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Chapter 3
An Introduction to the Diffusion Model
of Decision Making

Philip L. Smith and Roger Ratcliff

Abstract The diffusion model assumes that two-choice decisions are made by accu-1

mulating successive samples of noisy evidence to a response criterion. The model has2

a pair of criteria that represent the amounts of evidence needed to make each response.3

The time taken to reach criterion determines the decision time and the criterion that4

is reached first determines the response. The model predicts choice probabilities and5

the distributions of response times for correct responses and errors as a function of6

experimental conditions such as stimulus discriminability, speed-accuracy instruc-7

tions, and manipulations of relative stimulus frequency, which affect response bias.8

This chapter describes the main features of the model, including mathematical meth-9

ods for obtaining response time predictions, methods for fitting it to experimental10

data, including alternative fitting criteria, and ways to represent the fit to multiple11

experimental conditions graphically in a compact way. The chapter concludes with12

a discussion of recent work in psychology that links evidence accumulation to pro-13

cesses of perception, attention, and memory, and in neuroscience, to neural firing14

rates in the oculomotor control system in monkeys performing saccade-to-target15

decision tasks.16

3.1 Historical Origins17

The human ability to translate perception into action, which we share with nonhuman18

animals, relies on our ability to make rapid decisions about the contents of our19

environment. Any form of coordinated, goal-directed action requires that we be20

able to recognize things in the environment as belonging to particular cognitive21

categories or classes and to select the appropriate actions to perform in response.22

To a very significant extent, coordinated action depends on our ability to provide23

rapid answers to questions of the form: “What is it?” and “What should I do about24

it?” When viewed in this way, the ability to make rapid decisions—to distinguish25
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2 P. L. Smith and R. Ratcliff

predator from prey, or friend from foe—appears as one of the basic functions of26

the brain and central nervous system. The purpose of this chapter is to provide an27

introduction to the mathematical modeling of decisions of this kind.28

Historically, the study of decision-making in psychology has been closely con-29

nected to the study of sensation and perception—an intellectual tradition with its30

origins in philosophy and extending back to the nineteenth century. Two strands of31

this tradition are relevant: psychophysics, defined as the study of the relationship32

between the physical magnitudes of stimuli and the sensations they produce, and33

the study of reaction time or response time (RT). Psychophysics, which had its ori-34

gins in the work of Gustav Fechner in the Netherlands in 1860 on “just noticeable35

differences,” led to the systematic study of decisions about stimuli that are difficult36

to detect or to discriminate. The study of RT was initiated by Franciscus Donders,37

also in the Netherlands, in 1868. Donders, inspired by the pioneering work of Her-38

mann von Helmholtz on the speed of nerve conduction, sought to develop methods39

to measure the speed of mental processes. These two strands of inquiry were mo-40

tivated by different theoretical concerns, but led to a common realization, namely,41

that decision-making is inherently variable. People do not always make the same42

response to repeated presentation of the same stimulus and the time they take to43

respond to it varies from one presentation to the next.44

Trial-to-trial variation in performance is a feature of an important class of mod-45

els for speeded, two-choice decision-making developed in psychology, known as46

sequential-sampling models. These models regard variation in decision outcomes47

and decision times as the empirical signature of a noisy evidence accumulation48

process. They assume that, to make a decision, the decision maker accumulates suc-49

cessive samples of noisy evidence over time, until sufficient evidence for a response50

is obtained. The samples represent the momentary evidence favoring particular de-51

cision alternatives at consecutive time points. The decision time is the time taken to52

accumulate a sufficient, or criterion, amount of evidence and the decision outcome53

depends on the alternative for which a criterion amount of evidence is first obtained.54

The idea that decision processes are noisy was first proposed on theoretical grounds,55

to explain the trial-to-trial variability in behavioral data, many decades before it was56

possible to use microelectrodes in awake, behaving animals to record this variability57

directly. The noise was assumed to reflect the moment-to-moment variability in the58

cognitive or neural processes that represent the stimulus [1–4].59

In this chapter, we describe one such sequential-sampling model, the diffusion60

model of Ratcliff [5]. Diffusion models, along with random walk models, comprise61

one of the two main subclasses of sequential-sampling models in psychology; the62

other subclass comprises accumulator and counter models. For space reasons, we63

do not consider models of this latter class in this chapter. The interested reader is64

referred to references [2–4] and [6] for discussions. To distinguish Ratcliff’s model65

from other models that also represent evidence accumulation as a diffusion process,66

we refer to it as the standard diffusion model. Historically, this model was the first67

model to represent evidence accumulation in two-choice decision making as a diffu-68

sion process and it remains, conceptually and mathematically, the benchmark against69
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3 An Introduction to the Diffusion Model of Decision Making 3

which other models can be compared. It is also the model that has been most exten-70

sively and successfully applied to empirical data. We restrict our consideration here71

to two-alternative decision tasks, which historically and theoretically have been the72

most important class of tasks in psychology.73

3.2 Diffusion Processes and Random Walks74

Mathematically, diffusion processes are the continuous-time counterparts of random75

walks, which historically preceded them as models for decision-making. A random76

walk is defined as the running cumulative sum of a sequence of independent random77

variables, Zj , j = 1, 2, . . . . In models of decision-making, the values of these78

variables are interpreted as the evidence in a sequence of discrete observations of79

the stimulus. Typically, evidence is assumed to be sampled at a constant rate, which80

is determined by the minimum time needed to acquire a single sample of perceptual81

information, denoted Δ. The random variables are assumed to take on positive and82

negative values, with positive values being evidence for one response, say Ra , and83

negative values evidence for the other response, Rb. For example, in a brightness84

discrimination task, Ra might correspond to the response “bright” and Rb correspond85

to the response “dim.” The mean of the random variables is assumed to be positive or86

negative, depending on the stimulus presented. The cumulative sum of the random87

variables,88

Xi =
i∑

j=1

Zj ,

is a random walk. If the Zj are real-valued, the domain of the walk is the positive89

integers and the range is the real numbers. To make a decision, the decision-maker90

sets a pair of evidence criteria, a and b, with b < 0 < a and accumulates evidence91

until the cumulative evidence total reaches or exceeds one of the criteria, that is, until92

Xi ≥ a or Xi ≤ b. The time taken for this to occur is the first passage time through93

one of the criteria, defined formally as94

Ta = min{iΔ : Xi ≥ a|Xk > b; k < i}
Tb = min{iΔ : Xi ≤ b|Xk < a; k < i}.

