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The present study tested diffusion models of processing in the
flanker task, in which participants identify a target that is flanked
by items that indicate the same (congruent) or opposite response
(incongruent). Single- and dual-process flanker models were imple-
mented in a diffusion-model framework and tested against data
from experiments that manipulated response bias, speed/accuracy
tradeoffs, attentional focus, and stimulus configuration. There was
strong mimcry among the models, and each captured the main
trends in the data for the standard conditions. However, when more
complex conditions were used, a single-process spotlight model
captured qualitative and quantitative patterns that the dual-
process models could not. Since the single-process model provided
the best balance of fit quality and parsimony, the results indicate
that processing in the simple versions of the flanker task is better
described by gradual rather than discrete narrowing of attention.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The Eriksen flanker task has been extensively used to investigate the mechanisms underlying visual
attention (Eriksen & Eriksen, 1974). In the standard task, participants must discriminate a single item
(e.g., letter or arrow) that is surrounded, or flanked, by items that indicate the same or opposite re-
sponse. For example, if participants had to decide whether the central arrow in a display faced right
or left, a congruent trial would include flankers that faced the same direction as the central target (e.g.,
c. All rights reserved.
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> > > > >), whereas an incongruent trial would include flankers that faced the opposite direction (e.g.,
< < > < <). The standard finding is that the incongruent flankers produce interference that leads to
slower and less accurate responses compared to the congruent condition, known as the flanker con-
gruency effect (FCE).

The present study compares the ability of several integrated response time (RT) and attentional
models to account for data from the flanker task. The primary aim was to discriminate theories of dis-
crete and gradual narrowing of attention to determine which can best account for data from a range of
experimental manipulations. The next section reviews critical findings from the flanker task, placing
particular focus on how the decision evidence from the stimulus varies over time. This is followed by a
brief review of models of visual attention that have been developed to account for data from the flan-
ker task. Then the diffusion model is introduced with a focus on how it can be augmented to incorpo-
rate principles from theories of flanker processing. Two simple diffusion models are developed, one
based on a single-process and one based on dual processes. These models are then tested along with
the Dual-Stage Two-Phase Model (Hübner, Steinhauser, & Lehle, 2010) using a series of experiments in
which different components of the decision process were manipulated. This battery of experimental
data allows us to determine first, whether the models can adequately fit the data, and second, whether
the model parameters appropriately reflect the experimental manipulations.
1.1. Processing in the flanker task

This study focuses on standard flanker tasks in which a stationary target with known location is
flanked by congruent or incongruent items. Early studies involving flanker stimuli demonstrated that
the visual system is not capable of infinitely fine selectivity. Even when participants knew the upcom-
ing location of the target, they could not effectively constrain their attention to eliminate effects from
the flankers (Eriksen & Eriksen, 1974). This finding also implies that the flanker interference is not due
to inefficient search for the target or uncertainty about its location. Indeed, flanker interference has
been shown with flankers over 2� from the target, meaning they were unlikely to be confused with
the target location (Eriksen & Schultz, 1979). Perhaps the most salient finding from flanker experi-
ments is that the interference is not constant over time. Gratton and colleagues (1988) examined this
and found that most errors for incongruent trials occurred for fast responses. This is demonstrated in
Fig. 1, which presents a quantile probability function (QPF) from a simple flanker experiment (Exper-
iment 1 of this study). The QPF provides a summary of the entire data set, namely accuracy values and
the distribution of RTs for correct and error responses. The position of a column on the x-axis indicates
the probability of a response for a condition, with correct responses on the right and errors on the left.
Fig. 1. Quantile probability function from a simpler flanker task (Experiment 1). The figure plots the accuracy and RT quantiles
for correct and incorrect responses (see text for details).
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The points in each column are the quantiles (.1, .3, .5, .7, .9) of the RT distributions, which provide a
summary of the distribution shape. The lowest point for a condition represents the point in time at
which 10% of responses have been made, which we refer to as the leading edge of the distribution.
Each subsequent point above represents the next quantile RT, with the highest point reflecting the
slowest responses for that condition. Because there were very few errors for congruent trials, five
quantiles could not be computed, so only the median quantile is presented in the graphs. Fig. 1 shows
the typical flanker congruency effect: responses to incongruent trials were less accurate and slower
than to congruent trials. Accuracy for congruent trials is near 98% compared to 91% for incongruent
trials, and the median response times are 437 ms and 516 ms, respectively (right side of Fig. 1). In
terms of how the flanker interference changes over time, the critical portion of the QPF involves the
relative speed of correct and error responses for incongruent trials. As Fig. 1 shows, the error RTs were
faster than correct RTs for incongruent trials, suggesting that flanker interference is strongest early in
the trial. Thus for early processing the flankers overwhelm the target, resulting in a high likelihood of
selecting the incorrect response. However, the majority of trials end in correct responses that are
slower than the errors. Thus the early flanker interference can be reduced and overcome. Recordings
of lateralized readiness potentials support this account, showing partial activation of the incorrect re-
sponse early on for incongruent trials, even if the correct response was later given (Gratton et al.,
1988).

The time course of the FCE suggests that accurate processing of the target takes time to build. This
is typically conceptualized by assuming that visual attention is broad and nonselective at stimulus on-
set, but focused and selective after attention is engaged. Thus the flankers have a large influence early
in processing that is reduced as attention is focused. The next section presents models that implement
variants of this assumption to account for the impact of flanking stimuli over time.
2. Models of processing in the flanker task

The models addressed in this study are those that assume that the FCE arises as a result of dynamic
attention. The primary assumption of dynamic attention models is that attention can be engaged dur-
ing a trial to focus on or select the target and reduce the influence of the flankers. There are two main
types of model within this class: single-process models that assume gradual narrowing of attention,
and dual-process models that assume discrete selection of the target. It is important to note that there
can be considerable mimicry between these two classes of model, and it has been argued that dual-
process models simply represent poles on the continuum of attentional selectivity (Eriksen & St.
James, 1986). As the results of the experiments later show, these models are not easily differentiated.
2.1. Gradual narrowing of attention

Single-process models of attentional narrowing assume that the extent of spatial attention can be
gradually reduced over time (Eriksen & Schultz, 1979; Eriksen & St. James, 1986). These models often
conceptualize visual attention as a spotlight in visual space, where any items within the spotlight feed
later processing. The original formulation assumed a fixed width for the spotlight (Eriksen & Eriksen,
1974), but later work introduced the concept of attentional focusing through the analogy of a zoom
lens (Eriksen & St. James, 1986). We will refer to this class of models as spotlight models to capture
the general conceptual framework in which the attentional focusing is implemented. In this frame-
work the attentional spotlight is diffuse at stimulus onset, allowing influence from the flankers, but
gradually narrows in on the target as more attention is engaged (analogous to zooming in on the tar-
get). Thus visual attention effectively shrinks the spotlight to focus in on the target. Cohen, Servan-
Schreiber, and McClelland (1992) showed that principles of a shrinking spotlight model could arise
from a fairly simple neural network model in which attention serves to boost the perceptual input
from the target, and combined with lateral inhibition of nearby items, gradually reduces the influence
of the flankers as more attention is applied.

Models in this class are labeled single-process because the decision process receives the same
stream of evidence throughout the course of the decision, with visual attention modulating the inputs
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that determine the decision evidence. Crucially, since there is only one stream of evidence that feeds
the decision process, the quality of evidence can improve during the narrowing of attention, even be-
fore the focus is entirely on the target. This gradual improvement in decision evidence is the primary
property that distinguishes single from dual process models of the flanker task.

Gradual improvement in decision evidence can also arise from models that assume feature sam-
pling, like Logan’s Contour Detection theory of visual attention (CTVA; Logan, 1996, 2002). CVTA as-
sumes that the spatial representation of each item is distributed in space rather than a single point
(see also Gomez, Ratcliff, & Perea, 2008; Ratcliff, 1981), and features are sampled from the joint dis-
tribution of the items in a display. Logan (1996) showed that CTVA could account for the longer mean
RTs and lower accuracy for incongruent trials, though the model was not evaluated in terms of the
time course of the decision evidence. However, CTVA could produce a gradual improvement in evi-
dence over time because as the number of sampled features increases, the representation of the stim-
ulus becomes more accurate. Thus the initial influence of the flankers could be overcome by sampling
more features over time (see Yu, Dayan, & Cohen, 2009 for a similar approach). However, since CTVA
does not include a mechanism for dynamically narrowing attention it is not included in our
comparison.
2.2. Discrete selection of target

Dual-process models differ from continuous models by assuming some form of all-or-none pro-
cessing of the flankers, which leads to an abrupt rather than gradual improvement in decision evi-
dence (e.g., Hübner et al., 2010; Jonides, 1983; Ridderinkhof, 1997). During the first process,
attention is diffuse and the flankers have a significant influence on the decision evidence. After some
amount of time, visual attention is used to select the target, at which point process two begins, driven
only by the target. Importantly, the second process does not occur until the target has been selected
(or the flankers have been suppressed). This is conceptually similar to saying that the narrowing of
attention does not influence the decision evidence until it has completely narrowed in on the target.
Models in this class have also been referred to as dual-stage models, assuming that selection of the
target engages the second stage of processing that then feeds the decision evidence.

In this framework, the selection of the target and subsequent change in decision evidence are con-
ceptualized as a separate process from the automatic response activation that occurs during early pro-
cessing. Whereas single-process models assume that decision evidence gradually changes as the
flankers are suppressed (or the target is boosted), dual-process models assume an abrupt change in
evidence once the target has been selected. If we assume that the time at which the switch occurs
is variable from trial to trial, there is significant mimicry between the single- and dual-process models.
However, our results later show that there are important differences between the models even if var-
iable switch time is incorporated into the dual process model.
3. Sequential sampling models

We now describe how the mechanisms of dynamic attention described above were implemented in
the framework of a sequential sampling model. Sequential sampling models describe the processes
underlying simple decisions and share the basic assumption that information is sampled and accumu-
lated over time until a criterial amount is reached. The Ratcliff diffusion model (Ratcliff, 1978; Ratcliff
& McKoon, 2008; Ratcliff, Van Zandt, & McKoon, 1999) was chosen as the framework to implement the
dynamic models described above because it provides a successful theoretical account of the fast, two-
choice decisions in many tasks that are similar to the flanker task.

