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Abstract

Attention allows us to select relevant and ignore irrelevant information from our complex environments. What happens when
attention shifts from one item to another? To answer this question, it is critical to have tools that accurately recover neural repre-
sentations of both feature and location information with high temporal resolution. In the present study, we used human electro-
encephalography (EEG) and machine learning to explore how neural representations of object features and locations update
across dynamic shifts of attention. We demonstrate that EEG can be used to create simultaneous time courses of neural repre-
sentations of attended features (time point-by-time point inverted encoding model reconstructions) and attended location (time
point-by-time point decoding) during both stable periods and across dynamic shifts of attention. Each trial presented two ori-
ented gratings that flickered at the same frequency but had different orientations; participants were cued to attend one of them
and on half of trials received a shift cue midtrial. We trained models on a stable period from Hold attention trials and then recon-
structed/decoded the attended orientation/location at each time point on Shift attention trials. Our results showed that both fea-
ture reconstruction and location decoding dynamically track the shift of attention and that there may be time points during the
shifting of attention when 1) feature and location representations become uncoupled and 2) both the previously attended and
currently attended orientations are represented with roughly equal strength. The results offer insight into our understanding of
attentional shifts, and the noninvasive techniques developed in the present study lend themselves well to a wide variety of
future applications.

NEW & NOTEWORTHY We used human EEG and machine learning to reconstruct neural response profiles during dynamic shifts
of attention. Specifically, we demonstrated that we could simultaneously read out both location and feature information from an
attended item in a multistimulus display. Moreover, we examined how that readout evolves over time during the dynamic pro-
cess of attentional shifts. These results provide insight into our understanding of attention, and this technique carries substantial
potential for versatile extensions and applications.

feature binding; inverted encoding model; neural reconstructions; spatial attention shift; SSVEP

INTRODUCTION

The visual environment contains so much information,
and given that we have limited cognitive resources visual
attention plays an essential role in selecting the important
information (1–3). Spatial attention is one way we can focus
on the most relevant objects and locations for behavior and
filter out the irrelevant information. Spatial attention can
accelerate target information accrual across eccentricity (4)
and may speed the transition between sensory input and the
formation of object representations (5–7). In our daily lives,

however, spatial attention is rarely static: when there are
multiple objects or locations of interest, we may shift spatial
attention frequently between them. Numerous studies have
investigated the neural mechanisms of shifts of attention
with various neuroscience tools (see reviews in Refs. 8–10),
and exploring the behavioral consequences of shifts of atten-
tion has become an important topic in the cognitive psychol-
ogy literature (1, 11–14).

At the whole brain network level, neuroimaging studies
have established two separate fronto-parietal systems involved
in different attentional operations: the dorsal attention network,
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which is related to top-down goal-directed attention, responsi-
ble for the voluntary deployment of attention to stay focused
on current goals, and the ventral attention network, which is
related to bottom-up, stimulus-driven attention, responsible
for the reorientation to salient or unexpected events in the
environment (9, 15). Neurophysiological evidence is consist-
ent with top-down and bottom-up attention signals in frontal
and parietal cortices (16), and it has been well documented
that fronto-parietal activation is associated with the control
of orienting (17–22). Specifically, the superior parietal lobule
(SPL) and medial regions of the prefrontal cortex show tran-
sient increases in neural activity when attention is disen-
gaged from fixation and shifts to new peripheral locations
(19, 22). SPL is also shown to engage in covert shifts of
attention between spatial locations (19, 23–25), features
(24), objects (26), and visual/auditory modalities (27). Human
electroencephalography (EEG) studies have further identified
certain event-related potential (ERP) components linked to
spatial shifts of attention (7, 28–30), thought to be localized to
extrastriate and parietal cortices (5, 31). Other studies have
focused on neural time courses of attentional shifts, using
electrophysiological signatures of EEG and single-unit record-
ing (32, 33).

At the same time, human behavioral studies have revealed
behavioral costs associated with shifts of attention. For
example, reaction times are slower when attention must be
shifted to a new location to perform a task rather than hold-
ing attention at the same location (34, 35). Similar behavioral
costs are found when a distracting stimulus captures atten-
tion away from a target location (36). Furthermore, more
recent studies have revealed that these dynamic shifts of
attention bring additional challenges to our visual system to
correctly bind location and features (11, 37–39). Identifying
visual objects requires our brain to process both location and
feature information (40–47), and a common theory of fea-
ture integration suggests that attention serves as a glue to
bind objects’ features together (45, 48, 49). During rapid
shifts of attention, and when spatial attention is otherwise
disrupted or spread across different locations, different types
of feature binding errors can occur (11, 37–39, 50).

To study dynamic shifts of attention and understand how
these behavioral consequences link to shifts of attention at a
neural level, it is essential to have tools that can accurately
recover neural representations of both feature and location
information and do so across a shift of attention with high
temporal resolution. On the rise of machine learning and
multivariate pattern analyses in recent years, many func-
tional (f)MRI studies have made efforts to decode or recon-
struct location- and/or feature-selective responses in the
human visual cortex (see Refs. 51–53 for reviews). By making
prior assumptions of organization of feature space, encoding
models have advantages in reconstructing population-level
response profiles of the sensory cortex (54). The inverted
encoding model (IEM), one example of an advanced encod-
ing model of neural representation, has been successfully
utilized to reconstruct location- or feature-selective response
profiles in both visual perception and visual working mem-
ory (55–60).

Despite these recent advances, fMRI has inherently poor
temporal resolution because of the lag of hemodynamic
response. This makes fMRI a suboptimal tool to study the

dynamic process of neural representations across attention
shifts. Electroencephalography (EEG) and magnetoencepha-
lography (MEG) have millisecond-level temporal resolution
and make better candidates to reveal the dynamics of neural
information processing. Previous studies have found that
EEG and IEM could be exploited to reconstruct visual per-
ceptual information and working memory content (6, 57, 61,
62), but to our knowledge this has never been attempted
across dynamic shifts of attention.

In the present study, we used EEG and IEM to reconstruct
the neural response profiles during dynamic shifts of atten-
tion. Our design has multiple unique advances over prior
studies. First and foremost, we focus on simultaneous read-
out of location and feature information from an attended
stimulus and how that readout evolves over time. To do so,
we used a multistimulus design, where two stimuli were pre-
sented but only one was attended at any givenmoment. This
is important because if only one stimulus was presented and
the algorithm was run to reconstruct its location or feature
(e.g., Ref. 61), the decoded information could come from two
sources: the signal could be directly driven by the sensory in-
formation and/or by the attended information. Therefore, to
better understand shifts of attention and recover the content
of attended information specifically, we presented two stim-
uli simultaneously and deliberately maintained the same
visual information while manipulating spatial attention.
Finally, we make use of a variation on the steady-state visual
evoked potential (SSVEP) approach to access both attended
location and feature information from a common neural sig-
nal; as described more below, our approach incorporates
aspects from both frequency tagging (33, 63) and alpha band
decoding (57, 64–69) to produce a neural measure with both
theoretical and practical advantages.

