulsion bias was credibly
larger with the longer working memory delay. There was a credible
difference in shift errors between conditions; the HDI for the differ-
ence in shift posteriors for the 1-s and 3-s conditions did not overlap
with zero (MAP: 2.01, HDI: [1.09, 2.88]).

As was the case in the previous experiments, exploratory
model comparison supported the full model compared with the
nested model that lacked a flexible target mean, as indicated by a

smaller WAIC (full model: 32428.4, nested model: 32936.2; D:

507.8, SE: 30.6). This provides additional evidence for repulsion
bias, as the model provided a better fit when the center of the tar-
get distribution was allowed to be biased away from the swap
distribution.

Table 3
Group-Level Parameter Estimates for Experiment 3, Split by Maintenance Duration and Color Distance

Condition Ptarget Pswap Pguess Shift SDtarget SDswap

3-s maintenance (all color differences)
MAP .811 .097 .090 �2.343 23.243 27.064
HDI2.5 .775 .079 .063 �3.090 21.152 23.017
HDI97.5 .841 .122 .119 �1.761 26.149 33.288

1-s maintenance (all color differences)
MAP .836 .092 .075 �0.445 23.196 26.707
HDI2.5 .806 .075 .052 �1.008 20.740 22.742
HDI97.5 .860 .112 .096 0.222 26.336 33.476

3-s maintenance (45° color diff.)
MAP .854 .075 .070 �3.119 24.776 24.771
HDI2.5 .814 .044 .051 �3.967 21.708 18.104
HDI97.5 .891 .106 .098 �2.010 29.517 66.471

1-s maintenance (45° color diff.)
MAP .850 .090 .059 �0.846 23.056 26.904
HDI2.5 .814 .064 .017 �1.660 20.413 19.850
HDI97.5 .892 .118 .092 0.107 27.189 83.020

3-s maintenance (90° color diff.)
MAP .808 .100 .090 �1.389 23.099 24.771
HDI2.5 .766 .081 .050 �2.209 21.260 18.104
HDI97.5 .845 .128 .128 �0.558 26.057 66.471

1-s maintenance (90° color diff.)
MAP .842 .087 .069 �0.061 23.462 26.904
HDI2.5 .810 .069 .034 �0.678 20.834 19.850
HDI97.5 .878 .108 .102 0.870 27.189 83.020

Note. Ptarget, Pswap, and Pguess refer to the proportion of target, nontarget, and random guessing responses, respectively. Shift refers to the degrees the
target distribution was shifted either towards (attraction; positive values) or away from (repulsion; negative values) the nontarget color. SDtarget and SDswap

reflect the kappa(1) and kappa(2) parameters, converted to degrees of standard deviation. For the separate 45° and 90° color difference models, the stand-
ard deviation was shared between the target and swap distributions because of otherwise unreliable parameter estimates (see online supplemental material
for parameter estimates with separate precision parameters and for nonhierarchical parameter estimates). MAP = maximum a posteriori; HDI = highest
density interval.
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Shift Errors as a Function of Color Distance

To determine whether shift errors interacted with the color dif-
ference between the target and nontarget objects, we fit another
within-subject HBMM with color difference as the within-subject
conditions. When collapsing across maintenance duration, we
observed repulsion bias in both the 45° (MAP: �2.10, HDI:
[�2.78, �1.39]) condition and the 90° condition (MAP: �.64,
HDI: [�1.27,�.01]). The HDI for the difference in shift posteriors
did not overlap with zero (MAP: 1.41, HDI: [.51, 2.38]), indicat-
ing that the 45° condition produced credibly stronger repulsion
bias than the 90° condition, in line with the relational representa-
tion model (Bae & Luck, 2017; see also Golomb, 2015) and
Experiment 2.
To test for an interaction with maintenance duration, we con-

ducted an exploratory analysis where we separately modeled each

maintenance duration with color difference as the within-subject
condition (see Table 3). For the 3-s maintenance model, repulsion
bias was observed for both the 45° (MAP: �3.12, HDI: [�3.97,
�2.01]) and 90° (MAP: �1.39, HDI: [�2.21, �.56]) color differ-
ence conditions, with the 45° condition producing credibly stron-
ger repulsion bias than the 90° condition (MAP: �1.55, HDI:
[�2.91, �.37]). For the 1-s maintenance model, credible repulsion
bias was not observed for either the 45° (MAP: �.85, HDI:
[�1.66, .11]) or the 90° (MAP: �.06, HDI: [�.68, .87]) color dif-
ference condition, with no credible difference between conditions
(MAP: �.89, HDI: [�2.03, .31]). This suggests that the overall
stronger repulsion bias for the 45° color difference was likely
driven by the 3-s maintenance trials.