In the diffusion model, noisy evidence is accumulated over time until a criterial amount has been
reached, at which point the corresponding response is initiated. The basic model is shown in Fig. 2. The
decision process starts at some point, z, between the two boundaries, and evidence is sampled over
time and accumulated until one of the two boundaries is reached. Each boundary represents one of
the two possible choices (e.g., right or left) and the time taken to reach the boundary is the decision
time. Processes outside of the decision process, like stimulus encoding and response execution, are



Fig. 2. Schematic of the standard diffusion model. Noisy evidence accumulates over time from the starting point, z, to one of
two boundaries, a or 0. The total response time includes the decision time plus the time taken for nondecision processes like
visual encoding (i.e., Ter).
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combined into one parameter with mean time, Ter. The overall response time for a trial equals the
decision time plus the nondecision time.

In addition to Ter, there are three other primary components to the model, each with a straightfor-
ward psychological interpretation. The starting point, z, indexes response bias. If participants were
biased toward one of the two responses (e.g., by increasing the proportion of one response over the
other), they would move their starting point closer to that boundary. This produces faster and more
probable responses at that boundary since less evidence is needed to reach it. The separation between
the two boundaries, a, indexes response caution or speed/accuracy tradeoffs. If the boundary separa-
tion is relatively small, responses will take less time to reach a boundary, leading to faster responses,
but they will also be more likely to reach the wrong boundary due to noise in the process, leading to
more errors. The within-trial noise in the accumulation of evidence is represented by s, which can
serve as scaling parameter that was fixed at .1. Although s can be allowed to vary across conditions
to better account for the data in some cases (see Donkin, Brown, & Heathcote, 2009), it was held con-
stant across conditions for this study.

The parameter of primary interest for the present study is the drift rate, v, which is the average rate
of approach to a boundary and indexes the quality or strength of evidence extracted from the stimu-
lus. A large value of drift indicates strong decision evidence, meaning the decision process will ap-
proach the appropriate boundary quickly, leading to fast and accurate responses. Importantly, the
value of drift is typically assumed to be constant over the course of a decision process. This assump-
tion has proved to successfully account for data from several two choice tasks (see Ratcliff & McKoon,
2008). For example, in perceptual discrimination a participant might be shown a patch of grey pixels
and asked to determine if it is closer to white or black. Because the information from the stimulus is
fairly constant (i.e., the patch doesn’t change), a diffusion model with constant drift rate accounts for
the corresponding data (e.g., Ratcliff & Rouder, 1998). Further, Ratcliff and Rouder (2000) (see also
Smith & Ratcliff, 2009; Smith, Ratcliff, & Wolfgang, 2004) showed that the effects of perceptual mask-
ing, which disrupts the source of evidence during the course of the decision, were better accounted for
by a constant drift rate than a time-varying drift rate that diminished after the mask appeared. Indeed,
the assumption of constant drift rate has proved to account for data from numerous two-choice tasks.

However, a constant drift rate cannot produce the pattern of data that is obtained from flanker
tasks, namely faster errors than correct responses for incongruent trials only. In light of this, we incor-
porate a time-varying drift rate into the standard diffusion model. The concept of a time-varying drift
rate has been proposed in a diffusion model framework (Ratcliff, 1980) and explored in previous stud-
ies. Ratcliff and McKoon (1982) used a response signal paradigm and showed that false semantic state-
ments like a bird is a robin produce data similar to incongruent trials in the flanker task, with mostly
errors (yes) for fast responses but mostly correct responses (no) for slower responses. The authors con-
cluded that a time-varying drift rate would be needed to accommodate the results. Likewise, Ratcliff
and McKoon (1989) found that similarity information was available earlier than relational information
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in a recognition memory paradigm, again indicating a non-constant source of decision evidence that
would be reflected by a time-varying drift rate (see also Gronlund & Ratcliff, 1989).

The present study compares diffusion models with time-varying drift rates against data from the
flanker task. Models of flanker processing were used to determine the time-varying drift rate which
drove a standard diffusion decision process. This approach is similar to Smith and Ratcliff (2009),
who incorporated mechanisms of perceptual encoding, visual attention, backward masking, and visual
short term memory into a diffusion model framework to account for effects of mask-dependent and
uncertainty-dependent cueing in a signal detection paradigm. This allowed the authors to test
assumptions about orienting and gain in a unified dynamic model (see also Smith et al., 2004). Like-
wise, the present study incorporates different mechanisms of visual attention into the diffusion model
framework to contrast gradual versus discrete attentional selection in the flanker task.
4. Model details

This section presents the details of the flanker models that were tested in the present study. Among
the models, one is based on a single-process spotlight model, one is based on a simple dual-process
model, and one is an extant model involving two stages and two phases (DSTP; Hübner et al.,
2010). For each model, the standard framework of the diffusion model was used with the drift rate
allowed to vary over time. In this framework, the attentional components determine the relative con-
tribution of the flankers and target to provide the value of drift rate at each time step.

This is not the first study to implement a single-process diffusion model of the flanker task. Liu,
Holmes, and Cohen (2008) showed that the neural network model of Cohen et al. (1992) could be re-
duced to a drift–diffusion model with a 2-term exponential function to describe drift rates for congru-
ent trials, and a 3-term exponential function to describe drift rates for incongruent trials. While this
work demonstrates the agreement between certain neural network models and diffusion models,
the resulting model is not readily interpretable in terms of psychological processes, which limits its
use as an analytical tool. In other words, there is no principled link between the different exponential
terms, the stimuli, and psychological processes of interest. Further, Hübner et al. (2010) showed that
the Liu model provided poorer fits than their Dual-Stage Two-Phase model (presented shortly), so it is
not included in the present comparisons. They also tested several versions of single process models
and found that none of them fit as well as the DSTP model. Nonetheless, our results will later show
that a fairly straightforward implementation of a spotlight model can successfully account for the
behavioral data better than DSTP for certain conditions.
4.1. Shrinking spotlight model

The aim in developing the spotlight model was to produce a simple model with psychologically
meaningful components. The model contained the following standard components of the diffusion
model: boundary separation, nondecision time, perceptual input, and starting point. To avoid confu-
sion, the evidence provided by each item is referred to as perceptual input, p, and the overall time-
varying evidence as drift rate, v(t). Previous applications of the diffusion model allow for across-trial
variability in some components based on the assumption that the values fluctuate across the course of
the experiment. In support of this, Gratton et al. (1988) found prestimulus response activation in EMG
recordings that varied across trials and was associated with fast responses. Their findings are consis-
tent with a decision process with a fixed threshold and a varying starting point, which is implemented
in applications of the diffusion model (see Ratcliff & McKoon, 2008). Nonetheless, the variability
parameters were excluded to allow more direct comparison of the models’ primary components. Fur-
ther, no variability components were incorporated in the original version of DSTP, thus excluding
them in the newer models provides a fairer comparison. Still, it is important to note that the fit quality
for each of the models can be improved through the addition of across-trial variability in starting
point, nondecision time, and drift rate. Later we demonstrate this by presenting a model that incorpo-
rates these variability parameters.
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The spotlight model was developed in a manner that reflects how attention interacts with the stim-
uli to produce the time-varying decision evidence. Each arrow in the display has a perceptual input
value that is either positive or negative, depending on which direction it faces. In this regard, the mod-
els will be constrained by the stimuli, since no other parameters will be allowed to vary as a function
of the stimulus. The attentional component of the model determines how each item is weighted to
determine the total drift rate that drives the decision.

The top panel of Fig. 3 shows a schematic of the spotlight model for a 5-item display. The contri-
bution of each item to the drift rate is governed by the perceptual input strength of the item, multi-
plied by the proportion of attention allocated to it. The initial allocation of attention (i.e., at stimulus
onset) is represented as a normal distribution centered over the target, where sda reflects the width of
the attentional distribution and ai reflects the proportion of the spotlight that falls within the range of
each item in the display. A normal distribution was chosen because previous work supports a gradual
drop-off in attentional resources rather than a sharp boundary (e.g., Eriksen & St. James, 1986; La-
Berge, Brown, Carter, & Bash, 1991). However, our choice of a normal distribution does not reflect a
strong commitment about the spotlight shape. For simplicity, we define each item’s region as one unit
wide with the target centered at 0. To ensure that the total attentional area always summed to 1, any
portion of the attentional distribution that exceeds the outer flanker range is allocated to the outer
flanker. The original allocation of attention for the target, right inner flanker, and right outer flanker
(the left flankers are symmetrical), is given as:
aouterðtÞ ¼
Z 1

1:5
/½0; sdaðtÞ�; ainnerðtÞ ¼

Z 1:5

:5
/½0; sdaðtÞ�; atargetðtÞ ¼

Z :5

�:5
/½0; sdaðtÞ� ð1Þ
In Eq. (1), / is the density function for a normal distribution with mean 0 and standard deviation sda.
The spotlight model implements attentional selection as a gradual reduction in the width of the
Fig. 3. Dynamic models of flanker processing. See text for details.
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attentional spotlight sda. The rate parameter, rd, determines how quickly sda decreases, and thus how
quickly attention narrows in on the target. For the spotlight model, v(t) is given as:
vðtÞ ¼ 2pouteraouterðtÞ þ 2pinnerainnerðtÞ þ ptargetatargetðtÞ ð2Þ
One value of p represents the perceptual input strength of any item (target, inner flanker, or outer flan-
ker), and can take a positive or negative value depending on the direction of the arrow. The attention
allocated to each position is represented by each ai, which is determined by the spotlight width at time
t. The overall decision evidence, v(t), is the sum of the perceptual strength of each item weighted by
the amount of attention allocated to it (see Logan, 1980, for a similar concept). All of the items exert
some influence on the decision evidence, but the influence of the flankers decreases as the width of the
spotlight shrinks. The width of the spotlight, sda(t), decreases over time from the original width at a
linear rate, rd:
sdaðtÞ ¼ sdað0Þ � rdt ð3Þ
Several different functions were explored for the decrease in sda, and the linear function provided a
good balance between simplicity and fit quality. As the spotlight shrinks over time, a1 and a2 approach
0 until attention is solely focused on the target (see Fig. 3). When sda reached .001, it was assumed to
stop decreasing.