If the first criterion reached is a, the decision maker makes response Ra; if it is b,95

the decision maker makes response Rb. The decision time, TD , is the time for this to96

occur97

TD = min{Ta , Tb}.
If response Ra is identified as the correct response for the stimulus presented, then98

the mean, or expected value, of Ta , denoted E[Ta], is the mean decision time for99
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4 P. L. Smith and R. Ratcliff

correct responses; E[Tb] is the mean decision time for errors, and the probability of100

a correct response, P (C), is the first passage probability of the random walk through101

the criterion a,102

P (C) = Prob{Ta < Tb}.
Although either Ta or Tb may be infinite on a given realization of the process, TD103

will be finite with probability one; that is, the process will terminate with one or104

other response in finite time [7]. This means that the probability of an error response,105

P (E), will equal 1 − P (C).106

Random walk models of decision-making have been proposed by a variety of107

authors. The earliest of them were influenced by Wald’s sequential probability ratio108

test (SPRT) in statistics [8] and assumed that the random variables Zj were the log-109

likelihood ratios that the evidence at each step came from one as opposed to the110

other stimulus. The most highly-developed of the SPRT models was proposed by111

Laming [9]. The later relative judgment theory of Link and Heath [10] assumed that112

the decision process accumulates the values of the noisy evidence samples directly113

rather than their log-likelihood ratios. Evaluation of these models focused primarily114

on the relationship between mean RT and accuracy and the ordering of mean RTs115

for correct responses and errors as a function of experimental manipulations [2–4,116

9, 10].117

3.3 The Standard Diffusion Model118

A diffusion process may be thought of as random walk in continuous time. Instead of119

accumulating evidence at discrete time points, evidence is accumulated continuously.120

Such a process can be obtained mathematically via a limiting process, in which the121

sampling interval is allowed to go to zero while constraining the average size of the122

evidence at each step to ensure the variability of the process in a given, fixed time123

interval remains constant [7, 11]. The study of diffusion processes was initiated by124

Albert Einstein, who proposed a diffusion model for the movement of a pollen particle125

undergoing random Brownian motion [11]. The rigorous study of such processes was126

initiated by Norbert Wiener [12]. For this reason, the simplest diffusion process is127

known variously as the Wiener process or the Brownian motion process.128

In psychology, Ratcliff [5] proposed a diffusion model of evidence accumulation129

in two-choice decision-making—in part because it seemed more natural to assume130

that the brain accumulates information continuously rather than at discrete time131

points. Ratcliff also emphasized the importance of studying RT distributions as a way132

to evaluate models. Sequential-sampling models not only predict choice probabilities133

and mean RTs, they predict entire distributions of RTs for correct responses and134

errors. This provides for very rich contact between theory and experimental data,135

allowing for strong empirical tests.136

The main elements of the standard diffusion model are shown in Fig. 3.1. We shall137

denote the accumulating evidence state in the model as Xt , where t denotes time.138
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3 An Introduction to the Diffusion Model of Decision Making 5
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Fig. 3.1 Diffusion model. The process starting at z accumulates evidence between decision criteria
at 0 and a. Moment-to-moment variability in the accumulation process means the process can
terminate rapidly at the correct response criterion, slowly at the correct response criterion, or at
the incorrect response criterion. There is between-trial variability in the drift rate, ξ , with standard
deviation η, and between-trial variability in the starting point, z, with range sz

Before describing the model, we should mention that there are two conventions used139

in psychology to characterize diffusion models. The convention used in the preceding140

section assumes the process starts at zero and that the criteria are located at a and141

b, with b < 0 < a. The other is based on Feller’s [13] analysis of the so-called142

gambler’s ruin problem and assumes that the process starts at z and that the criteria143

are located at 0 and a, with 0 < z < a. As the latter convention was used by Ratcliff144

in his original presentation of the model [5] and in later work, this is the convention145

we shall adopt for the remainder of this chapter. The properties of the process are146

unaltered by translations of the starting point; such processes are called spatially147

homogeneous. For processes of this kind, a change in convention simply represents a148

relabeling of the y-axis that represents the accumulating evidence state. Other, more149

complex, diffusion processes, like the Ornstein-Uhlenbeck process [14–16], are not150

spatially homogeneous and their properties are altered by changes in the assumed151

placement of the starting point.152

As shown in the figure, the process, starting at z, begins accumulating evidence at153

time t = 0. The rate at which evidence accumulates, termed the drift of the process154

and denoted ξ , depends on the stimulus that is presented and its discriminability.155

The identity of the stimulus determines the direction of drift and the discriminatory156

of the stimulus determines the magnitude. Our convention is that when stimulus sa157

is presented the drift is positive and the value of Xt tends to increase with time,158

making it is more likely to terminate at the upper criterion and result in response159

Ra . When stimulus sb is presented the drift is negative and the value of Xt tends160

to decrease with time, making it is more likely to terminate at the lower boundary161

with response Rb. In our example brightness discrimination task, bright stimuli lead162

to positive values of drift and dim stimuli lead to negative values of drift. Highly163

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 300277_1_En ChapterID: 3 Dispatch Date: 04-12-2014 Proof No: 1

6 P. L. Smith and R. Ratcliff

discriminable stimuli are associated with larger values of drift, which lead to more164

rapid information accumulation and faster responding. Because of noise in the pro-165

cess, the accumulating evidence is subject to moment-to-moment perturbations. The166

time course of evidence accumulation on three different experimental trials, all with167

the same drift rate, is shown in the figure. These noisy trajectories are termed the168

sample paths of the process. A unique sample path describes the time course of169

evidence accumulation on a given experimental trial. The sample paths in the figure170

show some of the different outcomes that are possible for stimuli with the same drift171

rate. The sample paths in the figure show: (a) a process terminating with a correct re-172

sponse made rapidly; (b) a process terminating with a correct response made slowly,173

and (c) a process terminating with an error response. In behavioral experiments,174

only the response and the RT are observables; the paths themselves are not. They are175

theoretical constructs used to explain the observed behavior.176

The noisiness, or variability, in the accumulating evidence is controlled by a177

second parameter, the infinitesimal standard deviation, denoted s. Its square, s2, is178

