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This article presents some of the issues I have faced in setting up my own laboratory system
for research in cognitive psychology. First, for real-time subject testing systems, criteria for choos-
ing hardware and software are presented along with a brief discussion of benchmarks. Stimulus
generation and data analysis choices are also discussed. Second, choices of software for data anal-
ysis and data exploration are presented, including graphical presentation, statistics, and model-
ing tools. Third, some consideration is given to benchmarking workstations to be used in model-
ing (neural modeling in particular), and benchmarks of some of the fastest single processor systems
available are presented. Fourth, two examples of the use of the various theoretical tools are given—
one for testing compound cue models of priming, and the other for testing global memory models.

In this article, I discuss a number of issues in the de-
velopment and use of a computer laboratory for research
in cognitive psychology. The problems I discuss have been
major ones for me in my research, and here I present
them, together with my solutions, as examples of the kinds
of problems that are often faced. The first domain con-
cerns real-time experimental testing systems and relevant
software, hardware, and benchmarking problems. The
second involves techniques for handling data, including
data analysis, graphical presentation, and modeling tools
and languages. The third set of issues concerns the speed
at which computers can run modeling programs, and prob-
lems that can arise in benchmarking workstations. Fol-
lowing a presentation of various tools in each of these do-
mains, I give two examples of substantive issues that can
be resolved relatively quickly by using them. In one ex-
ample, I show how the space of parameter values for a
model can be searched to find the parameters that best
fit a set of data that shows priming effects in lexical deci-
sion. In the second example, a simple binomial model is
used to predict the slope of the z-ROC function for rec-
ognition memory data.
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DESIGN ISSUES FOR A REAL-TIME
SUBJECT TESTING SYSTEM

In cognitive psychology, we have come a long way from
the primitive empirical methods of 25 years ago. At that
time, PDP-11 computers were just making their appear-
ance; much reaction time work was still done using Hun-
ter timers, for which the poor experimenters (cf. Keenan
& Kintsch, cited in Kintsch, 1974) had to write down the
response times by hand. The early computers were a help,
but they often had to be programmed in assembly lan-
guage, sometimes with paper tapes. For those lucky
enough to have a programmer to write a real-time sys-
tem, there was always the potential for blackmail. In gen-
eral, performing a reaction time experiment was a daunt-
ing task and required a considerable investment. Even 10
years ago, a hardware platform presented a big problem—
any computer was very expensive, and Apple Il com-
puters were several thousand dollars. Now, with personal
computer (PC) prices so low, a real-time subject station
costs as little as $600 (standard PC hardware).

The hardware choice for our laboratory is the PC; it
is here to stay, the upgrade paths are clear, and there are
millions of them out in the field. Given this choice, a num-
ber of subsidiary issues arise. One is the issue of hard-
ware support. In our laboratory, when a PC breaks, it
is usually repaired if it is new, but it is replaced with a,
new and faster computer if it is old.

Another major consideration is real-time software. Our
goal has been stable software that rarely needs modifica-
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tion and, theretore, minimizes our reliance on program-
ming support personnel. When modifications are needed,
because the system is written in standard Borland C, any
competent PC programmer can work with it quite easily.
An important piece of advice to graduate students is to
avoid becoming the laboratory expert and support per-
son for software or hardware. It can result in much un-
productive effort in supporting other research projects (but
every student should know enough to facilitate his or her
own research).

The ease with which real-time software can be used is
extremely important for overall laboratory performance.
We have attempted to make our system easy and fool-
proof for our assistants and students to use, without com-
promising generality. Each of our subject station PCs is
connected to our main host workstation via serial lines
to a multiport device on the workstation (this was cheaper
than an ethernet solution, and if the network goes down
the experiments still run). At the beginning of an ex-
perimental session, the list of stimuli together with real-
time commands is transferred from the workstation to the
PC’s memory. Stimuli for the whole experimental ses-
sion are stored in memory to avoid any potential delays
due to transfer from disk to memory. In most text-based
experiments, there is enough memory to do this. For ex-
ample, 5 letters per word at 200 msec per word = 25
letters per second = 1,500 letters per minute = 75,000
letters per 50-min session, or 75K of data, which is less
than the available memory. During the session, no data
are stored on disks to be transferred (or lost) at a later
time; instead, data files are transferred from the PC disk
to the workstation (using a scripting language for com-
munication) immediately after the experiment ends. To
run an experimental session, the experimenter simply logs
in at the PC screen to the workstation, changes to the ap-
propriate directory, hits the F10 key, enters the name of
a file containing the stimuli, enters a name for the file
in which data will be written (which must not already ex-
ist), gets a chance to change these in case of error, and
then the experiment is executed. At the end of the exper-
iment, the data are on the workstation hard disk, and the
system returns to a UNIX prompt, ready for the next ses-
sion. On the UNIX workstation, a ‘‘restricted shell’’ is
used, which allows only the commands cd, Is, and xmo-
dem (the transfer protocol). This stops ignorant experi-
menters (and malicious subjects) from being able to exe-
cute the following commands: cd ~ ;/bin/rm -rf *.

ISSUES OF DISPLAY AND
RESPONSE RECORDING

Screen Characteristics

For short presentation times, a monitor with a rapid de-
cay phosphor is required so that a stimulus will not re-
main visible after the screen is cleared. Information about
a monitor’s type of phosphor and phosphor decay rate is
virtually impossible to get; very few monitor manufac-
turers will specify this information. In addition, especially
- for the cheaper manufacturers, monitors that are ostensi-
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bly identical and inai are roin Ne samne Mmanuaciures can
have different characteristics (because the manufacturer
buys tubes from different tube manufacturers for the same
model display). In the laboratory, screen characteristics
can be measured with a fast photodiode and a fast oscil-
loscope with a repeating stimulus. A more informal ap-
proach is to look for afterimages on the screen, or scroll
something by very quickly. For many experiments, either
screen characteristics are not important, or a mask can
solve the problem.

Raster Scan

A major problem when short stimulus exposures are
required is the raster scan of the screen (a screen is writ-
ten line by line at, typically, a rate of 16.67 msec per
screen). Interstimulus intervals usually must be restricted
to 16.67-msec steps by the raster scan rate (this can be
avoided with a very fast vector scope that allows 1-msec
steps). A further problem is that there is no way of know-
ing exactly where the electron beam is when the program-
mer thinks a stimulus is being written to the screen. It
may be just above or just below the position of the letter,
and so there may be either 1 msec until the actual write,
or as much as 16 msec. There are simple low-technology
solutions, such as tape a piece of cardboard over all except
the top line, print the stimulus just below the top line of
the screen, scroll the stimulus up, and, after the number
of raster scans required for the proper stimulus duration,
scroll it off the screen. There are also technological solu-
tions, which involve detecting in software when the beam
is at the top of the screen and using this to unblank a screen
onto which the stimulus was previously written. But these
issues only apply when stimulus duration must be very
short; once presentation time is above 50-100 msec, the
sources of variability from raster scanning are small com-
pared with variability from the subjects.

