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Ratcliff, Clark, and Shiffrin (1990) examined the list-strength effect: the effect of strengthening
(or weakening) some list items upon memory for other list items. The list-strength effect was
missing or negative in recognition, missing or positive in cued recall, and large and positive in
free recall. We show that a large number of current models fail to predict these findings. A variant
of the SAM model of Gillund and Shiffrin (1984), involving a differentiation hypothesis, can
handle the data. A variant of MINERVA 2 (Hintzman, 1986, 1988) comes close but has some
problems. Successful variants of a variety of composite and network models were not found (e.g.,
Ackley, Hinton, & Sejnowski, 1985; Anderson, 1972,1973; Metcalfe Eich, 1982; Murdock, 1982;
Pike, 1984). The results suggest constraints on the future development of such models.

Ratcliff, Clark, and Shiffrin (1990) examined evidence for
a list-strength effect: They defined a (positive) list-strength
effect as a decrease in retrieval of a given set of list items when
other items on the list are strengthened or as an increase in
retrieval of a given set of list items when other items are
weakened. Manipulating strength by varying either presenta-
tion time or number of repetitions, they found a strong list-
strength effect in free recall, at most a weak list-strength effect
in cued recall, and a missing or negative list-strength effect in
recognition. Such results may be contrasted with the list-
length effect that is routinely found in all three paradigms, in
which retrieval decreases as the list-length increases. It should
also be noted the failure to obtain a list-strength effect in
recognition could not easily be attributed to rehearsal artifacts
involving redistribution of rehearsal from strong to weak
items in lists mixing items of two different strengths. Evidence
was amassed against the hypothesis that rehearsal was redis-
tributed to items from temporally adjacent study items. Also
many attempts were made to control rehearsal strategies,
including use of an incidental learning condition, without
changing the results. The possibility remains that items in lists
of different strength compositions are given study effort de-
termined by the strength composition of the list as well as the
nominal strength of the item. However, because such a gen-
eralized effort hypothesis has no direct evidentiary support, is
not well specified, and is not a feature of any current recog-
nition models, we shall make a provisional assumption
throughout this article that rehearsal or coding redistribution
in mixed lists, or general shifts in effort across lists of different
types, is not an important factor.
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In this article we consider the theoretical implications of
the results, exploring such questions as the following: (a) Can
current models predict the findings? (b) What general con-
straints on memory models are imposed by the results? (c)
Can current models be modified to handle the results?

The basic finding to be explicated is based on what was
termed the "mixed-pure" paradigm in Ratcliff et al. (1990):
Three list types are studied, each containing 2N distinct,
different words (ignoring repetitions). The pure weak list
consists of 2N items presented for brief periods of time, t (or
for few repetitions, ri). The pure strong list consists of 2N
items presented for long periods of time, Zt (or for many
repetitions, Zri), Z > 1. The mixed list consists of N items of
time t (or repetitions n), and N items of time Zt (or repetitions
Zri). Let the memory performance be denoted as follows: In
the pure-weak condition, A/(pw); in the pure-strong condi-
tion, M(ps); weak items in the mixed list, M(mw); strong
items in the mixed list, M(ms). The models must predict the
ratios Af(ps)/M(pw) and Af(ms)/M(mw), as well as the ratio
of ratios: [A/(ms)/M(mw)]/[M(ps)/Af(pw)] = Rt. RT should
be greater than 1.0 if a list-strength effect exists. In our studies
Rr was much greater than 1.0 for free recall, slightly greater
than 1.0 for cued recall, and equal to or less than 1.0 for
recognition.

In the sections to follow, we examine the list-strength
predictions for several current models and consider how
various modifications might bring the predictions in line with
the data. First, it is useful to describe in general terms some
of the factors that are most often crucial to the list-strength
predictions.

Many of the current models describe recognition and some-
times recall in terms of the match between a cue used at the
time of retrieval and the contents of memory. This cue-to-
memory match has some mean strength E(M) and a variance,
Var(Af), due to noise in the system.

In recognition, the match is often termed familiarity (F),
and it is assumed that an "old" response is given if F > Cr
and a "new" response is given otherwise, where Cr is a
criterion chosen by the subject. Let (F\ i) denote the familiarity
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when a target (list item /) is tested and (F\x) the familiarity
when a distractor is tested. Then recognition performance is
usually given by d':

E(F\i) - E(F\x)
(Var [F\x]Y<2 ' (1)

Let the recognition performance measures in the mixed-
pure paradigm be denoted d'(ps), d'(pw), d'(ms), and d'(mw).
Let the numerators of Equation 1 in these cases be denoted
w(ps), w(pw), «(ms), and «(mw), and let the denominators of
Equation 1 be denoted <r(ps), <r(pw), <r(ms), and <r(mw).

For many models the following relation holds: w(ps) =
«(ms) > w(pw) = u(mw). That is, the difference in mean
familiarity between targets and distractors depends only on
the target strength, not on the strength of other items in the
list. Also for virtually any model, we have <x(ms) = <r(mw),
because in both cases a distractor is tested, and the list is the
same (i.e., mixed). Because

d'(ps)/d'(pv,) = [M(ps)/<7(ps)]/[«(pw)/«7(pw)],

and

d'(ms)/d'(mw) = [w(ms)/<r(ms)]/[M(mw)/<r(mw)],

we get the list-strength effect ratio:

RT = [d'(ms)/d'(mw)]/[d'(ps)/d'(pv,)] = <r(ps)/<r(pw). (2)

That is, if the pure-strong list variance is greater than the
pure-weak list variance, a (positive) list-strength effect is
predicted. (A negative list-strength effect will be the term used
to denote the case when RT < 1; the case RT = 1 will be
described as an absence of a list-strength effect.)

In addition, in many models, the pure list variance can be
decomposed into a sum of equal independent components,
each component corresponding to one of the presented items,
denoted Var (/) for the rth item presented on a list. Let 4
represent an item on a pure-strong list, and iv represent an
item on a pure-weak list. Then,

r = a(ps)/<7(pw) = \N Var(/W))l

= (Var(4)/Var(/W)|1/2. (3)

Thus a positive list-strength effect will be predicted by such
models if the variance component associated with a strong
item is larger than that associated with a weak item.

Virtually all the models of current interest predict a(ps) to
be greater than <r(pw) and hence fail to predict the data. The
search for model variants capable of predicting the results will
therefore focus on ways to equate the two terms in Equation
2 (or equivalently in many cases, Equation 3). Of course, such
a model variant must still predict a small list-strength effect
for cued recall and a large list-strength effect for free recall. It
must also predict list-length effects for recognition and free
and cued recall.

We begin the detailed consideration of models with the SAM
model of Gillund and Shiffrin (1984) because variants have
been found that can predict the data. The remaining models
are taken up in an order that allows the exposition to proceed
smoothly.

The SAM Model

The SAM model posits search and sampling to underlie free
or cued recall and summed activation to underlie recognition.
A list-strength effect is predicted for both paradigms, although
for different reasons. The reasons are analogous to those that
underlie the list-length predictions covered in Gillund and
Shiffrin (1984). A simplified exposition may make this clear.

When memory is tested for old-new recognition with a
single item, a memory probe is constructed with two cues, a
context cue, C, and an item cue, I, each given a retrieval
weight, Wc and WT, respectively. Retrieval has limited capac-
ity, so Wc + W,= 1.0 (see Gronlund & Shiffrin, 1986). Each
item (word) presented produces an image (L) in memory, and
each of these images (from the list being tested) is activated
by the probe. The activation of L by cues C and I, is

where 5(a,b) represents the retrieval strength between Cue a
and Image b. To make a recognition judgment, the subject
simply adds the activation of all the list images; let the sum
be termed familiarity (F). Then an "old" response is made if
F is greater than a criterion, and "new" if not. We have

I» Q = E A(lj\Ii, C)

F(iv, C ) = E ^(i,-|i«C),

(4a)

(4b)

and if F < CR, respond new, but if F > CR, respond old,
where Ix refers to a distractor item (not from the list) and CR

is the criterion selected by the subject. It is assumed in SAM
that the activations of different images by a given cue set (i.e.,
the terms in the sums in Equations 4a and 4b) are independ-
ent.

The strength of an item cue to its own image, 5(1,-, I,), is
termed the self-strength, and its mean is assumed to equal a
base value, d, plus a parameter c times an increasing function
of the study time, f(t). Thus E[S(l, I,)] = cf(t) + d. The mean
strength of an item cue to an image of an item with which
the cue had been rehearsed is termed the interitem strength
and is similarly a function of the rehearsal time: E[5(I;, I,)] =
bf(t) + d. The mean strength between the context cue and an
image is termed the context strength and is also assumed to
rise with rehearsal time: E[S(C,li)] = af(t). The mean strength
of an item cue to the image of an item with which it had not
been rehearsed is termed the residual strength, d.

The distribution of the strength values is assumed to have
a standard deviation that is linearly related to the mean
strength value. In Gillund and Shiffrin (1984) a particular
assumption was made: If the mean strength value was X, the
distribution was

0.5X p = 1/3
X p = 1/3

1.5X p= 1/3.
(5)

This distribution is generalized in Appendix A, but suffices to
illustrate the list-strength and list-length predictions.
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In general, targets are better recognized than distractors
because the mean target familiarity (Equation 4a) has one or
more activations higher than residual values (e.g., cf(t) + d >
d), whereas the mean distractor familiarity (Equation 4b) is
based solely on residual values. Thus the numerator of Equa-
tion 1 will be positive, and d' > 0.

