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A Diffusion Model Account of Masking 
in Two-Choice Letter Identification 

Roger Ratcliff and Jeffrey N. Rouder 
Northwestern University 

The diffusion model developed by R. Ratcliff (1978, 1981, 1985, 1988) for 2-choice decisions 
was applied to data from 2 letter identification experiments. In the experiments, stimulus 
letters were displayed and then masked, and the stimulus onset asynchrony between letter 
and mask was manipulated to vary accuracy from near chance to near ceiling. A standard 
reaction time procedure was used in one experiment and a deadline procedure in the other. 
Two hypotheses about the effect of masking on the information provided to the decision 
process were contrasted: (a) The output of perception to the decision process varies with time, 
so that the information used by the decision process rises and falls, reflecting the stimulus 
onset and mask onset. (b) The output of perception to the decision is constant over time, 
reflecting information integrated over the time between the stimulus and mask onsets. The data 
were well fit by the diffusion model only with the assumption of constant information over 
time. 

Sequential sampling models have been used extensively 
to describe rapid two-choice decisions about simple percep- 
tual and cognitive stimuli. For example, when subjects are 
asked to decide, as quickly as possible, which of two tones, 
two lights, two line lengths, or two letters was presented, 
sequential sampling models are generally successful in 
fitting most aspects of response time and accuracy data 
(Audley & Pike, 1965; Heath, 1981; Laming, 1968; Link & 
Heath, 1975; Smith & Vickers, 1988; Vickers, 1979). In this 
article, we extend one sequential sampling model, Ratcliff's 
(1978) diffusion model, to investigate data from a two- 
choice letter-matching paradigm in which visually presented 
stimuli were masked shortly after being displayed. 

The question we address is how a mask affects the 
stimulus information that enters the decision process. One 
hypothesis is that the information coming from early percep- 
tual processes rises and then falls, reflecting the earlier onset 
of the stimulus and subsequent obscuring of the stimulus by 
the mask. A second hypothesis is that the information 
entering the decision process is constant over time, represent- 
ing the total amount of information encoded from the 
stimulus during the time from its onset to the onset of the 
mask. Figure 1 illustrates these two hypotheses in terms of 
the diffusion model (Ratcliff, 1978). In this model, informa- 
tion from a stimulus is accumulated from a starting point (z) 

Roger Ratcliff and Jeffrey N. Rouder, Department of Psychol- 
ogy, Northwestern University. 

Jeffrey N. Rouder is now at the Department of Psychology, 
University of Missouri. 

This research was supported by National Institute of Mental 
Health Grant HD MH 44640 and National Institute for Deafness 
and Other Communication Disorders Grant R01-DC01240. 

We thank Gall McKoon for extensive comments on this article. 
Correspondence concerning this article should be addressed to 

Roger Ratcliff, Department of Psychology, Northwestern Uni- 
versity, Evanston, Illinois 60208. Electronic mail may be sent to 
r-ratcliff@nwu.edu. 

toward one or the other of two criteria (a and 0), with each 
criterion representing one of the two possible responses. A 
decision is made when the amount of information reaches 
one of the criteria. Drift rate is the rate at which information 
is accumulated. The top of Figure 1 shows "nonstationary" 
drift; the drift rate starts out with a positive value (v) and 
then drops to zero, reflecting the rise of stimulus information 
and then its termination because of the mask. With a longer 
stimulus duration (2 vs. 1 in the figure), the accumulation of 
information proceeds farther before the drift rate drops to 
zero. The bottom of Figure 1 shows the "stationary" drift 
rate; drift rate is a constant value determined by stimulus 
duration. The value of v is greater as stimulus duration 
increases. Note that we did not examine all possible 
nonstationary models, just the ones that assume that informa- 
tion at the decision processes follows availability of stimulus 
information at input. 

The two experiments described in this article were 
designed to distinguish between the stationary and nonsta- 
tionary drift hypotheses. For both experiments, on each trial 
a letter was briefly displayed and then masked, and subjects 
were asked to decide which of two letters the stimulus 
matched. The mask was a square filled with random 
contours that was slightly larger than the letters. As we 
discuss, the stationary and nonstationary hypotheses make 
different predictions about the relation between response 
speed and accuracy. Empirical examination of the predic- 
tions requires a full range of accuracy values, from near- 
perfect performance to near chance. To accomplish this, in 
Experiment 1 we used a range of stimulus onset asynchro- 
hies (SOAs) between stimulus onset and mask onset and we 
varied the difficulty of the discrimination between the 
candidate letters. In Experiment 2, we used a deadline 
procedure to trace the time course of  the decision process 
from early in processing (near-chance performance) to later, 
asymptotic performance. 
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Figure 1. An illustration of the two assumptions about how 
stimulus mask (Stim) stimulus onset asynchrony relates to drift 
rate. A: Drift rate set to zero when the mask is presented. B: 
Constant drift rate. Note that the drift rates shown are means; the 
actual paths vary around the means. 

Background  

The two hypotheses, stationary versus nonstationary drift, 
are hypotheses about the information that enters the decision 
process. They are not hypotheses about the effects of a mask 
on perception, and, for this reason, they are not directly tied 
to theories of masking. That is, either stationary or nonsta- 
tionary drift would be consistent with any of the current 
ideas about how masking affects perception. Here, we 
briefly review several theories about the effects of masking 
to make this point. 

In 1968, Kahneman reviewed the then-current literature 
on masking and identified "integration" and "interruption" 
theories (see also Turvey, 1973). Integration theories assume 
that perceptual processes sum the stimulus and the mask so 
that they form a composite, making the stimulus less 
intelligible. Both theories describe early perceptual process- 
ing. They do not describe how the information involved in 
this processing might enter the later decision process. The 
information entering the decision process might be nonsta- 
tionary, reflecting early visual information, information that 
rises and then falls before being integrated or interrupted. 
Alternatively, the information entering the decision process 
might be constant (stationary), reflecting the amount of 
information derived from the stimulus before the mask 

interrupted perceptual processing or reflecting the amount of 
information available from the integrated stimulus and 
mask. 

Like the earlier integration and interruption hypotheses, 
newer ideas about the effects of masking on perception also 
do not provide any means of deciding in what form 
information enters the decision process. Much research has 
been concerned with "metacontrast" masking in which 
performance on the stimulus is adversely affected even 
though the mask is displayed at a different spatial location 
than the stimulus. Explanations of this effect (e.g., Breit- 
meyer, 1984; Breitmeyer & Ganz, 1976; Dixon & Di Lollo, 
1994) involve mechanisms of lateral suppression and tempo- 
ral integration of visual information as well as how those 
mechanisms determine whether a stimulus can be perceived 
in an identification task, but they do not specify at what point 
or what kind of information is read out to decision processes. 

