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Introduction

One of the fundamental questions posed by systems neurosci-
ence is whether the variability observed in neuronal responses is
largely reflective of neurons being noisy processing elements, is a
result of unaccounted contextual effects of otherwise identical
stimuli (e.g., a memory/hysteresis effect) and/or is reflective
of latent processes in the underlying neuronal network. From a
behavioral neuroscience perspective, decision making is also
confronted with the issue of variability—namely, that even for
very simple decisions, accuracy and response time (RT) can vary
significantly for nominally identical stimuli. Over the last decade,
there has been substantial work focused on linking neuronal vari-
ability to this behavioral variability. For the most part, much of the
effort has been focused on animal studies, including nonhuman
primates. Recent advances in neuroimaging, however, specifically
methods for single-trial analysis of noninvasively measured neural
activity, has enabled one to address the question with respect to
variability and decision making in the human brain.

In this chapter, we review systems, methods, and models
we have used to link neuronal variability to perceptual decision
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making in the human brain. We begin by describing how we identify task-
relevant EEG components and use signal detection theory to relate these com-
ponents to the behavioral data. We then use the well-known diffusion model of
two-choice decision making to show that the trial-to-trial variability of these
EEG components can be used to improve model fits of the behavioral data,
providing evidence that the trial-to-trial variability we see in the EEG contains
meaningful information and is not purely noise. We then turn to our work on
combining EEG and fMRI to infer the cortical networks underlying perceptual
decision making. We briefly discuss how EEG can be used to inform an fMRI
analysis to tease apart individual processes underlying perceptual decision
making., We then show how the trial-to-trial fluctuations in the EEG can be
used to construct regressors that yield fMRI activations that are unobservable,
given only behavioral or stimulus derived regressors. These specific results
suggest that the trial-to-trial fluctuations we identify in the EEG represent
latent processes such as attentional “polling” of the sensory input. In general,
our results demonstrate that analysis of trial-to-trial variability of neural activity
yields new insights into the constituent brain processes of decision making in
the human brain.

Single-Trial Analysis of EEG

Traditionally, the analysis of EEG has relied on averaging event-locked data
across hundreds of trials as well as across subjects, to uncover the neural signa-
tures of the neurocognitive process under investigation. The main assumption
of this approach is that trial averaging increases signal-to-noise ratio (SNR) by
minimizing the background EEG activity relative to the neural activity corre-
lated with experimental events. While this assumption is generally valid, it inev-
itably conceals inter-trial and inter-subject response variability. This trial-by-trial
variability may carry important information regarding the underlying neural
processes, which in turn might have important behavioral consequences.

In contrast, single-trial methods are often designed to exploit the large
number of sensor arrays by spatially integrating information across channels
to generate an aggregate representation (i.e., component) of the data that opti-
mally discriminates between experimental conditions of interest. Spatial inte-
gration enhances the signal quality without loss of temporal precision common
to trial averaging while the resulting discriminating components are often a
better estimator of the underlying neurophysiological activity.

Methods that have been developed fo extract components of interest from
the EEG include independent component analysis (ICA) (Jung et al., 2001;
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Makeig et al., 2002; Onton et al., 2006), common spatial patterns (CSP) (Guger
et al., 2000; Ramoser et al., 2000) support vector machines (SVM) (Lal et al,,
2004; Thulasidas et al., 2006) and linear discrimination (LD) based on logistic
regression (Parra et al., 2002; Parra et al., 2005). LD in particular can be used to
compute a set of spatial weights which maximally discriminate between exper-
imental conditions over several different temporal windows, thus allowing the
monitoring of the temporal evolution of discriminating activity. Unlike CSP,
which tries to identify orientations in sensor space that maximize power, LD
tries to maximize discrimination between two classes. Also unlike ICA, which
is designed to minimize the correlation between spatial components (i.e., make
spatial components as independent as possible (Hyvarinen et al., 2001) LD is
used to identify components that maximize the correlation with relevant exper-
imental events. All of these techniques linearly transform the original EEG
signal via the following transformation

Y =WX (1)

where X is the original data matrix, W is the transformation matrix
(or vector) estimated using the different techniques, and Y is the resulting
component/source matrix (or vector). Figure 10.1 summarizes how the LD
technique can be used for binary discrimination.