If items are added to a list, they add an equal amount of
mean familiarity to both terms in the numerator of Equation
1, so the difference is unchanged. However, the denominator
increases with extra list items: To be precise, the variance
increases linearly with the number of items because the vari-
ance of a sum of independent variables (Equation 4) is the
sum of the variances. Thus d' drops as the square root of the
list length.1

If an image is increased in strength through extra presen-
tation time and if some other item is tested that was not
rehearsed with it, then again both target and distractor famil-
iarity will increase by the same mean amount (due to increases
in context strength in both cases). Again the variance will
increase, by assumption, as indicated in Equation 5. Thus a
list-strength effect will be predicted.

When an item is repeated, it can be treated as producing a
new image, in which case it will be as if the list length was
increased, or treated as increasing the strength of one image,
in which case it will be as if presentation time was increased.
In either case, a list-strength effect will be predicted.

Thus we see that the SAM model makes the qualitatively
incorrect prediction of a list-strength effect in recognition. To
examine quantitative issues and to explore model variants, it
is helpful to derive analytical predictions.

To derive predictions, both for SAM and other models,
assume the following "typical" paradigm: N different items
are arranged into N/2 pairs and studied. The weak items are
studied for t s, the strong for Zt s. The only interitem strengths
due to rehearsal occur within pairs. Assume all lists have N
distinct items, with the mixed list having M strong and N -
M weak items.

First note that the independence of activations for different
images allows us to assess list strength in the form of Equation
3:

Rr = |Var x, C)]/Var X, C)]) "2 (6)

where Is and /«, refer to strong and weak images, respectively.
In Appendix A it is shown that Equation 6 takes the form

(7)
' ]E[5(U U]

if S(IX,I) is independent of S(C,l). Letting E[S(IX, Is)] = 0
E[5(IX, Iw)] and E[S(C, Is)] = a E[5(C, L)], we can rewrite
Equation 7 as

RT = a1* (8)

Because in the previous version of SAM, fi was assumed to be
1.0, we get

Rt = a"t. (9)

In words, if the strong items are a factor a stronger than the
weak items (due to extra study time in the present analysis),

then the list-strength effect ratio should be aWc, where Wc is
the weight given to context.

If strength is increased by repetitions, rather than time, two
models suggest themselves. In one, termed the single stronger
image model, the repetitions are all accumulated into a single
image of strength a stronger than the strength of the image
for some fewer number of repetitions. This, of course, pro-
duces a situation identical to that of time variation, and RT =
aWc. In the other, termed the multiple image model, repeti-
tions are all represented by separate images. In this case, a
list-strength effect occurs because the repetitions in effect
increase the list length: w(ps) = w(ms) and w(pw) = w(mw), as
before, but ^(ps) > <r(ms) = j(nm) > <r(pw) because the
number of images is ordered in this way, and each image adds
a variance component that is greater than zero.

To be more specific about the multiple-image model, Equa-
tion 2 holds because of the equality of the MS for pure and
mixed lists. If different items are independent, then a version
of Equation 4 holds as well:

Rr = x, C)]/Var[£ A(hj\lx
j i

(10)

where rs and rw are the number of strong and weak repetitions
for Item I,, and subscript j denotes the different images for
the repetition of I/. If all the repetitions are equal and inde-
pendent, then Equation 10 becomes

r = (rjrj 1/2 (ID

If repetitions are not equal in expectation, the picture is more
complex. Suppose fy = E[5(C,Ij,-)] is the mean context strength
for the/th repetition for item i. Then assuming independence
of the repetitions (dependence will make the variance higher,
so this should be a conservative assumption), it is shown in
Appendix A that

1/2

(12)

If the dj are constant, or if Wc equals zero, then Equation
12 reduces to Equation 11. Regardless, as long as 5j > 0, Rr

will be greater than 1.0, and a list-strength effect will be
predicted.

Discussion and Model Variations

The independent multiple-image model for repetitions pre-
dicts a list-strength effect, as in Equation 12. Even if repeti-
tions are not independent, Equation 10 is likely to be greater
than 1.0. It is possible to envision situations in which greater
strength stored on one repetition is compensated for by lesser
strength stored on the next repetition, in such a way that
variance does not rise, or even goes down, with repetitions
(e.g., see the "closed loop hypothesis" of Murdock & Lamon,

1 Of course, if the context cue does not perfectly focus search on
the images of items in the most recent list, then the denominator will
contain an extra variance component (possibly independent of list
length), and the square root relation would no longer apply.
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1988). However, this seems to require knowledge of the
current number of repetitions, and this knowledge is not
explicitly available to subjects in the experimental situations
to which the model must be applied. Also, certain technical
problems arise if the variance is not to increase. We will focus
therefore on the single-stronger-image model for repetitions.
The assumption that repetitions are accumulated into a single,
stronger image equates theoretically the time and repetition
versions of the mixed-pure paradigm, so only one model need
be considered.2

There are a number of variants of SAM, some quite simple,
that can predict RT to be 1.0, but all but one are flawed in one
or more ways. Our favored variant, the differentiation model,
is discussed next. The others are discussed in Appendix B.

A Differentiation Model

In this variant of SAM, we relax the assumption that d, the
mean item-to-item residual strength, is a constant. Even in
Gillund and Shiffrin (1984), d was allowed to vary with such
factors as natural language word frequency, and it was stated
that d ought to be affected by factors like similarity (e.g.,
Gillund & Shiffrin, 1984, p. 32), so that allowing d to vary
with storage strength seems a natural extension, well within
the logic of the approach. Suppose that d is lower when the
image being activated is stronger (had been rehearsed more,
say). This assumption is based on a differentiation argument:
The better encoded is an image, the more clear are the
differences between it and the test item. The argument based
on differentiation is an old one (e.g., Gibson, 1940; Salz,
1961,1963) and is also common in the literature on similarity
(e.g., Gibson & Gibson, 1955; Nosofsky, 1987). Indeed the
basis for differentiation can be couched in terms of similarity:
When a "clear" test stimulus is used to activate a strongly
stored quite different memory image, the similarity between
the two should be low, reflected in a low activation strength.
As the storage strength drops, the uncertainty about features
stored can cause an increase in similarity and activation
strength. Of course, as storage strength continues to drop
toward zero, eventually so must activation strength. Thus,
technically, the function relating storage strength to activation
strength for an "unrelated" test item must be nonmonotonic,
starting at zero, rising fairly quickly to a maximum and then
falling, perhaps toward an asymptotic value. For the studies
reported in Part I, it will be assumed that the storage strengths
will always be large enough that the activation strengths will
be on the downward sloping part of the function.

The idea behind the differentiation model is illustrated in
Figure 1. The left-hand panels show the mean retrieval
strength S(C,I), between the context cue and an image, as a
function of the presentation time (or number of presentations)
of the item encoded in that image. The middle panels show
the mean retrieval strength Ŝ OUI) between the test item, /,,
and the image, also as a function of the presentation time of
the item encoded in the image (when the test item and item
in the activated image had not been encoded together). The
right panels show mean total activation by both cues, assum-

ing the cues are given the weights shown. Note also that the
standard deviation of activation for this model is just a
constant times the mean activation, as was true of the original
model and as shown in Appendix A.

Row 1 shows how a trade-off of increasing context strength
and decreasing item (residual) strength can produce a nearly
flat mean and variance of activation as a function of item
strength. For items having strengths on the flat portion of this
function, no list-strength effect would be predicted. Row 2
has the same context and item strength functions as Row 1
but shows that an increase in the context weight (and decrease
in item weight) can cause the mean and variance of activation
to rise with strength, producing a positive list-strength effect
(a movement of the weights in the other direction could, of
course, produce a negative list-strength effect). Row 3 keeps
the weights equal to .5 but shows that different item strength
functions can produce either positive or negative list-strength
effects.

The cases shown in the figure illustrate the flexibility of the
differentiation model. Slight differences in the shapes of the
strength functions, or in the weights given to the cues, could
produce slight decreases or increases in the mean and variance
of activation as item strength increases, thereby allowing the
model to account for a range of list-strength effects. The
shapes of the functions are presumably a function of the item
types and similarities, whereas the weights are chosen by the
subject.

Explicit predictions for the mixed-pure paradigm are not
hard to generate. Assume that the mean item and context
strengths are functions of rehearsal time for the item in the
activated image when the test item had not been rehearsed
with the activated item (along the lines of the functions
illustrated in Figure 1). Assume that the noises associated
with these mean strengths are otherwise independent. Then
Equations 7 and 8 hold. Next assume that a > 1 and /? < 1
for the levels of strength used in a given experiment, thus
producing the kind of trade-off exhibited in Figure 1, in the
right-hand portion of the panels. Then for fixed a and 0,
raising the value of Wc and/or lowering the value of Wx will
increase the list-strength effect.3

This differentiation model has a number of interesting
features. Because both the mean and variance of activation
remain roughly constant as strength of storage increases, when
context and an unrelated item are used as cues, then a recall
probe using these cues will not be affected by strength of

2 It should be noted that there exists a rather long and inconclusive
literature concerning the appropriate representation for repeated
items (e.g., see Hintzman, 1988, for one recent treatment). We do
not intend to review this evidence in this article. The choice of the
single-image representation is made here because, of the two choices,
it is the only one offering a ready explanation of the list-strength
results.