There have also been several theories of letter and word 
identification that model the effect of stimulus presentation 
time on the acquisition of information in perception. Loftus 
and Ruthruff (1994) and Busey and Loftus (1994) provided 
evidence that performance in a digit identification task 
depends on the integral of information encoded by the 
perceptual system. Their model assumes that perceptual 
information is convolved with an impulse response function 
to produce a sensory response function. This sensory 
response function is integrated over time to produce the total 
sensory response, which serves to determine the probability 
with which a stimulus is identified (probability equals 
1 -  exp [sensory response]). Like the other models re- 
viewed here, this model is designed to explain under what 
conditions a stimulus can be identified, not to specify what 
kind of information from perception might enter a later 
decision process. However, if the model were extended to 
explicitly describe the time course of the integration mecha- 
nism, then it might be possible to enter the integrated 
information over time into the decision process of the 
diffusion model so that as the size of the integral grows 
rapidly, information driving the decision process would 
grow rapidly and then remain stationary until a decision is 
made. 

Another model that deals with the time course of acquisi- 
tion has been proposed by Bundesen (1990). His model is 
designed to explain visual attention in paradigms such as 
letter identification. The model assumes that stimuli are 
represented as features and that features are extracted with 
exponential finishing times. A mask terminates processing of 
the stimulus, and the response is based on the features 
extracted to that point. For visual search, the model uses a 
deadline mechanism to predict mean reaction time. The 
model could be made consistent with our constant drift 
assumption if the categorical information extracted from the 
stimulus before the mask was used as the quantity determin- 
ing a constant drift rate. 

The one model of the effects of masking on perception 
that explicitly models the time course of information accu- 
mulation and the output of that information to response 
mechanisms is the interactive activation model (McClelland 
& Rumelhart, 1981; see also Grainger & Jacobs, 1996). Its 
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prediction about the output of information falls between the 
stationary and nonstationary drift hypotheses. In the model, 
activation is passed among three layers of nodes in a localist 
connectionist network. The input layer consists of nodes for 
features of letters that are connected to letter nodes, which in 
turn are connected to word nodes. There is a different 
network of features and letters for each letter position in a 
word. Within a layer, the nodes inhibit each other. When a 
stimulus is input to the system, activation flows from the 
feature nodes up to the letter nodes and from there to the 
word nodes. Activation also flows downward, so that 
activated words send activation down to letters consistent 
with them. The model assumes that at output, a weighted 
average of activation, activation integrated over time, is used 
to compute a response strength for each node, word nodes if 
the task is word identification or letter nodes if the task is 
letter identification. Which response is selected is deter- 
mined by Luce's choice rule. 

A mask is input to the system by turning off the activation 
in all the feature nodes, which rapidly suppresses activation 
in the whole system. However, response strength decreases 
less abruptly at output than does activation at the word and 
letter nodes because it is a weighted average of activation 
(see McClelland & Rumelhart, 1981; Rumelhart & McClel- 
land, 1982). Response strength decays as a function of time 
at about the same rate as the rise in response strength as a 
function of SOA (see McClelland & Rumelhart, 1981, 
Figure 8; see also Loftus & Ruthruff, 1994, for a similar 
response function to a square pulse being transmitted 
through filters). Thus, in a masking paradigm, the function 
for the rise and fall of response strength is approximately an 
inverted V. If this strength is input as drift rate to the 
decision process in the diffusion model, then the drift rate 
should be nonstationary but with an inverted-V shape rather 
than the abrupt change to zero drift for the nonstationary 
hypothesis. We used the data from the experiments to test 
this inverted-V hypothesis as well as the two hypotheses 
already described. 

The Diffusion Model  

The diffusion model is one of a class of sequential- 
sampling, random walk-diffusion models that have proved 
successful in accounting for a range of data across a range of 
experimental paradigms such as choice reaction time (Heath, 
1981, 1992; Laming, 1968; Link, 1975; Link & Heath, 1975; 
Stone, 1960), simple reaction time (Smith, 1995), memory 
retrieval (Ratcliff, 1978, 1980, 1988), letter matching (Rat- 
cliff, 1981, 1985), numerosity judgments (Ratcliff, Van 
Zandt, & McKoon, 1999), various perceptual judgments 
(Ratcliff & Rouder, 1998), visual scanning (Strayer & 
Kramer, 1994), and decision making (Busemeyer & 
Townsend, 1993). In the contexts of these models, both 
stationary and nonstationary processes for the accumulation 
of evidence have been proposed. Stationarity is the default 
assumption in most of the models. Nonstationarity has been 
used in models of simple reaction time (Smith, 1995) and 
models of decision making (Busemeyer & Townsend, 1993). 
In the perception and masking literature, Heath's (1981, 

1992; see also Ratcliff, 1980) tanden random walk model 
proposes a nonstationary drift rate, and Audley and Pike 
(1965) alluded to a nonstationary hypothesis for a random 
walk model: The probability of a step toward one response 
criterion versus the other is greater than chance when the 
stimulus is displayed but returns to chance at mask onset. 
However, none of these suggestions was fully implemented 
and explicitly fit to the kind of comprehensive data we 
present here. 

We chose the diffusion model as the main vehicle with 
which to investigate the stationary versus nonstationary 
hypotheses because, in the domains to which it has been 
applied, it is capable of accounting for the behavior of all the 
dependent variables: mean response times for correct re- 
sponses and error responses, probabilities of correct and 
error responses, and the shapes of the distributions of 
response times. It also explains the relative speeds of correct 
versus error responses, something other models have not 
been found to do (except that of Smith & Vickers, 1988, in 
one experimental procedure). 

The diffusion process is a general decision mechanism 
that accumulates information over time toward one or the 
other of two possible response criteria. It is designed to 
describe single-stage decision processes with mean response 
times of not much more than about 1-1.5 s, not decision 
processes that require multiple stages. The components of 
the model are the starting point for the accumulation of 
evidence (z), variability across trials in the starting point (sz), 
the response criteria (boundary positions 0 and a) toward 
which evidence is accumulated, the rate of accumulation 
(drift rate v), the variability in the drift rate within a trial (s), 
the variability in drift rate across trials ('q; assuming a 
normal distribution for drift rates), and the nondecision 
components of reaction time (T,r). 