Swap Errors

For both maintenance duration conditions, the HDI for the swap
parameter, Pswap, did not contain zero (see Table 3), indicating
that swap errors were present regardless of the maintenance dura-
tion. Exploratory model comparison further supports this claim, as
the full model outperformed the nested model that lacked a swap
parameter (full model: 32428.4, nested model: 37028.1; D:
4599.7, SE: 122.8). The HDI for the difference in Pswap posteriors
contained zero (MAP: .008, HDI: [�.020, .038]), indicating no
credible difference in the proportion of swap errors between the
1-s and 3-s conditions.

Memory Performance

In an exploratory analysis, we compared the target parameter,
Ptarget, between maintenance duration conditions to test whether
the longer maintenance duration led to overall worse performance.
The HDI for the difference in Ptarget posteriors overlapped with
zero (MAP: .019, HDI: [�.018, .068]), indicating no credible dif-
ference in the proportion of target responses between maintenance
duration conditions. The Pguess parameter, reflecting random

Figure 7
Split Violin Plots Depict the Posterior Distributions for the Group-Level Estimates
of Shift Errors (Shift) in Experiment 3, Split by Maintenance Duration

Note. The inset depicts the difference of posteriors, which did not contain zero, meaning
that repulsion bias was credibly larger for the longer maintenance duration. See the online
article for the color version of this figure.

Figure 6
Raw Histograms per Condition of Responses Across All 81 Partici-
pants, Depicting Degrees of Error (Distance Between Reported Color
and Actual Color)

Note. Aligned such that the nontarget colors (swap locations) are centered
at þ45 and þ90, depicted as vertical black lines. See the online article for
the color version of this figure.
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guessing, also showed no credible difference between conditions
(MAP: .015, HDI: [�.017, .054]). There was also no credible dif-
ference between conditions for SDtarget (MAP: 3.21, HDI:
[�107.78, 107.15]) and SDswap (MAP: �7.37, HDI: [�125.53,
113.68]). Overall, these exploratory comparisons suggest that the
stronger repulsion bias for the 3 s maintenance duration was
unlikely to be driven by a difference in overall memory perform-
ance between conditions.

Experiment 4: Filler Versus No-Filler Task

The results of Experiments 1–3 indicated that repulsion bias is
stronger with a longer working memory delay. The existence of a
repulsion bias in this paradigm suggests that repulsion bias is not
necessarily retinotopically specific and can be attributed to a mne-
monic, not a perceptual, explanation. We also demonstrated swap
errors in all experiments, suggesting that swap errors can be
observed with perceptually distinct, real-world objects. In Experi-
ment 4, we aimed to better understand why increasing mainte-
nance duration leads to greater repulsion bias.
One hypothesis is that repulsion bias could be explained by an

active maintenance process; that is, it could be that repulsion bias
occurs as the result of multiple representations competing for
attention in working memory. The longer time spent actively
attending to representations during maintenance, the more these
representations may systematically repel from each other to pro-
duce less interitem confusion. This explanation would be in line
with the theory of biased competition, where representations com-
pete for cortical activity, influenced both by sensory activity and
top-down attentional biases (Desimone & Duncan, 1995).
An alternative hypothesis is that repulsion occurs as a function

of memory degradation. If longer memory delays lead to poorer
quality representations (e.g., due to passive memory degradation
or increased contextual interference; Barrouillet et al., 2012; Davis
& Zhong, 2017; Oberauer & Lewandowsky, 2008), this may
prompt the memory system to prioritize other sources of informa-
tion at recall, such as relational information, resulting in increased
repulsion bias. That memory degradation might result in increased
mnemonic bias follows predictions from an ideal (or optimal) ob-
server model, that attraction and repulsion biases might be adapt-
ive because they reflect the Bayesian procedure of combining
uncertain item-level information (i.e., representation of the target

item’s color) with other available information (Brady et al., 2018;
Chunharas et al., 2019; Geisler, 2011; Hemmer & Steyvers, 2009;
Honig et al., 2020; Huttenlocher et al., 2000). Here the other avail-
able information (often referred to as group-level information or
priors) would be about other items in the display, including rela-
tional information like feature similarity or relative distance in fea-
ture space between memory items, and the idea is that this group-
level information is weighted more heavily when the item-level
information is less certain; thus, repulsion bias would strengthen
as the quality of memory representations weakens over time.