4.2. Dual-Stage Two-Phase model

The second model is the Dual-Stage Two-Phase model (DSTP) of Hübner et al. (2010). The model
falls into the dual process category because attention is assumed to involve discrete selection of the
target. Since the model was formulated in a diffusion model framework, it is readily contrasted with
the spotlight model described above. In the first phase of the model, there are two diffusion processes
running in parallel (see Fig. 3, middle). One diffusion process is for the decision and is driven by the
early stage of stimulus selection, during which attention is diffusely distributed. The drift rate for this
process is the sum of the input from the target, ltar, and the inputs from all of the flankers combined,
lfl. For the early selection stage, the flankers and target have different rates to allow for some degree of
initial attentional selectivity, conceptually similar to sda in the spotlight model. The second, parallel
diffusion process represents the late target-selection process and selects an item as the target. This
second diffusion process is governed by three parameters: a drift rate for the target selection, lss, a
boundary separation for the second diffusion process, c, and a starting point for evidence accumula-
tion, which is fixed at c/2 for the current study. If the decision-related diffusion process reaches a
boundary before the target is selected, the decision has been reached and the processes terminate.
However, it the stimulus selection process reaches a boundary before the decision is reached, Phase
2 begins. In Phase 2, the decision-related diffusion process from Phase 1 is now driven with a new drift
rate, lrs2, that is either positive or negative depending on which item was selected as the target. In this
framework, some of the trials will terminate in Phase 1 before the target has been selected, leading to
a larger influence of the flankers early in the trial. But later responses will be primarily driven by Phase
2, where the target has been selected and the flanker influence eliminated. For this model, the drift
rate that drives the decision, v(t), is given by a piecewise function:
Phase 1 : vðtÞ ¼ lfl þ ltar; Phase 2 : vðtÞ ¼ �lrs2 ð4Þ
The primary difference between the spotlight model and DSTP involves discreet versus gradual nar-
rowing of attention. However, DSTP is more complex and flexible than the spotlight model, thus their
relative abilities to fit data from flanker tasks might not reflect the appropriateness of the assumptions
about attentional narrowing. Because DSTP uses a separate diffusion process for target selection, the
model allows for a flanker to be selected as the target on some trials, and it also allows a range of
selection times that are governed by the stimulus selection parameters. In contrast, the spotlight mod-
el assumes that attention always narrows on the target, and that there is only one rate of narrowing
(though variability in rd could be added). Further, because DSTP allows a separate drift rate after stim-
ulus selection, the impact of the selected stimulus is relatively unconstrained (i.e., lrs2 can take any
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value). In contrast, the spotlight model requires that the maximum contribution of the target is equal
to its perceptual input strength, p (i.e., when attention is completely focused on the target). To account
for the differential model complexity, a reduced version of the dual process model was developed,
which will be referred to as the dual process model to contrast with DSTP. This dual process model
was purposefully developed to be exactly the same as the spotlight model, save for the nature of atten-
tional selection. Thus any differences between the spotlight and dual process model can be attributed
to discrete versus gradual attentional selection.
4.3. Dual process model

The dual process model assumes the same initial allocation of attention as the spotlight model (see
Fig. 3, bottom), but assumes all-or-none target selection rather than the gradual narrowing in the
spotlight model. The drift rate, v(t), is a piecewise function given as:
vðtÞ ¼ 2aouterpouter þ 2ainnerpinner þ atargetptarget; if t P ts ainner; aouter ¼ 0; atarget ¼ 1 ð5Þ
where ts is the time taken to select the target and engage process 2. This simple dual process model
includes the same all-or-none principle as DSTP, but like the spotlight model, it allows much less flex-
ibility in how the target is selected and how the drift rate is affected after target selection.
5. Experiments

Five experiments were conducted to contrast the models and provide empirical validation for their
components. The first experiment was a simple flanker task which will demonstrate the relative abil-
ity of each model to account for the basic data patterns. Experiment 2 varied the proportion of left and
right targets to bias participants’ responses, which was fit by varying the starting point (z) of the mod-
els. Experiment 3 instructed participants to emphasize speed or accuracy on alternate blocks, which
was fit by adjusting boundary separation (a) and nondecision time (Ter). Experiment 4 manipulated
the proportion of congruent and incongruent trials across blocks, which was fit by varying the width
of attention. Finally, Experiment 5 used more complex flanker stimuli where the inner and outer flank-
ers were varied independently.
5.1. Experiment 1

5.1.1. Method
5.1.1.1. Procedure. Experiment 1 was a standard flanker experiment. Participants were instructed to
decide if the central arrow in a display of five arrows faced left or right, and to respond quickly and
accurately. They were informed that the surrounding arrows might face the same or opposite direction
as the target, but they were supposed to base their responses on the target only. Responses were col-
lected from the keyboard, with the ‘‘/’’ key indicating a right-facing target, and the ‘‘z’’ key indicating a
left-facing target. No error feedback was provided. The stimuli were presented uncued in the center of
the computer screen and remained on screen until a response was given, followed by 350 ms of blank
screen until the next trial. Participants completed 48 practice trials followed by eight blocks of 96 tri-
als. Each block of trials had an equal number of left and right targets, and congruent and incongruent
stimuli. The entire experiment lasted approximately 40 min.
5.1.1.2. Stimuli. Each stimulus array contained five arrows (>) displayed vertically, with the central
(target) arrow in the center of the screen. Participants were seated approximately 25 inches from
the screen (no chinrest was used) so that each arrow subtended .7� of visual angle, with .4� separation
between the arrows. For congruent trials, the flankers faced the same direction as the target, whereas
for incongruent trials the flankers faced the opposite direction. The flanking arrows were always sym-
metrically displayed around the target.
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5.1.1.3. Participants. Twenty-five Ohio State undergraduates participated for credit in an introductory
psychology course.
5.1.2. Results
Responses shorter than 300 ms or longer than 1500 ms were excluded from analyses (less than .9%

of the data). Data were collapsed across trials into correct (right or left target) and incorrect (right or
left target). The accuracy values, mean RTs for correct and error responses, and number of observa-
tions for each condition are shown in Table 1. As expected, accuracy was lower and RTs were longer
for incongruent compared to congruent trials.

The behavioral data and best fitting predictions from each model are shown as QPFs in Fig. 4. The
ellipses in the figure represent 95% confidence intervals, which were calculated by bootstrapping from
the behavioral data. A sample of size M was taken with replacement from the data (where M is the
number of participants in the experiment), and the quantile probability values were averaged across
participants. This process was repeated 1000 times to produce a distribution of mean quantile
probability values, which were used to calculate the 95% confidence ellipses. The model predictions
were obtained by simulating the models for each participant individually, then averaging across
Table 1
Accuracy and mean RTs (ms) averaged across participants for Experiments 1 and 2.

Experiment and Cond Acc Correct RT Error RT N

1.
Con .985 (.01) 466 (32) 473 (89) 9486
Incon .909 (.07) 544 (34) 408 (31) 9471

2. Away
Con .967 (.03) 489 (46) 488 (94) 3138
Incon .868 (.07) 558 (45) 403 (34) 3120

2. No bias
Con .974 (.05) 461 (43) 472 (78) 4712
Incon .893 (.07) 537 (42) 415 (43) 4708

2. Toward
Con .991 (.01) 445 (39) 491 (104) 6232
Incon .931 (.04) 520 (41) 428 (44) 6250

Note. Standard deviations across participants are shown in parenthesis. Con = congruent trials; incon = incongruent trials;
N = number of observations; away = biased away from the correct response; toward = biased toward the correct response.

Fig. 4. Observed and predicted QPFs from Experiment 1. Data are presented as grey circles and model predictions as black x’s.
Ellipses represent 95% confidence intervals from the data, and error bars represent 95% confidence intervals from the model
predictions.
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participants. To provide visual contrast between the predictions and data, the 95% confidence intervals
for the predictions are shown as traditional error bars.

The QPFs show that the incongruent condition led to slower and less accurate responses compared
to congruent trials, which is reflected by the shift inward and upward for the incongruent quantile RTs.
Also, the errors were substantially faster than correct responses for incongruent trials, reflected by the
downward shift of error relative to correct quantile RTs.

5.1.2.1. Model fitting. Each model was fit to the data using a SIMPLEX routine (Nelder & Mead, 1965) for
v2 minimization. Fits were performed to both individual and grouped data with similar results. As
mentioned above, the predicted values shown in Fig. 4 represent the mean of the individual fits.
The data entered into the fitting routine were the accuracy values, the RT quantiles (.1, .3, .5, .7, and
.9) for correct and error responses, and the number of observations for each condition (see Ratcliff
& Tuerlinckx, 2002; White, Ratcliff, Vasey, & McKoon, 2010). Each of the diffusion models was simu-
lated as random walks using the limiting assumptions presented in Diederich and Busemeyer (2003).
The models were simulated with 1 ms time steps. For each model, a set of parameter values was cho-
sen and 50,000 trials were simulated for each condition. For a given set of parameter values, the pre-
dicted accuracy and RT quantiles (.1,.3,.5,.7, and .9) for correct and error responses were calculated and
compared against the data to produce a v2 value, which was minimized by a SIMPLEX routine. Because
v2 is based on counts, the v2 is automatically weighted by the number of observations, meaning that
cells with few observations (e.g., errors for congruent trials) are weighted less in determining the best-
fitting parameters. The initial values were chosen based on fits from a simple diffusion model. Each
model was fit several times, using the best-fitting values from the previous fits as the new starting val-
ues for the next run. This was performed for a range of different starting values to ensure that better
fits could not be obtained.