Using the single-trial LD approach highlighted here, we explored the tem-
poral characteristics of perceptual decision making in humans in an attempt to
quantify the relationship between neural activity and behavioral output
(Philiastides and Sajda, 2006). Motivated from the early work by Newsome and
colleagues in primates (Britten et al., 1996; Britten et al., 1992), we reported the
first noninvasive neural measurements of perceptual decision making in
humans, that lead to neurometric functions predictive of psychophysical per-
formance on a face versus car categorization task (see Figure 10.2A for exam-
ples of stimuli that were used). Specifically, we manipulated the difficulty of
the task by changing the spatial phase coherence of the stimuli in a range that
spanned psychophysical threshold. Carrying out the LD approach at different
time windows and coherence levels revealed two EEG components that dis-
criminated maximally between faces and cars as seen in Figure 10.2B for
one subject. The early component was consistent with the well-known face-
selective N170 (Bentin et al., 1996; Halgren et al., 2000; Jeffreys, 1996; Liu
et al., 2000; Rossion et al., 2003) and its temporal onset appeared to be unaf-
fected by task difficulty. The late component, appeared on averafge around 300 ms
after the stimulus at the easiest condition and it systematically shifted later in
time and became more persistent as a function of task difficulty. Both of these
components showed substantial trial-to-trial variability (see Figure 10.2C) and
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FIGURE I0.I Summary of our linear discriminant (LD) methodology for extracting
task-relevant components from single-trial analysis of the EEG. Each row of the
discriminant component map represents a single trial across time. Discriminant
components are represented by the y vectors. Trials are aligned to the onset of the
stimulus (black vertical line) and are sorted by reaction time (sigmoidal curves).

To construct this map we choose a training window, indicated by white vertical bars
(for this example starting at 180 ms post-stimulus), during which we train the linear
discriminator to estimate a weighting vector w across all sensors in X, such thaty is
maximally discriminating between the two experimental conditions (e.g. trial type 1 vs
trial type 2). We use the forward model to project the discriminating component back
to the sensors. An example scalp projection a is shown here and is used for
interpreting the neuroanatomical significance of the components. To quantify the
discriminator’s performance we used ROC analysis and computed the area under the
ROC curve (Az value). ]

Reproduced/adapted from Philiastides and Sajda, 2006).

-

they were both sensitive to decision-accuracy in that a high magnitude dis-
criminator output value (i.e. Y) indicated an easy trial, whereas smaller values
indicated more difficult decisions. Additional experimental manipulations
enabled us to identify a third component, situated between the early and late
components, around 220 ms post-stimulus, which systematically increased
with increasing task difficulty. To rule out the possibility that this component
is an artifact of the bottom-up processing of the stimulus we used a variant of our
original paradigm where we colored the same images red or green and asked our
subjects to either perform a simple color discrimination or the original face
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FIGURE I0.2 An example of a perceptual decision-making task and the task-relevant
EEG components extracted using linear discrimination, together with their
corresponding trial-to-trial variability. A) Behavioral paradigm (left) and sample face
stimuli at difference levels of coherence (right). B) Discriminant component maps for
one subject at 40% phase coherence. The four panels represent the face-vs-car
discriminator output for the two EEG components (one “early” and one “late” relative
to stimulus onset). Component maps are shown for both face and car trials using the
training windows shown by the vertical white bars. Reaction time profiles are
indicated by the black sigmoidal curves. The discriminator was designed to map face
trials to positive (red) and car trials to negative values (blue). C) The mean EEG
discriminator values within each of the training windows (y bar) for each trial and
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FIGUREIO.2 (Continued) for each stimulus class. Shown are trial-by-trial values of the
two components for faces and cars at 40% phase coherence only; note that these are
not successive trials in the experiment, they are successive presentations of the
stimulus condition to illustrate trial-to- trial variability. The amplitudes for the late
component are also shown as a histogram (lower panel, right) with a cutoff to separate
trials (into “better” face versus “worse” face) denoted by the thick black line.
Reproduced from Ratcliff et al., 2009).