Some prior studies have used EEG steady-state visual
evoked potentials (SSVEPs) to access which of multiple items
is being attended via a frequency tagging approach, where
each stimulus is tagged by presenting it repeatedly at a cer-
tain temporal frequency, which entrains the neural signal
(63). In these studies, the EEG signal is decomposed into
power at different frequencies, and the attended item can be
tracked based on which of the tagged frequencies has greater
power (33) or increased reconstruction quality (62). In the
present study, however, we are not interested in tracking
which of the two items is being attended; rather, we are
interested in reconstructing what is being attended, i.e., how
do the contents of attention (feature representations) evolve
across shifts of covert spatial attention? Thus, rather than
using frequency tagging, we presented the two stimuli at the
same frequency, such that the generated SSVEP signal
reflects both stimuli. In this sense, our approach ismore sim-
ilar to studies that try to reconstruct the focus of attention
from a common, stimulus-independent alpha band signal
(65, 69). Critically, however, we aim to independently recon-
struct both attended spatial and attended feature informa-
tion. For this purpose, we hypothesized that SSVEP power at
the stimulus-entrained frequency may be more beneficial,
especially given prior evidence that location information is
robustly decodable from alpha band activity but location-in-
dependent orientation information is not (64). We con-
ducted machine learning analyses to test whether we can
reconstruct the attended location and feature information
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from this common signal. We are particularly interested in
tracking how this recovered information updates with a shift
of attention. Our goals were thus to establish 1) whether this
technique can produce reliable reconstructions of attended
location and feature information from multistimulus dis-
plays and 2) whether we can track how these reconstructions
change over time across dynamic shifts of attention.

METHODS

Participants

Twenty-five subjects (8 male, 17 female; mean age = 21.56
yr) participated in the experiment for monetary compensa-
tion ($15/h). All participants reported having normal color
vision and normal or corrected-to-normal visual acuity.
Three additional participants were excluded because of poor
behavioral performance (change detection accuracy in Hold
trials < 10%; the rest of participants >70%, see Behavioral
Task). All participants provided written informed consent,
and study protocols were approved by The Ohio State
University Behavioral and Social Sciences Institutional
Review Board.

Behavioral Task

The stimuli consisted of one black fixation cross and two
colored flickering, square-waved gratings presented on a
solid gray background with luminance of 37.5 cd/m2. The
size of the fixation cross was 1�, and it was displayed at 2�

visual angle below the center of the screen. The size of each
grating was 8� visual angle in diameter, and it was displayed
at 2� above and 6� left or right of the screen center (Fig. 1).
The spatial frequency of the gratings was 4 cycle/degree vis-
ual angle (dva). The orientations were chosen from a set of
nine orientations (0�, 20�, 40�, 60�, 80�, 100�, 120�, 140�,
160�), such that the two gratings displayed were always 60�

apart (clockwise or counterclockwise), resulting in 18 differ-
ent stimulus pair combinations. An independent jitter rang-
ing from�5� to 5� was then added to each orientation.

One grating was colored purple (L = 70, a� = 28.4, b� =
�21.4), and the other one was colored gold (L = 70, a� = 11.6,
b� = 97.4); the two colors were equiluminant. To generate
SSVEPs, the contrast of the gratings was reversed (e.g., pur-
ple to white to purple) at 40 Hz (i.e., the stimuli changed 40
times per second). Participants were asked to always covertly
attend to either the purple grating or the gold grating (color
balanced across participants), all while keeping their eyes
fixated on the fixation cross. The to-be-attended color was
determined on a participant-wise basis: 13 participants
always attended the purple grating during their session, and
12 always attended the gold grating. The purple and gold gra-
tings were equally likely to appear in the left or right position
at the start of the trial, and participants were instructed to
covertly shift their attention if the colors switched positions
(described below).

Before each trial, participants were shown a screen with a
fixation cross and a black arrow above it that pointed left or
right, indicating where the to-be-attended target grating

Report
Orientation

Gratings flicker at 40Hz for 3000ms
Shift cue occurs between 1300ms to 1700ms

Time

Hold Trial Shift Trial

......

......

......

......
......

......

......

......

Color Shift

Figure 1. Example trial sequences for Hold
attention and Shift attention trials. Example
here shows sequences for a participant asked
to covertly attend the purple grating (half of
the participants attended the gold grating
instead). Dashed circles (not actually shown to
participants) indicate the to-be-attended item
over time. On switch trials (randomly inter-
mixed with Hold trials), the colors of the gra-
tings switched in the middle of the trial and
participants had to shift attention to track the
purple (or gold) one. Participants were
instructed to monitor the attended item for
subtle orientation changes and press a button
when one was detected. At the end of trial,
participants were asked to rotate an orienta-
tion bar to match the orientation of the most
recently attended grating.

NEURAL RECONSTRUCTIONS ACROSS ATTENTION SHIFTS

J Neurophysiol � doi:10.1152/jn.00180.2022 � www.jn.org 141
Downloaded from journals.physiology.org/journal/jn at Ohio State Univ HSL (003.128.143.042) on September 1, 2023.

http://www.jn.org


would appear at the beginning of the trial. We included this
additional spatial cue to avoid visual search and/or attention
shift effects at the beginning of the trial. When they were
ready to begin the trial, participants pressed the space bar.
The two colored, flickering gratings appeared on the screen
and were displayed for 3,000ms.

There were two spatial attention conditions: In half of the
trials, the colors of the two gratings remained the same
throughout the trial, so participants attended to the same
item/location the entire trial (“Hold condition”). In the other
half of trials, the two gratings switched colors midway
through the trial (i.e., the purple grating turned gold, and the
gold grating turned purple). Once the two gratings switched
their colors, participants needed to immediately shift their
spatial attention to the other grating (“Shift condition”). On
Shift trials the two gratings swapped colors but preserved
their original orientations, so the spatial shift resulted in
attending a new grating whose orientation was 60� different
from the original one. Hold and Shift trials were intermixed
and randomized in each block, such that participants could
not predict whether a shift would take place at the beginning
of the trial. The onset of the shift cue was randomly picked
for each trial from a uniform distribution ranging from 1,300
ms to 1,700ms after the stimulus onset.