This method of model fitting ensured that the models had to account for the entire data set from
the experiment, including the accuracy values and RT distributions for correct and error responses.
The v2 values from the fitting routine provide a measure of model fit, but they should not be used
to assess model significance in this case because they are sensitive to the number of observations
in the experiment (hence the lower values for individual compared to group fits). The conditions in
Experiment 1 have nearly 10,000 observations each for the group data, meaning that even a small mis-
fit from the model would produce a significant v2 value. Further, because group data were fit rather
than individuals, the resulting v2 values do not follow a typical v2 distribution (see Ratcliff & Smith,
2004). In light of this, the v2 values are used as a measure of relative fit quality among the models,
and augmented with graphical displays to assess potential misfits. Because the v2 measure does not
penalize for model complexity and thus does not account for differential complexity among the mod-
els, approximate BIC values (Schwarz, 1978) were also calculated, which we label aBIC. The aBIC values
were based on G2 values. In brief, the multinomial likelihood was calculated for the observed and pre-
dicted proportions in each quantile bin (e.g., 20% of responses should occur between the .1 and .3
quantiles), and this likelihood was used in the standard BIC equation. Because these likelihood ratios
are not true maximum likelihood values, the resulting BIC values are referred to as approximate.
Nonetheless, the aBIC values still provide a fit index that accounts for model flexibility in terms of
number of parameters.

No decision parameters were allowed to freely vary between conditions, so the models had to ac-
count for data from the congruent and incongruent conditions with only the perceptual input values
differing (which were constrained by the stimuli to be positive or negative depending on the direction
of the arrow). The starting point was fixed at a/2 since there were an equal number of right and left
facing targets. The best fitting parameters for each model are shown in Table 2 (Ter and ts are given in
ms). For reference, a spotlight width of sda = 1.8 produces roughly equal attention for each item in the
display. All three dynamic attention models provided adequate fits, though the spotlight and dual pro-
cess models provided numerically superior fits compared to DSTP.

The model predictions are shown in Fig. 4. The figure shows that all three models captured the
main patterns of data, namely the differences in accuracy and RT distributions between congruent
and incongruent conditions. The predictions of each model fall within or near the 95% confidence
ellipses, showing good accord with the data. As expected, there was strong mimicry among the



Table 2
Best fitting model parameters for Experiment 1.

Dual a Ter P ts sda v2 aBIC

Group 0.127 298 0.372 69 1.528 649.7 773.1
Ind 0.129

(.02)
301
(21)

0.378
(.05)

68 (20) 1.851
(.42)

65.5
(24)

517.2
(136)

Spot a Ter P rd sda

Group 0.129 301 0.383 0.018 1.861 631.5 748.6
Ind 0.132

(.02)
300
(24)

0.380
(.05)

0.017
(.01)

1.793
(.26)

61.4
(27)

507.1
(161)

DSTP a Ter c lss lrs2 ltar lfl

Group 0.128 299 0.177 1.045 0.414 0.108 0.241 656.3 791.8
Ind 0.132

(.02)
293
(27)

0.210
(.07)

1.161
(.31)

0.430
(.12)

0.109
(.04)

0.231
(.07)

69.1
(19)

538.3
(154)

Note. For individual fits (Ind), standard deviations across participants are shown in parentheses, a = boundary separation;
Ter = mean nondecision time (ms); p = perceptual input; ts = target selection time (ms); sda = spotlight width; rd = rate of
decrease in spotlight; c = stimulus selection boundary separation; lss = drift rate for stimulus selection; lrs2 = drift rate for
response selection Phase 2; ltar = drift rate from target; lfl=combined drift rate for flankers; aBIC = approximate BIC.
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models. For example, in the incongruent conditions each of the three models predicts a starting drift
rate of around �.15 and an ending drift rate of around +.40. Thus although the aBIC values favor the
simpler spotlight and dual process models, each model provides a viable account of standard flanker
processing.

5.2. Experiment 2

The remaining experiments are meant to further contrast the models through experimental manip-
ulations that target one or more of the parameters. In Experiment 2, response bias was manipulated by
presenting blocks of trials with different proportions of left and right targets. For the models, this
manipulation should be reflected by changes in the starting point of the decision process, z. This
manipulation provides further constraint because a successful model must produce a time-varying
drift rate that accounts for the data when the diffusion process starts near one boundary, in between
both boundaries, and near the other boundary.

5.2.1. Method
5.2.1.1. Procedure. The same stimuli and presentation were employed as in Experiment 1. The only dif-
ference was that the proportion of left and right targets was varied between blocks. Each block con-
sisted of 96 total trials with an equal number of congruent and incongruent trials. After completing a
block of practice trials, participants were informed for each subsequent block whether it had mostly
left facing targets, mostly right-facing targets, or an equal number of each. The mostly-left and mostly-
right blocks had 64 trials in the biased direction and 32 in the other. Each participant completed 5
blocks of each type in random order.

5.2.1.2. Participants. Twenty-one participants from the same pool as Experiment 1 contributed data.

5.2.2. Results
All responses shorter than 300 ms or longer than 1500 ms were excluded (less than .9% of the data).

For display purposes, the data have been collapsed over left and right trials according to whether the
participants were biased toward the correct response (e.g., left target, biased left), away from the cor-
rect response (e.g., left target, biased right), or not biased (equal left and right targets). The mean RTs
and accuracy values are shown in Table 1. The speed and proportion of responses increased as partic-
ipants were biased toward the response, suggesting that the manipulation was effective.

This is apparent in the QPFs shown in Fig. 5. Accuracy, particularly for the incongruent condition,
decreased as the bias shifted from the correct response to the incorrect response.



Fig. 5. Observed and predicted QPFs from Experiment 2. Data are presented as grey circles and model predictions as black x’s.
Ellipses represent 95% confidence intervals from the data, and error bars represent 95% confidence intervals from the model
predictions. Biased Toward = trials in which participants are biased toward the correct response (e.g., right target in block with
mostly right targets); No Bias = trials during unbiased blocks; Biased away = trials in which participants are biased toward the
incorrect response (e.g., left target in block with mostly right targets).
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5.2.2.1. Model fitting. The models were fit in the same manner as in Experiment 1, except that an addi-
tional parameter, z1, was included to account for the differential bias across blocks. Each model was fit
simultaneously to all six conditions, with the assumption that z = a/2 for the unbiased condition, z = a/
2 + z1 when biased toward the right response, and z = a/2 � z1 when biased toward the left response.
For DSTP, bias was assumed to affect the starting point of the primary diffusion process (Phase 1), be-
cause the corresponding boundaries (right/left) are related to the bias manipulation, whereas the
boundaries for the target-selection diffusion process (target/flanker) are not. The best fitting parame-
ters from the models are shown in Table 3.

The v2 and aBIC values in Table 3 show that the bias manipulation was more effective at differen-
tiating the models compared to the previous experiment. The spotlight model provided the best fit,
followed by the dual process model and DSTP. Each model accounted for the general pattern of
decreasing accuracy and speed as the starting point shifted to the incorrect response boundary (see
Fig. 5). However, the spotlight model was better able to account for the accuracy of the incongruent
condition across each level of bias.

Both discrete-selection models predicted too many errors for the incongruent, biased-away condi-
tion. This can be seen in the bottom panel of Fig. 6, which plots the predicted and observed accuracy
for each model in the biased-away condition, where the misses were greatest. The figure shows that
both dual-process models predicted too many errors. The reason has to do with the primary difference
between the spotlight model and both dual process models, the gradual narrowing of attention.



Table 3
Best fitting model parameters for Experiment 2.

Dual a Ter P ts sda zl v2 aBIC

Group 0.123 306 0.338 75 1.341 0.009 672.8 1159.3
Ind 0.126

(.01)
292
(18)

0.361
(.09)

71 (21) 1.513
(.63)

0.007
(.01)

365.5
(113)

1087
(218)

Spot a Ter p rd sda zl

Group 0.124 304 0.335 0.017 1.766 0.009 578.5 1102.0
Ind 0.124

(.01)
296
(21)

0.359
(.08)

0.015
(.01)

1.652
(.26)

0.007
(.01)

326.1
(103)

979.7
(211)

DSTP a Ter c lss lrs2 ltar lfl zl

Group 0.132 300 0.092 0.656 0.378 0.044 0.235 0.009 722.2 1224.6
Ind 0.134

(.02)
278
(17)

0.152
(.03)

0.92
(.24)

0.429
(.16)

0.043
(.02)

0.236
(.09)

0.008
(.01)

348.5
(101)

1055.2
(203)

Note. For individual fits, standard deviations across participants are shown in parentheses, a = boundary separation; Ter = mean
nondecision time (ms); p = perceptual input; ts = target selection time (ms); sda = spotlight width; rd = rate of decrease in
spotlight; c = stimulus selection boundary separation; lss = drift rate for stimulus selection; lrs2 = drift rate for response
selection Phase 2; ltar = drift rate from target; lfl = combined drift rate for flankers; zl = change in starting point due to bias;
aBIC = approximate BIC.

Fig. 6. Top: model behavior across different levels of bias. Panel A shows the time-varying drift rates for the spotlight model
(solid) and the dual process model (dashed). Panels B–D demonstrate the effects of sampling and accumulating these drift
values when participants are biased toward the correct answer, unbiased, and biased toward the incorrect answer. Bottom:
observed and predicted accuracy values for the incongruent, biased-away condition for each model.
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Because only z1 was allowed to vary across bias conditions, the same attentional narrowing or selec-
tion must account for the data when the diffusion process starts near the correct response, midway
between each response, and near the incorrect response. The top panel of Fig. 6 demonstrates why this
is a bigger problem for the dual process and DSTP models than the spotlight model. Panel A shows the
time-varying drift rate for the incongruent condition calculated from the best-fitting parameters of the
spotlight and dual process models. Interestingly, the drift rates from both models reach asymptote
(i.e., complete target selection) at the same time. However, because of the gradual improvement in
the spotlight model, the decision evidence improves more quickly than with the dual process model.