categorization task (Philiastides et al., 2006). This manipulation allowed us to
keep the stimulus evidence unchanged while comparing the amplitude of the
third component between a challenging face/car and a trivial color discrimina-
tion. We found that, for the same images, this component was significantly
reduced when the subjects were merely discriminating the color of the stimu-
lus confirming that this component is related to task difficulty.

These results taken together suggest that the different EEG components
can be thought of as representing distinct cognitive events during perceptual
decision making. Specifically, the early component appears to reflect the stim-
ulus quality independent of the task (face/car or color discrimination) and is
likely to represent early sensory processing. In contrast, the late component
better represents information in the actual face/car decision process as it was
shown to be a good predictor of overall behavioral performance during face
categorization while its responses to the color discrimination were virtually
diminished. Consistent with a top-down attentional control system, the diffi-
culty component appears to be implicated in the recruitment of the relevant
attentional and other neuronal resources required to make a difficult decision.
Next we consider how the variability in these EEG components can be further
interpreted within the context of a well-established and tested model of two-
choice decision making.

Linking Trial-to-Trial Variability of EEG Components to
Behavior Via the Diffusion Model

Advances in understanding decision processes in both psychology and neuro-
science have produced models that require several sources of variability in
order to fit experimental data. In psychological applications, the models attempt
to fit accuracy and RT distributions for both correct and error responses. The
need for assumptions about variability in the various components of process-
ing come about because of the need to fit detailed behavior of error RTs. The
major generalizations are that when accuracy is high and speed is stressed,
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FIGURE Io:r.3 Linking EEG component variability to the diffusion model for two choice
decision making. A) Simulated diffusion processes with the same mean drift rate,
demonstrating that behavioral variability can be generated via the model. B) Fits for
diffusion model drift rates for data sorted using “late” EEG component values. Drifts
rates are systematically higher for EEG components having high values. D) When the
“early” EEG component values are used to sort the data, there is no significant
difference in the drift rates for high vs low EEG component amplitudes.

Adapted from Ratcliff et al., 2009. |

errors are faster than correct responses, but when accuracy is lower and accu-
racy is stressed, errors are slower than correct responses. This pattern was very
difficult to model and error RTs were ignored to a large degree in modeling
until the mid 1990s.

In psychology, diffusion models have been shown to be able to successfully
account for behavioral data in a range of experimental paradigms. These models
assume a gradual accumulation of noisy evidence towards one of two decision
criteria as in Figure 10.3A. The parameters of the model include the drift rate,

or rate of accumulation of evidence.
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In perceptual decision making, this represents the quality of the percep-
tual signal. The amount of evidence required to make a decision is represented
by the distance between the two boundaries, and any bias towards one or other
response is represented by any asymmetry between the starting point and
either boundary. In addition to these parameters, the other components of
processing, such as stimulus encoding and response output are represented by
a single parameter which represents the duration of the non-decision compo-
nents of processing.

The diffusion model, being a dynamic sequential sampling model, can be
contrasted with signal detection theory (SDT) which is a static model. In SDT,
there is only one source of variability, vatiability in perceptual strength across
trials. This corresponds to variability in drift rate across trials in a diffusion model
(see Figure 10.3A). Because there is only one source of variability in SDT, how-
ever, all sources of variability are collapsed into the one source. If we believe that
there are multiple sources of variability, then SDT is clearly not adequate. We also
know that subjects can trade speed for accuracy. A diffusion model analysis
shows that to a good approximation, drift rates are invariant under such instruc-
tions with differences in accuracy and RT accounted for by a change in the para-
meter representing boundary separation. In contrast, SDT produces differences
in discriminability as a function of speed-accuracy instruction manipulations.