To confirm that participants maintained their attention
on the correct grating, each grating had zero, one, or two
subtle orientation changes (10�) during the trial. For each
grating independently, there was a 50% probability of a
change in the first part of the trial (0–1,300 ms) and a 50%
probability of a change in the second part of the trial (1,700–
3,000 ms). The probabilities were independent, so overall on
each trial there was a 25% likelihood of no changes, a 50%
likelihood of a single change, and a 25% likelihood of two
changes. Participants were instructed to immediately press
the “s” key when they detected an orientation change in the
attended grating. They were also told to disregard any
changes in the nonattended grating. In particular, if the cur-
rent trial was a shift trial, once the color switch happened
participants needed tomonitor and report the subtle orienta-
tion change in the newly attended grating and ignore the
previously attended grating. At the end of trial, participants
were also asked to rotate an orientation bar (appearing on
the screen center) to match the orientation of the most
recently attended grating and press the space bar to confirm
their answer.

To confirm that participants maintained fixation on the
fixation cross while covertly attending the grating, we per-
formed gaze-contingent eye tracking. If a participant’s eye
position deviated >1.5 dva from the fixation cross during the
period while the flickering gratings appeared on the screen,
the trial was aborted immediately and repeated at a random
time later in the block.

The study was scheduled in two sessions. In the first ses-
sion, participants completed two blocks of the main be-
havioral task without EEG, to familiarize themselves with
the task. The second session (scheduled at a later time)
was the official EEG session. During this 2-h session, par-
ticipants completed up to 12 blocks of the task (each con-
taining 48 trials, 24 per condition) while EEG data were
collected. We decided in advance that participants who
completed at least 10 blocks (480 trials) would be included

in the analyses; all 25 participants met this criteria (M =
11.72 blocks).

Experimental Setup

All stimuli were presented with MATLAB (MathWorks,
Natick, MA) and the Psychophysics Toolbox (70–72) on an
Apple Mac Mini. Participants were seated 80 cm away from a
27-in. CRT monitor with a resolution of 1,280 � 1,024 and a
refresh rate of 120 Hz. The CRT monitor was color calibrated
with a Minolta CS-100 (Minolta, Osaka, Japan) colorimeter.

Eye tracking.
Participants’ eye position was monitored with an EyeLink
1000 system (SR Research, Ottawa, ON, Canada) recording
pupil and corneal reflection in real time to ensure that par-
ticipants were fixating the central fixation cross (trials on
which participants broke fixation were aborted, as described
above). A chin rest was used to stabilize participants’ head
position.

EEG.
Scalp EEG activity was recorded while subjects performed
the behavioral task in a shielded testing room. Each subject
was fitted with an elastic cap containing 64 active Ag/AgCl
electrodes arranged in an extended 10-20 layout, recorded
via a Brain Products actiCHamp Amplifier at a sampling rate
of 1,000 Hz. Two additional electrodes (TP9, TP10) were
attached to the left and right mastoids via electrode stickers.
Electrode impedances were reduced to <25 kX before the
commencement of each experiment session.

EEG Preprocessing

EEG data preprocessing was done with EEGLAB (73) and
custom MATLAB scripts. We first downsampled the EEG
data to 250 Hz and rereferenced to the mean activity of all
electrodes offline. Then we applied a band-pass filter from
0.1 to 58 Hz (using “pop_eegfilternew.m” in EEGLAB). The
data were segmented into epochs corresponding to each trial
by taking EEG activity for each electrode from �500 ms to
3,500 ms relative to the start of that trial. (The time period
when the stimuli were presented on the screen was 0 ms to
3,000 ms.) We removed epochs in which the peak-to-peak
range of any electrode was larger than 50 μV during the stim-
ulus display (from 0 ms to 3,000 ms relative to the start of
each trial). Each epoch was then visually inspected to con-
firm that there were no further artifacts. On average, 12.81%
of trials (SD: 2.52%) were discarded for each participant after
the preprocessing.

Our experimental design (described below) perfectly bal-
anced trial counts across conditions, but after noisy trials
were excluded the counts may not be fully balanced within
each participant. Because an imbalance in the initially
attended location (left vs. right) could influence training of
the models, we rebalanced the attended target location to
equate the number of trials on which the target was on the
left side of the screen in the beginning or on the right side of
the screen by randomly selecting a subset of trials from the
larger group. Because each random selection caused a small
number of trials to not be included in the final analyses, we
repeated the selection process 100 times and applied all
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analyses for each selected dataset. We report the final aver-
aged results tominimize the random selection effects.

Behavioral Analyses

Change detection task.
We calculated the d0 for the change detection task. Each trial
may have zero, one, or two orientation changes. Because two
orientation changes in one trial could be displayed very close
to each other, participants may respond by pressing the
response key longer but not pressing twice. Because this
change detection task was primarily intended to encourage
and verify participant compliance, to simplify our analyses
we combined trials with one and two orientation changes.
Hit trials were defined as trials where participants success-
fully detected any changes when there was at least one
change. False alarm trials were defined as participants
reporting one or two changes when the trial had zero
changes. d0 was calculated as

d0 ¼ z hit rateð Þ� z false alarm rateð Þ
To avoid infinite values, we manually defined the mini-

mum and maximum probability of each rate as 1/N and (N �
1)/N, whereN is the number of trials of that condition.

Posttrial orientation report.
For the posttrial continuous report task, the difference
between the correct orientation and the reported orientation
was calculated as the “report error” for each trial. The report
error range is from �90� to 90�. We realigned the direction
of report error in the shift condition so that a positively
signed report error means that the reported orientation was
attracted toward the orientation of the initially attended
item (þ60�) and a negatively signed report error means that
the reported orientation was repulsed away from the initially
attended item’s orientation. On Hold trials, the report error
was mock aligned to match the shift condition (and elimi-
nate any systematic clockwise/counterclockwise bias). We
then fit the distribution of report error with a probabilistic
mixture model (74, 75). Themodel assumes that the distribu-
tion of report error comes from two sources (Formula 1): one
von Mises distribution (/) accounting for the probability to
correctly report the target orientation, with a flexible mean
(μ) allowing the model to capture any systematic bias from
the target orientation and a flexible concentration parameter
(κ) to capture precision, and one uniform distribution
accounting for the probability (c) of random guessing. Note:
because we did not observe any large “swap” errors (see Fig.
3), we chose this simpler mixturemodel without a swap error
distribution.