termed the diffusion coefficient. The diffusion coefficient determines the variability in179

the sample paths of the process. Because the parameters of a diffusion model are only180

identified to the level of a ratio, all the parameters of the model can be multiplied by a181

constant without affecting any of the predictions. To make the parameters estimable,182

it is common practice to fix s arbitrarily. The other parameters of the model are183

then expressed in units of infinitesimal standard deviation, or infinitesimal standard184

deviation per unit time.185

3.4 Components of Processing186

As shown in Fig. 3.1, the diffusion model predicts RT distributions for correct re-187

sponses and errors. Moment-to-moment variability in the sample paths of the process,188

controlled by the diffusion coefficient, means that on some trials the process will fin-189

ish rapidly and on others it will finish slowly. The predicted RT distributions have190

a characteristic unimodal, positively-skewed shape: More of the probability mass in191

the distribution is located below the mean than above it. As the drift of the process192

changes with changes in stimulus discriminability, the relative proportions of cor-193

rect responses and errors change, and the means and standard deviations of the RT194

distributions also change. However, the shapes of the RT distributions change very195

little; to a good approximation, RT distributions for low discriminability stimuli are196

scaled copies of those for high discriminability stimuli [17].197

One of the main strengths of the diffusion model is that the shapes of the RT dis-198

tributions it predicts are precisely those found in empirical data. Many experimental199

tasks, including low-level perceptual tasks like signal detection and higher-level200

cognitive tasks like lexical decision and recognition memory, yield families of RT201

distributions like those predicted by the model [6]. In contrast, other models, partic-202

ularly those of the accumulator/counter model class predict distribution shapes that203

become more symmetrical with reductions in discriminability [6]. Such distributions204
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3 An Introduction to the Diffusion Model of Decision Making 7

tend not to be found empirically, except in situations in which people are forced to205

respond to an external deadline.206

One of the problems with early random walk models of decision-making—which207

they shared with the simplest form of the diffusion model—is they predicted that208

mean RTs for correct responses and errors would be equal [2]. Specifically, if209

E[Rj |si], denotes the mean RT for response Rj to stimulus si , with i, j ∈ {a, b}, then,210

if the drifts for the two stimuli are equal in magnitude and opposite in sign, as is natural211

to assume for many perceptual tasks, the models predicted that E[Ra|sa] = E[Ra|sb]212

and E[Rb|sa] = E[Rb|sb]; that is, the mean time for a given response made correctly213

is the same as the mean time for that response made incorrectly. They also predicted,214

when the starting point is located equidistantly between the criteria, z = a/2, that215

E[Ra|sa] = E[Rb|sa] and E[Ra|sb] = E[Rb|sb]; that is, the mean RT for correct216

responses to a given stimuli is the same as the mean error RT to that same stimulus.217

This prediction holds regardless of the relative magnitudes of the drifts. Indeed, a218

stronger prediction holds; the models predicted equality not only of mean RTs, but219

of the entire distributions of correct responses and errors. These predictions almost220

never hold empirically. Rather, the typical finding is that when discriminability is221

high and speed is stressed, error mean times are shorter than correct mean times.222

When discriminability is low and accuracy is stressed, error mean times are longer223

than correct mean times [2]. Some studies show a crossover pattern, in which errors224

are faster than correct responses in some conditions and slower in others [6].225

A number of modifications to random walk models were proposed to deal with226

the problem of the ordering of mean RTs for correct responses and errors, includ-227

ing asymmetry (non-normality) of the distributions of evidence that drive the walk228

[1, 10], and biasing of an assumed log-likelihood computation on the stimulus in-229

formation at each step [18], but none of them provided a completely satisfactory230

account of the full range of experimental findings. The diffusion model attributes231

inequality of the RTs for correct responses and errors to between-trial variability in232

the operating characteristics, or “components of processing,” of the model. The dif-233

fusion model predicts equality of correct and error times only when the sole source234

of variability in the model is the moment-to-moment variation in the accumulation235

process. Given the complex interaction of perceptual and cognitive processes in-236

volved in decision-making, such an assumption is probably an oversimplification. A237

more realistic assumption is that there is trial-to-trial variability, both in the quality238

of information entering the decision process and in the decision-maker’s setting of239

decision criteria or starting points. Trial-to-trial variability in the information enter-240

ing the decision process would arise either from variability in the efficiency of the241

perceptual encoding of stimuli or from variation in the quality of the information242

provided by nominally equivalent stimuli. Trial-to-trial variability in decision crite-243

ria or starting points would arise as the result of the decision-maker attempting to244

optimize the speed and accuracy of responding [4]. Most RT tasks show sequential245

effects, in which the speed and accuracy of responding depends on the stimuli and/or246

the responses made on preceding trials, consistent with the idea that there is some247

kind of adaptive regulation of the settings of the decision process occurring across248

trials [2, 4].249
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8 P. L. Smith and R. Ratcliff

Fig. 3.2 Effects of
trial-to-trial variability in drift
rates and starting points. The
predicted RT distributions are
probability mixtures across
processes with different drift
rates (top) or different starting
points (bottom). Variability in
drift rates leads to slow
errors; variability in starting
points leads to fast errors

The diffusion model assumes that there is trial-to-trial variation in both drift rates250

and starting points. Ratcliff [5] assumed that the drift rate on any trial, ξ , is drawn from251

a normal distribution with mean ν and standard deviation η. Subsequently Ratcliff,252

Van Zandt, and McKoon [19] assumed that there is also trial-to-trial variability in the253

starting point, z, which they modeled as a rectangular distribution with range sz. They254

chose a rectangular distribution mainly on the grounds of convenience, because the255

predictions of the model are relatively insensitive to the distribution’s form. The main256

requirement is that all of the probability mass of the distribution must lie between257

the decision criteria, which is satisfied by a rectangular distribution with sz suitably258

constrained. The distributions of drift and starting point are shown in Fig. 3.1.259

Trial-to-trial variation in drift rates allows the model to predict slow errors; trial-to-260

trial variation in starting point allows it to predict fast errors. The combination of the261

two allows it to predict crossover interactions, in which there are fast errors for high262

discriminability stimuli and slow errors for low discriminability stimuli. Figure 3.2a263

shows how trial-to-trial variability in drift results in slow errors. The assumption that264
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3 An Introduction to the Diffusion Model of Decision Making 9

drift rates vary across trials means that the predicted RT distributions are probability265

mixtures, made up of trials with different values of drift. When the drift is small266