Behavioral models of simple decision making require several sources of
variability in order to fit data. Traditionally, behavioral measures (e.g. accuracy
and RT) have been the sources of this variability. Neurophysiological measures,
however, can also potentially be exploited. For instance, in terms of noninvasive
neuroimaging, single-trial EEG offers the ability to track processing in a way
that behavioral measures do not. EEG provides a millisecond by millisecond
measure of the brain’s electrical activity and therefore it is possible to link this
activity to different parameters resulting from the psychological models of pro-
cessing. (Philiastides et al., 2006) showed that the late component of process-
ing correlated highly with drift rate from diffusion model fits to the
experimental data. Because this late component provides an estimate of the
quality of evidence on single trials we examined whether it could be used to
index drift rate in a diffusion model analysis.

In our analysis, the data was divided in half as a function of the size of the
late EEG component value. So for each trial, we decided whether the compo-
nent values was greater or less than the mean for that condition (e.g., the his-
tograms in Figure 10.2C) and then sorted the data into two groups for each
condition for each subject. In the diffusion model, this would be equivalent
to dividing the drift rates in each condition into two halves if the component
value was an estimate of drift rate for each trial. The diffusion model was fit
to the two groups of data for each subject, and results showed that for the
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more face-like group of data, drift rates were more face-like than for the lesg
face-like group of data (see Figure 10.3B). A similar analysis based on the early
component of processing showed no difference (Figure 10.3C). In addition, the
estimate of variability across trials in drift rate averaged over subjects was sig-
nificantly lower than the value obtained by fitting all the data for each subject.

These results show a close connection between the variability of the late
single trial EEG component value and drift rate in the diffusion model pro-
duced by fitting the behavioral data. This provides additional support for both
the psychological reality of sequential sampling models. To better understand
the neuronal origins of this variability however, one needs to use the single-
trial information obtained from: the EEG to inform the analysis of fMRI data
collected for the same task. The next section describes our efforts of combining
EEG and fMRI to describe decision making with high temporal as well as high
spatial precision.

Coupling EEG to fMRI for Inferring Cortical Networks
Underlying Perceptual Decision-Making

Despite significant progress made in understanding perceptual decision making
in humans using EEG and {MRI in isolation, the spatial localization restrictions
of EEG and the temporal resolution constraints of fMRI suggest that only a fusion
of these modalities can provide a full spatiotemporal characterization of this pro-
cess. Animal experiments have already demonstrated that hemodynamic signals
are more closely coupled to synaptic than spiking activity and that changes in the
fMRI BOLD signal can correlate tightly with synchronized oscillatory activity
recorded from local field potentials (LFPs) (Logothetis, 2008; Logothetis and et al.,
2001; Niessing et al., 2005; Viswanathan and Freeman, 2007). Under these prem-
ises, it is reasonable to assume that neural activity reflected in the EEG could also
correlate well with the underlying BOLD hemodynamic response.

We have used two methods for coupling EEG and fMRI activity. One is to
record EEG and fMRI simultaneously, and explicitly utilize the trial-to-trial
fluctuations in the EEG components to construct regressors for use in the anal-
ysis of the fMRI activity. In a second approach, we use each modality separately
and, given an appropriate experimental design, derive MRI regressors that are
modulated by average amplitudes of EEG components associated with differ-
ent experimental conditions. Specifically, we first perform single-trial LD to
identify EEG components of interest (e.g. early, late and difficulty components).
Assuming the discriminator is trained with T samples within each window (7)
of interest, the output (y,) has dimensions TXN, where N is the total number



TO: LINKING NEURONAL VARIABILITY TO PERCEPTUAL DECISION MAKING 223

of trials. To achieve more robust single-trial estimates for y , averaging across
all training samples is performed:

1 T

Yo = E.“ 2 Yeij

= (2)
Where i is used to index trials and j training samples. For the first approach,
Y.: is then used to modulate the amplitude of the different fMRI regressor
events. Finally, the parametric regressor is convolved with a prototypical
hemodynamic response function, which is used to model the fMRI data in the
context of a general linear model (GLM). This process can be repeated for
multiple windows/components (1) each resulting in a separate regressor (see
Figure 10.5 for a summary of this approach). Identifying the brain regions that
correlate with each of these regressors will enable a comprehensive character-
ization of the cortical network involved in perceptual decision making.