In Experiment 4 we added a filler task presented during the
blank interval, because it leads to two opposite predictions accord-
ing to the above active maintenance and memory degradation
accounts (see Figure 8). Specifically, in Experiment 4, half of the
trials had a blank delay of 2,800 ms and the other half of trials
included a filler task during the delay period. In this filler task con-
dition, the trials had a blank delay of 800 ms followed by 2 s to
perform a size comparison task between two unique grayscale
objects (which object has the larger real-world size). If repulsion
bias reflects an active process during maintenance, then a filler
task should interfere with active attention to internal representa-
tions and result in decreased repulsion bias. If repulsion bias
occurs as a function of memory degradation, then a filler task
should worsen the quality of memory representations and hence
increase repulsion bias.

Note that our theoretical accounts operate under the assumption
that memory items were sufficiently encoded and maintained
(actively or passively). In the extreme example where a participant
is hardly able to recognize items, let alone remember their exact
color, it may be optimal for the memory system to ignore subtle
color differences and instead prioritize a gist-based representation
(e.g., average color of all memory items, which might actually
produce attraction bias) or to prioritize one of the two items while
discarding the other (in the hopes that the discarded item will not
be tested). We designed our experiments with the aim to provide
enough time for participants to encode and report the memory
items such that always responding around the average color, or
prioritizing one item and discarding the other item, would be sub-
optimal strategies. To preview our results, we did not find evi-
dence for attraction bias, and the proportion of target responses
averaged over 70% in both conditions, suggesting that participants
sufficiently encoded the memory items (although it is difficult to

Figure 8
Example Trial Sequence for Experiment 4

Note. The trial procedure was identical to Experiment 2 except that half of the trials involved a 2-s size com-
parison task during the delay, where the subject was instructed to click on the grayscale object with the larger
real-world size (in this example, the subject would click the car). The absolute time between encoding and test
was 3 s, regardless of whether the trial contained the filler task or not. See the online article for the color ver-
sion of this figure.
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wholly rule out these strategies based on our results). Also note
that the bias parameter is tied to the target distribution, such that
repulsion/attraction bias is only influencing trials where the item is
thought to be successfully maintained (according to the HBMM).
Finally, if we find no difference in repulsion bias between the

filler and no-filler conditions, it is possible that mnemonic repul-
sion bias could be explained by a third hypothesis, a simple tempo-
ral decay explanation. That is, whereas the active account predicts
reduced repulsion in the filler condition (due to lack of active
attention) and the degradation account predicts increased repulsion
in the filler condition (due to decreased memory quality), the tem-
poral decay account suggests that the effect might be driven
simply by the passage of time, resulting in similar repulsion
regardless of the filler task. Temporal decay is a major factor in
forgetting (Barrouillet & Camos, 2009; Barrouillet et al., 2012;
Pertzov et al., 2013; Vergauwe et al., 2009); hence, it might be
possible that the longer representations spend in maintenance, the
greater the repulsion bias. If repulsion bias can be explained by
temporal decay, then it should not matter if there is a filler task or
not during the working memory delay, as long as the absolute time
between encoding and retrieval is the same between conditions.
However, temporal decay is a relatively unclear mechanism. For
instance, temporal decay is correlated with several other cognitive
variables including contextual interference, and after controlling
for these variables it has been suggested that forgetting in working
memory does not depend at all on temporal decay (Lewandowsky
& Oberauer, 2009; Oberauer & Kliegl, 2006; Oberauer & Lewan-
dowsky, 2008). Thus, a lack of credible difference between the fil-
ler and no-filler conditions would not be as conclusive a result
from a theoretical perspective.

Method

Experiment 4 included a preregistered (https://osf.io/usrxq/
?view_only=6d1f0755173f43b3b6d8e8d161dd7fdc) sample size
of 81 participants (46 male, 35 female; M = 38.28 years, SD =
12.58). All participants were recruited using MTurk in the same
manner as Experiments 1–3. Thirty-four participants were
excluded based on preregistered exclusion criteria: Four partici-
pants were excluded based on the same criteria as Experiments
1–3 (..5 guessing proportion based on a basic mixture model),
and 30 participants were excluded for not correctly performing the

filler task (accuracy , 75%; note that because the filler task did
not require input, most of these excluded participants appeared to
ignore the filler task entirely).