Keyboard Accuracy

The possible variability introduced through the use of
keyboards for response collection is a frequently men-
tioned, but ill-understood problem. In a recent review of
a manuscript of ours, we were criticized for reporting
accuracy in milliseconds, even though the scanning rate
of keyboards is ‘‘slow.”” There are two parts to the
problem—scanning rate and standard deviations. It is the
size of typical standard deviations that allows keyboard
accuracy to be relatively poor. In fact, if a scanning rate
was so slow that a fast typist could not work, reaction
time data could still be obtained without detectable loss
of accuracy compared with an accurate keyboard. A typi-
cal (fast) RT (reaction time) standard deviation is
200 msec. If the keyboard standard deviation (the stan-
dard deviation in the delay between keypress and record-
ing the time) is 10 msec, the overall standard deviation
is (10 +200%) = 200.24. Or, if the keyboard standard
deviation is 50 msec, the overall standard deviation is
206.1 msec. Thus, a delay of 0-100 msec in accessing
the keyboard (SD ~ 50 msec) leads to only a 3% increase
in RT standard deviation. In our lab system, when a key
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that is in a timing loop detects this, and values for the
key pressed and response times are stored in the keyboard
buffer. A response recording routine continually scans the
buffer, and when it detects an entry it reads the 1-msec
clock to produce a reaction time.

Real-Time Software

We have previously reported on a language for con-
trolling real-time experiments (Ratcliff & Layton, 1981;
Ratcliff, Pino, & Burns, 1986). The language was first
implemented on proprietary hardware, then on an inex-
pensive Radio Shack Color Computer, and now on stan-
dard PC hardware. Our experience with this language has
been excellent. The language is designed to accept files
that contain textual stimuli to be printed on the screen,
interleaved with real-time commands. So, for example,
to present the word car for 500 msec, clear the screen,
present the word dog, and collect a keypress and reac-
tion time, the sequence cat#W500@Cdog#R is used.
#W500 waits 500 msec, @C clears the screen, and #R
collects a keypress and reaction time. We have not found
any text-based experiment that we wanted to run that could
not be run with this system. Recently, we decided to im-
plement a button box response recording routine. Because
we have control over the software and have all the rou-
tines and compilers, this implementation took about an
hour for a C programmer. One of the important advan-
tages in having an interpretive real-time language is that
““what you see is what you get.”” If there is an error, it
is only necessary to follow a listing of the stimulus file
to the point of the error, and the error becomes obvious.
This means that little time is spent on debugging the real-
time aspects of programming.

Picture Presentation

For displaying pictures, we have implemented some
simple commands that store pictures in extended mem-
ory as screen images (e.g., we can store 105 pictures in
4 MB of high memory) and block-move them into video
memory for display (e.g., #B500 presents a picture for
500 msec). For some video cards, painting a whole pic-
ture on the screen takes much longer than one raster scan
(16.67 msec). To improve presentation speed, we im-
plemented an algorithm by which each picture is broken
into eight strips, and only the strips that change from one
picture to the next are loaded into memory. This also in-
creased the number of pictures that could be stored in up-
per memory. In other words, if all the pictures in a set
of stimuli fill only half the screen, only that half of the
screen is modified when each following picture is dis-
played, cutting the time required to paint a picture on the
screen in half, and allowing twice as many pictures to be
stored. This eliminates the need to use a buffering scheme,
in which successive pictures are written to alternate pages
of video memory.

Auditory Stimuli
To present auditory stimuli, we prepare the stimuli on
a NeXT computer (and yes, service facilities will be pro-
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the stimuli and the other for signals that cause a pulse to
be sent into the game port of a PC. The pulse is used to
initiate visual events (e.g., for cross-modal priming ex-
periments) and to initiate response recording.

Benchmarking Real-Time Software

In any computer system, an important issue is bench-
marking. For a real-time system, for example, clearing
the screen means writing all blank characters to it, and
this can take a significant number of milliseconds.

We benchmarked our 386SX (16 MHz) PC with a stop-
watch, with the following results:

1. Time for 10,000 clear-the-screen commands:
14.5 sec—that is, 14.5 msec to clear the screen.

2. Time for a wait of 120 sec in 2-sec intervals:
120.0 sec.

3. Time for 10,000 IF statements: 15 sec—that is,
1.5 msec per IF.

4. Time for 10,000 “‘wait 1 msec”’: 12.5 sec—that is,
0.3 msec overhead per wait command.

5. Minimum time between 50 pairs of keypresses (in
which the keys are hit as simultaneously as possible):
2 msec.

Benchmark 5 shows that if two keys are pressed almost
simultaneously, then differences as small as 2 msec can
be detected. The interrupt system guarantees that the first
detection is rapid, and the 2-msec difference guarantees
that a second keypress can be recorded with as little as
a 2-msec delay. Even if random delays are added to these
figures, the computations above show that this variabil-
ity is of no real concern.

The examples show the kinds of benchmarks that are
needed to check the accuracy of timing commands; run
a lot of them, time them with a stopwatch, and divide.

LIST GENERATION

One of the factors that is time intensive in experimen-
tal work is generating stimulus lists that have the right
counterbalancing and randomizations. Steve Greene and
I developed a language that would speed the required pro-
gramming. The language was designed to be as flexible
as possible so that it would not restrict experimental de-
signs (we did not consider a template model). The lan-
guage we (mainly Steve) developed (Greene, Ratcliff, &
McKoon, 1988) has shorthand ways of placing items in
various list positions, randomizing items within those con-
straints, sampling with and without replacement, and so
on. The big practical wins of this system over standard
programming languages are (1) reading in items and ma-
nipulating them is transparent whether they are single let-
ters, words, or paragraphs, and (2) randomizations and
constraints on randomizations within the test list are trans-
parent and handled automatically by the program. So, for
example, if initial constraints place list items in certain
positions that are inconsistent with later constraints, the
system automaticaily recognizes this and tries again. In
regular programming, handling failures such as this can



‘ take a much larger amount of code. Third, transparency

comes about because the language is essentially a short-
hand for FORTRAN. What would be multiple lines of*
code in a FORTRAN program (e.g., up to 20 lines) be-

; comes a single line, and the single line corresponds to
* asingle kind of stimulus. So the stimuli and their presen-
. tation requirements are laid out in as few lines as
f possible—that is, as many lines as there are kinds of stim-

uli. This means that the program all fits (usually) on one
workstation text window. Consequently, it is easy to look

" across the whole design at once, making writing and de-

bugging the program easier and less prone to mistakes.
Further discussion of the design and implementation of
this list generation system can be found in Greene et al.
(1988).