P hð Þ¼ 1� cð Þ/l;j þ c
1
p

� �

For each participant and each condition, we fit the model
by applying Markov chain Monte Carlo with MemToolbox
(76). The best-fitting parameters (maximum likelihood esti-
mate) were compared between conditions. We also tested
whether there were feature distortions in each condition by
comparing the mean shift parameter (μ) to zero. We addi-
tionally calculated the mean signed error (without mixture
modeling) for each participant and each condition as a non-
modeling measure to determine whether the mean of the

report error distribution for each condition was significantly
shifted from zero.

Manipulation Check: Event-Related Potential Analysis

As another way of confirming that participants were cor-
rectly allocating attention to the target orientation, especially
on shift trials, we analyzed event-related potential (ERP) data
aligned to the shift cue (in the Hold trials, we randomly
picked a time point at each trial as the mock “shift cue” time).
We averaged the signal amplitude from a subset of posterior
and parietal channels (P7/P8, PO7/PO8, P3/P4, and O1/O2)
based on the previous literature (77) and subtracted the base-
line EEG activity from 400 ms to 0 ms before the shift cue to
calculate the ERPs. We sorted trials based on the attended
side and calculated the difference waveforms by subtracting
signals from contralateral side to ipsilateral side. We hypothe-
sized that if attention was correctly shifted to the new target
when the shift cue appeared, we should observe a robust
N2pc component on Shift trials but not Hold trials (28). We
calculated the mean N2pc amplitude by averaging the differ-
ence signals from 200 ms to 300 ms. We also calculated the
contralateral delay activity (CDA) by averaging amplitude
from 400ms after shift cue onset to the end of the trial.

Main EEG Analyses: Pipeline for Reconstructing
Attended Spatial and Feature Information

Time-frequency analysis.
Our main analyses rely on time-frequency analyses of the
preprocessed EEG signal. Below we describe the steps to
extract the SSVEP power over time, which is then used for
decoding attended location [see Multivariate classification
(decoding attended location)] and attended orientation [see
Inverted encoding models (reconstructing attended orienta-
tion)]. This pipeline is visually depicted in Fig. 2. Because
our main emphasis is on reconstructing attended feature
and location information across shifts of attention, we use
the Hold trials as training data and the Shift trials as the test-
ing data for the models.

First, to validate that our design evoked significant
SSVEPs, we calculated the EEG power spectrum. Figure 2A
shows an example electrode channel (POz) illustrating the
increased power in the 40 Hz frequency band (the stimulus
frequency), with the spatial topography of the SSVEP signal
maximal over the parietal-occipital electrodes.

To extract the time point-by-time point SSVEP power for
the main analyses, we first applied a frequency-domain
Gaussian-shaped filter to the epoched artifact-free EEG sig-
nal for each trial (78). The analysis is done with custom
Python and MATLAB scripts. A Fourier transform was
applied to the padded signal to convert it from time domain
to frequency domain. The frequency-domain EEG signal was
point-wise multiplied by a Gaussian-shaped filter with peak
frequency at 40 Hz and full-width at half-maximum
(FWHM) at 3 Hz. An inversed Fourier transform was then
applied to recover the time-domain EEG signal. Finally, to
extract the instantaneous power value of SSVEP, we applied
a Hilbert transform to the filtered EEG data. To better deal
with the edge effect, the signal was padded with 500 ms of
blank data in both ends before the time-frequency analysis.
The padded data were removed after the analyses to
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maintain the same length as the original signal. To maxi-
mize our temporal resolution, we tested different wavelets
with FWHM ranges from 0.5 Hz to 5 Hz and found that at
least 3 Hz was required to achieve a reliable orientation
reconstruction.

The above analysis results in a m·n·t matrix for each par-
ticipant and each condition representing the spatiotemporal

pattern of SSVEP power, where m is the number of electro-
des, n is the number of trials, and t is the number of time
points. The temporal resolution of this matrix is 4 ms (we
downsampled the EEG signal to 250 Hz). However, it should
be noted that because of the use of the 40 Hz SSVEP and fre-
quency filtering, each data point is not entirely independent.
The effective temporal precision ranges from a minimum of
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Figure 2.Overview of EEG analysis procedure. A: time-frequency spectrum of example electrode (POz), showing the increased power in the 40 Hz stim-
ulus frequency band. Scalp distribution shows that steady-state visual evoked potential (SSVEP) power in the 40 Hz band was strongest among parieto-
occipital electrodes, as expected. B: overview of EEG analysis pipeline for reconstructing attended feature and spatial information. C: schematic for the
feature reconstruction (inverted encoding model) process. See METHODS for details.
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25 ms (the SSVEP frequency) to �140 ms (estimated time for
the filtered signal to achieve 95% maximum power; 75%
power takes �50 ms). To avoid overfit and reduce computa-
tional demands, the 17 posterior channels (P7, P5, P3, P1, Pz,
P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2) were
selected for input to the decoding and encoding model, as
previous literature has reported that SSVEP is most com-
monly observed in these posterior electrodes (Ref. 63; also
see Fig. 2A).

Inverted encoding models (reconstructing attended
orientation).
To reconstruct attended feature information on Shift trials,
we used a cross-condition training and test routine. We
trained the model based on the patterns of EEG SSVEP power
and orientation of the attended items on Hold trials and then
inverted the model weights to reconstruct the attended orien-
tation on Shift trials. We first applied this inverted encoding
model (IEM) procedure to the stable attention periods of the
shift trials, defining the before-shift period as the first second
after stimulus onset (time 0 to time 1 s) and the after-shift pe-
riod as the last second before stimulus offset (time 2 s to 3 s).
SSVEP power was averaged over each time window for each
electrode and participant. For both stable attention periods,
as well as the dynamic reconstruction analyses below, we
wanted to ensure that we used common training data. The
use of common training data ensures that any differences in
test results are not due to the differences in the training data.
For the stable attention periods, we tested two options for
common training data: the two corresponding stable atten-
tion periods from Hold trials (first second or final second).
Note that we wanted to avoid the middle period of the Hold
trials since Hold and Shift trials were intermixed, and partici-
pants may have been anticipating or preparing for attention
shifts even on Hold trials. For this reason, for the dynamic
reconstructions belowwe selected the final second of Hold tri-
als (rather than the first second) as the training data set,
because there was no uncertainty at that point in the trial as
to whether or not a shift would occur, so this period was the
most pure hold-attention period.

For the dynamic reconstruction of attended feature over
time analysis, we trained the model on the final-second time
window of Hold trials (i.e., the average power over that train-
ing window) and then tested the model on the time point-
by-time point Shift data. We alternatively considered using a
model with separate training data for each time point [train
Hold time(t), test Shift time(t)], but there are both theoretical
and practical advantages of using common training data for
each reconstruction (79). (Preliminary analyses using the
time point-by-time point train and test procedure gave us
similar, though noisier, results.)