The stimuli, procedure, and analyses for Experiment 4 were
identical to Experiment 2 except that half the trials contained an
intervening filler task during the delay (see Figure 8). Each trial
condition combination (filler/45° color difference, no-filler/45°,
filler/90°, no-filler/90°) was presented for 70 trials each (280 total
trials), with presentation order randomized for each subject. The
filler task was a size comparison task consisting of two unique
real-world objects presented above and below the fixation cross
(150 pixels away from fixation cross). The objects were the same
physical size as the memory items (each object was 200 3 200
pixels), and the task was to indicate which object was of the larger
real-world size. These objects were grayscale and drawn from a
separate stimulus set than the objects presented during encoding.
Objects were drawn from the Big and Small Objects dataset (Kon-
kle & Oliva, 2012) and the two displayed objects always consisted
of one “small” and one “big” object.

We chose this object size comparison task as the filler task
because a task requiring subjects to meaningfully process other
real-world objects should produce substantial interference with the
real-world objects being held in working memory (Craik, 2014),
allowing us to test whether repulsion bias depends on active main-
tenance of memory representations. We positioned the size com-
parison stimuli in different spatial locations than the initially
encoded objects because we were not interested in interference
from sensory memory or overlapping retinotopic information.

Results and Discussion

Model Results: Overall Shift Errors as a Function of
Filler Task

Mirroring the results of Experiments 2 and 3, for the 3-s mainte-
nance duration, no-filler condition, the HDI for the shift parameter
contained only negative values (MAP: �1.60, HDI: [�2.26,
�.93]). For the 3-s filler condition, however, the HDI contained
zero (MAP: �.13, HDI: [�.96, .76]). Credible repulsion bias was
therefore observed in the no-filler condition but not in the filler
condition. Table 4 depicts the MAP and 95% HDI for group-level
parameters, Figure 9 depicts the raw error histogram across

Table 4
Group-Level Parameter Estimates for Experiment 4, Split by Condition

Condition Ptarget Pswap Pguess Shift SDtarget SDswap

No filler
MAP .850 .089 .061 �1.600 24.252 29.477
HDI2.5 .815 .069 .031 �2.259 22.160 24.737
HDI97..5 .881 .117 .089 �0.930 27.535 47.416

Filler
MAP .720 .197 .085 �0.132 27.220 31.302
HDI2.5 .687 .170 .063 �0.955 24.445 27.300
HDI97..5 .749 .224 .110 0.759 31.652 38.941

Note. Ptarget, Pswap, and Pguess refer to the proportion of target, nontarget, and random guessing responses,
respectively. Shift refers to the degrees the target distribution was shifted either towards (attraction; positive
values) or away from (repulsion; negative values) the nontarget color. SDtarget and SDswap reflect the kappa(1)
and kappa(2) parameters, converted to degrees of standard deviation. See online supplemental material for non-
hierarchical parameter estimates. MAP = maximum a posteriori; HDI = highest density interval.
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participants for each condition (as noted above, it may be difficult
to visually detect shift errors in the raw histogram), and Figure 10
depicts the group-level (shift) and individual-level estimates for
the center of the target distribution.
The within-subject HBMM found that repulsion bias was stron-

ger on no-filler trials than filler trials, as indicated by a credible
difference in shift errors between conditions. The HDI for the dif-
ference in shift posteriors did not overlap with zero (MAP: 1.46,
HDI: [.46, 2.63]). This pattern of results supports the idea that
repulsion bias reflects an active maintenance process, which the
filler task interferes with.
As was the case in the previous experiments, exploratory model

comparison supported the full model compared with the nested
model that lacked a flexible target mean, as indicated by a smaller
WAIC (full model: 37494.8, nested model: 37771.0; D: 276.2, SE:

23.4). This provides additional support that repulsion bias was
credible, as the model provided a better fit when the center of the
target distribution was allowed to be biased away from the swap
distribution.