DATA ANALYSIS

Once data is received back on our workstation, we then
have to analyze it, graph it, and run various statistical
tests. For many years, our initial set of analyses (for
means, trimming of outlier reaction times, etc.) used
FORTRAN programs, which often turned out to be minor
modifications of earlier programs. But we kept wanting
other analyses such as medians, standard deviations on
particular conditions, materials analyses, and so on, and
these required new programming for each experiment.
I decided that we (i.e., our current programmer) could
produce a shorthand language to perform our typical kinds
of data analyses. The requirements were that it be work-
station based so that all the data could be read into mem-
ory, even for a large experiment. This ensures that any
new analyses can be performed in memory (e.g., differ-
ent reaction time cutoffs, standard deviations), making
them much faster than if the data were read off disk. For
the data analysis program, we decided that data must come
in a standard format for all experiments for each response:
keypress, RT, return, multidigit code. A simple example
for the analysis of perceptual identification data (Ratcliff
& McKoon, in press) is shown in Table 1. The first line
is a file that contains a list of the names of the data files
for each subject. The second line tells how each code is
to be split up: i1 defines variable i as the first single digit,
J1 defines j as the second single digit, and k2 defines k
as the last, two-digit number. The next line defines the
key types: / is one response category, and z or Z is another
response category. The fourth line specifies a loop over
subjects, and the fifth line specifies the conditions that
will be analyzed: If i is 2, print analyses for conditions
J =1,2, 3, and 4. Table 1 also shows the data analysis
output that this example produces. On each line, the con-
ditions for loop j are shown in parentheses, followed by
the number of observations for that condition with a / re-
sponse, the mean RT for those responses, and the proba-
bility of those responses (the number of responses divided
by the total number of observations for response key cat-

© egories). The next three numbers on the line are the same
- for the other response category (Zz).
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Table 1
Data Analysis Script for an Object Decision Experiment

Input Script
ip4all
il j1 k2
! Zz
FOR SUBJ
IF (i==2) j=1-4+1
END
% %

Data Analysis Output

stat
Command file (CR to end): ip4inp
MAIN_INDEX #1

) 426 880.6 0.667 213 901.6 0.333
) 366 9224 0.574 272 925.0 0.426
3) 264 955.0 0.416 370 9249 0.584
@ 258 931.0 0.405 379 842.3 0.595

MAIN_INDEX #1, CMD >

After this initial analysis, the program offers several
useful options. For example, entering ‘‘detail”’ produces
a subject-by-subject display of the data. This allows very
rapid examination for slow or inaccurate subjects, and
these can be excluded from further analyses. The program
also allows many of the analyses found in a recent paper
(Ratcliff, 1993) that examined the power of reaction time
analyses under a number of different ways of handling
reaction time outliers. Interactively, with one line of com-
mand each, cutoffs can be altered, medians computed,
transformations performed (e.g., log, or 1/RT), cutoffs
based on standard deviations produced, and so on. In ad-
dition, cutoffs based on individual subject data can easily
be determined, and these different cutoffs can be carried
across to materials analyses. The mean reaction times,
number of observations, or response probabilities can be
dumped to a file that, with some formatting information,
can then be input to a simple analysis of variance
(ANOVA) program (Hacker & Angiolillo-Bent, 1981).
Perhaps the main advantage of the data analysis program
is that it increases the ease of programming analyses by
a factor of 10 or more. A typical analysis program of ours
takes 8-15 lines of code, much of which is ritualized from
experiment to experiment. It takes a few seconds to read
all the data for an experiment from disk (e.g., 20-60 sub-
jects), and recalculation varies from almost immediate to
just a few seconds. Multiple analyses can be carried out
quickly and easily in real time, and a feeling for the data
can be obtained very quickly. For example, fast and slow
responses can be examined by simply entering GUB 700,
where GUB specifies a cutoff for long RTs (greatest up-
per bound) and 700 msec is the mean RT. This produces
an analysis of data for all RTs less than the mean. Enter-
ing GLB 700 (greatest lower bound 700) produces the data
analysis for RTs greater than the mean.

If the data require more than simple hypothesis testing
with ANOVA, they can be dumped into the data analysis/
graphical presentation package, S. This package offers
many different analysis methods and graphical output op-
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are few constraints on what it can do. This package is
also useful for the various kinds of modeling described
below. In addition, operations in S are very compact.

Graphical output from packages like S is sometimes
problematic in that it is fixed and not amenable to anno-
tation or modification. For S, there is a public domain
output filter that allows output to be placed in a file in
Framemaker format, which means that all the text ma-
nipulation (size, font) and drawing tools in that system
are available.

TOOLS FOR MODELING

For any serious computer modeling, workstations run-
ning UNEX are much preferable to PCs and Macs. Work-
stations are much faster, they come with big screens, big
disks, and lots of memory, and they include lots of tools.
The main drawback is that to keep these things working,
you need a UNIX system manager who knows how to
configure mail for ethernet, add new peripherals, set up
printers, add new users, configure host addresses, cross-
mount disk file systems, and so on. These are not trivial,
and, from personal experience, they can take huge amounts
of time for the untrained. One good half-time programmer/
system manager can maintain a network of 20 work-
stations of different types in steady state (occasional re-
placements, software upgrades, addition of disks and
memory, etc.). A positive feature of UNIX is that you
can run several things at once without crashing the ma-
chine. Routinely, our workstations are up for over 100
days, running simulations almost continuously.

For the kind of modeling I do, I have found FORTRAN
to be the most useful language. Workstations are tuned
for maximum speed under FORTRAN and optimizing
compilers for FORTRAN are very good (compilers are
Just about as good for C for numerical work). The other
packages we have needed and used are Mathematica, S,
and Framemaker. Framemaker provides a document pro-
cessing capability, table builder, math equation builder,
simple drawing program (good enough for most nondata
figures), and complete formatting system. We typically
prepare our papers in an ASCII file with some macros
(a .mml file); then, when we want to produce a final ver-
sion, we read it into Framemaker with a prepared file of
settings to make it APA style or two-column style (like
a journal article).

For data analysis and graphing, S is hard to beat. We
typically dump the output of our data analysis program
into a file and then read the results into S. We can draw
histograms—hist(x,nclass = 10)—plot x,y graphs—
plot(x,y)—Ilabel axes, headers, and so on. There are also
many tools built into the system.

Mathematica is a well-known tool for all kinds of mathe-
matical work. It does symbolic mathematics (integrals,
derivatives, solving equations, etc.) as well as numerical
mathematics. It has hundreds of built-in functions and ex-
tensive graphic output options: The latter is one of its great
strengths. The main drawback is the speed of the numer-
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The issue of speed for these high-level systems (such
as Mathematica and S) is critical. I have found that it is _
possible to quickly program fairly complicated models in
Mathematica and S. If the models do not require too much °
computation, or require only a single solution, then using -
these systems is a great win in terms of my time. But if
the problem requires many runs, function fitting with
numerous parameter values, and so on, Mathematica and
S are too slow and I have found it better to recode the
problem into FORTRAN.

One advantage of these languages is the availability of
high-level functions (matrix eigenvalues, fitting routines).
For programming languages, there are resources for such
high-level functions in various archives containing well-
tested routines. Two useful sources are Statlib and Net-
lib. Statlib contains a large number of statistical routines,
and Netlib contains several standard matrix manipulation
packages as well as all kinds of numerical analyses, linear
algebra, numerical optimization, differential equation rou-
tines, and many others. To obtain information about
libraries, archive servers are available, and a simple e-
mail message is enough to get going.