(i.e., near zero), error rates will be high and RTs will be long. When the drift is267

large, error rates will be low and RTs will be short. Because errors are more likely268

on trials on which the drift is small, a disproportionate number of the trials in the269

error distribution will be trials with small drifts and long RTs. Conversely, because270

errors are less likely on trials on which drift is large, a disproportionate number of271

the trials in the correct response distribution will be trials with large drifts and short272

RTs. In either instance, the predicted mean RT will be the weighted mean of the RTs273

on trials with small drift and large drifts.274

Figure 3.2a illustrates how slow errors arise in a simplified case in which there275

are just two drifts, ξ1 and ξ2, with ξ1 > ξ2. When the drift is ξ1, the mean RT is 400276

ms and the probability of a correct response, P (C), is 0.95. When the drift is ξ2, the277

mean RT is 600 and P (C) = 0.80. The predicted mean RTs are the weighted means278

of large drift and small drift trials. The predicted mean RT for correct responses is279

(0.95 × 400 + 0.80 × 600)/1.75 = 491 ms. The predicted mean for error responses280

(0.05 × 400 + 0.20 × 600)/0.25 = 560 ms. Rather than just two drifts, the diffusion281

model assumes that the predicted means for correct responses and errors are weighted282

means across an entire normal distribution of drift. However, the effect is the same:283

predicted mean RTs errors are longer than those for correct responses.284

Figure 3.2b illustrates how fast errors arise as the result of variation in starting285

point. Again, we have shown a simplified case, in which there are just two starting286

points, one of which is closer to the lower, error, response criterion and the other287

of which is closer to the upper, correct, response criterion. In this example, a single288

value, of drift, ξ , has been assumed for all trials. The model predicts fast errors289

because the mean time for the process to reach criterion depends on the distance it290

has to travel and because it is more likely to terminate at a particular criterion if the291

criterion is near the starting point rather than far from it. When the starting point292

is close to the lower criterion, errors are faster and also more probable. When the293

starting point is close to the upper criterion, errors are slower, because the process294

has to travel further to reach the error criterion, and are less probable. Once again,295

the predicted distributions of correct responses and errors are probability mixtures296

across trials with different values of starting point.297

In the example shown in Fig. 3.2b, when the process starts near the upper criterion,298

the mean RT for correct responses is 350 ms and P (C) = 0.95. When it starts near299

the lower criterion, the mean RT for correct responses is 450 ms and P (C) = 0.80.300

The predicted mean RTs for correct responses and errors are again the weighted301

means across starting points. In this example, the mean RT for correct responses302

is (0.95 × 350 + 0.80 × 450)/1.75 = 396 ms; the mean RT for errors is (0.20 ×303

350 + 0.05 × 450)/0.25 = 370 ms. Again, the model assumes that the predicted304

mean times are weighted means across the entire distribution of starting points, but305

the effect is the same: predicted mean times for errors are faster than those correct306

responses. When equipped with both variability in drift and starting point, the model307

can predict both the fast errors and the slow errors that are found experimentally [6].308
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10 P. L. Smith and R. Ratcliff

The final component of processing in the model is the non-decision time, denoted309

Ter. Like many other models in psychology, diffusion model assumes that RT can be310

additively decomposed into the decision time, TD , and the time for other processes,311

Ter:312

RT = TD + Ter.

The subscript in the notation means “encoding and responding.” In many applica-313

tions of the model, it suffices to treat Ter as a constant. In practice, this is equivalent to314

assuming that it is an independent random variable whose variance is negligible com-315

pared to that of TD . In other applications, particularly those in which discriminability316

is high and speed is emphasized and RT distributions have small variances, the data317

are better described by assuming that Ter is rectangularly distributed with range st .318

As with the distribution of starting point, the rectangular distribution is used mainly319

as a convenience, because when the variance of Ter is small compared to that of TD ,320

the shape of the distribution will be determined almost completely by the shape of321

the distribution of decision times. The advantage of assuming some variability in Ter322

in these settings is that it allows the model to better capture the leading edge of the323

empirical RT distributions, which characterizes the fastest 5–10 % of responses, and324

which tends to be slightly more variable than the model predicts.325

3.5 Bias and Speed-Accuracy Tradeoff Effects326

Bias effects and speed-accuracy tradeoff effects are ubiquitous in experimental psy-327

chology. Bias effects typically arise when the two stimulus alternatives occur with328

unequal frequency or have unequal rewards attached to them. Speed-accuracy trade-329

off effects arise as the result of explicit instructions emphasizing speed or accuracy330

or as the result of an implicit set on the part of the decision-maker. Such effects331

can be troublesome in studies that measure only accuracy or only RT, because of332

the asymmetrical way in which these variables can be traded off. Small changes in333

accuracy can be traded off against large changes in RT, which can sometimes make334

it difficult to interpret a single variable in isolation [2].335

One of the attractive features of sequential-sampling models like the diffusion336

model is that they provide a natural account of how speed-accuracy tradeoffs arise.337

As shown in Fig. 3.3, the models assume that criteria are under the decision-maker’s338

control. Moving the criteria further from the starting point (i.e., increasing a while339

keeping z = a/2) increases the distance the process must travel to reach a criterion340

and also reduces the probability that it will terminate at the wrong criterion because341

of the cumulative effects of noise. The effect of increasing criteria will thus be slower342

and more accurate responding. This is the speed-accuracy tradeoff.343

The diffusion model with variation in drift and starting point can account for the344

interactions with experimental instructions emphasizing speed or accuracy that are345

found experimentally. When accuracy is emphasized and criteria are set far from346

the starting point, variations in drift have a greater effect on performance than do347
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3 An Introduction to the Diffusion Model of Decision Making 11

Speed/Accuracy Tradeoff
Boundary separation changes

zz

Response Bias
Bias towards top boundary (blue lines)
changes to bias towards bottom boundary (red lines)

Fig. 3.3 Speed-accuracy tradeoff and response bias. Reducing decision criteria leads to faster
and less accurate responding. Shifting the starting point biases the process towards the response
associated with the nearer criterion

variations in starting point, and so slow errors are found. When speed is emphasized348

and criteria are near the starting point, variations in starting point have a greater349

effect on performance than do variations in drift and fast errors are found.350

Like other sequential-sampling models, the diffusion model accounts for bias351

effects by assuming unequal criteria, represented by a shift in the starting point352

towards the upper or lower criterion, as shown in Fig. 3.3. Shifting the starting point353

towards a particular response criterion increases the probability of that response354

and reduces the average time taken to make it. The probability of making the other355

response is reduced and the average time to make it is correspondingly increased.356