In the top panel of Figure 2, the mean drift rates for two 
letters are labeled v+ and v_ and both distributions have 
standard deviation lq. Eta is the across-trial variability in 
drift rate; it reflects variability in the value of the quality of 
information about a stimulus on different trials. In memory 
paradigms, for example, a word to be remembered might be 
more strongly encoded on one trial than another or for one 
subject than another. In perception paradigms, exactly the 
same stimulus might be better encoded on one trial than 
another. 

In Experiment 2, the deadline procedure allows measure- 
ment of an asymptotic value of d' ,  that is, d" (see the top 
panel of Figure 2). In the diffusion model, this is computed 
by subtracting the mean drift rates for the two letters (one is 
usually positive and the other negative) and dividing by the 
standard deviation. 

There is also within-trial variability in drift (see the 
sample path in the top panel of Figure 1). Because of this 
variability, the amount of accumulated evidence can reach 
the wrong boundary even with a large positive or negative 
value of drift. Movement of the boundary positions allows 
the model to account for speed-accuracy trade-offs. Bound- 
aries close to the starting point mean fast response times but 
high error rates. Boundaries farther from the starting point 
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Figure 2. illustration of how variability in drift across trials leads 
to slow errors and how variability in starting point across trials 
leads to fast errors. The top panel shows distributions of drift rates 
across trials for the two response choices, the middle panel shows 
averaging two drift rates, and the bottom panel shows the averaging 
of two starting points. RT = reaction time; Pr = probability. 

mean slower response times but a greater chance for the 
accumulation of evidence to reach the correct boundary. 

Empirical response time distributions are typically posi- 
tively skewed. The diffusion model naturally predicts this 
shape by simple geometry: Equal size decreases in drift rate 
(e.g., from 3v to 2v to v) do not lead to equal size increases in 
response time but instead to increasingly larger increases in 
response time. 

A recent discovery about the diffusion model is that the 
combination of across-trial variability in drift rate and 
across-trial variability in starting point allows the model to 
account for the relative speeds of error versus correct 
response times, something no other model has been able to 
do (Ratcliff & Rouder, 1998; Ratcliff et al., 1999; see also 
Van Zandt & Ratcliff, 1995). The middle panel of Figure 2 
illustrates the effect of variability in drift rate using two 
values of drift rate (vl and v2 in the top panel) rather than the 
whole distribution of drift rates that would be used in a real 

implementation of the model. Because the larger drift rate 
(vl) produces fast error reaction times but fewer of them than 
the smaller drift rate (v2), the weighted average reaction time 
for errors is longer than the weighted average for correct 
responses. The bottom panel of Figure 2 shows the effect of 
variability in starting point, again using two values (zl and 
a-zl) for illustrative purposes instead of a whole distribution 
(variability in the boundary positions would produce the 
same result as variability in starting point). When the 
starting point is near the error boundary, it hits quickly and 
with high probability, whereas when it is nearer the correct 
boundary, errors occur with low probability and they are 
slow. The weighted average leads to faster error responses 
than correct responses. 

The combination of variability in these two parameters 
leads to one of three patterns of results: errors faster than 
correct responses if starting point variability is large; errors 
slower than correct responses if drift variability is large; and 
a crossover such that errors at intermediate levels of 
accuracy (e.g., 0.5-0.9) are slower than correct responses 
and errors at extreme levels of accuracy (e.g., above .95) are 
faster than correct responses if both kinds of variability have 
moderate-to-large values. The data from Experiment 1 
below show the crossover pattern. 

Predictions for Latency Probability Functions 

One of the strengths of the diffusion model is that it jointly 
and simultaneously predicts speed and accuracy. The rela- 
tion between the two measures can be displayed with latency 
probability functions (Audley & Pike, 1965; Vickers, 1979; 
Vickers, Caudrey, & Willson, 1971). Values of response time 
are plotted against values of the probability of a response to 
form a parametric plot, where drift rate is the parameter that 
traces out the function. Latency probability functions have 
not often been used, probably because they immediately 
force evaluation of error response times that few models can 
fit with any accuracy. 

Figure 3 shows sample latency probability functions. The 
vertical axis is response time, and the horizontal axis is the 
probability with which one of the two possible responses is 
made (the probability values for the other response would be 
a mirror image). When the probability of the response is 
high, generally above .5, it is the correct response; when the 
probability is low, it is not the correct response. In other 
words, points on the right-hand side of the functions are 
generally correct responses, and points on the left-hand side 
are generally errors. Figure 3 shows the latency probability 
functions that the diffusion model produces for two values of 
boundary position (with the two boundaries set equidistant 
from the starting point so that z = a12) and for stationary and 
nonstationary values of drift. For stationary drift (the black 
filled symbols), points on the latency probability function 
correspond to drift rates of 0.3, 0.2, 0.1, and 0.05. The points 
for correct responses for these drift rates are on the 
right-hand side of the function, and the points for error 
responses are on the left-hand side. The higher the value of 
drift rate, the more likely are correct responses (farther right 
points) and the less likely are errors (farther left points). The 
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Figure 3. Latency probability functions for stationary drift and 
nonstationary drift for two boundary positions in the diffusion 
model. SeA = stimulus onset asynchrony. 

for error responses with a probability of  .4. Points on the 
left-hand side of  the function are errors, and if they are 
higher than their corresponding points on the right side, then 
the errors are slower than the correct responses. The 
latency-probability function also provides a visual presenta- 
tion of  the rate of  change of  reaction time as a function of  
accuracy, another way it highlights the joint behavior of  the 
two dependent variables. 

The latency probability functions show clearly different 
predictions for stationary versus nonstationary drift rates. 
For stationary drift, the latency probability functions are 
nearly symmetrical with errors only modestly slower than 
correct responses, a pattern similar to what has been 
observed before in situations where drift rate was assumed 
to be stationary (Ratcliff & Rouder, 1998; Ratcliff et el., 
1999). For nonstationary drift, the latency probability func- 
tion is highly asymmetrical. Errors are substantially slower 
than correct responses, except at extreme response probabili- 
ties for which most responses would have terminated before 
the mask affected the decision process. The reason for the 
very slow errors is not intuitively apparent. They come about 
because the positive drift rate before the mask drives 
processes away from the starting point toward the correct 
boundary; when drift rate goes to zero, the process acts like a 
process with zero drift rate and starting point close to one 
boundary. In this situation, error responses are very slow 
(see Ratcliff, 1988, for a description of  the distribution of  
nonterminated processes left in the decision process as a 
function of  time). 

four values of  drift rate represent varying qualifies of  
stimulus information, as would result, for example, from 
varying the S e A  between letter onset and mask onset. For 
nonstationary drift (the open symbols), the points on the 
function correspond to varying the time at which drift rate 
goes from 0.3 to 0; the times are 0.05, 0.1, or 0.2 s or never. 
I f  the drift rate of  0.3 never drops to 0, then the predicted 
response times and probabilities are the same as for the 
stationary process with drift rate 0.3, so that the farthest right 
and farthest left points are the same for the stationary and 
nonstationary functions. So the response times correspond 
numerically to what would be expected from real data, we 
added a nondecisional constant time, Ter = 0.3 s, to each 
reaction time value. For both the stationary and nonstation- 
ary functions, the other parameters of  the model were as 
follows: "q = .08 and s = .1; these values were close to those 
used to fit the data from Experiments 1 and 2. For 
nonstationary drift, exact solutions are not available, so we 
simulated the diffusion process with a random walk with a 
small step size (cf. Feller, 1968); the resulting predictions 
are within a few percentage points of  the predictions that 
would be generated by the continuous diffusion model. 