Statlib: to begin just send email containing the one line message
send index

to statlib@lib.stat.cmu.edu’

Netlib: If you have a numerical problem, it is worth looking
through the index of this library for something that might help.
To get started send a one line message:

send index

to netlib@ornl.gov

Of course there are many other archives, including one
for Mathematica code. It is useful to have knowledge
about what is available and how to search for it on Inter-
net; with tools such as the Internet *‘surfing’” package
MOSAIC (or gopher), accessing these archives is becom-
ing very easy indeed.

Probably one of the biggest problems in computational
modeling is how to check that a model is correctly im-
plemented. The most worrisome aspect of this is that there
might be a bug in the computer code that is responsible
for the behavior of the model (some may say that this might
then create a new and better model). There are a number
of ways to address such concerns. First, if a special case
or possibly a few special cases can be found, then errors
that are common to all cases can be ruled out. If there are
no special cases, it might be possible to modify the model
to predict a special case by, for example, reducing the num-
ber of alternatives from many to two, turning off noise
in the model, or keeping some of the varying parameters
constant. Another method is to write the program in a
high-level language first, to examine some aspects of be-
havior (e.g., Mathematica), and then reprogram it into :
a regular programming language (FORTRAN or C). Then :
only the algorithm needs to be checked if the codes give
the same answers. If all else fails, two independent peo-
ple can program the model and compare results (e.g., the :



| investigator and a programmer, graduate student, or post-

i doctoral fellow). This might seem obvious, but it is very
tempting, if the program seems to give the right results,
to simply forget testing it and move on.

THREE EXAMPLES

The following three examples were chosen to show the
use of the S language and Mathematica, and in particular
to show how compact the code can be, even for proce-
dures that are quite involved.

Plotting Z-ROC Functions

The code shown in Table 2 reads in data from the files
“hit”” and *‘fa’” and converts the data to z scores using
the gnorm function. The data consist of four conditions
each, with five hit rates and five false-alarm rates derived
from confidence judgments. The data are read into a 4 X 5
matrix for hits and a 4 X5 matrix for false alarms, and
matplot plots the z-ROC functions for the four conditions,
as shown in Figure 1. Adding the axis labels and head-
ings takes no more than an extra 5 min and results in a

publishable plot. o

Table 2
S Example

Read in hit and false-alarm rates for:
5 different confidence levels
4 different conditions
Convert to z scores using ‘‘qnorm’’
Put them each in a matrix
Plot them

mf < —matrix (gnorm(read(‘fa’),0,1),ncol=4)
mh < —matrix (gnorm(read(‘hit’),0,1),ncol =4)

matplot (mf,mh,type="‘b’",xlab="‘Zfa’,ylab="Zhit’)

Z ROC curves for 50 ms/200 ms group

Z hit

-1.5

T T T
0.0 0.5 1.0

T T T
-1.5 -1.0 -0.5

Zia
Figure 1. Sample z-ROC functions plotted using the S language.
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Tabie 3
Mathematica Code for a Random Walk

Define the random watk (FoldList produces a running sum of ran-
dom numbers that are 1/2 or —1/2):

Randwalk [n_Integer] :=

FoldList[Plus,0,Table[Random(Integer] —1/2,{n}]]
ListPlot plots the random walk:

ListPlot [Randwalk{1000]]
The Position statement will print out when the walk first reaches
position 4, in this example:

Position [Randwalk[1000],4,{1}1{[1]]

Random Walk Simulation

This example (Table 3) is taken from the Mathematica
book and illustrates how simple it is to simulate the ran-
dom walk and find first passage times (number of steps
to first cross a boundary). The first line defines the ran-
dom walk, where FoldList applies the first function (ad-
dition or plus) starting at the second argument (zero) to
the list in the third argument position, and creates a run-
ning sum. The result is the running sum of random num-
bers with values of +1/2 or —~1/2. ListPlot plots the ran-
dom walk, as shown in Figure 2, and the Position function
prints the position at which the walk first reaches size 4
(for example).

Spreading Activation

Spreading activation models assume that concepts or
words are stored in separate nodes in memory, and that
when an item is presented to the network, activation is
sent from the item’s node out to nodes to which it is con-
nected. These send activation to nodes to which they are -
connected, and so on, and the amount of activation de-
creases as distance from the stimulus node increases. The
most detailed spreading activation model as applied to psy-
chological data is ACT* (J. R. Anderson, 1983). Because
this model has been used in our research (e.g., McKoon
& Ratcliff, 1992), I implemented the asymptotic activa-
tion version (when activation reverberation has settled
down) in Mathematica to give predictions for nonmediated
and mediated priming conditions (see McKoon & Ratcliff,
1992; McNamara, 1992). For the ACT* model, asymp-
totic conditions exist when the net input to each node (mul-
tiplied by a transmission constant—e.g., p = .8) is the
same as the activation at that node. For activation at node
i, a;, and net input n; = ¢i/p + Ljrjia;, where ¢; is the
external activation to node i, 0 = pn;—a;. Rewriting these
equations in matrix and vector form, A = C+pRA,
where A and C are vectors corresponding to a and c,
respectively, and R is the matrix of interconnections. Solv-
ing for A gives the vector of activation values, given an
input vector of activation values C: A = (I-pR)~'C,
where [ is the identity matrix (diagonal values 1, and off-
diagonal values 0). Mathematica code for this equation
is shown in Table 4 and begins by defining the matrix of
interconnections between nodes, as shown both schemati-
cally and as a matrix of numbers in Figure 3. The next
line defines the number of nodes (nn) and forms the iden-



100

RATCLIFF

800 1000

Figure 2. A simple random walk implemented and plotted in
Mathematica.

Table 4
Mathematica Code for the Spreading Activation Model
(J. R. Anderson, 1983)

First, set up the matrix of connections strengths:
m={{0,.33,0,.17,.17,.17,.17,0,0,0,0,0,0,0},
{.38,0,.38,0,0,0,0,.08,.08,.08,0,0,0,0},
{0,.5,0,0,0,0,0,0,0,0,.125,.125,.125,.125},
etc.
nn = 14;im = IdentityMatrix{nn];
inv=Inverse[im—m*.8];

The vector/matrix product po.inv provides as output the activation values
in the nodes:

po={0,1,1,0,0, 0,0, 0, etc};
po.inv
Output:
{1.60, 3.01, 2.81, 0.21, 0.21, 0.21, etc}
po={1,0,1,0,0,0,0, 0, erc};
po.inv
Output:
{2.81, 1.99, 2.36, 0.37, 0.37, 0.37, etc}

tity matrix. The next line takes the inverse of the matrix,
and “‘po’’ is defined as the input vector (C) of activation
values (a 1 denotes activation input to that node). Finally,
multiplying the input vector by the matrix *‘inv’’ produces
an output vector of activation values. Thus, the model is
implemented economically in six commands, and also runs
fairly quickly (in seconds).