The effect of changing the prior probabilities of the two responses, by manipulating357

the relative stimulus frequencies, is well described by a change in the starting point358

(unequal decision criteria). In contrast, unequal reward rates not only lead to a bias in359

decision criteria, they also lead to a bias in the way stimulus information is classified360

[20]. This can be captured in the idea of a drift criterion, which is a criterion on361

the stimulus information, like the criterion in signal detection theory. The effect of362

changing the drift criterion is to make the drift rates for the two stimuli unequal. Both363

kinds of bias effects appear to operate in tasks with unequal reward rates.364

3.6 Mathematical Methods For Diffusion Models365

Diffusion processes can be defined mathematically either via partial differential equa-366

tions or by stochastic differential equations. If f (τ , y; t , x) is the transition density367

of the process Xt , that is, f (τ , y; t , x) dx is the probability that a process starting368

at time τ in state y will be found at time t in a small interval (x, x + dx), then the369

accumulation process Xt , with drift ξ and diffusion coefficient s2, satisfies the partial370

differential equation371

−∂f

∂τ
= 1

2
s2 ∂2f

∂y2
+ ξ

∂f

∂y
.
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12 P. L. Smith and R. Ratcliff

This equation is known in the probability literature as Kolmogorov’s backward equa-372

tion, so called because its variables are the starting time τ and the initial state y. The373

process also satisfies a related equation known as Kolmogorov’s forward equation,374

which is an equation in t and x [7, 11]. The backward equation is used to derive RT375

distributions; the forward equation is useful for studying evidence accumulation by376

a process unconstrained by criteria [5].377

Alternatively, the process can be defined as satisfying the stochastic differential378

equation [11]:379

dXt = ξdt + s dWt .

The latter equation is useful because it provides a more direct physical intuition about380

the properties of the accumulation process. Here dXt is interpreted as the small,381

random change in the accumulated evidence occurring in a small time interval of382

durationdt . The equation says that the change in evidence is the sum of a deterministic383

and a random part. The deterministic part is proportional to the drift rate, ξ ; the384

random part is proportional to the infinitesimal standard deviation, s. The term on385

the right, dWt , is the differential of a Brownian motion or Wiener process, Wt . It386

can be thought of as the random change in the accumulation process during the387

interval dt when it is subject to the effects of many small, independent random388

perturbations, described mathematically as a white noise process. White noise is389

a mathematical abstraction, which cannot be realized physically, but it provides390

a useful approximation to characterize the properties of physical systems that are391

perturbed by broad-spectrum, Gaussian noise. Stochastic differential equations are392

usually written in the differential form given here, rather than in the more familiar393

form involving derivatives, because of the extreme irregularity of the sample paths394

of diffusion processes, which means that quantities of the form dXt/dt are not well395

defined mathematically.396

Solution of the backward equation leads to an infinite series expression for the397

predicted RT distributions and an associated expression for accuracy[5, 7, 11]. The398

stochastic differential equation approach leads to a class of integral equation methods399

that were developed in mathematical biology to study the properties of integrate-and-400

fire neurons. The interested reader is referred to references [6, 16, 21] for details.401

For a two-boundary process with drift ξ , boundary separation a, starting point z, and402

infinitesimal standard deviation s, with no variability in any of its parameters, the403

probability of responding at the upper barrier, P (ξ , a, z), is404

P (ξ , a, z) = exp (− 2ξa/s2) − exp (− 2ξz/s2)

exp (− 2ξa/s2) − 1
.

The cumulative distribution of first passage times at the upper boundary, a, is405

G(t , ξ , a, z) =

P (ξ , a, z) − πs2

a2
e−ξz/s2

∞∑

k=1

2k sin
(

kπz
a

)
exp

{
− 1

2

(
ξ2

s2 + k2π2s2

a2

)
t
}

(
ξ2

s2 + k2π2s2

a2

) .
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3 An Introduction to the Diffusion Model of Decision Making 13

The probability of a response and the cumulative distribution of first passage times406

at the lower boundary are obtained by replacing ξ with −ξ and z with a − z in the407

preceding expressions. More details can be found in reference [5].408

In addition to the partial differential equation and integral equation methods, pre-409

dictions for diffusion models can also be obtained using finite-state Markov chain410

methods or by Monte Carlo simulation [22]. The Markov chain approach, developed411

by Diederich and Busemeyer [23], approximates a continuous-time, continuous-412

state, diffusion process by a discrete-time, discrete-state, birth-death process. A413

transition matrix is defined that specifies the probability of an increment or a decre-414

ment to the process, conditional on its current state. The entries in the transition415

matrix express the relationship between the drift and diffusion coefficients of the416

diffusion process and the transition probabilities of the approximating Markov chain417

[24]. The transition matrix includes two special entries that represent criterion states,418

which are set equal to 1.0, expressing the fact that once the process has transitioned419

into a criterion state, it does not leave it. An initial state vector is defined, which rep-420

resents the distribution of probability mass at the beginning of the trial, including the421

effects of any starting point variation. First passage times and probabilities can then422

be obtained by repeatedly multiplying the state vector by the transition matrix. These423

alternative methods are useful for more complex models for which an infinite-series424

solution may not be available. There are now software packages available for fitting425

the standard diffusion model that avoid the need to implement the model from first426

principles [25–27].427

3.7 The Representation of Empirical Data428

The diffusion model predicts accuracy and distributions of RT for correct responses429

and errors as a function of the experimental variables. In many experimental settings,430

the discriminability of the stimuli is manipulated as a within-block variable, while431

instructions, payoffs, or prior probabilities are manipulated as between-block vari-432

ables. The model assumes that manipulations of discriminability affect drift rates,433

while manipulations of other variables affect criteria or starting points. Although434

criteria and starting points can vary from trial to trial, they are assumed to be inde-435

pendent of drift rates, and to have the same average value for all stimuli in a block.436