Shift Errors as a Function of Color Distance

As in previous experiments, we fit another within-subject
HBMM with color difference as the within-subject conditions.
When collapsing across filler and no-filler conditions, we observed
repulsion bias in the 45° (MAP: �1.95, HDI: [�2.84, �1.22])
condition but not the 90° condition (MAP: �.06, HDI: [�.82,
.74]). The HDI for the difference in shift posteriors did not overlap
with zero (MAP: 1.98, HDI: [.83, 3.07]), indicating that the 45°
condition produced credibly stronger repulsion bias than the 90°
condition, in line with the relational representation model (Bae &
Luck, 2017; see also Golomb, 2015) and Experiments 2 and 3.

To test for an interaction with no-filler/filler task, we conducted
an exploratory analysis where we separately modeled filler and
no-filler trials, with color difference as the within-subject condi-
tion (see Supplementary Tables 9–10). For the no-filler model,
credible repulsion bias was observed for the 45° condition only,
with the 45° condition producing credibly stronger repulsion bias
than the 90° condition. For the filler model, credible repulsion bias
was not observed for either color difference condition, with no
credible difference between conditions. This suggests that the
overall stronger repulsion bias for the 45° color difference was
likely driven by the no-filler trials.

Swap Errors

Swap errors (mistakenly reporting the nontarget color)
increased in the presence of a filler task, as indicated by a credible
difference in Pswap between conditions (MAP: .104, HDI: [.069,
.141]). While the proportion of swap errors was larger on filler tri-
als compared to no-filler trials, swap errors were credibly observed

Figure 9
Raw Histograms per Condition of Responses Across All 81
Participants, Depicting Degrees of Error (Distance Between
Reported Color and Actual Color)

Note. Aligned such that the nontarget colors (swap locations) are centered
at þ45 and þ90, depicted as vertical black lines. See the online article for
the color version of this figure.

Figure 10
Split Violin Plots Depict the Posterior Distributions for the Group-Level Estimates
of Shift Errors (Shift) in Experiment 4, Split by Condition (No-Filler or Filler)

Note. The inset depicts the difference of posteriors, which did not contain zero, meaning
that repulsion bias was credibly stronger for trials that did not contain a filler task. See the
online article for the color version of this figure.
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in both conditions (see Table 4), as indicated by the HDI for both
Pswap1 (group-level swap parameter for no-filler condition) and
Pswap2 (group-level swap parameter for filler condition) not con-
taining zero. Exploratory model comparison supported that swap
errors were credibly observed, as the full model outperformed the
nested model that lacked a swap parameter (full model: 37494.8,
nested model: 43921.6; D: 6426.8, SE: 151.4).

Memory Performance

In an exploratory analysis, we compared model parameter esti-
mates between no-filler/filler conditions to test whether the filler
task led to overall worse performance (see Table 4). As expected,
filler task trials led to worsened memory performance as indicated
by a decreased proportion of target responses. The HDI for the dif-
ference in Ptarget posteriors did not overlap with zero (MAP:
.130, HDI: [.086, .178]), indicating a credible difference in the
proportion of target responses between conditions. Meanwhile, the
Pguess parameter, reflecting random guessing, showed no credible
difference between conditions (MAP: .024, HDI: [�.011, .062]),
though there was an increase in swap errors, as reported above.
There was no credible difference between conditions for either SD
measure: SDtarget (MAP: 72.12, HDI: [�23.38, 154.33]) and
SDswap (MAP: 19.73, HDI: [�116.50, 110.25]).

Summary

Stronger repulsion bias was observed on trials without a filler
task compared with trials with a filler task, supporting the idea that
repulsion bias reflected an active maintenance process. Combined
with the results of Experiment 3, repulsion bias seems to occur as
the result of multiple memory representations competing for atten-
tion. Conversely, swap errors were observed more often on trials
with a filler task than trials without a filler task, following the con-
sensus that spatial attention is crucial for object-feature integrity
(e.g., Dowd & Golomb, 2019; Emrich & Ferber, 2012; Robertson,
2003; Treisman & Schmidt, 1982; Vul & Rich, 2010).

General Discussion

The main contribution of this article is that repulsion bias
strengthened with longer working memory delays, but only when
items were actively maintained. Repulsion bias reflects the subtle
misremembering of a target memory item as more dissimilar to a
reference point than it is in reality, likely in an attempt to better
differentiate items by the memory system (Bae & Luck, 2017;
Chunharas et al., 2019; Golomb, 2015). The process underlying
repulsion bias was found to occur during maintenance in a nonreti-
notopically specific experimental design, suggesting that repulsion
bias can occur mnemonically (that is, in the absence of a percep-
tual explanation). Moreover, Experiment 4 revealed that a filler
task during the working memory delay could disrupt the effect,
suggesting that this mnemonic repulsion bias is an active process.
Below we discuss the neural mechanisms and psychological theo-
ries that could potentially support this finding of active mnemonic
repulsion bias.