CAVEAT

This presentation describes a set of tools we have found
useful and discusses some of the reasons why we do things
the way we do. The caveat is that there are many other
approaches—just read Behavior Research Methods, Instru-
ments, & Computers. For example, for real-time work,
MEL is supported by technical people whom you can call.
There are many statistics packages around. There are al-
ternatives to Mathematica—for example, MAPLE V—
matrix manipulation packages (e.g., Gauss), and there are
a variety of word-processing packages, graphing tools,
and so on. But it is the aim of this article to mention a

range of 10013 thai might suggest ihings that might have |

been missed. My hidden agenda for this discussion is that
I may get some ‘‘Have you seen X’’ comments, and these
will point me to new tools and methods.

BENCHMARKING WORKSTATIONS

One of the most important issues for people doing seri-
ous computational modeling is processing speed. In par-
ticular, connectionist and neural models can take hours
or days to run, even on the fastest workstations (and even
models that run quickly can be slowed by increasing the
number of units in the model to make it more ‘‘plausi-
ble’’). So a major concern is which machine is fastest and,
relatedly, whether programs can be run fast enough to
have several shots at the problem in 1 day, or whether
they will take several days per run. This leads to the num-
ber 1 rule of benchmarking: Always run your own pro-
duction code on the machines you are considering for pur-
chase. If you cannot get access to the machines, find
available benchmarks that correlate with your code on the
machines and base your judgment on them. For this arti-
cle, I was able to run my own programs as well as some
designed by Jay McClelland; standard benchmarks are
also reported. :

Standard benchmarks for scientific computation are
LINPACK, SPECint92, and SPECfp92. Vendors tune
their machines for these benchmarks, but in general the

8 9
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P M T 456 78 9 10 11 1213 14
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T]05,0000000011 11
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13|/0 05,00000000000
140 0 5,00000000000

Figure 3. A sample spreading activation network and matrix of :

interconnections.
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codes used in neural modeling follow SPECfp92 and LIN-
PACK. The LINPACK benchmark is a standard matrix
manipulation program, and the SPEC programs are com-
binations of real-life programs (e.g., fluid mechanics,
chemistry, etc.). There are a number of design features
that make benchmarking require more effort than simply
following these standard benchmarks. One is the use of
very fast cache memory as a buffer between the proces-
sor and main memory. If a program and data are small
enough to fit in the cache, then performance will be many
times faster than if they do not. For floating point com-
putation, speed of transfer from main memory to cache
memory is important (and this is a strong point of IBM
RS6000 machines). Also, if the work load on the com-
puter is high enough so that the program and/or data are
swapped out of main memory and onto disk paging space,
this can slow programs down a lot (as occurred with the
large ptest program for the IBM RS6000-320 and SGI
Indy, both of which had limited memory). This can be
remedied by buying more main memory for the system.
So, in benchmarking, it is necessary to examine a range
of program and data sizes to see if there is a sudden drop
in performance. Also, it is necessary to determine whether
the program is paged out onto disk at any time (running
the program using ‘‘time program’’ will give the num-
ber of page faults for the IBM machines). There are also

" a number of issues of program structure that can make

huge differences in speed. For example, on the IBM
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RS6000, keeping arrays sequential is important. When
arrays are used element by element without skipping
around, they reside in cache and run much faster. I found
that by rearranging code for backpropagation according
to suggestions from the IBM tuning guide, I obtained a
factor of 2 speedup.

In Table 5, I present the standard LINPACK and SPEC
benchmarks along with three of my own programs and
two of Jay McClelland’s. My three programs are (1) an
implementation of the brain-state-in-a-box model of J. A.
Anderson (1991); (2) an implementation of the GRAIN
model of McClelland (1993), which uses the mean field
algorithm (Peterson & Hartman, 1989) and introduces
variability into activation updates; and (3) a simulation
of the diffusion process (Ratcliff, 1978), using an approx-
imation from the simple random walk with small step
sizes. These three programs are typical of the kinds of
programs that take the longest to run in my research. The
benchmarks devised by McClelland investigate the effect
of array size on performance (cache buster) for neural-
modeling-like computations. These enable performance
to be assessed as the program size begins to exceed avail-
able cache memory. The atest routine accesses elements
of an array sequentially (e.g., synchronous updating), and
the ptest routine accesses memory randomly (asyn-
chronous updates).

In running the benchmarks shown in Table 5, I had
some problems using HP FORTRAN; the resulting reso-

Table 5
Sample Benchmarks for Fast Workstations

Larger Numbers Better
(atest, ptest, LINPACK in MFlops)

Smaller Numbers Better
(Execution Times)

Small
ptest

Small
atest

Large
atest

Large

Computer ptest

LINPACK

SPEC92fp SPEC92int BSB GRAIN Rand

IBM RS 0.06* 6.9 5.0 9.2
6000-320

(16 MHz)
DEC Alpha
4000/710
(190 MHz)
HP 735

99 MHz
SGI Indy
50/100 MHz
SS 10/30
36 MHz
IBM RS
6000-590
(66 MHz)

8.0

19.0 3.6 31.7 19.4 39.3

14.3 4.6 15.4 17.4 41.0

7.8 * 12.1 12.1 12.0

4.9 52 49 9.3

36.4 26.7 21.0 130.4

30.0 14.2 355 201.1 134.8

185.1 122.6 9.4 55.6 15.9

149.8 80.6 10.3 94.6 29.9

60.7 59.1 335 158.5 32.6

54.0 45.2 58.9 269.5 48.9

242.4 117.0 6.0 44.0. 31.0

Note—All compilers were run with the -O option. The atest,

ptest, and LINPACK benchmarks are in units of MFlops,

or millions of floating point instructions per second. Higher numbers indicate better performance. SPEC benchmarks are
“for sets of programs that are mainly dependent on integer performance (SPEC92int) and floating point performance (SPEC92fp).
Higher numbers indicate better performance. The atest and ptest benchmarks mimic the computations needed for connec-
tionist models with synchronous and asynchronous updates, respectively. The last three benchmarks are my own programs
in FORTRAN. They represent the brain-state-in-a-box model (J. A. Anderson, 1991), the GRAIN model (McClelland,
1992), and a simulation version of the diffusion model (Ratcliff, 1978). The reported numbers show execution time, and
the smaller numbers indicate better performance. Top of the line SGI Indy 2 with a 75/150-MHz processor (R4400) might
run about 1.5 times faster than the SGI Indy above, and a top of the line SUN SPARCStation 10 might run 1.5 times faster
than the SS 10 above. *Denotes a large number of page faults—that is, the program was shipped off to disk, which reduces
performance significantly, relative to a machine with more memory. Performance would be much better with more system

memory.
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lutlon provides an exampie oi the Kinds oi probiems that
can arise in benchmarking. The random walk simulation
ran with no optimization, but the results were slightly dif-
ferent from those found with the other systems. When the
program was optimized, it terminated with an error. It
turned out that this was a problem with an assumption
built into the random-number generator (ran3 from Nu-
merical Recipes; Press, Flannery, Teukolsky, & Vet-
terling, 1986). The routine assumes that the variables
are left untouched when the routine is entered a second
time, and the optimizer interfered with that assumption.
Compiling the program with a flag that set the variables
“‘static’” resulted in a run time of 38 sec (faster than the
unoptimized 51 sec). Declaring the variables that were
to be the same on subsequent calls in a common statement
resulted in a run time of 30 sec—an improvement of 20%.
The Rand program also failed when compiled with a
POWER 2 code generation option on the RS6000-590.