Panels B–D of Fig. 6 demonstrate the effects of sampling and accumulating these drift rates if there
was no variability in processing (values in the figures were based on the model parameters). The prob-
lem for the dual process models comes in the ‘‘biased away’’ condition. Because the drift rates do not
improve until the target is selected, many of the processes would terminate at the incorrect boundary
before selection occurs, leading the models to predict too many errors in that condition. Shortening
the selection time would improve accuracy for that condition, but the models would consequently
overpredict accuracy for the other bias conditions. The DSTP model fails in the same way as the sim-
pler dual process model, suggesting that this shortcoming cannot be overcome by using a separate dif-
fusion process that produces a range of selection times.

In contrast to the dual process and DSTP models, the spotlight model can better account for the
data across each level of bias because of the assumption of gradually improving drift rates. Since
the narrowing of attention, and thus the improvement in drift rate, starts concurrently with the deci-
sion process, the spotlight model does not predict as sharp a decline in drift rate as the dual process
models do, and consequently produces better accord with the data.

5.3. Experiment 3

In Experiment 3 speed/accuracy criteria were manipulated across blocks of trials. This should be
reflected primarily by differences in boundary separation in the models. We also fit models which al-
lowed attentional parameters to vary based on the assumption that participants might engage more
attention to improve accuracy. However, this did not greatly improve the fit quality, suggesting that
additional attentional resources were not recruited.

5.3.1. Method
5.3.1.1. Procedure. The same stimuli and presentation were used as in the previous experiments. After
completing a practice block of 48 trials, participants were informed that for each subsequent block of
96 trials they were to emphasize either speed or accuracy. For speed blocks, participants were told to
respond more quickly than they normally would, even if it meant making more errors. For accuracy
blocks, they were told to try and minimize their errors, even if that meant responding more slowly.
Each participant completed 8 of each block type in random order.

5.3.1.2. Participants. Twenty-two participants contributed data from the same pool as the other
experiments.

5.3.2. Results
The same cutoffs were used as before to trim outlier responses (300 and 1500 ms). The percentage

of excluded trials was only slightly higher in the speed (1.3%) compared to accuracy blocks (.8%). Using
lower cutoffs for the speed condition did not change the overall conclusions, so the standard cutoffs
were used. The mean RTs and accuracy values are shown in Table 4. Responses were faster and less
accurate in the speed blocks, indicating that the manipulation was effective. The FCE effect for accu-
racy was greatly affected by the manipulation, with 10% decrease between speed and accuracy blocks.
In contrast, the FCE in mean RTs did not differ (73 ms versus 70 ms).

5.3.2.1. Model fitting. The models were fit to the data in the same manner as the previous experiments.
To account for the speed/accuracy instructions, boundary separation and nondecision time were al-
lowed to vary between speed (as, Ters) and accuracy (aa, Tera) blocks. Model variants were also fit in



Table 4
Accuracy and mean RTs (ms) averaged across participants for Experiments 3–4.

Experiment and Cond Acc Correct RT Error RT N

3. Speed
Con .970 (.03) 434 (53) 434 (179) 6971
Incon .821 (.11) 507 (56) 386 (30) 6895

3. Acc
Con .986 (.02) 489 (61) 447 (67) 6933
Incon .931 (.05) 559 (60) 421 (54) 6921

4. 66% con
Con .972 (.05) 463 (73) 464 (99) 6305
Incon .853 (.09) 554 (77) 439 (81) 3149

4. 50% con
Con .973 (.05) 469 (68) 511 (101) 4595
Incon .884 (.07) 544 (75) 430 (60) 4601

4. 33% con
Con .978 (.04) 473 (74) 512 (120) 3156
Incon .912 (.06) 528 (66) 426 (53) 6295

Note. Standard deviations across participants are shown in parenthesis. Con = congruent trials; incon = incongruent trials;
speed = blocks where speed was emphasized; Acc = blocks where accuracy was emphasized; 66% con = blocks with mostly
congruent trials; 50% con = blocks with equal congruent and incongruent trials; 33% con = blocks with mostly incongruent
trials; N = number of observations.
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which attentional parameters were allowed to vary as well, but they did not provide an appreciable
improvement in fit quality (see Appendix A). No other parameters were allowed to vary between
the blocks. The best fitting parameters are shown in Table 5, and the predicted and observed QPFs
are shown in Fig. 7).

The results were similar to Experiment 2. Each model captured the main trend of shorter RTs and
lower accuracy in speed compared to accuracy blocks, and each model roughly captured the shapes of
the RT distributions. Also consistent with Experiment 2, the fit quality was numerically superior for
the spotlight model. However, there difference in fit quality was not as pronounced as with the bias
experiment.

Although we expected differences in the attentional parameters between speed and accuracy
blocks, the best-fitting models used the same parameters for both conditions. The reasoning was that
Table 5
Best fitting model parameters for Experiment 3.

Dual as aa Ters Tera p ts sda v2 aBIC

Group 0.110 0.138 286 301 0.356 65 1.824 1296.7 1831.5
Ind 0.113

(.02)
0.146
(.02)

286
(20)

306
(22)

0.343
(.08)

74 (26) 1.821
(.54)

183.2
(52)

1622.3
(245)

Spot as aa Ters Tera p rd sda

Group 0.111 0.139 283 304 0.369 0.016 1.781 1190.4 1701.8
Ind 0.112

(.02)
0.146
(.02)

284
(.02)

301
(.02)

0.352
(.09)

0.015
(.01)

1.691
(.48)

168.5
(45)

1531.3
(221)

DSTP as aa Ters Tera c lss lrs2 ltar lfl

Group 0.116 0.136 284 303 0.116 0.866 0.379 0.050 0.249 1244.6 1821.6
Ind 0.121

(.02)
0.161
(.03)

286
(.02)

310
(.02)

0.132
(.05)

0.649
(.18)

0.500
(.17)

0.061
(.03)

0.218
(.10)

174.4
(43)

1615.7
(238)

Note. For individual fits, standard deviations across participants are shown in parentheses. as = boundary separation in speed
blocks; aa = boundary separation in accuracy blocks; Ters = mean nondecision time in speed blocks; Tera = mean nondecision
time in accuracy blocks; p = perceptual input; ts = target selection time (ms); sda = spotlight width; rd = rate of decrease in
spotlight; c = stimulus selection boundary separation; lss = drift rate for stimulus selection; lrs2 = drift rate for response
selection Phase 2; ltar = drift rate from target; lfl = combined drift rate for flankers; aBIC = approximate BIC.



Fig. 7. Observed and predicted QPFs from Experiment 3. Data are presented as grey circles and model predictions as black x’s.
Ellipses represent 95% confidence intervals from the data, and error bars represent 95% confidence intervals from the model
predictions. Speed = blocks in which speed was emphasized; accuracy = blocks in which accuracy was emphasized.
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in the accuracy blocks, participants could engage more attention (i.e., narrow the spotlight) to improve
their accuracy. However, engaging attention can require more cognitive effort, and it has been sug-
gested that participants only employ extra effort when it is necessary (Eriksen & St. James, 1986).
In this particular experiment, participants could also improve their accuracy by becoming more cau-
tious (i.e., requiring more evidence), which presumably requires less effort than increasing attention.
In fact, the instructions indicated that they should try to focus on accuracy, even if it meant responding
more slowly. Thus the finding that participants increased caution rather than attentional focus might
reflect a conservation-of-effort policy (see Section 6).

5.4. Experiment 4

In Experiment 4 the proportion of congruent and incongruent trials was manipulated across blocks.
Previous research with this type of proportion manipulation has shown that attention is more focused
when there are a higher proportion of incongruent trials (e.g., Gratton, Coles, & Donchin, 1992; Hübner
et al., 2010; Logan, 1985; Logan & Zbrodoff, 1979, 1982). Thus this manipulation should be reflected by
the attention parameters in the models.

5.4.1. Method
5.4.1.1. Procedure. The same stimuli and presentation were used as in the previous experiments. In
contrast to Experiment 2, the proportion of right and left targets was held equal while the proportion
of congruent and incongruent trials was varied across blocks. After a practice block of 48 trials, par-
ticipants were informed at the beginning of each block of 96 trials whether it had mostly incongruent
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trials (64 incongruent, 32 congruent), mostly congruent trials (32 incongruent, 64 congruent), or an
equal number of both. Participants completed 5 of each block in random order.

5.4.2. Results
Responses faster than 300 ms or slower than 1500 ms were excluded (<1.1% of the data). The mean

RTs and accuracy values are shown in Table 4 and suggest that the proportion manipulation was effec-
tive. The interference from the incongruent flankers was larger when there were fewer incongruent
trials in a block, consistent with the claim that attention was less focused in those blocks. This was
due almost entirely to improvement for the incongruent condition as the proportion of incongruent
trials increased. As Fig. 8 shows, the speed and accuracy of incongruent trials increased as the propor-
tion of those trials increased in a block.

5.4.2.1. Model fitting. The models were fit to all six conditions simultaneously with only the attention
parameters allowed to vary. The best fitting parameters are shown in Table 6. In contrast to Experi-
ment 3, where participants could improve performance by becoming more cautious, the instructions
for this experiment encouraged quick responses across each block. Thus the primary method for
improving performance and counteracting the increased proportion of incongruent trials was to en-
gage more attention. For each model there could be differences in initial focus (sda or ufl) or the rate
of target selection (rd, ts, lss) to account for the effects of the proportion manipulation. Two versions of
each model were fit to the data; one in which initial focus varied across proportion and one in which
selection rate varied. For all three models, the data were better fit by the version with the initial focus
varying (see Appendix A), so those are the ones whose predictions are shown in Fig. 8.
Fig. 8. Observed and predicted QPFs from Experiment 4. Data are presented as grey circles and model predictions as black x’s.
Ellipses represent 95% confidence intervals from the data, and error bars represent 95% confidence intervals from the model
predictions. 66% Con = blocks with 66% congruent trials; 50% con = blocks with equal congruent and incongruent trials; 33%
con = blocks with 33% congruent trials.



Table 6
Best fitting model parameters for Experiment 4.