For the IEMs, we followed similar approaches as previous
literature (Refs. 54, 62; Fig. 2C). We assumed that the signal
at each electrode reflects the linear sum of nine different
hypothesized orientation channels (basis set). The response
function of each basis channel is modeled as a half sinusoid
raised to the eighth power, where the centers of the nine
response functions are circularly distributed across feature
space (20�, 40�, 60�, . . ., 180�). We repeated the process
described below 19 times for each model, iteratively shifting
the center of each response function 1� each time. Iterative

shifting of basis sets allows for more accurate reconstruc-
tions across the full orientation space (80–82).

The IEM model assumes a linear relationship between the
EEG signal and channel tuning functions. During the train-
ing stage, a weightmatrix is estimated as follows:

B1 ¼WC1

where B1 (m electrodes � n trials) is the observed EEG signal
(SSVEP power) at each electrode in the training set, C1 (k
channels � n trials) is the response function of the hypothe-
sized orientation basis set channels, andW (m electrodes� k
channels) is the weight matrix that characterizes a linear
mapping from channel space to electrode space. The weight
matrixW is derived via ordinary least-square estimations as

bW ¼B1C
T
1 C1C

T
1

� ��1

where bW (m electrodes � k channels) is the least-square
solution.

In the test stage, we inverted the model to transform the
test data B2 (m electrodes � 1 trial) to the estimated channel
responsecC2 (k channels� 1 trial), using the estimated weight
matrix bW :

cC2 ¼ bWT bW� ��1 bWT
B2

The output of themodel is the estimated channel response
for each test trial (and/or test time point). After iterative
shifting, these channel-tuning functions (CTFs; Ref. 69) were
circularly shifted to align all trials to a common center for
statistics and illustration purposes; for our figures the
aligned reconstruction plots were centered on 30� (range
�60� to 120�), with 0� indicating the orientation of the ini-
tially attended item and þ60� the orientation of the second
attended item (similar to the behavioral mixture model, we
flipped reconstructions for trials where the second attended
item was actually oriented �60� so that all reconstructions
would be aligned in the sameway).

Because in the Hold condition the attended orientation
stays the same and in the Shift condition the attended orien-
tation changes by 60� in the middle of the trial, if IEM cor-
rectly models the attended orientation, we should observe
CTFs shift their peak center from the initially attended ori-
entation (0�) to the newly attended orientation (60�).

To quantify the orientation sensitivity of the CTFs, we cal-
culated linear slope as an index of orientation sensitivity (57,
66, 68, 83). We calculated symmetric slope by reversing the
sign of positive orientation channels and collapsing their
channel responses with the corresponding negative degrees.
Then we fitted a linear regression to obtain the linear slope
as the sensitivitymeasure. Higher slope indicates greater ori-
entation sensitivity. For shift trials, we calculated slope in
two ways: relative to the initial attended item’s orientation
(CTFslope-O1) and relative to the second attended item’s ori-
entation (CTFslope-O2). Reliable reconstructions of attended
feature information should show a CTFslope-O1 significantly
greater than 0 in the first part of the shift trial and a
CTFslope-O2 significantly greater than 0 in the second part
of the shift trial (see Statistical significance tests).

Multivariate classification (decoding attended location).
For the attended spatial information analyses, support vec-
tor machine (SVM) was applied to determine whether the
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attended location (left vs. right) could be decoded from the
spatial distribution of SSVEP power over time. Analogous to
above, we trained the SVM on the last second of Hold trials,
using SSVEP power and the correct attended location for
each trial, and then tested at each time point on the Shift tri-
als to predict its attended location. Because there were only
two possible locations to attend, the chance level of the pre-
diction is 50% (left vs. right). We used custom Python code
and “SVC” function from “sklearn” package, using a linear
kernel and regularization parameter set to 1.0.

Additional decoding analyses.
For control and comparison purposes, we conducted addi-
tional analyses decoding attended location from 1) gaze posi-
tion and 2) alpha band power. For gaze position, we input
the trial-by-trial average horizontal eye position to a simple
linear decoder. For the alpha power signal, we applied a two-
way least-squares finite impulse response filter to the EEG
signal, in the frequency range of alpha range (8–12 Hz).
Subsequently, we performed a Hilbert transformation on the
filtered signal, as in Foster et al. (69). We then conducted the
same analyses as described above to perform attended loca-
tion decoding on the spatial distribution of alpha band
power over time.

Statistical significance tests.
To determine significant time points for the above analyses,
we used cluster-based permutation tests to correct for multi-
ple comparisons and identify clusters of time points when
the CTF slopes were significantly larger than 0 (significant
orientation reconstruction) and/or location decoding per-
formance was significantly better than chance (84, 85). For
each analysis, we first did a one-sample t test to detect time
points with CTF sensitivity >0 (or location decoding accu-
racy >0.5). We used 0.05 as the alpha threshold (t = 1.711, 1
sided, df = 24) to identify clusters of adjacent points and
computed the sum of all the t values within each cluster. We
then compared the sum of t values against a null distribution
empirically specified with the Monte Carlo randomization
procedure. The null distribution is calculated by randomiz-
ing the training and test labels and repeating the IEM proce-
dure (or multivariate classification procedure in the case of
location decoding performance) 1,000 times. We followed
the same procedure as described above to compute the sum
of t values for the largest cluster for each of the 1,000 itera-
tions, resulting a null distribution with 1,000 sums of t val-
ues. We compared the sum of t values of the correctly
labeled data with the 95th percentile of the null distribution
to determine whether the cluster was above chance (1-tail
alpha rate = 0.05).

RESULTS

Behavior and ERP Analyses Confirm That Participants
Successfully Performed the Attention Task

Behavioral analyses of the change detection task indicated
that participants were able to allocate and maintain their
attention to the correct location. Participants detected the
orientation changes in the attended item at significantly bet-
ter than chance level on both Hold trials [d0 = 2.258, t(24) =
8.988, P < 0.001] and Shift trials [d0 = 1.269, t(24) = 6.562, P <

0.001]. Posttrial continuous orientation reports similarly
showed that participants reported the target orientation
rather accurately, with probabilistic mixture models output-
ting low guess rates and high precision (small standard devi-
ation) for both Hold and Shift trials (Fig. 3A).