The GRAIN simulation has a similar story; the origi-
nal program ran much more slowly on the HP than it did
on the DEC machine or even on the IBM RS6000-320.
The problem on the HP machine was with calls to the
built-in random-number generator, rand(). Using an old
version for the generator produced times of 237 sec. The
benchmarking contact person at HP extracted the random-
number generator from a new unreleased version of the
FORTRAN compiler, and the run time was 114 sec, a
factor of 2 decrease in run time. Using a new unreleased
version of the FORTRAN compiler produced a run time
of 95 sec—another 20% improvement.

The conclusion from this is that, for programs that take
a long time to run, it is important to do a profile analysis
to find the routines that take a lot of time and to try to
optimize these. For benchmarking, it is important to run
your own code. When a choice of a few target machines
has been reached, if it is possible to find an expert in the
organization or in the company building the workstations,
you might find ways to speed up your own applications
beyond your wildest dreams (i.e., by over a factor of 2).

What is the bottom line for all of this? Well, you need
to run your own code to be reasonably sure about speed.
You also need to run the largest problem you are likely
to deal with, because if small problems fit in the cache
and a large problem exceeds cache, the speed can drop
by as much as a factor of 10.

Another factor to be considered in assessing work-
stations is the cost of third-party software. For example,
packages tend to cost three times as much for workstation
software than for PC software. But this may change as
emulators for PCs and Macs become available for work-
stations (these will not be blindingly fast, but will do the
job). The prior discussion of processing speed ignores
other performance improvements—faster disk speeds
(SCSI 2), faster graphics, faster bus speeds, and so on—
which should weigh in any choice of machine. A specific
example of other improvements is compilation speed; the
DEC ALPHA compiles 100- to 200-line programs in
1-2 sec, whereas other machines can take 10 sec or more.
This difference can be important in developing and de-

bugging programs that implement models. Besides speed,
one of the most-important issues is the quality of the soft-
ware. Evaluation is important because faulty system soft.
ware can eat up weeks of time. Problems can often be
uncovered by personal contact and by reading appropri- :
ate newsgroups for a few weeks before a final decision.

The number and type of complaints, as well as the ques- | -

tions being asked, can give clues to problems. Finally,
local expertise is a critical component of any decision.
If the department has a lot of one brand of machine and :
the system managers and programmers know and under-
stand these machines, it is worth weighing this heavily
into the cost/speed equation.

The results in Table 5 have to be cost factored into any
decision about purchasing a machine. First, the DEC :
ALPHA is a high-cost machine, but there are versions
that are only 8% slower and cost about $15,000. The HP j
machine is in the $35,000 range (list price), but there will
be new versions out in the next few months that should j
be at least 50% faster and probably cheaper (this is prob-
ably true of all vendors). The SGI Indy is a low-end ma- .
chine; top of the line machines in the $20,000 range should -
run 50% faster than the figures in Table 5 for the SGI
Indy. The Indy can be obtained in the $10,000 range. 1
use the IBM RS6000-320, but it is aging in performance.
The IBM RS6000-590 is a $64,000 machine that is based
on the new POWER 2 architecture, though a workstation
class machine is rumored. There are also some machines
available that have multiple CPUs, which means that jobs
that can be broken up into parts (such as running a model
with different simulated subjects) can take advantage of
this and run N times faster, where N is the number of pro-
cessors. Currently these are expensive (SGI and SUN have
such machines), but there are plans from other compa-
nies for multiprocessor machines.

For the integer application (‘‘Rand’’), the DEC machine
is very fast. Two machines had memory that was insuffi-
cient to run the ptest benchmark without page faulting.
Adding memory would bring the results up to roughly
the same ratio as that for the other tests. The SPARC-
Station is remarkably slow, and even a 50-MHz machine
(Sun’s top of the line) would be hard pressed to beat the
IBM RS6000-320 on floating point applications. The new
IBM POWER 2 machine does produce, roughly, a
fivefold increase in performance over my current ma-
chine. New machines from HP and DEC should push
close to that target. The exceedingly high LINPACK per-
formance figure for the RS6000-590 is probably cache
related; the program probably remains in cache and
therefore runs much faster. However, single-precision
LINPACK is half as fast as double-precision LINPACK
(double-precision values are reported in Table 5), so the
double-precision values should be viewed as best case and
possibly not typical of general floating point performance.

If running Mathematica is an important consideration, .
there is little information easily available. I posted a re-
quest for information to the Mathematica newsgroup, but
there were no replies. For most computations in Math-
ematica, speed varies as a function of integer performance



(except matrix and other purely floating point operations
i within single commands), so integer performance would
- probably be the best predictor.

TWO CASE STUDIES IN MODELING

To illustrate the use of tools in modeling, I present two
simple examples. The first case study is to fit data to the
compound cue model for priming phenomena. The sec-
ond is calculating the slope of the z-ROC function for a
simple binomial model of memory.

Compound Cue Model of Priming

There is a current debate between Tim McNamara, and
Gail McKoon and me about the relative merits of com-
pound cue versus spreading activation models for prim-
ing phenomena. One of the foci of the debate concerns
sequential effects in priming, and one specific issue con-
cerns the weighting scheme in Gillund and Shiffrin’s
(1984) SAM model account of the experimental results.
* To model the processes of responding to sequential stim-
. uli (words and nonwords), a joint cue consisting of a
prime, the item that comes before the prime (the
preprime), and a target is used to probe memory (e.g.,
Ratcliff & McKoon, 1988). The output of the model in
response to the probe is a value of familiarity of the probe
to the system. To account for sequential effects from a
variety of different kinds of sequences, the target must
receive most of the weight in the calculation of total fa-
miliarity for the probe, and the prior items must receive
less weight. McNamara (1992) used a scheme in which
the prime and preprime are weighted 0.3 and 0.2, respec-
tively, which means that the target receives only half the
weight, with the consequence that if the prime and
; Ppreprime were both nonwords and the target was a word,
. Tesponses would often be incorrect (in contradiction of
- the data). McNamara (in press) has argued that his scheme
provides the best fits to the data (better than other weight-
ing schemes used by McKoon & Ratcliff, 1992): “‘Clearly
the best-fitting weights are 0.2, 0.3, and 0.5.’