Neural Mechanisms of Repulsion Bias

Repulsion bias (perceptual and/or mnemonic) has generally been
explained by the underlying neural mechanisms of lateral inhibition
or optimal gain. According to lateral inhibition explanations, object
features (like color) may be represented in a map-like way such that
neighboring neurons code neighboring parts of feature space, and lat-
eral inhibitory connections between them help sharpen feature repre-
sentations. Thus, if the features of an attended working memory
object are similar to the features of another working memory object,
such that their representations are coded with nearby neurons, these
neurons may inhibit each other. As a result, neurons representing this
similar region of feature space become relatively suppressed, which
effectively results in both feature representations becoming biased
away from each other, and repulsion bias is observed (Johnson et al.,
2009; Wei et al., 2012).

Such theories of lateral inhibition have sometimes been explained
within the framework of dynamic field theory (or more generally,
continuous-attractor neural network models: Amari, 1977; Wilson &
Cowan, 1972), where recurrent interactions explain how neural pro-
jections are capable of sustaining themselves even in the absence of
sustained perceptual input, providing a possible neural explanation
for active working memory maintenance (Johnson et al., 2014;
Schutte & Spencer, 2009; Simmering & Spencer, 2008; Simmering
et al., 2006; Spencer et al., 2007). Specifically, dynamic field theory
has been used to explain evidence of delay-dependent repulsion bias
in spatial working memory tasks (e.g., Simmering & Spencer, 2008)
and therefore may generalize to our present observations of delay-de-
pendent repulsion bias in nonspatial visual working memory.

Whereas theories of lateral inhibition (specifically dynamic field
theory) support an active process of visual working memory main-
tenance, the optimal gain account makes no distinction between
active and passive processing. Optimal gain theory asserts that
when a target and nontarget are highly similar, the optimal behav-
ior is to increase the salience of the target relative to the nontarget.
From a single neuron perspective, this means that enhancing the
response of neurons that are tuned slightly away from the target
(in the direction away from the nontarget) can maximize the sig-
nal-to-noise ratio between the target and the nontarget, enabling
better discrimination (Navalpakkam & Itti, 2007; Scolari & Seren-
ces, 2009).

Optimal gain theory could support the active maintenance
account by suggesting that focused attention to the memory items
during a delay allows for increasingly more precise tuning to max-
imize the signal-to-noise ratio. But optimal gain theory could also
support a memory degradation account because the optimal behav-
ior may be that tuning should become more exaggerated when
there is interrupted attention, such that increased enhancement of
neurons tuned away from the nontarget item prevents interitem
confusion during a lapse of attention. Optimal gain may occur in
combination with lateral inhibition to support behavioral evidence
of repulsion bias.

Independent of the lateral inhibition versus optimal gain mecha-
nisms, a recent study using human EEG observed neural evidence
consistent with active memory mechanisms. Sutterer et al. (2019)
found that the selectivity of population-level tuning functions
decreased with two items in maintenance compared with one item.
They then used data-driven simulations to conclude that a working
memory model where two items can be simultaneously active is
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better supported as opposed to models where two items are main-
tained by rapidly switching between single-item active states or by
keeping one item in the focus of attention while others are rele-
gated to a passive long-term memory store. If multiple memory
items can be concurrently active in working memory then this
would be consistent with the above active maintenance mecha-
nisms and could suggest that neuroimaging investigations of repul-
sion bias might allow us to further explore the “active” nature of
the active maintenance account.

Psychological Theories of Repulsion Bias

Our findings also speak to several psychological theories of
repulsion bias, including a low-level perceptual account, theories
of working memory interdependence, and an ideal observer model.
These psychological theories could be implemented by the above
neurobiological accounts of repulsion bias; the psychological theo-
ries are not meant to be in opposition to the neural explanations.
We first rule out a purely perceptual account, concluding that
repulsion bias observed across our experiments reflected a mne-
monic phenomenon. We then consider how some canonical theo-
ries of working memory that assume that memory items are stored
independently are inconsistent with our results. Finally, we discuss
whether mnemonic repulsion bias might reflect Bayesian-like
behavior in accordance with an ideal observer model.