Given prior behavioral reports of feature distortions when
attention is split across two locations (11, 37–39), we also
measured feature distortions (target orientation report either
biased toward or repulsed away from the other item’s orien-
tation). There was no evidence for distortion in hold trials: μ
was not significantly different from zero [t(24) = 1.017, P =
0.318]. However, for Shift trials μ was slightly but signifi-
cantly negative [t(24) = 2.372, P = 0.025], indicating that par-
ticipants’ posttrial orientation reports were shifted away
from the initially attended orientation (repulsion effect). We
also assessed this in a model-free analysis by analyzing the
mean of the entire error distribution. For Hold trials, we did
not observe a response bias [M = 0.140; t(24) = 0.642, P =
0.527]. For shift trials, we found that the mean of reporting
error was numerically negative and marginally significant
[M = �0.526; t(24) = �1.930, P = 0.066], consistent with a
weak response bias away from the initially attended
orientation.

As a preliminary analysis and sanity check of the EEG
data, we also analyzed ERPs with data aligned to the shift
cue. Shifts of spatial attention are associated with character-
istic ERP components, particularly a contralateral N2pc at
the posterior/occipital channels, typically peaking from 200
ms to 250 ms at P7/P8, PO7/PO8, P3/P4, and O1/O2 (113). We
observed a robust N2pc on Shift trials (Fig. 3B), peaking at
229 ms after the shift cue [M = �0.937 lV, t(24)=3.318, P =
0.003]. On Hold trials, no N2pc was present, as expected.
Another ERP marker of selective spatial attention and main-
taining objects in workingmemory is the CDA (86, 87), which
is apparent in Fig. 3B for Shift trials, peaking at 700 ms after
the shift cue [M = �2.285 lV, t(24) = 8.892, P < 0.001]. Note
that a robust CDA on hold trials would have been visible if
the data were aligned to the stimulus onset, but it is not visi-
ble in Fig. 3B because these ERP plots were aligned and base-
line-adjusted to the nonexistent shift cue.

Attended Feature Information Can Be Reliably
Reconstructed fromMultistimulus Displays

Having confirmed that our behavioral task was success-
ful at manipulating selective attention and evoking covert
shifts of attention, we turned to our first main goal: Can
the EEG IEM model reliably reconstruct attended feature
information from these multistimulus displays? In other
words, before attempting to track how neural reconstruc-
tions might change dynamically around the time of a shift
of attention, we first needed to confirm that we could
reconstruct the orientation that was attended in the first
half of the trial (before any shift cue) and the orientation
attended in the second half of the trial (well after the
shift).

Critically, we could reconstruct attended feature informa-
tion during the static attention periods both before and after
the shift cue with this technique (Fig. 4). The reconstructions
revealed two peaks: In the before-shift static period, there
was a primary peak centered on the orientation of the
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initially to-be-attended item (the current target) as well as
a smaller peak centered on the orientation of the other
item in the display. In the after-shift static period, there
was a primary peak centered on the orientation of the cur-
rent to-be-attended item as well as a smaller peak centered

on the orientation of the other item in the display (the pre-
vious target). Thus, our technique is capable of recon-
structing the orientations of two different items in the
display and of differentiating which one is at the current
focus of attention.
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Figure 3. Behavioral and event-related potential (ERP) results. A, top: behavioral orientation report error distributions for Hold and Shift trials. We aligned
the directions of the errors for Shift trials so that the initially attended orientation was always represented at þ60�. Bottom: parameter estimates from
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We note that, unsurprisingly, the reconstructions for each
period are stronger when the training dataset came from the
same corresponding time period on Hold trials. However,
particularly for the dynamic reconstruction (time course)
analyses below, it is critical to use common training data to
ensure that any differences in test results are not due to dif-
ferences in the training data. For all analyses that follow, we
selected the final second of Hold trials (rather than the first
second) as the training dataset, because there was no uncer-
tainty at that point in the trial as to whether or not a shift
would occur, so this period was the most pure hold-attention
period.

Decoding of Attended Location from the Same Signal

Based on prior work we expected that attended location
would be reliably decoded from the EEG signal during these
static attention periods, and indeed that was true: The aver-
age location decoding accuracy in the before-shift static pe-
riod was 0.651 (SD 0.125), significantly above chance [chance
level: 0.5; t(24) = 5.906, P< 0.001]. In the after-shift static pe-
riod, the location decoding accuracy was 0.708 (SD 0.121),
also significantly above chance [t(24) = 8.442, P< 0.001].

Importantly, we also found that decoding of attended
location with this common-signal SSVEP approach was
superior to other potential signals. First, to ensure that the
above results were not driven by oculomotor artifacts (e.g.,
microsaccades or small fixation biases), we asked whether
we could decode attended location based on eye position.
For the before-shift static period, the decoding accuracy was
50.75%; for the after-shift static period, the decoding accu-
racy was 51.02%. Neither was significant; the 95% range of
error based on permutation tests was [48.75%, 51.31%]. Thus,
attended location could not be reliably decoded from eye
position. Second, we compared decoding of attended loca-
tion using alpha-band power instead of the 40 Hz SSVEP sig-
nal. Decoding accuracy was significantly above chance with
the alpha power signal but was less effective than with our
technique, resulting in lower decoding accuracy, increased
noise, and slower resolution for detecting the shift in atten-
tion (see Supplemental Fig. S1).

Reconstructed Location and Orientation Time Courses
Both Track the Shift of Attention

Finally, we tested whether this approach can dynamically
track the attended orientation and attended location as covert
spatial attention shifts to a different stimulus during the trial.
Figure 5A shows the time course of feature reconstructions on
Shift trials, plotted as time-by-time channel tuning functions
(CTFs) temporally aligned for each trial such that time 0 is the
onset of the shift cue. (Supplemental Fig. S2 shows a compara-
ble CTF plot for Hold trials, though there is somenonindepend-
ence between the training and test data for theHold analysis.)

The dynamic CTF nicely captures the updating of the
attended feature on Shift trials. Consistent with the static
reconstructions, dynamic CTFs accurately reconstructed the
orientation of the initially attended stimulus during the first
half of the trial. Immediately after the shift, a period of
poorer/ambiguous reconstruction was visible, followed by a
settling of the reconstructions on the orientation of the newly
attended stimulus (aligned at 60�). Figure 5B plots these fea-
ture reconstructions another way, using CTF slope as a quan-
titative measure to assess reconstruction quality at each time
point. We calculated CTF slope in two ways for each time
point: centered on the orientation of the initially attended
item (CTFslope-O1) and centered on the orientation of the
newly attended item (CTFslope-O2). During the first half of
the trial, the orientation of the initially attended item was sig-
nificantly reconstructed (CTFslope-O1 > 0, P < 0.05, cluster-
based permutation test) at all time points. After the shift cue
there was a transient period (�170–400 ms after cue) where
both the initially and newly attended orientations were signif-
icantly reconstructed, and then eventually only the orienta-
tion of the newly attended itemwas recoverable. We note that
slope is just one of several possible measures to quantify
reconstruction quality [for example, we found a similar pat-
tern using the mean absolute error metric of Scotti et al. (82)],
but it appears to reasonably well capture the fluctuations of
attended orientation in the CTFs in Fig. 5A.