3 Our particular assumptions concerning rehearsal time for an item,
negative dependence of mean strengths, and independence of noise
components were chosen in part because they give rise to the pleas-
ingly simple result of Equation 5. Many other assumptions could
have been made that do not qualitatively change the arguments we
have made but that are mathematically more complex.
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Figure I. An illustration of the way in which activation of an image (right-hand panels) is determined
by the retrieval strengths due to the context and (extraneous) item cues. (In a differentiation version of
the SAM model, the residual item strength [the center panels in each row] decreases as the storage
strength of the activated item increases, counteracting the effect of the context cue.) The two left-hand
columns give mean strengths, and the right-hand column gives mean activation (which differs only by
a constant factor from the standard deviation of activation—see Equation A2). (A positive list-strength
effect is predicted if the items with higher amounts of rehearsal have a higher level of activation [right-
hand panel] and hence higher variance. The type of list-strength effect predicted depends upon the cue
weightings [first compared with second row] and upon the shape of the strength functions [first compared
with third row].)

storage of other items. In the SAM model for free recall, it is
assumed that some probes of memory are made with the
context cue only, and other probes by an item and the context
cue together. When the context cue only is utilized, a strong
list-strength effect will be predicted (because the "stronger"
images will be selectively sampled in mixed-strength lists).
Thus, overall, a list-strength effect will be predicted in free
recall to the extent that context cuing occurs alone during the
course of retrieval. However, in cued recall (and in free recall
whenever context and item cues are used jointly), the situation
will be quite different: Because all (non-jointly-rehearsed)
images will be activated about equally, regardless of strength,
no selective sampling of stronger items will occur. Thus the
main factor leading to a list-strength effect will be eliminated.

One way to predict a modest list-strength effect in cued
recall, nonetheless, involves variations of the weights assigned
to cues. Suppose that for cued recall a higher weight is assigned
to context, and a lower weight assigned to the item cue than

would be true for recognition. Reference to Equation 7 makes
it clear that these expressions represent not only RT but also
the ratios of mean activation strength for a strong image to
mean activation strength for a weak image. Therefore any-
thing raising Rr, such as a weighting shift, will also increase
the mean activation of strong items relative to weak items
and hence lead to increased sampling of strong items from
mixed lists. The data from Ratcliff et al. (1990) are consistent
with the hypothesis that a slightly greater list-strength effect
occurs in cued recall than in recognition (although additional
data are needed).

Aside from weighting shifts, another factor in SAM may
produce a list-strength effect in cued recall when none is seen
in recognition. In SAM, after an image is sampled in the recall
search process, the probability of correctly recalling that item
is not based on the activation strength, but rather on the
probabilistic combination of the recovery probabilities due to
the separate cue strengths (see Gillund & Shiffrin, 1984). To
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be precise,

PR(lj\h C) = 1 - exp\-W,S(lh L) - WCS(C, I,)). (13)

Because S(C,Ij) will generally be higher than 5(I(,Ij) (i.e., the
context strength will be higher than the residual), Equation
13 will be higher for images with higher context strengths,
even when the total activation of images with different context
strengths is equal. Now suppose that in cued recall, recoveries
of incorrect images will lead to a strengthening of item con-
nections between the context and item cues used in the probe
and to the image of the incorrect item recovered (Gillund &
Shiffrin, 1984, termed this incrementing). Because stronger
items will be selectively favored in recovery, this strengthening
will occur more for stronger items than weaker ones. The
effect of strengthening will be to increase the activation of
that image to those cues from that point onward in the
memory search, thereby reducing the probabilities of sam-
pling the yet to be recovered correct item. Overall, then,
stronger other items tend to reduce cued recall, and weaker
other items tend to increase cued recall, over the entire course
of the recall period. (This same factor could apply in free
recall when item cues are used, but the continual switching
of item cues in free recall will tend to minimize its contribu-
tion.)

In summary, the new variant of SAM predicts a good sized
list-strength effect in free recall because of search phases in
which context cues only are used. It predicts a somewhat
greater list-strength effect in cued recall than in recognition if
an incrementing process takes place during the memory
search in cued recall for irrelevant items that are recovered.
The advantage of the list-strength effect in cued recall over
recognition will be further enhanced if the weight given to the
item cue is higher, and the weight given to the context cue is
lower, in recognition compared with cued recall.

It must next be asked whether the new variant of SAM will
alter the previous predictions made by the theory, such as
those put forward in Gillund and Shiffrin (1984) and Raa-
ijmakers and Shiffrin (1980, 1981). The majority of such
predictions occurred in situations where strength was not
explicitly varied, and hence we will see only very slight quan-
titative changes in predictions (due, say, to slightly differing
results when items are given differing amounts of rehearsal in
a buffer). In cases where strength is varied, such as variations
in presentation rate for a list, larger quantitative changes in
predictions occur. Longer rehearsal times per item will pro-
duce two effects: (a) a direct strengthening of the test item's
image (as in the old version of SAM) and (b) no strengthening
of the activations of images not rehearsed with the test item
(in contrast to the old version of SAM). Factor 2 will mean
that the new variant of SAM will predict a larger effect of
increased rehearsal time than the previous version (for both
recall and recognition). As a consequence, it will probably be
necessary to assume that the function relating growth in mean
strength to rehearsal time will bend over more sharply than
would have been necessary in the previous version of SAM.
Clearly, quantitative testing of SAM with the differentiation
assumption added must be carried out, both on the theoretical
and empirical levels, but the topic will not be pursued further
in this article.

Predictions of Other Models for the
List-Strength Effect

None of the other models we have looked at predict the
failure to obtain a list-strength effect in recognition. Variants
of these models capable of handling the findings are difficult
to find, though one based upon the MINERVA 2 model by
Hintzman (1986, 1988) has fewer problems than the others.
We begin, therefore, with MINERVA 2.

The MINERVA 2 Model of Hintzman (1986)

In MINERVA 2 items are vectors of feature values (+1,0, or
— 1), and a pair of items is a longer vector consisting of two
item vectors end-to-end. Each item or pair is stored separately.
Each feature value is stored with probability L, and with
probability 1 - L, zero is stored for that feature. At test, the
test vector is compared in parallel with each memory item.
In particular, the dot product between the test vector and
each memory vector is taken, normalized in a manner de-
scribed below, and cubed. The result is the activation value
for that image. The sum of all activation values is a measure
of familiarity (F) used to make a recognition decision:

(14)

In Equation 14, TV is the number of vectors stored, M is the
number of features in each vector, Pj is the value of feature j
in the test probe, Tu is the value of feature j in vector /, and
TVR,,, the normalizing factor, is the number of features in the
rth trace for which either Pj or Tu is nonzero.

Applications to the mixed-pure paradigm are straightfor-
ward. If an item is given more study time, the value of L is
higher; spaced repetitions result in the storage of new traces.
It is easy to see that Equation 2 holds for this model because
«(ms) = w(ps) and w(mw) = M(pw). The ws are equal because
for each trace activated by a target there is an equivalent
mean activation of that trace by a distractor, save only for the
trace matching the target. Thus the composition of the list,
except for the target trace, has no effect on the numerator of
d'. Because Equation 2 holds, we need only to determine the
variances for pure strong and pure weak lists to derive list-
strength predictions.

Ignoring for the moment the case of increased study time,
the prediction for repetitions is clear: Additional presentations
increase the number of vectors stored in memory. Each such
vector contributes a positive variance term to the total acti-
vation, so additional presentations produce additional vari-
ance and hence lead to the prediction of a positive list-strength
effect. Because this prediction is in error, the remaining
discussion will focus on variants of MINERVA 2 in which all
repetitions of a given item are collapsed into a single stored
vector. We will assume that this is done in such a way that
increases in presentations become analogous to increases in
presentation time. That is, to start with, assume that extra
presentations act to produce a stored vector equivalent to
what would have been stored in one presentation with a larger
value of L.
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For increased presentation time, Equation 3 holds as well,
in the following form:

,= {Var.|£ {(1/iV/) S
L

VarJ (15)

where the subscripts 5 and w refer to storage of a strong trace
Th or a weak trace 7).

Unfortunately, it is not very easy to determine analytically
the magnitude of the expression in Equation 15. In the
limiting case when all elements in the presentation or test
vectors are nonzero, the normalizing term, JVR,,- will be a
constant equal to M, regardless of the value of L (i.e., the
storage strength). In this case it is not hard to show that the
variance of activation will increase as L increases, and a
positive list-strength effect will be predicted. However, when
vectors have a (random) number of zero entries, then NRri will
be a random variable whose mean will increase with increases
in L and whose effect will be to reduce the variance as L
increases, counteracting to some degree the other factors that
are operating. We have decided not to investigate this model
in greater depth for two reasons. First, the particular choice
of normalizing factor made by Hintzman does not seem
essential to the theory and was probably made somewhat
arbitrarily. It would be appropriate to investigate a range of
models for the normalizing factor (e.g., AV,, could be set to a
constant value; iVR>1- could count the number of features for
which the product PJTQ is nonzero; NRJ could be a power
function of some feature count, etc.). Second, even though
one of these models might have the desired property that
variance remains constant when L changes, we prefer to
discuss instead a much simpler variant having the same
property. We take up this variant next.