This assumption provides an important constraint in model testing.437

To show the effects of discriminability variations on accuracy and RT distributions,438

the data and the predictions of the model are represented in the form of a quantile-439

probability plot, as shown in Fig. 3.4. To construct such a plot, each of the RT440

distributions is summarized by an equal-area histogram. Each RT distribution is441

represented by a set of rectangles, each representing 20 % of the probability mass442

in the distribution, except for the two rectangles at the extremes of the distribution,443

which together represent the 20 % of mass in the upper and lower tails. The time-444

axis bounds of the rectangles are distribution quantiles, that is, those values of time445

that cut off specified proportions of the mass in the distribution. Formally, the pth446
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14 P. L. Smith and R. Ratcliff

Fig. 3.4 Representing data in a quantile probability plot. Top panel: An empirical RT distribution is
summarized using an equal-area histogram with bins bounded by the distribution quantiles. Middle
panel: The quantiles of the RT distributions for correct responses and errors are plotted vertically
against the probability of a correct response on the right and the probability of an error response
on the left. Bottom panel: Example of an empirical quantile probability plot from a brightness
discrimination experiment
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3 An Introduction to the Diffusion Model of Decision Making 15

quantile, Qp, is defined to be the value of time such that the proportion of RTs447

in the distribution that are less than or equal to Qp is equal to p. The distribution448

in the figure has been summarized using five quantiles: the 0.1, 0.3, 0.5, 0.7, and449

0.9 quantiles. The 0.1 and 0.9 quantiles represent the upper and lower tails of the450

distribution, that is, the fastest and slowest responses, respectively. The 0.5 quantile451

is the median and represents the distribution’s central tendency. As shown in the452

figure, the set of five quantiles provides a good summary of the location, variability,453

and shape of the distribution.454

To construct a quantile probability plot, the quantile RTs for correct responses455

and errors are plotted on the y-axis against the choice probabilities (i.e., accuracy)456

on the x-axis for each stimulus condition, as shown in the middle panel of the457

figure. Specifically, if, Qi,p(C) and Qi,p(E) are, respectively, the quantiles of the458

RT distributions for correct responses and errors in condition i of the experiment,459

and Pi(C) and Pi(E) are the probabilities of a correct response and an error in460

that condition, then the values of Qi,p(C) are plotted vertically against Pi(C) for461

p = 0.1, 0.3, 0.5, 0.7, 0.9, and the values of Qi,p(E) are similarly plotted against462

Pi(E). All of the distribution pairs and choice probabilities from each condition are463

plotted in a similar way.464

The bottom panel of the figure shows data from a brightness discrimination ex-465

periment from Ratcliff and Smith [28] in which four different levels of stimulus466

discriminability were used. Because of the way the plot is constructed, the two out-467

ermost distributions in the plot represent performance for the most discriminable468

stimuli and the two innermost distributions represent performance for the least dis-469

criminable stimuli. The value of the quantile-probability plot is that it shows how470

performance varies parametrically as stimulus discriminability is altered, and how471

different parts of the RT distributions for correct responses and errors are affected472

differently. As shown in the figure, most of the change in the RT distribution with473

changing discriminability occurs in the upper tail of the distribution (e.g., the 0.7 and474

0.9 quantiles); there is very little change in the leading edge (the 0.1 quantile). This475

pattern is found in many perceptual tasks and also in more cognitive tasks like recog-476

nition memory. The quantile-probability plot also shows that errors were slower than477

correct responses in all conditions. This appears as a left-right asymmetry in the plot;478

if the distributions for correct responses and errors were the same, the plot would479

be mirror-image symmetrical around its vertical midline. The predicted degree of480

asymmetry is a function of the standard deviation of the distribution of drift rates,481

η and, when there are fast errors, of the range of starting points, sz. The slow-error482

pattern of data in Fig. 3.4 is typical of difficult discrimination tasks in which accuracy483

is emphasized.484

The pattern of data is Fig. 3.4 is rich and highly-constrained and represents a485

challenge for any model. The success of the diffusion model is that it has shown486

repeatedly that it can account for data of this kind. Its ability to do so is not a just a487

matter of model flexibility. It is not the case that the model is able to account for any488

pattern of data whatsoever [29]. Rather, as noted previously, the model predicts fam-489

ilies of RT distributions that have a specific and quite restricted form. Distributions490

of this particular form are the ones most often found in experimental data.491
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16 P. L. Smith and R. Ratcliff

3.8 Fitting the Model to Experimental Data492

Fitting the model to experimental data requires estimation of its parameters by it-493

erative, nonlinear minimization. A variety of minimization algorithms have been494

used in the literature, but the Nelder-Mead SIMPLEX algorithm has been popular495

because of its robustness [30]. Parameters are estimated to minimize a fit statistic,496

or loss function, that characterizes the discrepancy between the model and the data.497

A variety of fit statistics have been used in applications, but chi-square-type statis-498

tics, either the Pearson chi-square (χ2) or the likelihood-ratio chi-square (G2), are499

common. For an experiment with m stimulus conditions, these are defined as500

χ2 =
m∑

i=1

ni

12∑

j=1

(pij − πij )2

πij

and501

G2 = 2
m∑

i=1

ni

12∑

j=1

pij ln

(
pij

πij

)
,

respectively. In these equations, the outer summation over i indexes the m conditions502

in the experiment and the inner summation over j indexes the 12 bins defined by503

the quantiles of the RT distributions for correct responses and errors. (The use of504

five quantiles per distribution gives six bins per distribution, or 12 bins per correct505

and error distribution pair.) The quantities pij and πij are the observed and predicted506

proportions of probability mass in each bin, respectively, and ni is the number of507

stimuli in the ith experimental condition. For bins defined by the quantile bounds, the508

values of pij will equal 0.2 or 0.1, depending on whether or not the bin is associated509

with a tail quantile, and the values of πij are the differences in the probability510

mass in the cumulative finishing time distributions, evaluated at adjacent quantiles,511