The asymmetry of  latency probability functions provides 
a display o f  the relative speeds o f  correct versus error 
responses. The response time for any particular value of  
correct response probability can be compared with the 
response time for the corresponding value of  error probabil- 
ity. For example, response times for correct responses with a 
probability of  .6 would be compared to with response times 

Expe r imen t  1 

Experiment 1 was designed to map out latency probability 
functions to test the stationary versus nonstationary drift rate 
hypotheses. To obtain a wide range of  accuracy values, we 
varied the S e A  between letter onset and mask onset from 12 
to 84 ms, and there were two levels of  difficulty for the 
discrimination between the letter choices. 

M e ~ o d  

Subjects. Eighteen Northwestern University undergraduates 
participated to fulfill a course requirement. 

Apparatus. Letters were displayed on video graphics array 
computer monitors in text mode (80 columns, Courier font). The 
video card driving each monitor was reprogrammed so that it 
would execute a refresh every 4 ms (250 Hz; e.g., Von Brisinski, 
1994). The mask was fixed across trials and consisted of a square 
outline with random horizontal, vertical, and diagonal lines inside it. 

Procedure. Five levels of SeAs were used: 12, 20, 32, 52, and 
84 ms. The more difficult to discriminate letter pairs were E versus 
F, P versus R, and C versus G; the easier pairs were E versus C, P 
versus G, and C versus E 

Each subject participated in one session that consisted of 18 
blocks of 50 trials each, resulting in a total of 900 trials (90 trials 
per SeA per easy vs. difficult letter pair). At the beginning of each 
trial, the display consisted of a plus sign fixation point and the two 
letter alternatives. The plus sign was located in the center of the 
display. One response alternative was located above and to the left 
of the plus sign and the other above and to the right of the plus sign. 
This initial display lasted 600 ms, and then the stimulus letter was 
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Table 1 
Accuracy, Correct and Error Response Iimes (RTs), and Standard Errors in RTs 

Stimulus onset Probability Correct RT Standard error Error RT Standard error 
asynchrony (ms) correct (ms) in RT (ms) (ms) in RT (ms) 

Easydiscrimination 

12 .568 569 7 583 8 
20 .716 538 5 581 12 
32 .861 497 4 513 13 
52 .914 474 4 495 24 
84 .934 476 3 400 18 

Hard discrimination 

12 .494 573 8 579 8 
20 .576 545 7 566 10 
32 .723 522 5 546 13 
52 .846 510 5 524 17 
84 .904 500 4 419 14 

displayed and then masked. The mask remained on until the subject 
made a response. Subjects were instructed to press the z key on the 
computer keyboard if the stimulus letter matched the left alterna- 
tive and the "/" key if it matched the right alternative. 

The same two letters were used as response alternatives for all 
the trials of a block. The blocks were grouped in 3s such that the 
three blocks of a group each used one of the three easier to 
discriminate letter pairs or the three blocks each used one of the 
three more difficult letter pairs. The easy versus more difficult 
groups of blocks alternated with their order counterbalanced across 
subjects. The SOA for each trial was chosen randomly from among 
the five possible values. The first 20 trials of the session and the first 
trial of each block were considered warmup trials and were not 
included in the data analyses. Subjects received no feedback about 
accuracy or RT. They were told that accuracy and reaction time 
were being measured and to go with their first impression of the 
stimulus. They were given short breaks between blocks of trials. 

Results and Fits o f  the Diffusion Model 

Table 1 shows mean reaction t imes and accuracy rates as a 
function o f  the two levels of  discrimination difficulty and 
five SOA values. The data are plotted in latency probabil i ty 
functions in Figures 4 and 5 for easy and difficult discrimina- 
tions, respectively. In the experimental  data, errors were 
faster than correct responses for extreme values of  accuracy 
and were slower than correct responses for intermediate 
levels of  accuracy (for other examples of  this crossover in 
correct vs. error responses, see Ratcliff  & Rouder, 1998; 
Ratcliff  et al., 1999; Smith & Vickers, 1988). The functions 
have the shape predicted from the stationary drift hypoth- 
esis; they are not consistent with the nonstationary drift 
hypothesis.  

Representat ive cumulat ive reaction time distributions are 
shown in Figure 6. The means of  five quantiles are plotted. 
Only five were used because there were few error observations 
per subject at the highest values of  accuracy. To compute the 
mean quantiles for a subject, we divided the response times 
into five equal-sized groups ranging from fastest to slowest 
and computed the mean of  each group. Figure 6 shows the 
means of  these means across subjects. The distributions 
show a skew to the right, typical of  reaction time distributions. 

For  fitting the diffusion model  with the constant drift 
assumption, we used a general fitting program called 
Simplex (Nelder & Mead, 1965). The program minimized 
the sum of  squares between theoretical and observed values 
of  accuracy and theoretical and observed means of  the five 
quantiles of  the correct and error response time distributions 
for each SOA and difficulty condition. The theoretical values 
were computed from exact numerical solutions involving 
numerical integration for variabili ty in drift and variabili ty 
in starting point (see Ratcliff  et al., 1999). In minimizing the 
sum of  squares, accuracy values were weighted twice as 
much as the RT quantiles, and the first and fifth reaction time 
quantiles were weighted half  as much as the other quantiles. 
This weighting scheme was used because standard errors in 
accuracy were smaller than those in the reaction time 
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Figure 4. Latency probability functions for the data for the easy 
discrimination condition in Experiment 1 and fits of the diffusion 
model with stationary drift. 
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program adjusted the values of the boundary parameter (a), ~ 0.8 ~ ( P r = . 5 ~  [ 0 8 ] ( P r = ~  
the nondecisional component of reaction time (Ter), the o 
variability in drift across trials ('q), and the variability in ~ o . s ~  ~ ~ o . s ~  ~ "  " 
starting point (sz), and there was a different value of drift (v) ~ 0.4 ] f -  | 0.4 
for each SOA and difficulty condition, t ~ "  / 