In the absence of simultaneous EEG/fMRI measurements, the second
method, namely using average values of EEG components to modulate regres-
sors which are a function of the experiment condition (e.g. trial type). can be
used instead. In this case the discriminator output associated with each com-
ponent and each experimental condition is averaged across trials:

N T
ZZYT.i.j

i=1 j=1 (3)

=c

YT,i =

~ |-

=
N

where ¢ is used to index the different experimental conditions. The average
discriminator output per component and experimental condition obtained
from equation 4 can be used to model the fMRI data. Importantly, y;, is now
a scalar - that is, in the absence of single-trial information during the fMRI ses-
sion, all like trials will be modeled in the same way. Though inter-trial variabil-
ity is ultimately concealed in this formulation, important information regarding
the localization of each of the EEG components, that would otherwise be unat-
tainable using EEG or fMRI alone, can now be obtained.

We first considered the latter approach for the perceptual decision making
work presented above (Philiastides et al., 2006; Philiastides and Sajda, 2000).
As highlighted earlier, the strength of our early EEG component was propor-
tional to the stimulus evidence (i.e., stronger for easy than hard trials) and it
remained unchanged during the face/car and color discriminations. The late
EEG component also responded proportionally to the stimulus evidence during
the face/car discrimination, but it was stronger across all difficulty levels
relative to the early one. Unlike the early component, however, the strength of
the late component was significantly reduced during the color discrimination.
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In contrast to both the early and late components, the strength of the difficulty
component was inversely proportional to the amount of stimulus evidence
(i.e., stronger for hard rather than easy trials).

As a result of these observations, we constructed three parametric fMRI]
regressors, one for each of the early, difficulty, and late components in order to
analyze the fMRI data collected for the same task. To modulate the heights of
the corresponding regressor events we estimated the relative strengths of our
components with respect to the difficulty (i.e., low [L] vs high [H] coherence)

<FCL ZFCH

and the type of task (i.e., face vs car [FC] or red vs green [RG]) (L.e. ¥ ;") ¥;,",
yoot, yEOH where T= (early, difficulty, late)).

Figure 10.4 summarizes our findings in a form of a spatiotemporal dia-
gram and demonstrates that a cascade of events associated with perceptual
decision making takes place in a highly distributed neural network. These
include early visual perception (early component), task/decision difficulty (dif-
ficulty component) and postsensory/decision-related events (late component).
Clear is that by exploiting the variability across EEG component and trial types
(i.e. the variability in the y'5*, yis™, ¥t yri™) we were able to infer a
more detailed picture of the cortical networks underlying perceptual decision
making.

Next, we wanted to demonstrate the efficacy of the first method of exploit-
ing the trial-to-trial variability measured during simultaneous acquisition of
EEG and fMRI. Simultaneous EEG/fMRI is a relatively new neurocimaging
modality that enables the simultaneous measurement of electrical and blood
oxygenation level dependent (BOLD) activity. The electrical activity measured
via EEG is temporally precise (millisecond resolution) and is a direct measure of
neural activity whereas the BOLD activity measured via fMRI is more spatially
localized (millimeter resolution) and represents an indirect measure of neural
activity. We have conducted experiments that use such multimodal neuroimag-
ing to correlate the trial-to-trial variability of temporally precise EEG compo-
nents with simultaneously measured BOLD activity. The underlying hypothesis
is that the trial-to-trial variability in the EEG components has information con-
tent that is meaningful, for example representing the dynamics of latent brain
states that are unobservable via stimplus or behaviorally derived measures.