The key to the next approach involves a slight alteration of
the learning assumptions. Suppose the number of nonzero
entries in the stored vector does not vary with the learning
parameter, L. Suppose instead that a feature value matching
the presented item's feature value is stored with probability
L, and with probability 1 - L a value is stored that is chosen
at random from the distribution giving rise to the feature
values in the first place. In effect, storage will consist of
replacing random feature values with appropriate ones, more
appropriate ones being inserted, the stronger is the item (at
least if repetitions are accumulated into one stored vector). If
the item that is tested is a different one than the one encoded
in the stored vector, then the mean and variance of activation
will be the same, regardless of the "strength" of storage
(because all vector elements will be independent with respect
to the test vector and because the number of zero entries in
the stored vector will not change with strength). This model,
therefore, predicts no list-strength effect in recognition {R, =
1).

A problem for this model is the negative list-strength effects
that are sometimes observed. It would be desirable to have a
model with the flexibility to account for at least a small range
of list-strength effects. Another problem involves recall.

Recall in MINERVA 2 is slightly more complex than recog-
nition. Although a full model of free recall has not been
worked out, cued recall is well specified. For cued recall, the
probe item is used (as before) to activate each stored image.
Then the activation value for a given vector multiplies all the
values in that vector to produce a weighted vector. This is
done for all stored vectors, and then all the weighted vectors
are summed to produce a vector termed the content echo.
That is, the value (i.e., activation) of feature j in the content
echo is

Q = S AtT,j, (16)

where A{ is the activation of the rth vector stored in memory
(given by the term to the right of the summation in Equation
14). Several methods have been proposed to "clean up" the
content echo and produce a recall, but, in general, better recall
is expected if the dot product of the content echo with the
correct response vector is higher.

If repetitions are stored separately, the effect of strength-
ening is straightforward: More extraneous values will enter
into the sum in Equation 16, increasing noise, reducing
performance, and leading to a prediction of a positive list-
strength effect. However, if it is assumed that repetitions are
accumulated into one trace for recognition, the same must be
assumed for recall. Thus the case of varying presentation time
is the one needing investigation. In general, the recall predic-
tions for the list-strength effect mimic those for recognition.
In particular, if the modified learning rule is assumed, it is
not hard to see that the "noise" contribution to the content
echo from traces other than the desired target will not be
affected by the storage strength of those other items. Thus no
list-strength effect will be predicted for cued-recall, a problem
to the degree that a small positive effect was observed in the
data.

A larger potential problem for MINERVA 2 lies in the para-
digm of free recall. If it is assumed that free recall is just a
concatenation of a series of cued recall operations, no list-
strength effect would again be predicted. It may be necessary
for this reason to append a free recall model to MINERVA 2
mimicking the sampling assumptions in SAM: If stronger items
are sampled preferentially from a mixed list, a large list-
strength effect will be predicted (as was true for SAM).

In summary, we have not found a variant of MINERVA 2
that can handle all our findings, but certain versions in which
all repetitions are accumulated into one memory trace come
closest and deserve further exploration. One problem that
must be resolved involves the need to allow prediction of a
range of list-strength effects in recognition (including some
negative). Another problem is the similar predictions that
tend to arise for cued recall and recognition. (However, if a
mechanism is invented to allow a range of list-strength effects
in recognition, that mechanism might be able to predict small
positive effects in cued recall.) The problem is greatest for free
recall. One way to solve this problem involves producing a
free recall model that allows sampling in proportion to
strength, as in SAM. Perhaps some part of each stored vector
could be reserved for context features. When these features
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are used to probe memory, the way in which the content echo
is "cleaned up" to produce a recall on a given recall cycle
might somehow be made to produce stronger items, prefer-
entially.

Pike's Matrix Model (1984)

Each item is represented by a vector of size n of feature
values. An item (word) has features that are chosen randomly
and independently from a distribution with mean /t, and
variance a2. A pair is treated as a matrix formed from the
vector product (i.e., the matrix product of the vectors treated
as row and column matrices) of the two component items.
The matrices representing successively presented pairs on a
list are summed together, cell by cell, to form a composite
memory matrix, M. For recognition, a test matrix is formed
from the presented pair (if only one item is tested, it is
multiplied by a vector of ones to form a test matrix), and the
dot product between the test matrix and M is taken. The
result, F, is used to make an old-new decision.

To apply this model to the mixed-pure paradigm, one must
have a mechanism for strengthening items. In the case of
spaced repetitions, the most direct approach seems to involve
storing the repeated pair (matrix) again. Perhaps later pres-
entations may not be as efficacious as earlier ones, so suppose
that r repetitions produce storage in memory of a matrix
which is the original matrix multiplied by a scalar a (1 < a <
r; this may be thought of as an approximation to the closed
loop hypothesis of Murdock & Lamon, 1988). The case of
extra presentation time is most simply handled similarly, by
assuming that study time of rt produces storage of the matrix
multiplied by a.

This simple version of the model unfortunately predicts no
improvement in performance for pure lists of increasing
strengths (we shall see this shortly—a increases both the mean
and standard deviation in corresponding fashion, so d' does
not change). Two methods suggest themselves to solve this
problem: Probabilistic encoding and/or noise in the memory
matrix M due to inputs prior to the current list.

We consider first the hypothesis that the matrix M already
contains values at the start of list presentation. Suppose the
simplicity (it does no harm to do so) that j matrices have
already been accumulated in memory, with a = 1. For pure
lists, k matrices are then stored during list presentation, all
with strength a = a, or all with strength a = a2 (along with j
prior matrices with strength a - 1).

For this model Equation 2 holds because «(ms) = «(ps) and
w(mw) = «(pw) (and n2[ms] = <r2[mw], of course). The us are
equal because the mean activations by a distractor cancel all
the mean activations by a target for all matrices making up
M but for one: that one corresponding to the target. Thus the
composition of the rest of the list is irrelevant. Because
Equation 2 holds, we need to determine only the variances
for pure-strong and pure-weak lists. Some extensive algebraic
computations (help may be found in Humphreys, Pike, Bain,
& Tehan, 1989), when the pure list items are stored with
strength a, lead to

) = U + a2k)(n2a" + 2n2<xV + 2«3<rV

+ H V V ) + ( / + a'k2 + 2ajk)n4n3<r2, (17)

and

Rr = (Var(^| a = «,)/Var(f | a = <*2))'
/2, «, > a2. (18)

The variance obviously rises with k, so a list-length effect is
predicted. To see that a list-strength effect is predicted (i.e.,
that RT is greater than 1), it must merely be noted that
Equation 17 is an increasing function of a. Although it is not
hard to obtain the expression for d' for the different condi-
tions, we have not carried out a quantitative fit because the
predictions are qualitatively in error for the cases in which RT

is significantly less than 1.0
An alternative approach to strengthening items would in-

volve probabilistic encoding (as in MINERVA 2), either at the
level of the whole item (the probability of matrix storage
would rise with extra time or repetitions) or at the level of the
feature (features would be stored with a probability that rises
with extra time or that would apply again with each repeti-
tion). When correct storage does not occur for a feature, it
could be replaced by a random choice or by some constant
value. When items are given extra study time, at least one
approach can handle the absence of a list-strength effect while
still having stronger items give higher performance: Replacing
random features with a number of veridical features, the
number rising with study time, would leave the variance
unaltered, and no list-strength effect would be predicted (just
as in Hintzman's MINERVA 2 model). For the present model,
and other composite storage models, it does not seem possible
to solve the problem in an equivalent way in the spaced
repetitions case. When an item is first presented, its trace
joins the composite trace. At a later repetition, there is no
sensible way to extract from the composite the feature ele-
ments stored at previous presentations (so that some of the
random features may be switched to correct ones prior to
restorage). We have not found a way to amend the model
properly in the case of spaced repetitions (the extra storage
events cause the variance to rise in all cases). Because it seems
clear that the predictions for spaced repetitions will be in error
in all variants and because analytical derivations are cumber-
some for the probabilistic storage versions of the matrix
model, we have not carried out quantitative tests.

It is not clear to us how to amend the matrix model to
handle the list-strength findings in recognition. Assuming
positive correlations among items does not seem to help, and
letting fi and/or a vary with strength lends to bizarre compli-
cations (and still fails in the case of spaced repetitions). Even
probabilistic storage combined with normalization (which
could be considered in MINERVA 2 because items are stored
separately) does not seem to be sensible when the stored
matrix is a composite. Another potential problem involves
recall. The list-strength predictions for recall, in the simplest
variants, follow those for recognition because the underlying
mechanisms are similar: For cued-recall an item probes mem-
ory by multiplying the memory matrix; the resultant vector
is used to produce recall. Although an explicit recall model is
not yet available, Humphreys, Bain, and Pike (1989) suggest,
in effect, that the output vector be compared with each
possible candidate for recall by taking a dot product; they
suggest that recall would follow the ordering of strengths so
produced. This procedure produces strengths equivalent to
those that would be available in an ^-alternative forced-choice
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recognition test, and there is every reason to believe that the
list-strength predictions would mimic qualitatively those in
recognition (though the effect of increasing noise should be
quantitatively larger, the larger is n, so recall would produce
a larger list-strength effect than recognition).