The fits of the model to the latency-probability functions ~ 0.2 0.2 
are shown in Figures 4 and 5, and fits to the sample [0.0 . . . . .  . . . o.0 
cumulative response time distributions are shown in Figure t~ 0.3 0.6 0.9 0.3 0.6 0.9 
6. In general, the model fit the data well: With only drift rate 
varying among conditions, the shapes of the latency probabil- 
ity functions and the response time distributions are well 
described. Furthermore, the theoretical functions fall within 
or close to 2 SEs of the experimental data, except for the 
errors when accuracy is more than 95% and the data are 
based on relatively few observations. Table 2 and Table 3 
show the parameter values for the fits. Although the 
boundary position parameters (a, z = a/2), the variability in 
the starting point parameter (sz), and the encoding and 
response parameter (Ter) were allowed to vary freely be- 
tween the easy and difficult conditions, the resulting values 
were within a few percentage points of each other, and 
setting them equal to each other would not alter the quality 
of the fits. Therefore, according to the model, the only 
components of processing that varied appreciably across 
conditions were the across-vial variability in drift rate and 
the drift rates for the different conditions. 

The three parameters other than drift rate (a, "q, and s z) 
specify the form of the latency probability function. The 
latency probability function can be viewed as a parametric 
plot, with the parameter of the plot being drift rate. In other 
words, the predicted line is based on three parameters that 
describe the allowable values of correct and error response 

Reaction Time (aec) Reaction Time (see) 

Figure 6. Cumulative response time dislributions for sample data 
from Experiment 1. The top half shows easy discriminations and the 
bottom half hard discriminations. For each of these conditions, one 
high-accuracy and one low-accuracy condition is shown (one figure 
for correct responses and one for error responses). Pr = probability. 

times and response probabilities. (The parameter Te, adjusts 
the vertical position of the function, not the shape.) The three 
parameters also predict the possible range of shapes of 
response time distributions. The different values of drift rate 

Table 2 
Parameters of  the Fits of the Diffusion Model 
to Experiments I and 2 

Experiment 1: Experiment 1: 
Parameter Hard condition Easy condition Experiment 2 

a .108 .104 
z .054 .052 
sz .018 .014 
Te~s) .316 .319 .303 
s .1 .1 .1 

All .071 .170 
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Table 3 
Drift Rates and d' Values for the Different Conditions From the Fits of  the Diffusion 
Model to Experiments 1 and 2 

Drift rates d~ values 

SOA Experiment 1: Experiment 1: Experiment 1: Experiment 1: 
(ms) Hard condition Easy condition Hard condition Easy condition Experiment 2 

12 0.026 0.024 0.47 0.68 
20 0.067 0.080 1.21 2.25 
32 0.124 0.224 2.19 6.28 
52 0.216 0.274 3.89 7.71 
84 0.298 0.311 5.37 8.76 
None 

1.76 a 
3.07 a 

6.63 

Note. d" values are computed from 2(drift rate)/~l, that is, (v+ - v_)/~, where v_ is -v+. SOA = 
stimulus onset asynchrony. 
aActual average mask durations were 22 and 31 ms. 

specify particular points on the latency probability function 
for the particular SOAs used in the experiment. 

For the nonstationary drift model with drift rate going to 
zero at mask onset and the nonstationary inverted-V from 
the interactive activation model, the fits are shown in Figures 
7 and 8; both figures show data and fits to the easy 
discrimination condition. The program used to fit these 
models simulated the diffusion process by a random walk 
with a small step size (0.1 ms per step) using approximations 
derived from Busemeyer and Townsend (1992). Because 
this was a simulation, many simulated trials (10,000 here) 
were required to produce accurate predictions for reaction 
time and accuracy. A simulation of the diffusion process was 
required because there are no general explicit solutions for 
cases in which the drift rate or other parameters of the 
model are changed during the time course of retrieval. 

Various numerical methods are available (Smith, 1995, 
Appendix B), but the simulation method is much easier to 
use as long as there is enough computer power available. 
The simulation of the diffusion process was embedded 
within the simplex minimization routine that adjusted param- 
eters of the model to minimize squared differences between 
theoretical and experimental values of accuracy and mean 
reaction time for correct and error responses. Figure 7 shows 
the fits of the model with the drift rate constant for the 
duration of  stimulus presentation and then zero after that. 
Figure 8 shows the fits of the model with drift rate increasing 
linearly for the duration of the stimulus and decreasing to 
zero at the same rate (the invertod-V function). The best 
fitting functions miss the data by several standard errors in 
some places, and the shapes of the latency probability 
functions are not like those shown by the data. The best 
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Figure 7. Latency probability functions for the data for the easy 
discrimination condition in Experiment 1 and fits of the diffusion 
model with the drift constant up to the mask onset and then zero 
until the response. 
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Figure 8. Latency probability functions for the data for the easy 
discrimination condition in Experiment 1 and fits of the diffusion 
model with drift linearly increasing up to the time of mask and then 
linearly decreasing to zero at the same rate. 
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fitting parameters of the nonstationary models are shown in 
Table 4. 

One feature of the fits is the inability of the two 
nonstationary models to fit the fast extreme errors while 
fitting slow errors when accuracy is low. The model with 
constant drift up to mask presentation is not able to produce 
fast errors; the predicted error reaction times are slower than 
correct responses. The inverted-V drift model produces fast 
extreme errors relative to correct responses, but not fast 
enough to match the data. This is because the drift rate 
increases over the stimulus duration and then falls and does 
not reach zero until it is twice the SOA. In the extreme 
accuracy condition (84-ms SOA), the drift rate does not fall 
to zero until 168 ms after stimulus onset. 

Although neither of the two nonstationary models we fit 
to the data gave a satisfactory account, some small nonsta- 
tionarity in drift superimposed on constant drift (e.g., a rapid 
rise or a small and slow decrease in drift rate) might be able 
to fit the data, bu t the nonstationarity would have to be small 
relative to the constant drift component. 

The nonstationary drift models have fewer parameters 
than the stationary drift model: The stationary drift model 
has one parameter for each drift rate, and the nonstationary 
model has only the point at which drift rate changes. Thus, 
one might conclude that the stationary drift model has more 
flexibility than the nonstationary models. As noted earlier, 
however, the shape of the latency probability function is 
determined by parameters other than drift rate (a parametric 
plot with the drift rate being the parameter of the function), 
so the comparisons using the latency probability function are 
made on the basis of the same number of parameters: 
boundary position, nondecision reaction time, and variabil- 
ity in drift and starting point of the process. 