Given the technical challenges in acquiring EEG and fMRI simultane-
ously, we first focused on a very simple and classic perceptual detection para-
digm, the auditory oddball task (Donchin and Coles, 1988; Picton, 1992; Polich,
2007). A detailed description of the paradigm and data acquisition can be found
in (Goldman et al., 2009). Here we focus on the method for coupling the
single-trial variability of the EEG components with the fMRI measured BOLD

activity.
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FIGUREIO.4 Spatio-temporal processing timing diagram resulting from an EEG-
infotmed fMRI analysis For the early component, we see significant correlations with
activity in areas implicated in early visual processing of objects/faces such as the
fusiform face area (FFA) and the superior temporal sulcus (STS), (Allison et al., 1999;
Haxby et al., 2000; Hoffman and Haxby, 2000; Kanwisher et al., 1997; Puce et al.,
1998). The difficulty component is correlated with activity in the supplementary and
frontal eye fields (SEF/FEF), the anterior cingulate cortex (ACC), the dorsolateral
prefrontal cortex (DLPFC) and the anterior irisula (INS). These observations are
consistent with the interpretation that there exist an attentional control system that
exerts top-down influence on decision making (Heekeren et al., 2004; Heekeren et al.,
2008). Finally, the late component is correlated with activity in the lateral occipital
complex (LOC) and in the right ventrolateral prefrontal cortex (rVLPFC). Aside from
its involvement in object categorization (Grill-Spector et al., 2004; Grill-Spector et al.,
2001; Grill-Spector et al., 1999; James et al., 2000, 2002), the LOC has been implicated
in "perceptual persistence” (Ferber et al., 2002; Large et al., 2005), a process in which a
percept assembled by lower-visual areas is allowed to remain in the visual system, via
feedback pathways, as a form of iconic memory (Coltheart, 1980; DiLollo, 1977;
VanRullen and Koch, 2003).

Adapted from Philiastides and Sajda, 2007.

Figure 10.5 shows specifically how we utilize the trial-to-trial variability in
the EEG components to construct novel regressors for correlating with the
BOLD activity. In this example two EEG components are identified after stimu-
lus onset, one at 250ms and the other at 400ms. Both of these components
discriminate target from nontarget stimulus and both are stimulus locked.
Note that though both components have discriminative power in terms of
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FIGURETO.5 Our approach for coupling the trial-to-trial variability of the EEG with the
BOLD signal, given simultaneous EEG/fMRI acquisition. (top) Output for all trials of
the single-trial EEG discriminator for two stimulus-locked 50 ms windows (data
between black vertical bars) centered at 250 ms and 400 ms post stimulus-onset. Hot to
cold color scale indicates positive to negative values of the discriminator output

(i.e. positive and negative correlations). (middle) EEG discriminator output for a single
target trial for each of the two components (black curves), showing the fMRI event
model amplitude as the average of the discriminator output for each window, 250 ms
(blue) and 400 ms (red), for the trial. (bottom) Single-trial fIMRI model for target trials
across the entire session for the 250 ms and 400 ms windows. Note that the event
timing for each of the two windows is the same, but the event amplitudes are different.
Reproduced from Goldman et al. (2009).

target from non-target trials, their trial-to-trial variability is not 100% corre-
lated, and therefore their individual trial-to-trial variability in principal could
capture different aspects of the decision making process. For each of these com-
ponents, we construct regressors by using the amplitude of the component on
each trial to modulate the amplitude of a boxcar regressor. A regressor is con-
structed for each EEG component and then convolved with the hemodynamic
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response function. This leads to two explanatory variables that capture the
trial-to-trial variability of the EEG components and can be used in a general
linear model (GLM) analysis to correlate with the BOLD activity. Finally we
orthogonalize these EEG-derived explanatory variables with respect to tradi-
tional stimulus and behaviorally derived regressors, thus ensuring the activity
they capture is purely correlation with the EEG component trial-to-trial
variability.