In summary, the matrix model predicts some positive list-
strength effects in recognition in all variants we have consid-
ered and predicts list-length and list-strength effects to occur
together. A potential additional problem lies in wait: It is not
clear how the model could produce the different list-strength
results found in recognition, cued recall, and free recall.

Murdoch's TODAM Model (1982)

Each item is represented by a vector of N feature values,
each value chosen from a distribution with mean zero and
variance a2 (usually set to 1/A0- A pair is stored as the sum
of three weighted vectors: Item One's vector f, multiplied by
7,, plus Item Two's vector g, multiplied by 72, plus the
convolution of the two vectors f,*g, multiplied by 73. This
vector is then added to the previous memory vector multiplied
by a forgetting factor a:

M, = aMw 73(f,*g,)- (19)

For single item recognition (in the simplest case), the test
vector is compared with the memory vector by taking a dot
product.

The arguments now closely parallel those for Pike's matrix
model. For spaced repetitions, it seems most sensible to add
the repetition to memory, just as for any other pair (though
possibly multiplied by a scalar less than one, to allow for less
rehearsal for later presentations). It seems easiest then to let
extra study time be handled by assuming that the stored
vector is multiplied by a scalar value, r\, whose size rises with
the amount of study time. Just as for the matrix model, such
multiplication does not change performance in a pure list if
one assumes M contains only the list items (we shall see this
in Equation 20). Therefore, we might produce performance
increases by (a) assuming prior items not from the current list
to be in M already or by (b) assuming probabilistic storage of
items or features, the probability rising with study time or the
probability applying more often with extra study time (e.g.,
see Murdock & Lamon, 1988). These two possibilities are
addressed in turn.

Prior items in memory. Suppose there are prior items stored
in M, and then j weak paris (77 = ?;,) and k strong pairs (TJ =
ij2) are presented in a list, with strength manipulated via
presentation time or massed repetitions. For a recognition
test of a single distractor, the variance of the dot product (see
Murdock, 1982) is

Cp + T,,2 I C,2 + 7J22 2 C/ (20)

In Equation 20, Cp is a constant representing contributions
to the variance of items already stored in memory before list
presentation, and C, represents a serial position constant

whose value for serial position / in a list of p items is just C,
= <*""'; the first sum in Equation 20 is to be taken over the
serial positions occupied by they weak items, and the second
sum over the serial positions occupied by the k strong items.
To complete the story, note that the numerator of d' is, for
the first member of a pair, say, T/7,C, for an item studied in
position i, of strength T).

Because w(ms) = w(ps) = 1/27 iQ, and w(mw) = w(pw) =
7ji7iC, Equation 2 holds for items in comparable serial posi-
tions relative to the end of the list. Thus we need to compare
only the variances for pure lists, each of size m, of two different
strengths:

It is obvious from Equation 20 that TJ2 > v\ makes the left
term of Equation 21 larger, and a positive list-strength effect
is predicted.

The case of spaced repetitions is more complex because of
serial position effects and possible differential forgetting of
prior items in memory. For a pure list, say, let 5, be the scalar
constant governing storage on the rth presentation of the same
item (5, might be smaller for larger ;' because of such factors
as decreasing rehearsal, etc.). Let CW)J be the serial position
constant that applies to the rth presentation of item j , occur-
ring in position k. We can then derive

I «,€«,, (22)

in which the sum over j is a sum over items, and the sum
over i is a sum over repetitions of a given item. /3 represents
the fate of prior items in memory. If prior items are assumed
to contribute a constant amount to memory regardless of list
length, session length, and so forth, then /S = 1. If, near the
other extreme, all presentations cause equal forgetting of prior
memory contents, then /? = a*, where R is the total number
of presentations in a list counting repetitions separately. If j3
= a*, then adding items to a list or strengthening items on a
list has two opposing effects: a variance increase due to the
list items added or strengthened and a variance decrease due
to the lessened contribution of the prior list items undergoing
forgetting. Although this model deserves further exploration,
we will not pursue it for several reasons: First, a trade-off
resulting in no variance increase would apply both to list-
length and list-strength effects, whereas the data exhibit op-
posing effects. Second, the explanation requires enormous
recency effects, which are not seen in the data. Third, the
explanation requires enormous influences of prior lists, which
are not normally seen in the data. In the following, then, let
us suppose /3 = 1.

If we again focus on items whose first presentation and
repetitions (if any) occupy comparable serial positions relative
to list end in pure and mixed lists, then Equation 2 holds. In
this case, we must examine Equation 22 to see if extra
repetitions will cause an increase in variance. Depending on
the values of 5, and C«(W, extra repetitions may or may not
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increase the variance. However, noting that the numerator of
d' (say, for the first member of a pair) is yiI,S,CHi)J, it is not

i

hard to see that the same factors determining the magnitude
of the variance determine the magnitude of d'. Thus the
variance should increase with repetitions when d' increases
with repetitions. Because the d' performance level is indeed
observed to be higher for pure stronger lists, then the variance
ought to be higher as well, and hence a positive list-strength
effect ought to be seen.

As an aside, we have not found explanations based on serial
position effects to be of much help in explaining our findings,
in the context of any of the models under consideration (not
just TODAM). The reason is twofold: First, we did not observe
large enough study or test position effects to explain our
findings, especially because the lack of a list-strength effect
did not depend on the blocking or spacing, or placement, of
items of differing strength. Second, the models that could be
made to deal with the repetitions paradigm could not be
carried over to the presentation time paradigm, could not
usually explain different effects in recall, and usually could
not predict Rr < 1 while still predicting a main effect of
strength.

Probabilistic encoding. Consider probabilistic encoding as
a basis for strengthening items. If features are encoded with
probability L per unit of rehearsal time, say, and if nonen-
coded features are stored as zeros, then it is easy to see that a
positive list strength effect is predicted—the more features are
encoded, the larger the variance (because, as opposed to
MINERVA 2, N\s fixed regardless of the number of zeros in the
vector). In general, probabilistic storage of vectors as wholes
will also lead to increased variance with increased strength.

More interesting is the assumption that features not stored
correctly are stored instead (with probability 1 - L) as a
random sample from the original sampling distribution (n =
0, IT2). For the case of increased time, L will increase (or be
applied more often), leading to storage of more veridical
features and fewer random features. However, when a differ-
ent item is tested, the number of veridical features stored for
the item in question is irrelevant because in any event the
items in question will be orthogonal. Thus no list-strength
effect would be predicted. Of course, negative list-strength
effects would remain a problem.

The same assumption would not help in the case of spaced
repetitions, because new (partial) traces are laid down, thereby
increasing the variance (though the equation would have a
somewhat more complex form than Equation 22). It would
not make sense, once the first presentation of an item has
joined the composite memory, that its exact stored features
could be extracted upon a later presentation, altered in the
direction of greater veridicality, and then added back to
memory.

For the case of spaced repetitions, each of the above ap-
proaches (prior memory contents and probabilistic encoding)
are complicated considerably when the amount stored for a
repetition depends inversely on the current level of activation
produced by that item. Murdock and Lamon (1988) call this
a "closed loop" hypothesis. As repetitions proceed, the items
tend to equalize their activation so that the target variance
drops. How this should affect the list-strength effect is less

clear (especially since analytical derivations for this model do
not seem possible). Although we see no reason why the
addition of a closed-loop hypothesis should alter the list-
strength predictions of the model, intuitions are not easy in
this case, and further research would be desirable.

A possible final problem for TODAM involves the similar
list-strength predictions produced by the theory for recall and
recognition. As recall has been characterized thus far in TO-
DAM, it largely acts mathematically like multiple-item forced-
choice recognition of pairs. Thus the model in its present
form correctly predicts a list-strength effect in recall. However,
if new assumptions allowed the variance for pure-strong lists
and pure-weak lists to be equal, it is very likely that the same
would apply in recall, and the prediction of a positive list-
strength effect would disappear. At least for free recall, a
solution (should the problem arise) might involve a sampling
process having properties like SAM, perhaps along the lines
suggested by Metcalfe and Murdock (1981).

Metcalfe's CHARM Model (Eich, 1982, 1985)

The assumptions of CHARM largely mimic those of TODAM
for pairs. Most of the applications of CHARM have involved
recall tasks (Metcalfe Eich, 1982,1985), but we take up briefly
one approach to recognition that differs somewhat from TO-
DAM (Metcalfe Eich, 1985). Assume pairs (ahbi) are presented
for study. Single items are stored as autoassociations, so that
the memory vector, M is

M = bt) a,) (23)

ignoring forgetting factors and serial position factors. To
recognize a single item, one probes memory by correlating
the test item with M, producing a resultant vector. One
attempts to recall the resultant or to compare it with the test
probe. For simplicity, suppose the dot product between the
test probe and the resultant is used for recognition judgments.