G(Qi,p, ν, a, z)−G(Qi,p−1, ν, a, z). Here we have written the cumulative distribution512

as a function of the mean drift, ν, rather than the trial-dependent drift, ξ , to emphasize513

that the cumulative distributions are probability mixtures across a normal distribution514

of drift values. Because the fit statistics keep track of the distribution of probability515

mass across the distributions of correct responses and errors, minimizing them fits516

both RT and accuracy simultaneously.517

Fitting the model typically requires estimation of around 8–10 parameters. For an518

experiment with a single experimental condition and four different stimulus discrim-519

inabilities like the one shown in Fig. 3.4, a total of 10 parameters must be estimated520

to fit the full model. There are four values of the mean drift, νi , i = 1, . . . , 4, a521

boundary separation parameter, a, a starting point, z, a non-decision time, Ter, and522

variability parameters for the drift, starting point, and non-decision time, η, sz, and523

st , respectively. As noted previously, to make the model estimable, the infinitesimal524

standard deviation is typically fixed to an arbitrary value (Ratcliff uses s = 0.1 in his525

work, but s = 1.0 has also been used). In experiments in which there is no evidence526
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of response bias, the data can be pooled across the two responses to create one dis-527

tribution of correct responses and one distribution of errors per stimulus condition.528

Under these conditions, a symmetrical decision process can be assumed (z = a/2)529

and the number of free parameters reduced by one. Also, as discussed previously,530

in many applications the non-decision time variability parameter can be set to zero531

without worsening the fit.532

Although the model has a reasonably large number of free parameters, it affords533

a high degree of data reduction, defined as the number of degrees of freedom in the534

data divided by the number of free parameters in the model. There are 11m degrees535

of freedom in a data set with m conditions and six bins per distribution (one degree536

of freedom is lost for each correct-error distribution pair, because the expected and537

observed masses are constrained to be equal in each pair, giving 12−1 = 11 degrees538

of freedom per pair). For the experiment in Fig. 3.4, there are 44 degrees of freedom539

in the data and the model had nine free parameters, which represents a data reduction540

ratio of almost 5:1. For larger data sets, data reduction ratios of better than 10:1 are541

common. This represents a high degree of parsimony and explanatory power.542

It is possible to fit the diffusion model by maximum likelihood instead of by min-543

imum chi-square. Maximum likelihood defines a fit statistic (a likelihood function)544

on the set of raw RTs rather than on the probability mass in the set of bins, and max-545

imizes this (i.e., minimizes its negative). Despite the theoretical appeal of maximum546

likelihood, its disadvantage is that it is vulnerable to the effects of contaminants or547

outliers in a distribution. Almost all data sets have a small proportion of contaminant548

responses in them, whether from finger errors or from lapses in vigilance or atten-549

tion, or other causes. RTs from such trials are not representative of the process of550

theoretical interest. Because maximum likelihood requires that all RTs be assigned a551

non-zero likelihood, outliers of this kind can disrupt fitting and estimation, whereas552

minimum chi-square is much less susceptible to such effects [31].553

Many applications of the diffusion model have fitted it to group data, obtained by554

quantile-averaging the RT distributions across participants. A group data set is cre-555

ated by averaging the corresponding quantiles, Qi,p, for each distribution of correct556

responses and errors in each experimental condition across participants. The choice557

probabilities in each condition are also averaged across participants. The advantage558

of group data is that it is less noisy and variable than individual data. A potential con-559

cern when working with group data is that quantile averaging may distort the shapes560

of the individual distributions, but in practice, the model appears to be robust to561

averaging artifacts. Studies comparing fits of the model to group and individual data562

have found that both methods lead to similar conclusions. In particular, the averages563

of the parameters estimated by fitting the model to individual data agree fairly well564

with the parameters estimated by fitting the model to quantile-averaged group data565

[32, 33]. Although the effects of averaging have not been formally characterized, the566

robustness of the model to averaging may be a result of the relative invariance of its567

families of distribution shapes, discussed previously.568
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18 P. L. Smith and R. Ratcliff

3.9 The Psychophysical Basis of Drift569

The diffusion model has been extremely successful in characterizing performance in570

a wide variety of speeded perceptual and cognitive tasks, but it does so by assuming571

that all of the information in the stimulus can be represented by a single value of drift,572

which is a free parameter of the model, and that the time course of the stimulus encod-573

ing processes that determine the drift can be subsumed within the non-decision time,574

Ter, which is also a free parameter. Recent work has sought to characterize the percep-575

tual, memory, and attentional processes involved in the computation of drift and how576

the time course of these processes affects the time course of decision making [34].577

Developments in this area have been motivated by recent applications of the dif-578

fusion model to psychophysical discrimination tasks, in which stimuli are presented579

very briefly, often at very low levels of contrast and followed by backward masks to580

limit stimulus persistence. Surprisingly, performance in these tasks is well described581

by the standard diffusion model, in which the drift rate is constant for the duration582

of an experimental trial [35, 36]. The RT distributions found in these tasks resemble583

those obtained from tasks with response-terminated stimuli, like those in Fig. 3.4,584

and show no evidence of increasing skewness at low stimulus discriminability, as585

would be expected if the decision process were driven by a decaying perceptual trace.586

The most natural interpretation of this finding is that the drift rate in the decision587

process depends on a durable representation of the stimulus stored in visual short-588

term memory (VSTM), which preserves the information it contains for the duration589

of an experimental trial.590

This idea was incorporated in the integrated system model of Smith and Ratcliff591

[34], which combines submodels of perceptual encoding, attention, VSTM, and592

decision-making in a continuous-flow architecture. It assumes that transient stimulus593

information encoded by early visual filters is transferred toVSTM under the control of594

spatial attention and the rate at which evidence is accumulated by the decision process595

depends on the time-varying strength of the VSTM trace. Because the VSTM trace is596

time-varying, the decision process in the model is time-inhomogeneous. Predictions597

for time-inhomogeneous diffusion processes cannot be obtained using the infinite-598

series method, but can be obtained using either the integral equation method [16] or599

the Markov chain approximation [23]. The integrated system model has provided a600

good account of performance in tasks in which attention is manipulated by spatial601

cues and discriminability is limited by varying stimulus contrast or backward masks.602

It has also provided a theoretical link between stimulus contrast and drift rates, and603

an account of the shifts in RT distributions that occur when stimuli are embedded604

in dynamic noise, which is one of the situations in which the standard model fails605

[28, 37]. The main contribution of the model to our understanding of simple decision606

tasks is to show how performance in these tasks depends on the time course of607

processes of perception, memory, attention, and decision-making acting in concert.608
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3.10 Conclusion609