Perceptual Account

Our first goal was to test a low-level perceptual account for
repulsion bias. As explained in the Introduction, repulsion bias can
be observed in the absence of mnemonic processing in the case of
the direction and tilt illusions (e.g., Gibson & Radner, 1937; Wiese
& Wenderoth, 2007). These illusions can then be extended to
working memory designs in the case of direction aftereffects and
tilt aftereffects, where visual adaptation induces retinotopically spe-
cific perceptual biases on subsequent visual input (e.g., Gibson,
1937; Hiris & Blake, 1996; Wenderoth & Johnstone, 1988; Wender-
oth & Wiese, 2008; Wiese & Wenderoth, 2007). An open question
was whether such perceptual mechanisms might account for the
repulsion biases observed in visual working memory experiments.
Our experiments are the first to demonstrate repulsion bias using a

nonretinotopically specific working memory design, which rules out
a purely perceptual explanation. Moreover, we observed differences
in repulsion bias between conditions with identical layout and encod-
ing demands, that only differed in terms of the maintenance process.
The mnemonic repulsion bias observed in the present experiments is
thus distinct from the above observations of perceptual repulsion
bias. As such, the psychological theories discussed in more detail
below focus on mnemonic, not perceptual, interactions.

Working Memory Interdependence

Several influential models of visual working memory, including
slot models (e.g., Luck & Vogel, 1997; Zhang & Luck, 2008) and
resource models (e.g., Bays & Husain, 2008), contend that memory
items are stored independently. More recently, these models have
been disputed in favor of nonindependent working memory storage
(e.g., Brady & Alvarez, 2015; Johnson et al., 2014; Oberauer & Lin,
2017). For instance, statistical regularities in regard to prior stimulus
distributions and spatial context can bias working memory reports

(Huang & Sekuler, 2010; Jiang et al., 2000). Hypothetically, humans
could have an independent memory system where biases occur at de-
cision-making, but our results support the interdependence of mem-
ory items because we observed biases in behavior dependent on
whether items were actively attended to during this interval. This
does not preclude additional biases potentially being involved at deci-
sion-making.

Ideal Observer Model

The ideal observer model is a general theoretical framework
(Geisler, 2011) that has been applied to mnemonic repulsion bias
and intuits that subjects adaptively combine group-level (or gist)
information (e.g., color of nontarget items, ensemble statistics,
spatial context, or learned “priors”) with item-level information
about the target object (Brady et al., 2018; Hemmer & Steyvers,
2009; Huttenlocher et al., 2000) to optimize performance, given
the limited capacity of visual working memory (Luck & Vogel,
1997; Zhang & Luck, 2008). The ideal observer model could pro-
vide a parsimonious explanation with the conclusion of Chunharas
et al. (2019)—that repulsion bias is an adaptive process that is
stronger with shorter encoding durations and longer maintenance
durations—if we consider the relational information (also known
as feature similarity) of memory items to be an important group-
level feature. Shorter encoding durations and longer maintenance
durations should both weaken (item-level) memory strength, and it
was in these conditions that Chunharas et al. (2019) observed the
strongest repulsion bias (i.e., relational information was relied on
by the memory system more in these task conditions).

At first glance, our current results are not consistent with this
interpretation of the ideal observer model. In Experiment 4, we
observed that repulsion bias was stronger in the condition where
the item-level evidence (memory strength as indicated by an
increased proportion of target responses) was also stronger. Fur-
ther, when we used confidence range reports as a proxy for mem-
ory strength, we did not observe any association between
confidence and the magnitude of repulsion bias (although the con-
fidence reports may not have been sensitive enough to detect a dif-
ference, see the online supplemental material), whereas the ideal
observer model would predict that highly confident memory
reports should be associated with weaker repulsion bias (as in
Honig et al., 2020, where they demonstrate how an ideal observer
model can explain how participant uncertainty correlated with
attraction bias).