Dual a Ter p ts sda1 sda2 sda3 v2 aBIC

Group 0.123 304 0.348 64 2.591 1.594 1.056 958.0 1634.5
Ind 0.120

(.02)
300
(21)

0.386
(.08)

68 (19) 2.331
(.47)

1.642
(.56)

1.297
(.46)

206.9
(86)

1389.4
(201)

Spot a Ter p rd sda1 sda2 sda3

Group 0.124 308 0.351 0.018 1.764 1.543 1.416 852.6 1512.4
Ind 0.120

(.02)
300
(23)

0.371
(.09)

0.017
(.01)

1.832
(.35)

1.657
(.33)

1.492
(.29)

155.2
(96)

1284.5
(188)

DSTP a Ter c lss lrs2 ltar lfl1 lfl2 lfl3

Group 0.123 309 0.181 1.073 0.369 0.135 0.261 0.230 0.177 937.6 1641.5
Ind 0.129

(.02)
294
(25)

0.075
(.02)

0.477
(.12)

0.417
(.10)

0.092
(.04)

0.266
(.12)

0.243
(.09)

0.210
(.06)

213.1
(85)

1411.9
(217)

Note. For individual fits, standard deviations across participants are shown in parentheses, a = boundary separation; Ter = mean
nondecision time (ms); p = perceptual input; ts = target selection time (ms); sdae = spotlight width for blocks with 66% con-
gruent trials; sda2 = spotlight width for blocks with 50% congruent trials; sda3 = spotlight width for blocks with 33% congruent
trials; rd = rate of decrease in spotlight; c = stimulus selection boundary separation; lss = drift rate for stimulus selection;
lrs2 = drift rate for response selection Phase 2; ltar = drift rate from target; lfl1 = combined drift rate for flankers for blocks with
66% congruent trials; lfl2 = combined drift rate for flankers for blocks with 50% congruent trials; lfl3 = combined drift rate for
flankers for blocks with 33% congruent trials.
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Each model captured the data well, accounting for the improvement for incongruent trials as the pro-
portion of incongruent trials increased. Similar to the previous experiments, the fit quality was superior
for the spotlight model, but the differences in fit quality among the models were fairly small. In contrast
to Experiment 2, there were no systematic misses for either of the discrete-selection models.

The results of this experiment speak to the issue of parsimony and model flexibility. Each model
accounts for the effects of the proportion manipulation with one parameter that affords a simple psy-
chological account. When blocks of trials contain many incongruent stimuli, participants increase
their pre-stimulus attentional focus so as to reduce the effect of the flankers. We can contrast this ac-
count to Hübner et al. (2010), who performed a similar proportion manipulation and fit a separate
DSTP model to each proportion condition, thus allowing each parameter to vary. Their results showed
that a high proportion of incongruent trials led to strong early selectivity (low lfl), consistent with the
results presented here. In addition, there was stronger stimulus selection (higher lss), stronger re-
sponse selection after the target had been identified (higher lrs2), and a higher threshold for target
selection (c). Their model provided a good account of the data, but we argue that the resulting inter-
pretation is unnecessarily complex, especially when data from a similar manipulation can be ac-
counted for with the simpler assumption here.
5.5. Experiment 5

5.5.1. Application to more complex stimuli
The spotlight model and dual process model are formulated in fairly general terms, which allows

them to be readily augmented to account for more complex stimuli. Thus the models can be tested
against flanker stimuli where, for example, the inner and outer flankers are varied independently,
or the flankers are asymmetric around the target. The adjustment is straightforward: all that needs
to change is the perceptual input of each item in the display. The adjustment is not as simple for DSTP
because it implements the target selection process as a standard diffusion process. Currently, the mod-
el assumes that the stimulus selection diffusion process can select either the target or a flanker, but
there is no specification about which flanker is chosen. For the standard flanker stimuli, like presented
in Experiments 1–4, this does not present a problem because the inner and outer flankers are the
same, as are the right and left flankers. However, when this is not the case, DSTP will need to be ad-
justed to incorporate some specification of the likelihood of choosing the left, right, inner, or outer
flankers.
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Experiment 5 incorporated a more complex stimulus set to further contrast the models. The stimuli
are shown in Fig. 9. Two new conditions were added, one in which only the inner flankers were incon-
gruent, and one in which only the outer flankers were incongruent. The conditions are labeled accord-
ing to which flankers are incongruent with the target. Due to the mimicry between the dual process
and DSTP models, and the limitations to applying DSTP to more complex stimuli, only the spotlight
and dual process models were tested in Experiment 5.

The two new conditions should help differentiate between the spotlight and dual process models.
For the spotlight model, the decision evidence will briefly decrease in condition 3 (inner) when the
spotlight has narrowed past the outside flankers but not past the inside flankers. In essence, the ben-
efit from the congruent, outside flankers is no longer present to offset the interference from the incon-
gruent inside flankers. In contrast, the dual process model predicts no change in decision evidence
until the target is selected because the attentional narrowing is all-or-none. That is, the decision evi-
dence remains constant until the target is selected, regardless of whether the inside flankers are con-
gruent or incongruent.

5.5.2. Method
5.5.2.1. Procedure. Experiment 5 used the same procedure as the standard flanker task in Experiment
1. After completing a block of 48 practice trials, participants completed eight blocks of 96 trials each.
Pilot work showed that the two new conditions were not well differentiated unless participants were
encouraged to respond quickly. Accordingly, the stimuli were only shown for 120 ms before being re-
moved from the screen, and a TOO SLOW message appeared for responses longer than 850 ms.

5.5.2.2. Participants. Eighteen participants contributed data from the same pool as the previous
experiments.

5.5.3. Results
Responses faster than 300 ms or longer than 1000 ms were excluded from analysis (less than .8% of

the data). The mean RTs and accuracy values are shown in Table 7. The data show higher accuracy and
shorter RTs for the outer compared to inner conditions, which was consistent with the expectation
that the flankers that are nearer the target have a greater influence on the response (e.g., Eriksen &
Eriksen, 1974). There was also a difference in error RTs, with slower errors for the inner condition.
Fig. 9. Conditions for Experiment 5. The inner and outer conditions are labeled based on which flankers are incongruent with
the target.

Table 7
Accuracy and mean RTs (ms) averaged across participants for Experiment 5.

Acc Correct RT Error RT N

Condition
1. Congruent .988 (.01) 420 (53) 508 (96) 2946
2. Outer .941 (.04) 467 (65) 428 (76) 2953
3. Inner .918 (.04) 491(62) 525 (74) 2937
4. Incongruent .844 (.06) 508 (93) 431 (54) 2944

Note. Standard deviations across participants are shown in parenthesis. N = number of observations.



230 C.N. White et al. / Cognitive Psychology 63 (2011) 210–238
Fig. 10 shows the QPFs from Experiment 5. The conditions are split into separate graphs for the pur-
pose of clarity. The results for the two standard conditions were similar to the previous experiments
(top panels), so the focus is on the inner and outer conditions (bottom panels). Two primary differ-
ences are noticeable between the conditions. For correct trials, the fastest responses (.1 quantiles)
were similar between the conditions, but the slowest responses (.9 quantile) were longer for the inner
condition. For error trials, the fastest responses were much slower for the inner condition, as were the
slowest responses. This pattern of response times should differentiate the single- and dual-process
models.
5.5.3.1. Model fitting. The models were fit to the data in the same manner as Experiment 1, with the
basic model components of a, Ter, sda, p, and rd or ts. Since the perceptual input of the outer items could
be stronger than the inside items due to edge effects (e.g., Gomez et al., 2008; Merikle, Coltheart, &
Lowe, 1971), an additional perceptual input parameter, po, was added to describe the input of the out-
er flankers only. The remaining, inner arrows had the perceptual input, pi. The model predictions are
shown in Fig. 10 and the best fitting parameters are given in Table 8. Since the models both had six
parameters, aBIC values are not presented. There was an advantage for the spotlight model over the
dual process model, both in terms of fit quality and visual correspondence with the data.

The best-fitting parameters in Table 8 show that the spotlight model incorporated stronger percep-
tual input for the edge flankers. Coupled with the spotlight width that covered the whole display
(sda � 1.8), the decision evidence was actually better for the inner compared to outer condition early
Fig. 10. Observed and predicted QPFs from Experiment 5. Predictions are from the simple models without across-trial
variability. Data are presented as grey circles and model predictions as black x’s. Ellipses represent 95% confidence intervals
from the data, and error bars represent 95% confidence intervals from the model predictions. Con = all flankers congruent with
target; outer = only outside flankers incongruent with target; inner = only inside flankers incongruent with target; incon = all
flankers incongruent with target.



Table 8
Best fitting model parameters for Experiment 5.

Dual a Ter Po Pi ts sda v2

Group 0.116 307 0.441 0.379 76 1.452 1184.8
Ind 0.111

(.02)
296
(26)

0.412
(.11)

0.356
(.11)

62 (28) 1.604
(.47)

187.1
(73)

Dual Full a Ter po pi ts sda sz st g v2

Group 0.119 328 0.555 0.398 58 1.582 0.022 10.5 0.194 598.9
Ind 0.112

(.01)
336
(28)

0.665
(.14)

0.544
(.12)

56 (22) 1.605
(.41)

0.049
(.02)

13.4
(6)

0.157
(.05)

145.9

Spot a Ter po pi rd sda v2

Group 0.108 311 0.582 0.357 0.018 1.841 1044.5
Ind 0.112

(.02)
295
(23)

0.561
(.14)

0.353
(.10)

0.017
(.01)

1.743
(.34)

159.2
(62)

Spot Full a Ter po pi rd sda sz st g v2

Group 0.118 308 0.743 0.448 0.019 1.832 0.019 12.3 0.223 479.4
Ind 0.117

(.01)
321
(27)

0.814
(.17)

0.539
(.16)

0.022
(.01)

1.828
(.39)

0.039
(.01)

17.8
(7)

0.179
(.04)

118.3

Note. For individual fits, standard deviations across participants are shown in parentheses, a = boundary separation; Ter = mean
nondecision time (ms); po = perceptual input for outer flankers; pi = perceptual input for inner flankers; ts = target selection time
(ms); sda = spotlight width; rd = rate of decrease in spotlight; sz = across-trial variability in z; st = across-trial variability in ter
(ms); g = across-trial variability in drift rate.
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in the trial (when each item contributed roughly equally). Once the spotlight has narrowed and only
the inner flankers and target are in the spotlight, the decision evidence becomes poorer. Thus the er-
rors are predicted to start slower and occur later for the inner compared to the outer condition. For
correct responses, the fastest responses were similar for both conditions because of the early benefit
of the congruent outside flankers for the inner condition, whereas the slowest responses were much
slower for the inner condition because of the later decrease in decision evidence. This predicted pat-
tern produces reasonable accord with the data.