Recently, there has been a burgeoning of interest in the diffusion model and related610

models in psychology and in neuroscience. In psychology, this has come from the611

realization that the model can provide an account of the effects of stimulus informa-612

tion, response bias, and response caution (speed-accuracy tradeoff) on performance613

in simple decision tasks, and a way to characterize these components of processing614

quantitatively in populations and in individuals. In neuroscience, it has come from615

studies recording from single cells in structures of the oculomotor systems of awake616

behaving monkeys performing saccade-to-target decision tasks. Neural firing rates617

in these structures are well-characterized by assuming that they provide an online618

read-out of the process of accumulating evidence to a response criterion [38]. This619

interpretation has been supported by the finding that the parameters of a diffusion620

model estimated from monkeys’RT distributions and choice probabilities can predict621

firing rates in the interval prior to the overt response [39, 40]. These results link-622

ing behavioral and neural levels of analysis have been accompanied by theoretical623

analyses showing how diffusive evidence accumulation at the behavioral level can624

arise by aggregating the information carried in individual neurons across the cells in625

a population [41, 42].626

There has also been recent interest in investigating alternative models that exhibit627

diffusive, or diffusion-like, model properties. Some of these investigations have628

been motivated by a quest for increased neural realism, and the resulting models629

have included features like racing evidence totals, decay, and mutual inhibition [43].630

Although arguments have been made for the importance of such features in a model,631

and although these models have had some successes, none has yet been applied as632

systematically and as successfully to as wide a range of experimental tasks as has633

the standard diffusion model.634

3.11 Suggestions for Further Reading635

Anyone wishing to properly understand the RT literature should begin with Luce’s636

(1986) classic monograph, Response Times [2]. Although the field has developed637

rapidly in the years since it was published, it remains unsurpassed in the depth638

and breadth of its analysis. Ratcliff’s (1978) Psychological Review article [5] is639

the fundamental reference for the diffusion model, while Ratcliff and Smith’s640

(2004) Psychological Review article [6] provides a detailed empirical comparison641

of the diffusion model and other sequential-sampling models. Smith and Ratcliff’s642

(2004) Trends in Neuroscience article [38] discusses the emerging link between643

psychological models of decision-making and neuroscience.644
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Exercises645

Simulate a random walk with normally-distributed increments in Matlab, R, or some646

other software package. Use your simulation to obtain predicted RT distributions647

and choice probabilities for a range of different accumulation rates (means of the648

random variables, Zi). Use a small time step of, say, 0.001 s to ensure you obtain a649

good approximation to a diffusion process and simulate 5000 trials or more for each650

condition. In most experiments to which the diffusion model is applied, decisions are651

usually made in around a second or less, so try to pick parameters for your simulation652

that generate RT distributions on the range 0–1.5 s.653

1. The drift rate, ξ , and the infinitesimal standard deviation, s, of a diffusion process654

describe the change occurring in a unit time interval (e.g., during one second).655

If ξrw and srw denote, respectively, the mean and standard deviation of the dis-656

tribution of increments, Zi , to the random walk, what values must they be set to657

in order to obtain a drift rate of ξ = 0.2 and an infinitesimal standard deviation658

of s = 0.1 in the diffusion process? (Hint: The increments to a random walk659

are independent and the means and variances of sums of independent random660

variables are both additive).661

2. Verify that your simulation yields unimodal, positively-skewed RT distributions662

like those in Fig. 3.1. What is the relationship between the distribution of cor-663

rect responses and the distribution of errors? What does this imply about the664

relationship between the mean RTs for correct responses and errors?665

3. Obtain RT distributions for a range of different drift rates. Drift rates of666

ξ = {0.4, 0.3, 0.2, 0.1} with a boundary separation a = 0.1 are likely to be667

good choices with s = 0.1. Calculate the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles of668

the distributions of RT for each drift rate. Construct a Q-Q (quantile-quantile)669

plot by plotting the quantiles of the RT distributions for each of the four drift con-670

ditions on the y-axis against the quantiles of the largest drift rate (e.g., ξ = 0.4)671

condition on the x-axis. What does a plot of this kind tell you about the families672

of RT distributions predicted by a model?673

4. Compare the Q-Q plot from your simulation to the empirical Q-Q plots reported674

by Ratcliff and Smith [28] in their Fig. 20. What do you conclude about the675

relationship?676

5. Read Wagenmakers and Brown [17]. How does the relationship they identify677

between the mean and variance of empirical RT distributions follow from the678

properties of the model revealed in the Q-Q plot?679

Solutions (These Go in a Separate Book of Answers)680

1. You need to set ξrw = ξh and srw = s
√

h, where h is the time step of the random681

walk. The number of increments, n, to the random walk in one second is n = 1/h,682

so a sum of n independent random variables, each with mean ξrw and standard683
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deviation srw, will have a mean of nξrw = ξ and a variance of ns2
rw = s2 and a684

standard deviation of s.685

2. Your simulation should have yielded joint distributions of RT. The probability686

mass in each of the joint distributions is equal to the probability of making the687

associated response. You should find that, within the limits of the accuracy of688

your simulation, that the joint distributions of correct responses and errors for a689

given drift rate should be scaled copies of each other. Conditional distributions690

are obtained by dividing the joint distributions of RT for correct responses and691

errors by their associated response probabilities. making the probability mass692

in each distribution equal to 1.0. The conditional distributions should, within the693

limits of your simulation, be identical to one another. If the distributions of correct694

responses and errors are the same, the means (and variances) of correct responses695

and errors will be equal.696

3. The Q-Q plot shows how the means, standard deviations, and shapes of the RT697

distributions vary as the drift of the process is systematically varied. The diffusion698

process (and the approximating random walk) generate Q-Q plots that are highly699

linear. This means that, to a good approximation, the predicted RT distribution700

in one condition can be obtained from the distribution in another condition by701

rescaling the time axis.702

4. The empirical Q-Q plots reported by Ratcliff and Smith (2010) are highly linear,703

in agreement with the simulation.704

5. Wagenmakers and Brown (2007) investigated the relationship between the mean705

and standard deviation of RT across a range of discriminability conditions in a706

number of different experiments. In each experiment, they found that the means707

and standard deviations of the RT distributions, considered as functions of the708

stimulus condition, were linearly related to one another. A linear relationship709

between the mean and standard deviation follows from the linearity of the pre-710

dicted Q-Q plot, because the RT distribution in one condition, and hence also711

the mean and standard deviation, can obtained from that in another condition by712

multiplying the time scale by a constant.713
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