If we consider a few restrictions on the ideal observer model,
however, then this theory could still provide a valid explanation
for active mnemonic repulsion bias. In other words, perhaps rela-
tional information might only be relied on under certain circum-
stances; for instance, when working memory items are (a)
sufficiently encoded, (b) easily confusable or not easily individ-
uated, and (c) actively attended. If these conditions are all met,
then weakened memory strength should be associated with
increased repulsion bias, in line with the ideal observer model.
Indeed, in an exploratory analysis where we only included trials
where responses were reasonably correct (,30 ° away from the
target color), there was a significant negative correlation between
repulsion bias and confidence (see the online supplemental
material). However, if any of those three conditions are not met,
then a more suitable prior to rely on might be gist information
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(also known as ensemble statistic, average feature), in which case
repulsion errors would be less likely to be observed. As an exam-
ple, given two similar blue-green objects that are sufficiently
encoded and actively attended, active mnemonic processing sepa-
rates the colors away from each other to reduce confusability
(repulsion bias); however, if the two blue-green objects are not
sufficiently encoded or maintained, you may only remember
“cool” colors and hence select a medium blue-green color (attrac-
tion bias).

Additional Considerations

While some prior studies have used a nontarget item as a refer-
ence point (e.g., Chunharas et al., 2019; Czoschke et al., 2020),
several other studies have used hierarchical properties like the en-
semble statistic (e.g., Brady & Alvarez, 2011) or the average color
observed across all past trials (e.g., Huang & Sekuler, 2010). We
note that our results could differ depending on what property the
memory system uses as the reference point for repulsion bias
because hierarchical properties may be automatically computed
and take up space in memory independently from concurrently
maintained memory items (for discussion see Brady et al., 2011).
Results could also differ if more than two items need to be main-
tained or if items must be transferred into long-term memory.
Another interesting question is whether the swap distribution is

biased similarly to the target distribution. In theory, a swap repre-
sents object-feature misbinding such that the participant may be
reporting the successfully maintained nontarget item. In this case,
we would expect to observe repulsion bias for the swapped nontar-
get in addition to our present observation of repulsion bias for the
target item (i.e., both items repulsed away from each other during
maintenance). On the other hand, it is possible that swap trials
indicate that maintenance was not as successful as trials where
items were correctly reported, and because we conclude that suc-
cessful encoding and active attention are necessary components to
repulsion bias, perhaps such a bias is not as strong or is not present
for swap trials. It is difficult to test for a bias in the swap distribu-
tion with the present data due to an insufficient number of swap
trials, but future work could explore this research question by
prompting color reports for both memory items and/or manipulat-
ing the paradigm to encourage more swap errors.
It is also important to consider that the present experiments are

the first demonstration of repulsion bias using real-world objects.
One could have argued that repulsion bias would only be expected
if objects shared similar perceptual features (e.g., memory items
are two similarly colored squares). Our observation of credible
repulsion bias using perceptually distinct, real-world objects sug-
gests that repulsion bias is robust to more realistic situations and
to a large assortment of visual stimuli.

Context of the Research

This research stems from work in visual working memory that
observed attraction and repulsion bias dependent on interitem simi-
larity (e.g., Bae & Luck, 2017; Golomb, 2015) and work in the per-
ception domain (specifically tilt and direction aftereffects) that
elicited similar attraction and repulsion biases (e.g., Gibson, 1937;
Hiris & Blake, 1996; Wenderoth & Johnstone, 1988; Wenderoth &
Wiese, 2008; Wiese & Wenderoth, 2007). Recent articles from our

research group also observed repulsion and attraction biases in long-
term memory using real-world stimuli (Scotti et al., 2021) as well as
biased feature perception during dynamic spatial attention contexts
such as attentional capture (Chen et al., 2019) and remapping across
eye movements (Golomb et al., 2014). The similarities observed
across domains prompted theoretical discussion regarding whether
similar mechanisms account for these phenomena, and more gener-
ally, the functional role and implications of memory biases for mod-
els of working memory. There are several directions for future
research related to the present work, including behavioral investiga-
tions to understand the contexts where repulsion bias is observed and
neuroimaging investigations to potentially observe an active repre-
sentational bias without reliance on behavioral input.

Conclusions

The present results raise important questions regarding the na-
ture of working memory maintenance. We first demonstrate that
repulsion bias in visual working memory can be observed in the
absence of any perceptual explanation. We then report the some-
what counterintuitive idea that improved attention to working
memory items during maintenance can result in stronger repulsion
bias. This observation that repulsion bias in working memory
reflects an active process ongoing during maintenance supports
theories of working memory that assert that representations are
interdependent (e.g., Brady & Alvarez, 2015; Oberauer & Lin,
2017), adding that these dependencies can produce systematic
biases as the result of competing mnemonic representations.
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