Mathematically, this is equivalent4 to taking the dot product
of (a,*a,) with M; in other words, recognition of the autoas-
sociation is used for a decision. We will not derive the list-
strength predictions for this model, but the model seems to
exhibit the important properties of TODAM that bear on the
list-strength effect. The model can be made sensitive to
strength either by starting with background noise in M or by
probabilistic encoding. In the case of background noise,
stronger other items or repeated other items will add noise
that reduces performance, and hence a positive list-strength
effect should be predicted (unless the strength difference itself
oecomes negligibly small). Certainly, negative list-strength
effects would be a problem. Like TODAM, this model tends to
predict much larger list-strength effects for cued-recall than
for recognition because cued recall acts like n-alternative
forced-choice recognition of convolutions. Thus the observed

4 The vectors are normally truncated to a "central group of A'"
after each operation, and the formal equivalence holds in this case. It
holds also if no truncation occurs except when required by different
vector sizes.
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relation among list-strength effects in recognition, cued recall,
and free recall could be difficult to handle. Finally, list-length
and list-strength effects would tend to be tied together, so that
it might be hard to predict the absence of one and the presence
of the other. The case of probabilistic storage of features as a
means of strengthening items is somewhat different. Such a
model could be made to eliminate the positive list-strength
prediction in the case of increased presentation time, in the
manner suggested for MINERVA 2 and TODAM, but not in the
case of repetitions.

James Anderson's Models

Anderson's vector model (1973) is easily seen as a special
case of Murdock's TODAM model (minus the convolutions)
and fails to predict the data. His (1972) matrix model in
simplest form is similar to Pike's and would have similar
problems. Anderson, Silverstein, Ritz, and Jones (1977) pre-
sented a generalized version of the approach (sometimes
termed BSB) with a matrix of weights (synaptic connections)
to associate two vectors representing items, the matrix accu-
mulating the weights for the storage of many associations.
The model has not been applied to recognition in a way that
makes it a direct matter to derive predictions for the present
tasks, but it shares enough features with the models we have
already discussed (and the PDP models to be discussed later)
that it is highly likely that a positive list-strength effect would
be predicted. Basically, for a new item to reduce performance,
the items must not be orthogonal to one another, and the
new item's contribution to the memory matrix must add
"noise" when another item is tested. In such a system, another
presentation of the item, or a longer presentation, should add
additional noise. The details of such arguments must await
specific implementations of the theory for our paradigms.

Glanzer and Bowles' Marking Theory (1976)

The marking theory (also as elucidated in Bowles & Glan-
zer, 1983), assumes items to be represented by a collection of
S features. At study a subset s of the S features are sampled
randomly and marked as "old." Different items have features
that are shared, so "indirect" marking will occur for some
features of items that were not presented on that trial, includ-
ing distractors that are never presented at all. At test, a sample
of features is again taken, as is the number of marked features
used to make a decision.

Bowles and Glanzer show that adding items to a list reduces
the mean difference between target and distractor tests and
also increases the variance because of the extra indirect mark-
ing of features that occurs. Thus in contrast to the other
models we have discussed, the numerator of d', as well as the
denominator, is affected by list length and list-strength varia-
tions. However, this just makes matters worse because both
factors push performance in the same direction: Marking
extra features (due, say, to extra presentation time, or extra
presentations) reduces performance for two reasons: a reduced
difference between targets and distractors and an increased
variance.

"Connectionist" and "Neural Net"Models

There are an enormous and rapidly increasing number of
composite, parallel models in this class. Very few of these
have been developed as memory models and applied to
standard memory phenomena, so it will not be possible to
test well worked-out samples. Ratcliff (in press) has extended
a few simple models in this class to memory paradigms and
data and has shown that they have a number of severe
problems in areas other than the list-strength effect. We think
that the list-strength findings impose important additional
constraints on the development of such models. A typical
model in the class shall be described and qualitative arguments
shall be given why such models would predict positive list-
strength effects. The arguments will be bolstered by a partic-
ular instantiation also described in Ratcliff (in press).

The models to be discussed are feedforward, multilayer,
network models, with learning due to back propagation (e.g.,
Rumelhart, Hinton, & Williams, 1986). The particular model
to be applied to recognition is the "encoder network" of
Ackley, Hinton, and Sejnowski (1985). This system consists
of three layers of nodes: an input layer oiN feature nodes, a
"hidden" layer of fewer than N nodes, and an output layer of
Anodes. An item is input as a vector of feature values, Q, on
the input nodes. Each input node, j , is connected to each
hidden node, /, by a weight, Wu. Input to a given node, i, in
the hidden layer is given by

net, = (24)

The output from hidden node, i, is then given by transforming
the net, value from a range of -oo to +°o to a range of 0 to 1:

= 1/(1 + exp(-net,)). (25)

The weights between the hidden and output nodes are then
combined with these 0, values according to Equation 24, and
the results then transformed according to Equation 25, pro-
ducing the final output activations of the system.

The system is then trained, by adjusting the weights suita-
bly, to tend to reproduce its inputs as its output activations.
Then when a test item is presented, the outputs may be
compared with the inputs, say, by taking a dot product, and
the value is used to generate a recognition decision. The
weight adjustments occur by the method of back propagation.
When an item traverses the system, the discrepancy between
the actual and desired output at node / is given by (Rumelhart
etal., 1986):

8,• = (t, - O,)O,(\ - O , ) , (26)

where U is the desired output. The error, &,, is used to adjust
the weights between the hidden and output layers by

AW0= nbjOj, (27)

where y is a learning rate parameter. Once the weights between
the output and hidden layers are modified, another error
signal is computed at the hidden nodes by

- Od Z
k

(28)
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Then the change in weights from the input to hidden nodes
is given by using Equation 27 with the 5, from Equation 28.

Each time an item is studied, and/or rehearsed, a complete
cycle like that described above takes place. When an item is
tested for recognition, it is input to the system, and the output
activation vector is obtained. The dot product of the output
and input vectors is used to generate an old-new decision.
We shall present some simulation results from this system
shortly, but first it will be helpful to discuss some general
characteristics that illustrate likely difficulties that will beset
not only this system but others like it.

One may characterize the current state of such an encoder
system by the values of all weights taken together, in other
words, as a point in a multidimensional "weight space."
Changes in weights can be thought of as a movement of this
point through weight space. When a new item is presented
for the first time, the current state moves along a trajectory
in weight space, so that (at least on the average), the new state
is closer to one that will reproduce the presented input. If the
input were orthogonal to previous inputs, the movement
would not have to harm the system's ability to reproduce
those previous inputs. However, we know that new inputs do
harm performance (e.g., the list-length effect), so it seems
reasonable to conclude that the movement "toward" a just
presented item will, on the average, be associated with a
movement "away" from the previously stored items. It is hard
to escape the conclusion that a repetition or additional study
item should move the current state even farther toward the
strengthened item and even farther from the previously stored
items (especially because the data show that we are operating
well below ceiling—the items do become strengthened by the
extra time or presentations).

The effects we have been discussing are, of course, retro-
active in nature. That is, a list-strength effect is predicted
when the items varying in strength follow the critical items in
the list. (Indeed, these models exhibit strong retroactive effects
in many areas, leading to severe difficulties, as shown by
Ratcliff, in press). The situation when the items varying in
strength precede the critical items is more complex. In some
cases, negligible effects of strength variation on the subsequent
items are predicted. It is even possible to have stronger items
facilitate performance for the following critical items; this can
happen when "momentum" is incorporated in the system.
Momentum refers to letting a given weight change be a (linear)
combination of the current change (from Equation 27) and
the preceding change of weights (from the previous training
or rehearsal cycle). In such a case, learning of initial items
well can lead to small weight changes, and hence small
carryover momentum to the critical items; the critical items
are then free to adapt efficiently. However, weak learning of
initial items can lead to large carryover momentum to the
critical items, interfering with their weight changes.

The system as described in Equations 24-28 was used to
simulate list-strength effects in the following way. There were
32 input nodes, 16 hidden nodes, and 32 output nodes. Input
vectors representing different items had 32 randomly selected
values that were 0 or 1. The weight space was initialized with
random values in the range —.3 to +.3. The value of momen-
tum was set equal to .5, and r\ was set equal to .25. It was
assumed that each studied list had 16 single items, and each

item was rehearsed ri, times when presented, and then not
again. The values of ?j, were higher for "strong" items and
were systematically varied for different list types.

The study list of 16 items was divided into three groups:
the first 6, the next 6, and the last 4. Different numbers of
rehearsals (i.e., learning cycles) were given to the items in
these three groups, as shown in Table 1; the code represents
the number of rehearsals given to the items in each group,
and the match values in the table (i.e., the data products) are
for items in the group with the slash (/) next to it.