These results indicate that our dynamic IEM approach
successfully tracked the attended orientation(s) across the
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shift of attention. Moreover, the period where both orienta-
tions seemed to be represented, with overlapping time
points where both CTFslope-O1 and CTFslope-O2 were sig-
nificant, is particularly intriguing. Such a pattern is consist-
ent with prior findings of temporal overlap in attentional
facilitation during shifts of attention (11, 32, 88, 89), as we
speculate on in DISCUSSION.

We also examined the time course of attended location
decoding (Fig. 5C). This analysis was quantified as a simple
decoding accuracy (attending left vs. right location). Before
the shift cue, we could decode the attended location (left vs.
right) consistently above chance (chance = 0.5; P < 0.05, clus-
ter-based permutation test). After the shift cue, the decoded
location gradually shifted to the other side and became signif-
icantly above chance after 260ms, peaking around 600ms.

Cluster-based permutation tests were performed for both
the dynamic feature reconstruction and dynamic location

decoding analyses. Although it is important to keep in mind
that these are quantified by different measures and location
is a two-way decoding whereas orientation is a continuous
reconstruction, there are some intriguing comparisons
between the two time courses that may be interesting to
speculate on. Comparing the attended feature and location
time courses revealed what could be characterized as multi-
ple distinct periods: a stable precue period, potentially three
distinct transition stages, and a stable postcue period. Note
that although we include time points corresponding to these
stages in our descriptive summary below, this is primarily
for ease of linking to Fig. 5; we are not aiming to make spe-
cific claims about the precise temporal extents of these time
periods and emphasize caution in interpreting the specific
time points, since cluster-based permutation tests are
designed to correct for false positives at the cluster level, not
the point level (90).
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Figure 5. Attended feature reconstructions and
location decoding accuracy of Shift trials. A:
reconstructed channel tuning functions for each
time point on Shift trials [based on inverted
encoding model (IEM) trained on final second av-
erage from Hold trials]. Trials were aligned in
time, such that time 0 was when the shift cue
appeared, and in orientation space, such that the
orientation of the initially attended item was cen-
tered at 0� and the newly attended item’s orienta-
tion was always represented at 60�. Colors
reflect the amplitude of the reconstructed signal.
B: reconstruction slopes across time, calculated
based on the initially attended target (CTFslope-
O1 = blue line) and the newly attended target
(CTFslope-O2 = orange line). C: decoded location
accuracy for each time point on Shift trials,
aligned as in A and B. Before the shift cue, accu-
racy based on the correct initially attended loca-
tion (LocAcc-L1, plotted in blue for consistency
with B); after the shift cue, accuracy based on the
correct newly attended location (LocAcc-L2, plot-
ted in orange). In B and C, the shaded areas
reflect ±1 SE across participants, dashed black
lines indicate chance level, and the solid bars
along the bottom of the plots indicate time points
that significantly differed from chance (cluster-
based permutation tests). O1, orientation of target
1; O2, orientation of target 2; L1, location of target
1; L2, location of target 2.
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During the stable period before the shift cue, the correct
currently attended location and orientation could both be
significantly and robustly recovered from the EEG SSVEP
signal. For the first 150 ms after the shift cue, spatial atten-
tion appeared to still be primarily lingering at the initial loca-
tion, though the signal was rapidly decaying to chance.
During this time, neither orientation could be reconstructed
above baseline. From�150–250ms after cue, location decod-
ing was not significantly different from chance, suggesting
that spatial attention was truly in transition. Strikingly, dur-
ing this ambiguous spatial attention period, both the initial
and the newly attended orientations could be significantly
reconstructed. Since the location decoding analysis was sim-
ply a two-way decoder, we cannot resolve whether spatial
attention was simultaneously at both locations or neither (or
highly variable across trials), but we are clearly capturing a
transitory period of ambiguous spatial attention, during
which both items’ orientations were represented. Starting
�280 ms after shift, the location decoding became signifi-
cant for the newly attended location, yet, interestingly, both
orientations could still be significantly reconstructed for
another 100ms. Finally, starting�400ms after cue, only the
correct newly attended orientation and location were signifi-
cantly represented. Reconstruction slope and location decod-
ing accuracy both continued to increase for another 100ms or
so, plateauing into the postshift stable period. As another
interesting point of comparison, it is also potentially notable
that the location decoding time courses remained at a rela-
tively constant and stable accuracy over the duration of the
static-attention periods, whereas the orientation reconstruc-
tion slopes seemed to oscillate throughout the trial; one possi-
bility is that the feature reconstruction technique is more
sensitive to oscillations of attention and/or divided attention,
a speculation we revisit in DISCUSSION.

DISCUSSION
In the present study, we used EEG and IEM to reconstruct

the neural response profiles during dynamic shifts of atten-
tion in high temporal resolution. Specifically, we demon-
strated that we could simultaneously read out both location
and feature information from an attended stimulus to pro-
duce reliable reconstructions of attended location and fea-
ture information from multistimulus displays. Moreover, we
examined how that readout evolves over time during the
dynamic process of attentional shifts.

Our study offers several methodological and theoretical
contributions. In terms of methodological contributions, our
study can be thought of as a proof of concept that EEG can
be used to construct time courses of the neural representa-
tions of attended features (time point-by-time point IEM
reconstructions) and attended location (time point-by-time
point decoding) during both stable periods and across
dynamic spatial shifts of attention. Our approach builds off
of prior studies using machine learning and IEM to decode/
reconstruct the locations or features of a stimulus, either vis-
ually presented or in memory, from neuroimaging data (6,
51–58, 60–62). However, unlike most of the previous studies,
we focused on 1) both the location and feature information
2) for an attended stimulus in a multistimulus display; 3)
explored how the readout information evolved over time;

and 4) showed that a model trained on Hold attention trials
could be used to reliably track the updating of neural repre-
sentations on Shift attention trials. To our knowledge this is
the first study to successfully attempt this combination of
goals. Our approach also carries advantages because it uses
the same exact neural signal for both location and orienta-
tion reconstructions, giving us an unbiased window into the
contents of attention. Moreover, our supplemental results
comparing an alternative EEG signal commonly used for
location decoding, alpha power, suggest that our approach
offers practical benefits in terms of quality as well. Of course,
as we discuss more below, with all new approaches there is
room for improvement and refinement, but the present
results demonstrate that this approach both is feasible and
carries substantial potential for versatile extensions and
applications.