In contrast, the dual process model does not capture the relative speed of the two conditions suc-
cessfully because there is no decrease in evidence for the inner conditions. The only mechanism in the
model that produces change is the target selection process, which does not differentially affect the in-
ner and outer conditions. Thus if the dual process model assumes stronger perceptual input for the
edge items and a wide spotlight, it predicts that the inner condition is faster and more accurate than
the outer condition, which is not borne out in the data. Instead, the best fitting parameters show
slightly stronger input from the outer compared to inner flankers, but this is coupled with a relatively
narrow spotlight width compared to Experiments 1–4. This leads to a lower contribution of the outer
flankers, allowing the model to capture the correct order of the conditions in terms of accuracy. How-
ever, as a result of this the dual process model predicts the errors to be faster for the inner condition
compared to the outer, and it predicts the earliest correct responses to be slower for the inner com-
pared to outer condition. These two effects are not consistent with the data.

Experiment 5 provides even further support for a gradual narrowing of attention rather than dis-
crete target selection. However, although the spotlight model provided the best fit to the data, the
model still missed some aspects of the data. In particular, both models predict errors that are too fast
overall. This can be mitigated by incorporating parameters to capture across-trial variability in start-
ing point, nondecision time, and drift rate. These parameters are typically included when fitting the
diffusion model (e.g., Ratcliff & McKoon, 2008) and help to account for the relative speed of correct
and error responses. Variability in drift rate produces errors that are slower than correct responses,
and variability in starting point produces errors that are faster than correct (Ratcliff & Rouder,
1998). The flanker diffusion models in this study present another mechanism to produce fast errors
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(for the incongruent condition), the time-varying drift rate. However, when fit across all four condi-
tions in Experiment 5, the time-varying drift rate predicts errors that are too fast. We added across-
trial variability in starting point (sz), nondecision time (st), and drift rate (g) to both models and fit
them to the data from Experiment 5 in the same manner as before. Specifically, nondecision time
was assumed to be uniformly distributed with mean Ter and range st, starting point was assumed
to be uniformly distributed with mean z (a/2) and range sz, and drift rates were assumed to be nor-
mally distributed with standard deviation g. For simplicity, the value of g was constant over the
course of the trial. It might be more accurate to have the value of g vary in proportion to the time-
varying drift rate, but this simpler scheme provided adequate fits to the data.

The best fitting parameters of the full models are shown in Table 8. As the table shows, the vari-
ability parameters improved the fit for both models, but the advantage remained for the spotlight
model. Further, the attention parameters (sda, rd, ts) did not greatly change compared to the simpler
models, suggesting that there were not large parameter tradeoffs from introducing the variability
parameters. The predictions of the full models are shown in Fig. 11. The QPFs in Fig. 11 show that
the addition of parameter variability allowed the models to better capture the error RTs for the inside
and incongruent conditions, however the dual process model still predicts faster errors for the inner
relative to the outer conditions.

With the addition of the variability parameters, the models better captured the data. Although we
emphasized parsimony when developing these models, the fit quality could likely be further improved
by incorporating additional assumptions about flanker processing. For example, neither model cur-
rently accounts for the potential role of stimulus conflict or grouping effects, which likely have some
Fig. 11. Observed and predicted QPFs from Experiment 5. Predictions are from the full models with across-trial variability. Data
are presented as grey circles and model predictions as black x’s. Ellipses represent 95% confidence intervals from the data, and
error bars represent 95% confidence intervals from the model predictions. Con = all flankers congruent with target; outer = only
outside flankers incongruent with target; Inner = only inside flankers incongruent with target; Incon = all flankers incongruent
with target..
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influence on perceptual processing and/or attentional narrowing with the more complex stimulus set
(see Section 6). The inner condition has the highest amount of stimulus conflict among the four con-
ditions since no neighboring arrows face the same direction. Stimulus conflict has been shown to af-
fect flanker processing (Notebaert & Verguts, 2006), and could reduce the perceptual input strength of
each item and/or impair attentional selection. Low-level perceptual interactions have been demon-
strated in the flanker task (Rouder & King, 2003), thus the use of one set of attentional and perceptual
parameters for each condition might be too simplistic. Nonetheless, the simple spotlight model cap-
tures the main patterns in the data. It is also important to note that allowing different attentional
or perceptual parameters for each condition cannot overcome the limitations of the dual process mod-
el. Because of the discrete nature of target selection, the decision evidence for any condition will either
remain constant or improve. Accordingly, the dual process model cannot simultaneously produce an
early advantage and later disadvantage for the inside compared to outside conditions.
6. Discussion

6.1. Mechanisms of flanker processing

The results of the experiments in this study provide several insights into the underlying processes
involved in the flanker task. At a broad level, a spotlight model with gradual attentional selection cap-
tured the main trends in the data. Although the spotlight model provided the best fits overall, there
was considerable mimicry among the models for the experiments with standard flanker conditions.
For the most part, each of the models captured the relevant behavioral data with the appropriate
parameter changes, and the difference in fit quality among the models was relatively small. However,
manipulating the position of the starting point relative to the decision boundaries (Experiment 2) pro-
vided evidence in favor of a single process model with gradually narrowing attention. Neither the dual
process model nor the DSTP model accounted for the data across each level of response bias as well as
the spotlight model. The use of more complex stimuli in Experiment 5 provided further support for the
gradual attentional narrowing, as the dual process model was unable to account for the pattern of cor-
rect and error RTs for the conditions. Combined with the results of the other experiments, the present
study suggests that standard flanker processing can be well described by gradual narrowing of
attention.

For models that do assume discrete selection of the target, the dual process model developed in this
study provides a simpler, more constrained version of DSTP that produced comparable fits when ap-
plied to simple flanker data. Subsequently, the additional flexibility of DSTP is not necessary to explain
standard flanker processing. However, the different components of DSTP might be required to account
for more complex flanker presentation. For example, manipulations that induce target-location uncer-
tainty (e.g., Hübner, Steinhauser, & Lehle, 2010, Experiment 3) are likely to involve greater variability
in early processing, which is well accounted for by the target-selection diffusion process that produces
variable selection times.

The results of this study also speak to the concept of attentional effort. In Experiment 4, the best-
fitting models showed that participants narrowed their initial attentional focus more for blocks that
had a high proportion of incongruent trials. One might expect that if participants are able to actively
focus their attention in this manner, they would do so for every trial to minimize the flanker interfer-
ence. That is, if participants have control over the size of the spotlight, why would they not keep it
fully focused on the target location for each trial? First, there is strong evidence that our visual system
is not capable of perfect selectivity. That is, due to factors like attentional capture and distributed spa-
tial representations, participants cannot fully avoid the influence of the flankers. Second, Eriksen and
St. James (1986) suggested that because attentional focusing requires cognitive resources, it is only
likely to be engaged when beneficial. Such a conservation-of-effort policy would involve finding the
lowest amount of cognitive effort required for the current task. In blocks of trials with many incongru-
ent trials (Experiment 4), there is a significant benefit from engaging more attention. Further, since
participants were instructed to respond quickly and accurately, engaging more attention is the pri-
mary way to improve performance. This stands in contrast to Experiment 3, where participants were
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instructed to emphasize accuracy, even if it meant responding more slowly. In this case, accuracy
could be improved by increasing response caution (i.e., boundary separation), which might require
less effort than focusing attention. Accordingly, the best-fitting models for Experiment 3 did not re-
quire different attentional parameters between speed and accuracy blocks. Thus our results suggest
that participants have some degree of control over the original allocation of attention, but they only
engage more attentional resources when it is beneficial.

The conservation-of-effort policy would also affect processing of congruent trials. Namely, there is
no benefit from focusing attention on the target when each item in the display provides the same
information. Currently, each model was fit as though attentional selection/narrowing occurred on
every trial, including congruent ones. However, for the spotlight and dual process models, little would
change if we assumed no selection for congruent trials. Since the perceptual inputs are normalized,
processing five right-facing arrows provides the same evidence as focusing solely on one right-facing
arrow. This is not necessarily the case for DSTP, which allows for different drift rates before and after
target selection. Future work is needed to determine how appropriate these assumptions are.
6.2. Flanker models as tools for data analysis

One aim of the present study was to identify a simple model of the flanker task that could be sub-
sequently used as a tool for decomposing behavioral data into relevant psychological constructs. There
were two primary criteria that needed to be satisfied for such a model. The model must provide an
adequate account of the behavioral data, and each component of the model must reflect the appropri-
ate underlying construct. Experiments 1–5 showed that the spotlight model captured the data well
and provided adequate descriptive accounts of the data. Further, the experimental manipulations
were tracked by the appropriate model parameters. Manipulations of response bias were captured
by changes in starting point (Experiment 2), manipulations of speed/accuracy settings were captured
by changes in boundary separation and nondecision time (Experiment 3), and manipulations of con-
gruency were captured by changes in attentional parameters (Experiment 4). This series of experi-
mental manipulations provides empirical support for the primary components of the dynamic
attention models. Importantly, this also shows that incorporating a time-varying drift rate into the
standard diffusion model does not adversely affect the other components of the model.