Strong retroactive interference effects are seen in the table,
as expected. In general, this model would not be adequate on
a number of grounds; for example, d' does not vary for pure
lists of different strengths (2-2-2 vs. 4-4-4 vs. 8-8-8). Proactive
facilitation is seen due to momentum, also as expected (e.g.,

Table 1
List Strength Predictions for the Encoder Model

Old item
match

.0583

.0482

.0448

.0381

.0251

.0270

.0212

.0695

.0682

.0588

.0584

.0550

.0422

.0430

.0766

.0526

.0577

.0447

.0356

.0346

.0345

.105

.100

.0790

.0801

.0756

.0561

.0623

.0859

.0703

.0733

.0683

.0705

.0584

.0638

.128

.130

.100

.109

.116

.0805

.0915

New item
match

.00410

.00512

.00436

.00547

.00636

.00773

.00899

.00335

.00436

.00456

.00547

.00721

.00773

.00931

.00721

.00796

.00931

.0104

.0129

.0144

.0175

.00636

.00796

.00899

.0104

.0126

.0144

.0175

.0126

.0155

.0175

.0204

.0273

.0260

.0323

.0129

.0155

.0175

.0204

.0267

.0260

.0332

SD in new
match

.0294

.0330

.0332

.0338

.0410

.0493

.0482

.0309

.0332

.0344

.0338

.0350

.0493

.0450

.0350

.0382

.0450

.0439

.0459

.0658

.0595

.0410

.0382

.0482

.0439

.0367

.0658

.0556

.0367

.0411

.0556

.0537

.0561

.0863

.0827

.0459

.0411

.0595

.0537

.0496

.0863

.0806

d'
1.844
1.305
1.218
.965
.457
.391
.253

2.141
1.923
1.577
1.566
1.365
.699
.749

1.983
1.168
1.075
.781
.496
.307
.286

2.406
2.401
1.452
1.588
1.717
.634
.806

1.997
1.333
1.003
.892
.770
.375
.381

2.508
2.785
1.387
1.650
1.800
.632
.723

Group type

2/-2-2
2/-1-2
2/-2-1
21-1-2
2/-4-2
2/-2-4
2/-4-4

1-2/-1
2-2/-1
1-2/-2
2-11-2
4-2/-2
2-2/-4
4-2/-4

4/-2-2
4/-4-2
4/-2-4
4/-4-4
4/-8-4
4/-4-8
4/-8-8

2-4/-2
4-4/-2
2-4/-4
4-4/-4
8-4/-4
4-4/-8
8-4/-8

8/-4-4
8/-8-4
8/-4-8
8/-8-8
8/-16-8
8/-8-16
8/-16-16

4-8/-4
8-8/-4
4-8/-8
8-8/-8
16-8/-8
8-8/-16
16-8/16
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4-4/-4 vs. 8-4/-4). A fuller discussion of these and other effects
may be found in Ratcliff (in press). Because the model predicts
such strong serial position effects, it is not appropriate to
utilize our normal measure of list-strength effects, Rr- Rather
we shall focus upon items of a given strength in a given set of
serial positions and shall consider the effects of variations in
the strengths of items in other serial positions. The list types
in each block in the table may be compared in this fashion,
and they are ordered from top to bottom in each block from
minimum to maximum strength of other items. Blocks 1,3,
and 5 illustrate retroactive effects, and uniformly demonstrate
strong list-strength effects: Stronger other items reduce per-
formance. Blocks, 2, 4, and 6 illustrate proactive effects and
are less clear. Positive list-strength effects are generally seen,
but a number of reversals occur especially in Block 6, where
the items become so strong that differential momentum ef-
fects are seen. Because momentum can be thought of as a
kind of transfer of processing effort from later items in a list
to earlier weaker items, such reversals are not surprising.

All in all, these simulation results provide strong verifica-
tion of the general line of reasoning discussed earlier, and
they demonstrate the difficulty encountered in attempting to
make such models account for our list-strength results. Al-
though the simulation results speak directly only to this
particular model instantiation, we believe that list-strength
findings may be difficult to handle in the context of many
models in this class.

Assessment of Models

It is clear that none of the current models in their prototyp-
ical form can handle the findings laid out in Ratcliff et al.
(1990) concerning the list-strength effect. The problem may
be summed up as follows. For the SAM, MINERVA 2, TODAM,
MATRIX, and CHARM models a positive list-strength effect is
predicted for recognition because the variance of activation
caused by a test item is higher when other items (than that
being tested) are stronger. The other models (e.g., the network
theories, the marking theory, the BSB theory) fail partly for
the same reason, but also because the mean activation differ-
ence between targets and distractors is affected by the strength
of other items.

As a step toward solving the problem, we looked for ways
to make the activation variances approximately equal when
other list items vary in strength. No way to do so suggested
itself when strength was manipulated by spaced repetitions
for any of the composite models (though for some of these
models, solutions could be found when strength was varied
by presentation time manipulations). In the case of SAM and
MINERVA 2 (which assumed separate storage of traces), it was
assumed that repetitions were accumulated into a single mem-
ory trace, thereby making the repetitions condition equivalent
to the presentation time condition. For these two models,
several methods to produce constant variance were consid-
ered. The solutions discussed for MINERVA 2 left several prob-
lems unresolved: First, recall and recognition tended to give
rise to equivalent list-strength predictions, and second, no
flexibility in the list-strength predictions for recognition was
available (so that zero or negative list-strength effects could
both be predicted).

The preferred solution within the SAM framework seemed
to resolve most of the problems. It was assumed that strength-
ening of an item produces two effects: (a) The activation of
that item's trace by the context cue increases as the strength
increases; (b) The activation of that item's trace by an extra-
neous different, test item decreases as the strength increases.
The latter is a differentiation assumption. These two factors
counteract each other, so that the mean and variance of
activation of a trace by an extraneous test item are approxi-
mately constant as strength of that trace is varied. However,
the degree of trade-off between the two factors will be deter-
mined by the exact shape of the relevant strength functions,
the two levels of strength involved in the study, and the
relative weights given to the context and item cues. Thus the
model has the flexibility to predict a range of list-strength
effects (including some negative) across different recognition
studies and also the ability to predict different list-strength
effects for recognition and cued recall within a study (if the
cue weightings at retrieval differ slightly for cued recall and
recognition). Finally, the model has no trouble predicting
large list-strength effects in free recall because according to
SAM in free recall the context cue is sometimes used alone to
probe memory. In such a case, stronger images will be pref-
erentially sampled at the expense of weaker ones, producing
a large positive list-strength effect.

It should be emphasized that our theoretical conclusions
are firm only for models and variants for which derivations
have been produced. The fact that we could not find appro-
priate variants within the context of a large number of models
does not mean that they cannot be found. In this sense, the
results in this article (and Part I) can be thought of as a
challenge to proponents of particular theories, and as a guide
to future theory development. The models to date all seem to
have been designed to predict \ist-length effects; in the future
it would be desirable to have them predict the pattern of list-
strength effects as well.

The implication of the list-strength results for theory are,
of course, predicated upon the assumption that effort redis-
tribution in mixed lists is not enhancing weak items at the
expense of strong items. Although conditions utilized in Part
I (Ratcliff et al., 1990) tended to rule out redistribution of
rehearsal or coding to nearby positions and although instruc-
tions in some studies, and conditions of incidental learning
in Experiment 7, make redistribution explanations less likely,
additional and more direct evidence concerning effort redis-
tribution would be desirable. It should be noted that redistri-
bution of effort in mixed lists, if it is to explain our findings,
must have the following effects: (a) Strength differences in
mixed lists must get smaller but remain positive; the shift in
strength must roughly cancel out the factors otherwise tending
to produce a positive list-strength effect in recognition, and
to a large degree in cued recall, while leaving large list-strength
effects predicted in free recall, (b) The mechanism underlying
redistribution must be insensitive to local effects in neighbor-
ing study positions and insensitive to instructions and condi-
tions of incidental learning.

If we rule out redistribution provisionally, then models
must predict missing or negative list-strength effects in rec-
ognition, a small positive list-strength effect in cued recall,
and a large positive list-strength effect in free recall, whether
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strength variations are produced by variations in presentation
time or by variations in numbers of massed or spaced repeti-
tions.

At the present time, the only solution we see to the puzzle
posed by such list-strength findings (if not due to redistribu-
tion) involves the following hypotheses that apply in the
context of our studies:

1. Different items are stored separately in memory (on at
least one level in the system—composite storage might be
quite possible on other levels).

2. Repetitions are accumulated into a single, separate,
memory trace (which, curiously, is a form of composite
storage), at least for the conditions of our studies.

3. Free recall operates differently than recognition, possibly
on the basis of sampling images according to their strength.

In addition, our preferred solution involves another as-
sumption, one easy to implement within the SAM framework,
that the part of the activation of an image that is induced by
a different item-cue, one not rehearsed with the item encoded
in that image, gets lower as the image is encoded more
strongly. This is a form of differentiation hypothesis.
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Appendix A

Derivation of List-Strength Predictions for the SAM Model

The first thing to note is that u(ps) = u(ms) > «(pw) = «(mw).
Why? By assumption, activation of an image is the same residual
value, d, whether the test item is new or an item from some list pair
other than the one containing the image in question (because rehearsal
is assumed to occur only between members of a study pair). Thus
every term in the sum making up Equation 4a is equal to a corre-
sponding term in Equation 4b, except for the two terms representing
items in the pair containing the test item. Thus,

u(ms) = «(ps) = I,S, C) I,t, C)

-2(I/,|I.v I,, C),

where the subscript, is, refers to a strong image or item, and a
superscript * refers to the image or item which is the other member
of the same pair. Similarly,

= w(pw) = A(lm | l,w C) A(\% | llm C)
- A(liw\lx,Q- A(l*.\h,Q.