In addition to the methodological contributions of this
study, our results reveal some intriguing aspects of atten-
tional updating that contribute to various theoretical issues
in the attention literature. One aspect is how attended and
unattended items are represented in a multi-item display. A
number of prior studies have demonstrated that neural
reconstructions of object features are more precise for
attended than unattended items (91, 92) and that the
attended orientation can be decoded from ambiguous stim-
uli (93). In the present study, we similarly found that we
could reliably reconstruct the attended orientation during
the static attention periods. We also found some evidence
for a weaker but detectable reconstruction of the other orien-
tation in the display. It is unclear whether this secondary
peak was due to participants also allocating some attention
to the other item in the display or it simply reflects the visual
stimulus representation. A supplemental analysis in which
we trained the IEM on the unattended orientation did not
produce reliable reconstructions (Supplemental Fig. S3), sug-
gesting that the secondary peak may indeed reflect an atten-
tional effect, though this is not a definitive test. If the
secondary peak does reflect attentional sampling, this could
potentially be driven by intrinsic rhythmic sampling (94–97)
and/or anticipatory sampling before expected attentional
shifts (50). In the first half of the trial, participants did not
know whether they would be holding attention or shifting
attention, so there may have been some incentive to repre-
sent both items in the display. However, we note that it is
unlikely that participants were simply distributing their
attention across both items, as the behavioral task required
sustained focused attention on the attended item for the
unpredictable and challenging change-detection task, and
the results showed that participants were indeed focusing
their attention on the current target item, as both the
attended feature and attended location could be reliably
extracted from the neural signal. These questions also bear
similarities to the working memory literature, where studies
have examined how representations change when items are
added to or dropped from working memory (83, 98–101),
except that in the present study only one orientation needed
to be attended and held in working memory at a time.

Another finding of the present study is that there
appeared to be a transitional period following the shift cue
during which both the previously attended and the currently
attended orientations could be significantly reconstructed.
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In other words, after the spatial shift of attention, the previ-
ously relevant orientation was not immediately discarded
but was still temporarily represented in the neural signals.
Because these reconstructions averaged across trials, it is dif-
ficult to say whether this effect was due to variable timing of
attentional updating across trials or simultaneous represen-
tations of both items. However, a prior study in primate V1
found that during spatial shifts of attention attentional
enhancement is found for the item that is newly attended
(distractor to target status) faster than attention is with-
drawn from the initially attended item (target to distractor
status) (32). ERP evidence has also suggested that attention
can be maintained at its previous location while it is simulta-
neously allocated to a new target object (102). Similar tempo-
ral overlap of attentional facilitation has been found when
attention is updated across eye movements, resulting in a
dual spotlight (88) or soft handoff (103, 104) of attention, and
soft handoffs of attention are also found across hemispheres
duringmultiple object tracking (105).

Indeed, the time course of attentional shifting has been
debated over the years across behavioral (89, 106, 107), mon-
key neurophysiological (32), and human EEG (33, 108) studies.
The present study offers a unique addition of providing sev-
eral simultaneous measures that can track the time course of
attentional shifts, including the N2pc, decoding of attended
location, and reconstruction of attended orientation. The
reconstruction time course for attended orientation revealed
that the newly attended orientation first became significant
around 170 ms after cue, similar to Khayat et al.’s (32) distrac-
tor-to-target latency of 144 ms after switch. Meanwhile, the
previously attended orientation was still significantly recon-
structed at 400 ms (substantially after Khayat et al.’s target-
to-distractor latency of 210 ms). The location decoding time
course crossed the chance point around 150 ms and then
became significant for the new location at 250 ms, and the
N2pc peaked 229 ms after the shift cue. Meanwhile, both the
location decoding and orientation reconstructions did not
reach their peaks until 500–600 ms after the cue. One take-
away from these data is that attentional shifting is perhaps
better thought of as a more nuanced set of multiple processes
or steps that unfold over an extended time window rather
than a single unitary switch.

Moreover, other previous literature has suggested that
location plays a vital role in the process of binding features
into cohesive objects (44, 109). When we talk about attention
shifting from one object to another object, we generally do
not separate the attended location and attended feature. But
in fact, during the shift of attention both the attended loca-
tion and feature representations are updated, and location
and feature representations may involve different brain
regions (110). An important question that this paradigm
opens up is whether these two processes are temporally
linked such that the timing of location updates is correlated
with the timing of feature updates. The data presented here
suggest some intriguing links, but an exciting future direc-
tion of this paradigm would be investigating correlations
between the feature and location time courses across sub-
jects and/or trials. Because we only collected a single session
of EEG data per subject the present experiment was not pow-
ered to get reliable measures of transition time points in
individual subjects, but future studies employing more

extensive sampling may be better powered to investigate
individual differences.

Another appealing direction for future applications of this
technique would be to try to link individual or trial-wise
behavior with the attended location and feature reconstruc-
tion measures. We did not find significant correlations
between behavioral report measures and location or feature
reconstructions in the present study, but we note that the be-
havioral tasks were not optimized to detect subtle variations
in attentional state but rather primarily meant to ensure that
participants were attending to the correct item. As such, per-
formance in the posttrial behavioral task (orientation report)
was essentially at ceiling, exhibiting very low variability, and
the frequency of the probes in the ongoing change detection
task was too low to use for this purpose. That said, this para-
digm may carry even more enticing potential for investigat-
ing attentional contexts that produce more behavioral errors
and variability, such as divided attention (11), attentional
capture by salient distractors (37), remapping across eye
movements (39), vigilance/distraction (111, 112), and rhyth-
mic oscillations of attention (94, 95).

One limitation of the present study is that the measures
we used for assessing the attended feature and attended
location representations are not directly comparable in
terms of quality. We chose to focus on a single shift of atten-
tion between two fixed locations in the present study for a
well-powered and clean proof of concept, and thus our
attended location measure was limited to two-way decoding.
In principle, future tasks could be designed such that a con-
tinuous reconstruction measure (IEM or other model-based
technique) could be used to evaluate both attended location
and attended orientation on the same scale, though likely
multiple sessions of EEG data would be needed per subject.

In conclusion, by applying IEM and machine learning
methods to EEG data we simultaneously reconstructed
feature representations and the location of spatial atten-
tion over the shift of attention in a multistimulus design.
Our results showed that both feature reconstructions and
location decoding dynamically track the shift of attention
and that there may be time points during the shifting of
attention when 1) feature and location representations
become uncoupled and 2) both the previously attended
and currently attended orientations are represented with
roughly equal strength. The results offer insight into our
understanding of attentional shifts, and the techniques
developed in the present study lend themselves well to a
wide variety of future applications.
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