We used standard errors in the experimental data as our 
criteria for judging the quality of the fits. The diffusion 
model with constant drift was close to the experimental data, 
but the two nonstationary drift models missed substantially. 
Sophisticated methods of model evaluation will not be 
needed until alternative models are developed that fit the 
data within standard error criteria (i.e., as well as the 
stationary drift diffusion model). 

From these fits to experimental data, we can conclude that 
the diffusion model with stationary drift is capable of fitting 
the data to (nearly) within standard error criteria. The two 
nonstationary models are not capable of fitting the data. 
Thus, the perceptual system is passing information at a 
constant rate to the decision process to produce a constant 
drift rate over the time course of the decision, and the size of 
the drift rate is determined by duration of the stimulus. 

Experiment 2 

In Experiment 2 we tested the stationary versus nonstation- 
ary hypotheses in a different way by using a deadline 
procedure. The task was letter matching with masking, like 
Experiment 1, but subjects were required to respond in 
advance of experimenter-determined deadline times. 

Figure 9 shows the diffusion model predictions for the 
stationary and nonstationary hypotheses for growth of 
accuracy as a function of time. The assumptions are that 
subjects stop the decision process before the deadline time 
and that if the process is above the s ~ g  point, one 
response is produced, and if it is below the starting point, the 
other response is produced. Figure 9 shows predictions for 
growth of accuracy as a function of the time at which 
processing is terminated for three different SOA conditions. 
For stationary drift (the open symbols), the different SOAs 
are represented by three different values of constant drift: 
0.05, 0.1, and 0.3. Accuracy rises gradually and monotoni- 
cally with the rate of rise increasing with drift rate, For 
nonstationary drift (the black filled symbols), the different 
SOAs are represented by drift changing from 0.3 to 0 at 0.05, 
0.1, and 0.2 s after the start of the decision process. Accuracy 
rises and then, at the time at which drift rate changes to 0, it 
begins to fall. Accuracy falls because when drift rate goes to 
0, the diffusion process randomly drifts with the result that 
the accumulation of evidence sometimes ends up below the 
starting point at the wrong boundary (see Ratcliff, 1988, for 
a description of nonterminated processes as a function of 
time). 

M e ~ o d  

Table 4 
Parameters of  the Fits of  the Nonstationary Diffusion 
Models to the Data From the Easy Condition 
in Experiment I 

Constant drift up Drift linearly 
to mask and increasing to mask 

Parameter then zero drift then linearly decreasing 

a 0.0650 0.0551 
z 0.0325 0.0276 
s z 0.0080 0.0030 
Ter (s) 0.437 0.461 
s 0.1 0.1 
"q 0.096 0.102 
Drift rate 0.697 2.455 

Note. The drift rate for the linearly increasing drift is the 
maximum drift rate attained when the stimulus onset asynchrony is 
84 ms and the drift rate then falls linearly to zero at the same rate. 

Subjects. Six Northwestern University undergraduates partici- 
pated in the experiment. Each was compensated $6 for each of six 
35-rain sessions. 

Procedure. Stimuli were displayed in the same way as for 
Experiment 1. Two pairs of letters were used: E and Q, and L and P. 

There were two variables in the experiment: SOA and deadline. 
The SOA between stimulus and mask was either long or short, set 
individually for each subject, or there was no mask. The deadlines 
were 300, 400, 525, or 2,000 ms. 

The first two sessions for each subject were used for practice, 
and they were also used to set the SOA values for each subject. Two 
SOA values were chosen such that accuracy for the short one was 
between 0.6 and 0.7 and the long one was between 0.7 and 0.85. 
Calibration was done ad hoc using two SOAs for the first practice 
session, guessing appropriate SOAs for the second practice session 
from the data from the first practice session, and then using the 
results from both practice sessions for the final calibration. Across 
subjects, the short SOA ranged from 16 ms to 32 ms (M = 22 ms), 
and the long SOA ranged from 24 ms to 44 ms (M = 31 ms). 
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Figure 9. Predictions for the growth of accuracy in a deadline 
experimental procedure. The nonstationary drift rate is assumed to 
be constant at 0.3 up until the mask and then set to zero. Points at 
which drift rate is set to zero for nonstationary drift are 0.05, 0.1, 
and 0.2 s for the filled squares, diamonds, and octagons, respec- 
tively. For stationary drift, the drift rates are 0.3, 0.1, and 0.05 for 
open octagons, triangles, and squares, respectively. The standard 
deviation in drift rate between-trials "q is 0.08, the standard 
deviation of within-trials variability s is 0.1, and nondecisional 
processing time Ter is 0. 

The deadlines were imposed using feedback. At the beginning of 
each trial, the display consisted of a plus sign fixation point, the two 
letter alternatives, and the deadline (displayed in milliseconds). 
The plus sign was located in the center of the display, one response 
alternative was displayed above and to the left of the plus sign, and 
the other was displayed above and to the right. The deadline was 
displayed above the right alternative. This display lasted 500 ms, 
and the stimulus letter was then presented. If the letter was to be 
masked, the mask appeared after the appropriate SOA and re- 
mained on the screen until the subject made a response. If the letter 
was not masked, the letter remained on the screen until the 
response. Subjects pressed the z key if the stimulus was the left 
alternative and the "/" key if it was the fight alternative. After the 
response, feedback was given. If the response was correct and 
occurred before the deadline, the message "correct" was displayed 
along with the response time. If the response occurred after the 
deadline, the message "too slow" was displayed. 

Each session was made up of eight blocks of 100 trials; each 
block had equal numbers of the five SOA conditions in random 
order. The same deadline was used for all the trials of two 
consecutive blocks. Across all the blocks of the experiment, there 
were equal numbers of blocks for each deadline and the order of the 
pairs of blocks was randomly assigned except that the deadline was 
always switched from one of the two short deadlines (300 or 400 
ms) to one of the two long deadlines (525 or 2,000 ms) or vice versa 
after every second block. All the trials of a block used the same pair 
of letters, and the pair was switched after every block. Subjects 
were given a short break after every block. 

Results  

Response times greater than 1,000 ms and less than 100 
ms (less than 0.2% of  the data) were eliminated from the 
analyses. Figure 10 shows accuracy plotted against response 
time. As the figure shows, the mean response times in each 
deadline condition were generally faster than the deadline, 
considerably so for the 525- and 2,000-ms conditions. Only 
for the 300-ms deadline was the mean response time slower 
than the deadline. The figure also shows that across the SOA 
conditions, mean response times at each deadline were about 
the same except at the 2,000-ms deadline, where responses 
in the no-mask condition were faster than in the mask 
conditions. 