In Gillund and Shiffrin’s (1984; see also Ratcliff &
- McKoon, 1988) implementation of the compound cue
. model, memory is assumed to be composed of strengths
between each item in the compound cue and each item
in memory. At test, the strength of each cue in the com-
pound to each item in memory is determined. This is
weighted (raised to the power of the weight), and these
- values are multiplied together to provide the degree of
match between the compound cue and the item in mem-
- ory. Individual match values are calculated for each item
in memory and summed over all the items in memory to
- give familiarity, which is assumed to drive a decision pro-
cess (e.g., diffusion process, Ratcliff, 1978) to produce
reaction time and accuracy predictions. For small changes
+ in familiarity, a linear relationship between familiarity and
reaction time is assumed. So,

¢ b _a
F = Yisppispisti,

' where i is the index for items; a, b, and ¢ are the weights
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Table 6
-Cue to Target Strengths in the SAM Model

Target
Cue 1 2 3 4 5 6 7 8 9 10

1 1 1 02 02 02 02 02 02 02 0.2
2 1 1 1 02 02 02 02 02 02 02
3 02 1 1 1 02 02 02 02 02 02
4 02 02 1 1 1 02 02 02 02 02
5 02 02 02 1 1 1 02 02 02 o02
6 02 02 02 02 1 i 1 02 02 02
7 02 02 02 02 02 1 1 1 0.2 0.2
8 02 02 02 02 02 02 1| 1 i 0.2
9 02 02 02 02 02 02 02 1 1 1

100 02 02 02 02 02 02 02 02 1 1

I 01 01 01 01 01 01 01 0.1 01 0.1

1201 01 01 01 01 01 01 oI 0.1 o1

Note—Cues 11 and 12 are assumed to be nonwords with strengths of
0.1, the residual strengths from word cues to other words are assumed
to be 0.2, and the strengths of words connected to each other are as-
sumed to be 1. Familiarity is computed from

Flcue i, cue j, cue k) = L 37 5y 8§77,

where S’ is the strength of cue i to target / with weight wl.

for the target, prime, and preprime, respectively; s,; is
the strength from the target cue to item ; ; Sp,i is the strength
from the prime cue to item #; and Spp,iis the strength from
the preprime to item i. The matrix of cue to target
strengths used in the following examples is shown in Ta-
ble 6, along with the equation for familiarity.

To examine the way the model works, a short pro-
gram was written in S, as shown in Table 7. This is
nonstochastic—that is, it does not have noise introduced
as it would in a full version of the model, but it is useful
for deriving asymptotic predictions. The S version con-
tains the structure of the problem; it is compact and easy
to understand. To see whether the model is capable of
fitting the data without high weights on the prime and
preprime, it is necessary to use a minimization routine.
I have worked with the SIMPLEX minimization routine
(from Ben Murdock’s laboratory) since 1974, and I still
find it extremely efficient for solving minimization prob-
lems. Table 8 contains a short FORTRAN subroutine to
compute the difference between model predictions and
data to serve the SIMPLEX routine. Writing and testing
the program took about half an hour.

Table 7
S Code for a Nondeterministic SAM Compound Cue Model

X<-matrix(0.2,20,10);for(i in 11:20)x({i,]<-.1

for(i in 1:10) {for(j in 1:10)
{if(abs(i-j)<2)x[i,5)<-1}}

a<-.7;b<~.2;cc<-.1

sum(x[2,}"a*x{5,)*b*x[8, ] ~cc)
sum(x[2, ] "a*x[7,]°b*x(8, }“cc)
sum(x (2, )"a*x (8, ]"b*x[3, }~cc)
sum(x[2,)~a*x[3, ]*b*x[8, ) *cc)
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Table 8
Code for a SIMPLEX Solution to the SAM Compound Cue Model

FUNCTION FOF (NV, X)

REAL X (9),xx(10,20)

FOF=0.0

=X (1)

b=X(2)

c=1l.-a-b

r=x{3)

w=x (4)

v=x (5)

sc=x(6)
C r = residual word, w = connection strength
C related, v=resid nonword
C sc is fam to RT scaling factor

do 1 j=1,10

do 1 i=1,10

xx (i, j)=r

xx (i, j+10)=v

if(abs(i-j).1t.2)xx(i,j)=w

1 continue

uu=0.

x1=0.

x2=0.

x3=0.

x4=0.

x5=0.

x6=0.

do 2 i=1,10 -

uu=uu+xx (1, 2) **a*xx (i, 5) **b*xx (i, 8) **c
x1=x1+xx(i,2)**a*xx(i,3)'*b*xx(i,8)*'c
x2=x2+xX (i,2) **a*xx (i, 8) **b*xx (i, 3) **¢
x3=x3+xx(i,2)'*a'xx(i,7)**b*xx(i,8)"c
x4=x4+xx(i,2)**a*xx(i,3)**b*xx(i,lS)‘*c
x5=x5+xx(i,2)**a'xx(i,5)**b'xx(i,15)'*c
2 x6=x6+xx (i,2)*%a*xx (i, 15) **b*xx (i, 8) **c
x1=(x1-vu) *sc-30 ’
x2={(x2-uu) *sc-21

x3=({x3-uu) *sc

x4=(x4-uu) *sc

x5=(x5-uu) *sc+30

x6=(x6-uu) *sc+40

x6=x6%2.
FOF=x1*x1+x2*x2+x3*x3+x4*x4+x5*x5+x6*x6
fof=fof*1000.

return

end

The substantive result is that the sequential data can be
accommodated with low weights on the prime and pre-
prime, contrary to McNamara’s claim (see Table 10).
Note that there is debate over some of the experimental
findings—nonword inhibition in particular (see Ratcliff
& McKoon, 1994)—and we use values from our work
in Table 10. The parameters are shown in Table 9. The
connection strength parameters are in the range of those
found in Gillund and Shiffrin (1984; residual strengths
are 0.2 and 0.1 for words and nonwords, respectively,
and self- and interitem strengths are 1.6. It should also
be noted that the model is constrained and could not fit
all patterns of results. For example, all conditions with
related prime and target have to have higher familiarity
than those with unrelated prime and target, conditions with
a nonword in them have to have lower familiarity than
those with an unrelated word in them, and so on. Viola-
tions of these orderings would result in inadequate fits
of the model. :

From a computational point of view, the S program pro-
vides a rapid way of exploring the model. S is slow, but

it only takes a few seconds to provide the results for the
program shown in Table 7. However, in a fitting routine,
where the function would have to be called hundreds of
times or more, I preferred the FORTRAN program be-
cause it is extremely fast.

Z-ROC Functions for the Attention Likelihood
Theory of Glanzer et al. (1993)

Glanzer, Adams, Iverson, and Kim (1993) have pro-
posed an attention likelihood ratio model for recognition
memory. Their model is basically a feature model de-
signed to explain ROC functions for recognition. The
model assumes that items to be remembered are composed
of features. A certain number of features are ‘‘marked’’
prior to studying a list of words. As a result of study,
more of these features become marked. When an item is
tested, a sample of the features is selected and the pro-
portion that are marked is used to decide whether the item
was studied or not. Rather than using a fixed criterion
based on the number of marked features observed in the
sample examined at test, a likelihood ratio is used to de-
termine whether the item came from the old-item distri-
bution or the new-item distribution. Essentially, for a par-
ticular score, the probability of it being an old item is
divided by the probability of it being a new item, and the
result is compared with a criterion (larger than criterion,
respond “‘old,”” smaller, respond “‘new”’).