Figure 10.6 shows results for statistically significant fMRI activations
resulting from trial-to-trial variability in the EEG during an auditory oddball
paradigm. (Additional details can be found in (Goldman et al., 2009). Several
interesting observations can be made. The first is that the locations of the fMRI

t R-STVi50-Target

FIGURE 10.6 (A) fMRI activations for the stimulus-locked single-trial analysis showing
regions with significant BOLD signal correlation (p<0.005, cluster>73 voxels, negative
correlation) with single-trial variability to targets for the 450ms window, S-STV450-
Targ. For target tones, only the stimulus-locked 450ms window passed both the

EEG and fMRI thresholds. Shown also is the scalp topography of the corresponding
450ms window stimulus-locked EEG discriminating component (arbitrary units).

(B) fMRI activations for the response-locked single-trial analysis showing regions with
significant BOLD signal correlation (p<0.005, cluster>73 voxels, negative correlation)
to response-locked single-trial variability to target tones. The response-locked 50ms
window, R-STV50-Targ (blue), and 150ms window, R-STV150-Targ (green), passed
both the EEG and fMRI thresholds. The scalp maps of the output of the EEG
discriminator for the 3 windows from 50-150ms response-locked are also shown
(arbitrary units). Reproduced from Goldman et al. (2009).
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activations that arise from the trial-to-trial variability are remarkably consistent
with the scalp projections of the corresponding EEG components. Since only
the trial-to-trial variability of the EEG components is used in the GLM analysis,
no information about the locations of the EEG components (i.e., scalp projec-
tions) is used to constrain the spatial location of the fMRI activations. Thus, the
fact that that EEG trial-to-trial variability leads to consistent localizations in both
modalities supports the interpretation that that this variability is neurophysio-
logically meaningful. A second observation pertains to the specific locations of
the activated regions. Figure 10.6A shows activations localized to somatosen-
sory cortex with Figure 10.6B showing activations in lateral occipital complex.
Given that the paradigm is an auditory oddball task, why would two cortical
areas selective to other modes of sensory input (somatosensation and vision) be
activated? The third observation provides a clue, namely that these activation
are negatively correlated with the EEG component trial-to-trial variability. In
other words, on a trial, when the EEG component increases the fMRI BOLD
signal decreases, and vice versa. A possible interpretation of these three obser-
vations is that the trial-to-trial variability represents an attentional “polling” of
the sensory inputs, with attention allocated in a “push-pull” fashion—i.e.
when attention is directed to one modality it is pulled from the other sensory
modalities. We are further investigating this hypothesis with additional experi-
ments that consider activations elicited when the oddball paradigm is performed
via a different sensory modality (e.g., visual or somatosensory). In general, these
findings suggest that the trial-to-trial variability in EEG componen{s may reflect
latent brain states that, when combined with fMRI, can yield novel insight into
perceptual decision making. Currently, we are conducting experiments for the
face/car paradigm, within the context of this type of simultaneous EEG/fMRI
analysis. We believe that this will enable us better elucidate additional details of
the underlying cortical networks (i.e. improve upon the accuracy of the spatio-
temporal diagram of Figure 10.6).

Conclusions

Our efforts using spatially and temporally precise neuroimaging, machine
learning and signal processing, and cognitive modeling to measure and ana-
lyze neuronal variability have so far been aimed at understanding how we make
very simple decisions. The ultimate challenge is to understand the cortical cir-
cuits involved in making typical, everyday decisions such as “Should I take
the subway or walk to work today?” or “Should I read this chapter given how
busy I am?” The neuronal variability underlying these everyday decisions may
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in fact be the key to understanding what makes each of us unique—i.e,. what
differentiates individuals from one another. In addition, analysis of such neu-
ronal variability may be critical for identifying precursors to behavioral changes,
including pathological changes that are associated with cognitive deficits and
disease. Thus the imaging, analysis and modeling methods we have described
can be seen as a suite of tools, to be used in concert, for measuring and analyz-
ing neuronal variability associated with both normal and abnormal decision
making in the human brain.
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