As a consequence, Equations 2 and 3 hold for SAM, in the form given
by Equation 6 in the test.

This derivation confirms what intuition suggests: If the variance
associated with a strong image is larger than that associated with a
weak image, a list-strength effect is predicted. To go further, some
additional details are needed. First, in order to have wider applicabil-
ity for the results, the distributions of strengths about the means are
generalized from those in Equation 5. Assume that for any strength
of mean X,

P[S = y,X\ = p,; E P, = 1; E P,Y, = 1; 7- > 0. (Al)

Then,

E[S] = 2 7,*P, = X

as stipulated.

7,2P, -

so that the standard deviation rises linearly with the mean, as desired.
In the derivation we will need

Let

E[S»] = X T,"*»p/ = X" 1 7,l*P,

9« = 2 7/V

Then

E[SH = (E[S\)W6W.

The remaining derivations use the facts that

E(ZX,) = 2E(Ar
/),

(SX) = 2 Var(X,)

if Xj are independent, and

E(ILY.) = IIE(X)

if X; are independent.
We are now ready to proceed. Assume that 5(C, I) is independent

of S(lV,I). Then,

Var[A(ls I IA, Q] = Var[S(IA, \)W'S(C, l)^]

= E[\S(lx, l^'SiC, ls)"c\2]

- E2[S(lx, hr>S(C, IS)
K'C]

= E[S(lx, ls)
llv<]E[S(C, Is)

2^]

- E2[S(lx, h)w']E2[S(C, ls)
wc]

= E2»>[S(lx, I5)]9W;E
2>t/c[5(C, ls)]02IVc

(A2)

Similarly,

I,, Q] =

Using this result and substituting into Equation 6, we get Equation
7, given in the text. Because in the old version of SAM (i.e., Gillund
& Shiffrin, 1984), E[5(UIS)] = E[5(I«I»)], and assuming that
E[S(C,L)] = aa%t), E[5(C,IW)] = af(t) we have

Rr a > 1; Wc > 0.

For the case of spaced repetitions, when the repetitions are not
necessarily equal in expectation, <5, = E[5(C,I/,)] is the mean context
strength for the yth repetition for item /. Assume that repetitions are
stored separately and independently of each other (and that they are
independent of different items). Then we need to calculate the vari-
ance of the activations for the two terms in Equation 10. For an item
with r repetitions,

| lx, C)Var 2 A(\,j 11,, C) = 2

— V F2H"irCn I MF 2 w cfCfp T \lffl fl fl2 fl2 1
— 2-i *-• J_O l̂jr, lyJJC [JJ^^ . , i-ij)\\y2Wp2WQ — P ^ P f|/ J,

(from Equation A2)

fi2W\\a a al al l V X2H/c
— a L"2»IP2WC ~ vwPwc\ Z. "j *-.

Substituting in Equation 10 gives the result in Equation 12 in the
text.



194 R. SHIFFRIN, R. RATCLIFF, AND S. CLARK

Appendix B

Variants of the SAM Model Designed To Handle the List-Strength Findings

No Context Cue

Equation 9 shows that SAM does not have to predict a list-
strength effect: Setting the weight given to the context cue
equal to zero will cause Rr to be 1.0. While technically correct,
this observation is not a very good solution to the puzzle
posed by the present data. The fundamental problem is the
fact that SAM was developed and applied to many forms of
data with a substantial value for the weight given to the
context cue. In applications to date, Wc has almost always
been as large as any other cue weight, has usually been equal
to .5, and has never been set to a value lower than .33. (We
have explored the model's parameter space when Wc was set
to .5 and have shown that the model fails badly to predict our
data.) The most important reason for a high value of Wc lies
in the need to focus memory access upon images in the target
list, rather than upon the myriad other images in memory.
Putting this another way, in recognition every memory image
/ potentially contributes a mean value of dWl (the weighted,
residual, item to item strength) to the total activation, were it
not for the other term multiplicatively determining activation:
S(C,\)Wc. If Wc were zero, then no focusing on the recently
presented list would be possible. If Wc were very small, then
S(C,I) would have to be extremely small indeed, so that the
sum of terms dw'S(C,l)Wc across all images in memory other
than the test list would be negligible. That is, the context cue
would have to be strongly connected to images of items on
the recent list, but almost totally unconnected to other images
in memory. If this were so, it would be hard to explain the
existence of intrusions from recent lists, ordered in terms of
list recovery, in recall tasks (e.g., Shiffrin, 1970). It would also
be hard to explain the great difficulty that occurs when
distractors are items from previous lists (e.g., Anderson &
Bower, 1972). Also, there would be no way to predict the
occasional findings of recognition decrements when context
is changed between study and test (e.g., Bjork & Richardson-
Klavehn, 1989; Smith, 1988). In addition to these problems,
many of the applications of SAM have assumed a large value
of Wc, and a change in this assumption would require alter-
native versions of SAM to explain the findings. Finally, we
should point out that no assumptions concerning the value
of Wc could explain the significantly negative list-strength
effects that were found in some of our studies.

We therefore turn to possible variations on the basic SAM
model that might be able to handle the present findings.
Attention is restricted to variants in which a substantial weight
is given to the context cue (say, on the order of .5). The
variations involve methods by which the variance terms in
Equation 6 may be made a (approximately) constant function
of the mean activation strength. That is, a probe of memory
by a distractor cue and a context cue must produce image
activation whose variance does not increase with the strength
of storage of the image.

Constant Context Strength

Assume that context strength does not increase when an
item is studied longer or more times. That is, the presentation
of an item causes an initial increase in context strength, but
no further increase with extra time or repetitions. Reference
to Equations 7 and 9 show that RT will be 1.0 (ultimately
deriving from the fact that the variance will be a constant, as
shown in Appendix A). However, this assumption violates
the logic of the SAM model. For example, if an item is
presented and stored with some context strength and then
presented again after a spaced interval, it is hard to imagine
what mechanism would prevent any additional context
strength from being stored at the second presentation. Aside
from such conceptual difficulties, the present assumption
would alter substantially the predictions of SAM described in
Raaijmakers and Shiffrin (1980, 1981) and Gillund and Shif-
frin (1984), because all learning effects would have to be due
to the growth of interitem associations. Even ignoring such
difficulties, the assumption of constant context strengths can-
not produce significantly negative list-strength effects. Al-
though such a result might be predicted by a model variant
in which increased time or presentations produce a decrease
in context strength, such an assumption is unreasonable, and
we have not further pursued variations of this hypothesis.

Independence of Mean Strength from Variance

Assume that context strength grows but that strength is
independent of variance. The simplest version of this variant
replaces the variance assumptions incorporated in Equation
5 (or the generalization in Appendix A) with the assumption
that the variance of the activation of any image is constant
regardless of the mean level of activation. Such an assumption
would be consistent with the hypothesis that variance arises
in the retrieval process of image activation, rather than arising
from item-subject differences, from differing coding and re-
hearsal amounts and strategies, or from differences in partic-
ular cue-image relation. Because these latter sources of vari-
ance undoubtedly exist, perhaps it would be best to suggest
that the variance they contribute is negligibly small in com-
parison with the variance due to the process of image activa-
tion.

An advantage of this theory is the ease with which certain
predictions can be derived for the SAM model. If the constant
variance is denoted V for any image, then the denominator
in Equation 1 is just (NV)U2 when there are N images in the
part of memory accessed by the context cue (i.e., the recent
list). Thus d' is simply determined by a difference in mean
activation levels, and these can usually be written down by
inspection.

Another useful characteristic of this theory is the fact that
the pattern of prediction true of the original SAM theory is
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also true of the modified theory. The one exception we have
found lies in the area of context shift between study and test.
The original form of the theory predicted no effect of context
shift on recognition performance, only upon recall (see Gil-
lund & Shiffrin, 1984). The modified theory predicts context
should harm performance in recognition as well. This differ-
ence in predictions does not argue strongly for one form of
the theory over the other because the current data concerning
context shifts in recognition studies are highly variable in
outcome (e.g., see Bjork & Richardson-Klavehn, 1989; Smith,
1988).

This new variant of SAM is not without problems, however.
The old version of SAM, because it assigned variance to partic-
ular combinations of cues and images, could account natu-
rally for covariances and correlations. For example, if forced
choice recognition were utilized, the context cue would be
common to the probes of memory with each of the test items
from which the choice must be made. In the original model,
the covariance of the activations for each probe could be
calculated by taking into account the fact that each image is

activated by one cue that is the same for each probe. There is
no natural way to handle covariance in the new version of
SAM: Some sort of covariance assumptions would have to be
added to the model in ad hoc fashion (see Clark, 1988, for
one approach).

Another problem with this variant of SAM is common to all
the versions we have discussed thus far: There is no way to
explain the range of list-strength effects and the fact that some
are significantly negative. It could be argued that some bor-
rowing of rehearsal from strong items to give to weak items
could explain negative list-strength effects, even though the
theory predicts RT = 1.0. This argument is weakened by
Experiment 7, in Part I, however, in which the incidental task
that should have reduced rehearsal redistribution to a mini-
mum produced a strongly negative list-strength effect.
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