The main result is that the functions had exactly the shape 
predicted by the diffusion model  with stationary drift. There 
was no hint of  the sharp bend predicted by nonstationarity. 

Figure 11 shows cumulative response time distributions 
based on mean quantiles (see Ratcliff, 1979). The distribu- 
tions for the first three deadlines were collapsed over mask 
conditions (because there were no differences between 
them), as were the two mask conditions for the 2,000-ms 
deadline. But the 2,000-ms deadline no-mask condition 
differed from the two mask conditions and so is plotted 
separately. Mean quantiles were computed by ordering the 
response times, dividing them into 20 groups, and then 
taking the mean response time for each group. These means 
were then averaged over subjects. For  comparison, the figure 
also shows a normal distribution with about the same 
standard deviation (53 ms) as that of  the first three distribu- 
tions plotted. The cumulative distributions are parallel  to 
each other except for the mask conditions at the 2,000-ms 
deadline. The cumulative distributions are almost normally 
distributed, except that the slowest quantile is skewed a 
little. These distributions indicate that the deadlines induced 

1.0 

0.9 

~ 0.8 

0.7 

0.6 

0.5 

No Mask 

y SOA 23 ms 

I I I I 

300 400 500 600 
Response Time (ms) 

Figure 10. Accuracy as a function of deadline and stimulus onset 
asynchrony (SOA) from Experiment 2. 



DIFFUSION MODEL AND MASKING 137 

0.8 

i0.6 

~ 0 . 4  t~ 

0 

100 300 500 700 Time (ms) 
Figure 11. Cumulative response time (RT) distributions (Distrib.) 
for the data from Experiment 2. Circles represent quantiles for RT 
distributions for deadline conditions. The order from left to right is 
300-, 400-, and 525-ms deadlines, followed by the no-mask and 
mask conditions for the 2,000-ms deadline. 

subjects to stop processing with a stopping time that was 
nearly normally distributed. 

To fit the data with the stationary drift diffusion model, we 
used the function derived by Ratcliff (1978) for the growth 
o l d '  as a function of time: 

d ' ( t )  = 
d" 

q $2 

1 + ,q2( t _ Ter) 

This function is based on the assumption that the diffusion 
process evolves over time without boundaries. When the 
deadline is presented, a process above the starting point 
produces one response and a process below the starting point 
produces the other response. This gives a reasonable fit to 
experimental data from response signal methods (see Rat- 
cliff, 1978; for a discussion of alternative functions, assump- 
tions with models with response boundaries, and issues of 
mimicking, see Ratcliff, 1988). 

We converted the accuracy values (probabilities) shown 
in Figure 10 to d '  values using the accuracy value as the hit 
rate and one minus the hit rate as the false-alarm rate 
(because a hit for one target was one minus the false-alarm 
rate for the other target because response time data and 
accuracy for the two letter targets were symmetrical). We 
then fit Equation 1 to the d '  values using least squares 
minimization with three asymptotic d" parameters (the 
difference in positive and negative drift rates divided by 
standard deviation in drift, ~q; see the top panel of Figure 2), 
one for each mask duration and another for the no-mask 
condition, one rate parameter (s2/-q2), and the nondecisional 

time parameter Te,- The best fitting functions are shown in 
Figure 12, and the data and the parameter values are shown 
in Tables 2 and 3. The best fitting functions fall close to the 
empirical functions. 

The parameter values obtained by fitting Equation 1 were 
consistent with those from Experiment 1; Ter was about the 
same and the asymptotic d~ values fell between those for the 
hard and easy conditions in Experiment 1. -q was larger than 
the two "q values from Experiment 1, but it was not out of 
line with the ranges found in other experiments (see Ratcliff 
& Rouder, 1998; Ratcliff et al., 1999). Thus, the model 
shows reasonable parameter consistency across experimen- 
tal procedures. 

General  Discussion 

In this research we used the diffusion model framework to 
contrast two hypotheses about the information that enters the 
decision process in a two-choice masking task. The first 
hypothesis was that drift rate would increase and then 
decrease, reflecting the earlier onset of the stimulus and then 
onset of the mask. The second hypothesis was that drift rate 
would be constant over the course of decision making, with 
its value being a function of stimulus duration before mask 
onset. Differential predictions were generated from these 
hypotheses for the standard reaction time procedure used in 
Experiment 1 and for the deadline procedure used in 
Experiment 2. The nonstationary drift rate models predict 
slow error reaction times in the standard reaction task, with 
an approximately linear increase in reaction time from 
correct through to error responses and a sudden downturn 
for extreme errors. They also predict that accuracy should 
rise and then fall in the deadline task. In contrast, for the 
standard reaction time task, the stationary drift rate model 

ID 

E 
"g. 2 
" 0  

Data I CIA No Mask 

SOA 23 ms 

I I ! l 

300 400 500 600 
Time ( m s )  

Figure 12. Fits of the stationary drift diffusion model (without 
response boundaries) to the data from Experiment 2. SOA = 
stimulus onset asynchrony. 
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predicts errors only a little slower than correct responses at 
intermediate levels of accuracy and errors faster than correct 
responses at extreme levels of accuracy. For the deadline 
task, stationary drift predicts a monotonic growth of accu- 
racy. The patterns of data obtained in the experiments 
matched those predicted by stationary drift; the data showed 
neither the pattern of slow errors nor the nonmonotonic 
growth of accuracy predicted by nonstationary drift. Whether 
the finding of stationary drift rate will extend to other 
domains is an open question. For example, it might extend to 
word identification paradigms because words, like letters, 
can be represented categorically. However, it might not 
extend to perceptual stimuli (cf. luminous squares on 
random dot patterns; Smith, 1995) for which a cognitive 
representation may not be available to serve as the output of 
perceptual processing. 

With the stationary drift rate assumption, the diffusion 
model provided a good quantitative fit to the data. The 
masking manipulation allowed accuracy to be varied from 
near ceiling to near floor, which in turn allowed mapping of 
full latency-response probability functions and provided a 
range of reaction time distributions (see Figure 10). The 
crossovers of error versus correct response times, in conjunc- 
tion with the latency probability functions, were stringent 
tests of the model. 

Not every nonstationary model is ruled out by the 
experimental results. For example, suppose that the drift rate 
started at zero and rapidly rose after stimulus onset until 
mask onset and then remained constant for short stimulus 
presentation times. Such a model would not produce predic- 
tions that are discriminable from the stationary model 
presented here. (In fact, variability in the starting point can 
be considered to be the result of processing before stimulus 
onset; see Laming, 1968, for a premature sampling followed 
by a step function in drift rate.) 