Based on its performance in the current study, the spotlight model can be used to augment anal-
yses of data from flanker tasks. The task has been discussed primarily in terms of understanding the
mechanisms involved in visual/selective attention, but it has also been employed to provide a measure
of attentional differences between groups. Heitz and Engle (2007) showed that higher working mem-
ory span was associated with lower interference for incongruent trials. This would likely be reflected
by a lower value of sda in the spotlight model, which would be consistent with the authors claim that
working memory span is correlated with attentional processing. Another study manipulated mood by
playing either happy or sad music, and found that the FCE was larger for participants in the positive
mood condition (Rowe, Hirsh, Anderson, & Smith, 2007). The authors claimed that positive mood is
associated with broader, less-restricted attention, thus accounting for the larger flanker interference
for happy participants. However, their data also show that happy participants were slightly slower
than sad participants overall. Thus positive mood might be associated with a wider boundary separa-
tion, in addition to, or in place of, less focused attention. Tieges, Snel, Kok, and Ridderinkhof (2009)
used a flanker task to determine if caffeine modulates inhibitory control. They found that participants
who were given caffeine were faster overall, but showed no difference in the FCE compared to con-
trols. The spotlight model could be used in this case to determine whether the speed difference (pos-
sibly due to narrower boundary separation or stronger perceptual input) potentially masks any
differences in attentional processing.

By decomposing the behavioral data into the relevant psychological constructs, the spotlight model
can aid analysis of the flanker task. Recent work has shown that the standard diffusion model pro-
duces more direct measures of the underlying constructs than RTs or accuracy values by separating
the effects of each component into the relevant parameter (Ratcliff, Thapar, & McKoon, 2010; White
et al., 2010). This allows researchers to compare processing across groups that have different response
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styles (e.g., older versus younger adults). Similar advantages can be obtained by using the spotlight
model for future analyses of the flanker task.

Due to the significant mimicry between the spotlight and dual process models, each could reason-
ably be used to fit data and provide a descriptive account of the relevant processes for standard flanker
conditions (e.g., Experiment 1). However, given the superiority of the single process model in this
study, the model parameters from a dual process model should be interpreted in a manner that is con-
sistent with the single process model. Dual process models allow interpretation in terms of early and
late selection, depending on whether or not the target was selected before the response was executed.
The original application of DSTP employed this logic to examine whether different manipulations
selectively affected early or late selection (Hübner et al., 2010). Since the model assumes that Phase
1 and 2 are separate and driven by distinct processes, this interpretation is viable. However, the grad-
ual improvement in evidence that is implemented in the spotlight model renders this distinction
meaningless, as early and late selection merely reflect different points on the same function. Thus
we argue that parameters from dual process models should be interpreted in terms of the initial allo-
cation of attention (e.g., sda) and the time for target selection. These components provide interpreta-
tions that are more consistent with the single process model, whereas interpretations based on early
and late selection do not.

6.2.1. Extending the models
Although the spotlight model presented in this study provides a good account of processing in sim-

ple flanker tasks, there are several instances where it would be unable to adequately account for atten-
tional processing. This is due to the fact that the spotlight model, as currently formulated, only
accounts for the role of spatial distance in affecting attention. The model was developed to provide
a relatively simple, descriptive account of the attentional processes involved in standard flanker pro-
cessing, where the flanker interference can be attributed to spatial proximity. The attentional spotlight
is an abstraction of more complex, mechanistic processes that underlie performance in this task. By
favoring parsimony and focusing on visual space in the development of the model, we sacrificed
the ability for the model to handle more complex effects. In this section, we briefly discuss results that
could present a challenge to the spotlight model as it is currently implemented, as well as potential
ways to expand the model to account for such results. Most of these concerns are equally valid for
the dual process models.

One factor that was not addressed in this study is the spacing between the items in a display. Sev-
eral studies have demonstrated that flanker interference decreases as the spacing between the target
and flankers increases (e.g., Eriksen & Eriksen, 1974; Hübner, Steinhauser, & Lehle, 2010). For the spot-
light model, if we assume that the width of the spotlight is primarily determined by the width of the
items in the display (i.e., due to attentional capture from the items), then widely spaced items would
lead to a wider attentional spotlight and greater interference from the flankers. Thus the shrinking rate
would need to be faster in spaced displays to account for the lower interference from the flankers.
Although such a relationship is not explicitly incorporated into the spotlight model, it could reason-
ably arise under certain assumptions about which factors affect the shrinking rate. For example, the
construct of overlapping spatial representations has been suggested in this domain (Logan, 1996;
Yu et al., 2009) and others (e.g., Gomez et al., 2008; Ratcliff, 1981). In this framework, the spatial rep-
resentation of each item is distributed over space, leading to overlapping representations for nearby
items. If we assume that the shrinking rate of the spotlight is affected by the amount of overlap, then
widely-spaced items would result in a faster shrinking rate. In essence, it would be easier to narrow in
on the target when there is less contamination from neighboring items.

Another factor that the spotlight model does not account for is perceptual grouping. There is strong
empirical evidence that the influence of the flankers depends in part on whether or not they belong to
the same perceptual group as the target. Interference is strongest when the flankers and target are part
of the same group. In fact, such grouping can take precedence over spatial proximity. Driver and Baylis
(1989) found that targets and flankers could be grouped by similar motion patterns (e.g., leftward
moving dots). They showed that distant flankers with the same motion as the target exerted more
interference than nearby flankers that had a different motion pattern. Because the spotlight model
is formulated only in terms of spatial attention, it currently cannot account for such grouping effects.
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Additional assumptions would need to be incorporated into the spotlight model to account for the
full range of attentional effects in the flanker task. The model could presumably be reformulated to
incorporate other aspects of attention, resulting in a spotlight that is centered over attentional space
rather than perceptual space. Thus the attentional distance between the target and a flanker would be
jointly determined by spatial proximity and other grouping factors (e.g., shared features). Such a mod-
el would require a principled account of how these factors would be combined into attentional space,
which could be provided by more mechanistic models of attention like Logan’s CODE theory (1996),
which allows for the contribution of spatial and object-based information. However, it is unclear
whether or not the normal distribution of attention and gradual narrowing would appropriately de-
scribe attentional narrowing for these other factors.

Finally, the models discussed in this study place the locus of flanker effects entirely within the deci-
sion process. The nondecision time, which includes the time taken for motor response, was held con-
stant across conditions (except for speed/accuracy instructions in Experiment 3). Although the models
provided a good account of the data with this assumption, it is possible that some of the effects are
related to motor preparation rather than the decision process per se. Several studies have shown that
motor activity is sensitive to the flanker effects. For example, Gratton et al. (1988) found EMG activity
corresponding to the incorrect response for incongruent trials, even though the correct response was
later given. In a diffusion model framework, this would imply some degree of nondecision activity (re-
sponse preparation) occurs during the accumulation of evidence. On its face, this seems inconsistent
with diffusion models, which assume that the response is executed only once a boundary is reached.
However, response preparation is not the same as committing to an actual choice. Thus response prep-
aration could occur during the decision process, so long as the execution of the response does not oc-
cur until the boundary is reached. In fact, it would be adaptive to prepare the likely response before
the actual commitment is made. Further work is needed to unpack the relationship between motor
preparation and the decision process.
7. Conclusion

The present study shows that a spotlight diffusion model that incorporates gradually narrowing
attention provides a simple, flexible framework that captures data from the standard flanker task bet-
ter than dual process models with discrete attentional selection. The experimental manipulations sug-
gest that gradual narrowing of attention more accurately captures flanker processing than all-or-none
target selection, though the models with discrete selection did account for the primary patterns in the
data when standard congruent and incongruent conditions were used. Further, it may be the case that
more complex flanker conditions, such as those requiring complicated mental categorizations (e.g.,
Hübner, Steinhauser, & Lehle, 2010), are better described by models with separate selection mecha-
nisms like DSTP.

This study also demonstrates a successful incorporation of attentional mechanisms to the diffusion
model. The standard diffusion model provides only a descriptive account of the drift rate because
there is no theory about how the drift rate is calculated. The spotlight and dual-process components
of the models explored in this study go one step further to elucidate the processes that determine the
time-varying decision evidence that drives the diffusion process (see Smith & Ratcliff, 2009; Smith
et al., 2004; for related examples). Although the time-varying drift rate can increase the flexibility
of the models, the drift rate was still constrained by the stimuli and theoretical assumptions of the
models of selective attention. The resulting models provided a significantly better fit to the flanker
data than a standard diffusion model, and the components of the models were empirically validated
by targeted manipulations that affected the appropriate model parameters.
Appendix A

Table A1 shows the best fitting parameters from model variants that were tested but are not in-
cluded in the main text. Results are shown for fits to group data, but the results were similar for indi-
vidual fits. For Experiment 3 (speed/accuracy instructions), models were tested where the initial



Table A1
Best fitting model parameters from Experiments 3 and 4.

3. Dual as aa Ters Tera p ts sdas sdaa v2 aBIC

0.114 0.150 283 308 0.372 64 2.335 2.260 1291.7 1836.5

3. Spot as aa Ters Tera p rd sdas sdaa

0.109 0.1424 287 309 0.357 0.021 1.976 1.859 1181.4 1708

3. DSTP as aa Ters Tera c lss lrs2 ltar lfls lfla

0.118 0.136 284 302 0.128 0.806 0.396 0.062 0.253 0.247 1241.3 1829.1

4. Dual a Ter p sda ts1 ts2 ts3

0.121 302 0.349 1.579 66 62 51 977.7 1653.6

4. Spot a Ter p sda rd1 rd2 rd3

0.125 303 0.361 1.759 0.014 0.019 0.022 877.7 1547.3

4. DSTP a Ter c lrs2 ltar lfl lss1 lss2 lss3

0.117 305 0.108 0.345 0.163 0.224 0.903 1.076 1.130 983.4 1678.8

Note. For Experiment 3, the models allowed the initial selectivity to vary between speed and accuracy blocks (sdaa and sdas, or
lfls and lfla). For Experiment 4, the models allowed the rate of attentional selection (ts, rd, or lss) to vary between blocks with
different proportions of incongruent trials.
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attentional focus was allowed to change between speed and accuracy blocks, based on the assumption
that participants might engage more attention to improve accuracy. However, there was little
improvement in fit quality over the models without differential attentional focus. For Experiment 4
(proportion manipulation), models were tested where the rate of attentional selection was allowed
to vary across blocks with different proportions of congruent trials (as opposed to the initial focus).
However, these versions of the models did not fit as well as the ones presented in the main text.
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