The model is specifically designed to explain the mir-
ror effect in recognition memory. The mirror effect is the
finding that when a materials difference produces better
performance in recognition (e.g., low-frequency words
are better recognized than high-frequency words), the hit
rate is higher and the false-alarm rate is lower for the ma-

Table 9

Parameter Values for SAM Compound Cue Model
Parameter of Model Value
Target weight 0.715
Prime weight 0.166
Preprime weight 0.118
Strength for connected words 1.680
Residual strength for words 0.219
Residual strength for nonwords 0.109
Strength to RT multiplier 53.5*

*In milliseconds.

' Table 10
Fits of SAM Compound Cue Model to Rounded Data

Condition Relative to UUU Baseline

Preprime, Prime, Target Fit* Data*
URR 30.6 30
RUR 20.9 21
RRU 2.6 0
XRR -0.8 0
XUuU ~28.9 -30
Uxu —40.0 —40
XXU -65.7 777?

*In milliseconds. U denotes an unrelated word; R, a word related to
the other R word; and X, a nonword.



‘terials with better performance. To explain the mirror ef-
 fect for word frequency, the attention likelihood model
" assumes that low-frequency words are more attention
. grabbing than high-frequency words, so the number of
- sampled features at test is larger and the probability of
. marking features at study is larger.
' The likelihood transformation has no effect on the ROC
functions. For a criterion setting that produces a particu-
lar hit rate and false-alarm rate on a likelihood scale, an
equivalent criterion setting can be found on the feature
count scale. Glanzer, Adams, and Iverson (1991) assumed
that the normal approximation to the binomial distribu-
tion held, so that the slope of the z~-ROC function would
be the ratio of the standard deviations for the new- and
old-item distributions. However, for the parameter values
found in Glanzer et al. (1991), the approximation does
not hold.

In the experimental data, Glanzer et al. (1991; see also
Ratcliff et al., in press, for replication) found that the
slope of the z-ROC function was typically about 0.7-0.8
for high-frequency words and 0.6-0.7 for low-frequency
words. These experiments were performed using a con-

Table 11
Mathematica Code for Computing the Slope of
Z-ROC Functions for Binomial Distributions

<<Statistics‘DiscreteDistributions®
<<Statistics‘ContinuousDistributions®
<<Statistics‘InverseStatisticalFunctions®

n=60;pn=.05;po=.107;

ndn=BinomialDistribution(n,pn);
ndo=BinomialDistribution(n,po];
ndl=NormalDistribution(0,1.];

w={0.,0.,0.,0.,0.,0.,0.,0.,0.,
x={0.,0.,0.,0.,0.,0.,0.,0.,0.,
y={0.,0.,0.,0.,0.,0.,0.,0.,0.,
z={0.,0.,0.,0.,0.,0.,0.,0.,0.,

@
[ad
]

® o

ot ot

0 0
e

etc.

.0-CDF [ndn, 1], {i,0,20}];
.0-CDF [ndo, 1], {1,0,20}];

Doly[[i+1]1}=1
Dofz[[i+1]]=1

Do[w((i]}=Quantile(ndl,y[[i]]],{i,1,21}]
Do{x[[i)]=Quantile{ndl,z{[i]1}],{i,1,21})

ww={w,x}; p=Transpose[ww];
az2=ListPlot(p];
Pp~Fit [p, (1, xx}, xx]

Result is 1.60 + 0.906 xx

al=Plot {pp, {xx,~7,2}]
Show[{a2,al},DefaultFont->{“Helvetica”,16},
AxesLabel->{“2fa”,"zZhit"}}

Ratio of standard deviations for likelihood
transformed distributions

varn=n*pn*(1-pn) *Log{po*{1-pn}/ (pn* (1-po))]~2

varo=n*po*(1-po) *Log{po*{l-pn) / (pn*{1-po))}*2

Sqrt (varn/varo]
Result is 0.705
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Figure 4. Binomial density functions from Glanzer et al.’s (1993)
feature marking model. The right-hand distribution has p =.107,
the left-hand distribution has p = .05, and the number of features
is 60.

fidence judgment procedure that essentially produces hit

_ and false-alarm rates for various values of criterion set-

ting. When the ROC functions are computed directly from
the probability density functions (the ROC functions are
the same whether the distributions are transformed by the
likelihood transformation or not), the slope is consider-
ably larger—in the 0.9 range rather than 0.6-0.8. To find
ratios near 0.6 in the model, extreme distributions are re-
quired (e.g., highly nonsymmetric; see Ratcliff et al., in
press).

To perform these z-ROC analyses, I used the Mathe-
matica code that is shown in Table 11. The parameters
of the model for this example (typical of those used by
Glanzer et al., 1991) are shown in the fourth line of
Table 11—number of features, n = 60, probability marked
when the item is new = .05, and probability marked when
the item is old = .107. These values give rise to the dis-
tributions shown in Figure 4.

The Mathematica code is easily described. First, pack-
ages are loaded. Then the old-item and new-item bino-
mial distributions are defined, the standard normal dis-
tribution (to provide z scores) is defined, and some vectors
are initialized. The first two ‘‘Do’” statements set up one
minus the cumulative density function, and the next two
compute z scores of those values to provide zpic and zg,.
All that is left is to plot the z scores and fit a straight line
in the Fit routine. As can be seen, the code is quite com-
pact. The next three lines computing ‘‘varo’” and “‘varn”
provide the ratio of standard deviations for the likelihood
ratio model. The standard deviation ratio is 0.7, whereas
the slope of the z-ROC is 0.9—a substantial difference.

The substantive point here is that likelihood ratio the-
ory has problems predicting the slope of the z-ROC func-
tions with the parameter values promoted by Glanzer et al.
(1991). This is a problem for the particular values used
in Glanzer et al.’s articles, but it may be that more ex-
treme values of ppew and poig could give a better fit to
the data. However, it is clear that very small values of
Pnew are needed, which produce highly skewed binomial
distributions.
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Computational tools such as Mathematica—with built-
in distributions (normals and binomials), cumulative dis-
tribution functions, quantiles, fitting tools, and plotting
tools—allow rapid examination of simple theoretical mod-
els. To do this in a high-level language would require these
functions. I also tried this using the S language; it han-
dles densities, distributions, and so on very well, but my
version was compiled as single precision, and values in
the tails of the distribution provided numerical inaccuracy
and numerical overflow and underflow.

CONCLUSIONS

I have reviewed a number of tools used in real-time
experimental work and modeling and it is fair to conclude
that, with a lot of work, the routine tasks involved in
these research methods can be made considerably sim-
pler. For experimental work, the real-time system, list
generation tools, and data analysis tools have speeded ex-
perimental work by a factor of 4 or 5 from straight pro-
gramming, while leaving the generality untouched. For
computational modeling, I have found that FORTRAN
(other researchers, read C) is fast, and it is optimized for
speed on most workstations because of the investment in
routines by people in physics, engineering, chemistry, and
other such disciplines. However, over the last 5 years I
have found that high-level languages such as Mathemat-
ica and S are extremely useful. The languages trade speed
for both compactness and variety of built-in functions plus
extremely powerful graphing functions. I have been very
pleased with the payout for the investment I have put into
learning these languages and tools, and I think that a sim-
ilar investment would be beneficial to most researchers.
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