The diffusion model provides a good quantitative fit to the 
sets of data from the individual experimental conditions with 
few free parameters compared with the number of degrees of 
freedom in the data (which included accuracy values, correct 
and error reaction times, and the shapes of reaction time 
distributions). It also provides consistent estimates of param- 
eter values across conditions and experiments. Although the 
data from the hard and easy discrimination conditions of 
Experiment 1 were fitted separately, the estimates of the 
parameters that would not be expected to be different as a 
function of the stimulus difficulty (boundary separation and 
the encoding and response parameter, Ter) were within a few 
percentage points of each other. The value of variability in 
starting point (sz) was small for the easy and difficult 
conditions in Experiment 1, so small that the difference 
(0.018 vs. 0.014) would not produce significant changes in 
the quality of the fits. The d~ values from Experiment 2 fell 
in the same range as those for the hard and easy conditions of 
Experiment 1. Furthermore, for all the parameters, the 
values from Experiments 1 and 2 are in the range of the 
values that have been found in related paradigms (Ratcliff & 
Rouder, 1998; Ratcliff et al., 1999). These parameter invari- 
ances provide strong support for the model. 

The good fits to the data from Experiments 1 and 2 also 

support the diffusion model by extending the model to deal 
with a kind of limitation on performance that had not 
previously been addressed by the model, namely variability 
resulting from impoverished stimulus encoding. Varying 
mask onset time varied the quality of the information from 
the stimulus (i.e., it reduced performance so that variability 
from perceptual processes operating on a brief stimulus 
determined the noise in processing, such that noise was 
internal to the stimulus). In previous research, the diffusion 
model has been tested with noise external to the stimulus. 
Ratcliff and Rouder (1998) and Ratcliff et al. (I 999; see also 
Ashby & Gott, 1988; Espinoza-Varas & Watson, 1994; Lee 
& Janke, 1964) varied external noise by varying the 
probability with which the correct response to a stimulus 
was one alternative versus another. For example, in the 
Ratcliff et al. experiments, subjects were asked to decide 
whether the number of asterisks in a display was "high" or 
"low." The number of asterisks was drawn from one of two 
overlapping distributions: the low distribution with mean 38 
and the high with mean 56 (SDs = 14). After the response to 
each stimulus, subjects were given feedback about from 
which distribution the stimulus had been drawn. Subjects 
could not be perfectly correct in their responses because any 
given stimulus might have been drawn from either distribu- 
tion. A display of 20 asterisks, for example, would usually 
have been drawn from the low distribution, but it might also 
have been drawn from the high distribution. In this situation, 
the spread of accuracy from floor to ceiling is accomplished 
by external variability; it is the variability in the probability 
of which is the correct response to the stimulus not the 
quality of the stimulus itself that leads to errors. Numbers of 
asterisks near 50 have low accuracy because it is about 
equally likely that they came from the high versus low 
distributions; numbers of asterisks near 0 or 100 have high 
accuracy because they are much more likely to have come 
from one of the distributions than the other. The diffusion 
model does a good job of quantitatively fitting the data from 
this paradigm as well as similar paradigms using external 
variability, such as red-green discrimination, auditory dis- 
crimination, and brightness same-Mifferent judgments. With 
the new experiments presented here, the diffusion model is 
extended to account for data from conditions in which 
perceptual information is impoverished and the limitation in 
processing is internal variability. 

In quantitatively fitting empirical data, the diffusion 
model provides a measure of d" for the information that 
enters the decision process in each experimental condition 
(see the top panel of Figure 2), a measure of d" that is 
different in an important way from the standard d'  measure. 
The diffusion model's d~, measure, which is drift rate divided 
by the standard deviation in drift rate, combines data from 
reaction time and accuracy into a single measure (by 
applying the diffusion model to the data), unlike the standard 
measure of d ' ,  which is based on accuracy alone. The 
standard measure is flawed because it does not take into 
account the possibility of speed-accuracy interactions. In 
most tasks, if subjects are instructed to be as accurate as 
possible, then their accuracy will increase relative to an 
uninstructed baseline, leading to a larger value of d ' .  On the 
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other hand, if they are instructed to respond as quickly as 
possible, their accuracy will decrease, leading to a smaller 
value of d ' .  In other words, d '  computed from accuracy 
alone is not invariant across speed-accuracy criteria set- 
tings. This is not reasonable; d '  should measure the informa- 
tion entering the decision process, and this information 
should be invariant across criteria settings. The diffusion 
model provides a method for extracting such a measure (see 
Ratcliff & Rouder, 1998, Experiment 1). 

The research presented in this article focused on the 
decision process and did not deal directly with perceptual 
processes beyond hypotheses about the time course of 
availability of perceptual information to the decision pro- 
cess. Most of the research on perceptual processing and 
masking deals with processing at input and encoding. We 
emphasize that none of the earlier research has produced a 
model that can fully account for the data that the paradigms 
produce. Any response made in these paradigms has a 
response time associated with it, and when responses can be 
errors, there are also error response times. Thus, we argue, 
the field should begin to work with models of the time 
course of how decisions are made and link them to the 
models of perceptual processing. Our research provides one 
example of this strategy (for other examples, see Rouder, 
1995; Smith, 1995; Smith & Vickers, 1988) and shows that 
within the framework of the diffusion model, we can say that 
the information provided to the decision process is constant 
(or nearly constant) over time. 

Because the diffusion model fits the experimental data 
well, it is natural to ask whether the model is falsifiable. In 
fact, it is remarkably well constrained and easily falsified. 
One simple way of seeing this is that the diffusion model 
with nonstationary drift was easy to falsify. Furthermore, the 
model is highly constrained by the shapes and locations of 
the reaction time distributions. For example, a change in 
drift rate alone changes the leading edge of the reaction time 
distribution by little relative to the spread in the tail. 
Therefore, any factor that alters the leading edge signifi- 
cantly without also increasing the spread falsifies a model in 
which drift rate alone accounts for the effect of the factor. 

The success of the diffusion model sets standards for 
competing models of the decision process. They should 
account for accuracy, reaction times for correct and error 
responses, and the shape of reaction time distributions as 
well as the growth of accuracy as a function of time in 
procedures using response signals or deadlines. The useful- 
ness of such modeling is exemplified by the findings from 
the experiments presented here: We conclude that the 
processing of a letter stimulus when the letter is masked after 
brief presentation involves integrating the stimulus informa- 
tion to provide a constant value (categorical representation?) 
of perceptual output. 
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