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Empirical Generality of Data From Recognition Memory
Receiver-Operating Characteristic Functions

and Implications for the Global Memory Models

Roger Ratcliff, Gail McKoon, and Michael Tindall

The experiments presented in this article examined the slope of the z-ROC (receiver-operating
characteristic) function for recognition memory. The slope was examined as a function of strength
and the variables study time, list length, word frequency, and category membership. For normal
distributions of familiarity, the slope of the z-ROC is the ratio of the new-item to old-item standard
deviations. R. Ratcliff, C.-F. Sheu, and S. D. Gronlund (1992) found that the slope was constant
within standard error as a function of strength of encoding, which is inconsistent with the
predictions of the global memory models. The results presented here extend this finding: The slope
was constant as a function of strength of encoding, list length, and the number of related items from
a category in the study list. Word frequency did affect the slope, but within a frequency class the
slope was constant as a function of strength. The implications of these data for the global memory
models, the attention likelihood model, and variants of these models are discussed.

This article presents six new experiments designed to add to
the archival database for recognition memory and to test
current models of recognition retrieval processes. Each experi-
ment tested recognition memory for words; lists of single words
were studied, and each study list was followed by a list of test
words. For each test word, subjects were asked to decide
whether it had appeared in the study list and to indicate how
confident they were of their decision. The confidence judg-
ments were used to construct a receiver-operating characteris-
tic (ROC) curve to show how discrimination of studied from
nonstudied test words changes as a function of different
criterion settings (i.e., different confidence levels). We report
the effects on ROC curves of word frequency, category
membership, study-list length, presentation rate, individual
differences among subjects, and criterion shifts. The aim is to
generalize and extend earlier empirical results and to examine
theoretical implications of the results for the global memory
models (e.g., Gillund & Shiffrin, 1984; Hintzman, 1986,1988;
Murdock, 1982; see also Ratcliff, Sheu, & Gronlund, 1992).
Each of the reported experiments provides a specific test of
one of the models as well as constraints for all of the models.

The global memory models (cf. Gillund & Shiffrin, 1984;
Hintzman, 1986,1988; Murdock, 1982) have been applied to a
number of experimental procedures, including free recall,
recognition, frequency judgments, and category judgments.
Recognition memory is a particularly good domain in which to
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compare the models because they all make predictions about
recognition performance. The models assume that a test item
presented for recognition contacts all items in memory to
determine the degree of match (familiarity) between it and
memory. The familiarity value, in turn, determines the old-
new (studied or nonstudied) judgment; the higher familiarity,
the more likely an "old" response.

z-ROC Functions

The experiments reported in Ratcliff et al. (1992) have
previously addressed two major predictions of the global
memory models. The first concerns how much variability there
is in the values of familiarity for old versus new test items. The
ratio of the standard deviations of familiarity can be obtained
from standard signal detection theory by using confidence
judgment data. The z transforms of the hit rate and false-alarm
rate for each level of confidence are plotted against each other
(zn vs. Zfa) to produce a z-ROC curve. If the underlying
distributions of familiarity values are normal, then the slope of
the z-ROC is the ratio of the new-item standard deviation to
the old-item standard deviation, ajao. The global memory
models assume normal distributions (either directly or by the
central limit theorem applied to sums of values under discrete
assumptions), so for these models, the slope of the z-ROC
provides a direct measure of the ratio of the standard devia-
tions of old- and new-item familiarity. Two measures of d' are
used in this article: d\ = (u,o - (j.n)/o-n, the standard definition,
and d\ = (u,o - y,n)/ao, which is the intercept of the z-ROC
equation, zh = (an/ao)Zfa + (|xo - |xn)/ao. Note that either can
serve as a d' measure (e.g., McNicol, 1972).

The results presented by Ratcliff et al. (1992) showed a
roughly straight-line z-ROC function with a slope of about 0.8
for both weakly encoded items and strongly encoded items.
This constant value of the slope of the z-ROC across strength
values is difficult if not impossible for the current global
memory models to fit. The search of associative memory
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(SAM) model (Gillund & Shiffrin, 1984) and the MINERVA 2
model (Hintzman, 1986, 1988) both predict that the slope
should decrease with strength, whereas the theory of distrib-
uted associative memory (TODAM, Murdock, 1982) predicts
the slope to be constant with a value near 1 regardless of
strength. Equivalently, TODAM predicts that the old- and
new-item familiarity distributions should have about the same
standard deviations for all levels of familiarity, whereas SAM
and MINERVA 2 predict that the standard deviation of
old-item familiarity should increase in relation to the standard
deviation of new-item familiarity as familiarity increases.

List-Strength Effect

The second major issue that the experiments in Ratcliff et al.
(1992) have addressed is the list-strength effect. Most of the
global memory models predict that performance on weakly
encoded items will be hurt by including strongly encoded items
with them in the study list (a mixed-strength list) as compared
with performance for the weak items when there are no strong
items in the study list (a pure list). This predicted decrement in
performance has been labeled the list-strength effect (Murnane
& Shiffrin, 1991; Ratcliff, Clark, & Shiffrin, 1990; Shiffrin,
Ratcliff, & Clark, 1990), and although it is found in free recall,
it is not found in recognition (Ratcliff et al., 1990).

The list-strength prediction for the global memory models
boils down to a prediction about the standard deviation of the
familiarity values of new items in pure lists. In a standard
list-strength design, the strength of encoding of an item is
manipulated by varying study time for the item or varying the
number of repetitions of the item. There are two list types:
pure lists with a single strength value for all of the items and
mixed lists with one strength value for some items and a
different strength value for other items. The statistic chosen to
measure the list-strength effect is the ratio of ratios (Rr) of d'
values, where Rr = ([mixed strong «f ]/[mixed weak d'])l
([pure strong rf']/[pure weak d']). This statistic is chosen
because for most of the global memory models, the ratio
reduces to a simple ratio of standard deviations (see Shiffrin et
al., 1990), as follows: In the models, mean familiarity does not
depend on the list composition, mixed or pure, so the
mean familiarity of strong items in a mixed list equals the mean
familiarity of strong items in a pure list and the
mean familiarity of weak items in a mixed list equals the mean
familiarity of weak items in a pure list. The standard deviation
of the familiarity values for new items differs between a pure
weak list and a pure strong list, but for a mixed list, the
standard deviation for new items can have only one value.
Thus the ratio of ratios reduces to Rr = (SD new pure
strong)/(SZ> new pure weak). Because most of the global
memory models predict that SD(new pure strong) > SZ>(new
mixed) > 5D(new pure weak), they predict that Rr will be
greater than 1.

Data show that there is no list-strength effect, that is, that
the ratio of ratios Rr is about 1, not greater than 1 (Murnane &
Shiffrin, 1991; Ratcliff et al., 1990; Ratcliff et al., 1992;
Yonelinas, Hockley, & Murdock, 1992; see also Shiffrin et al.,
1990 for a discussion and presentation of a variant of SAM that
does predict a ratio of ratios equal to 1). Simple artifactual

explanations of the failure to find a list-strength effect such
that the weak items in a mixed list get extra rehearsal time by
borrowing from the strong items have been ruled out (see also
Yonelinas et al., 1992).

The list-strength measure and the z-ROC slopes together
give a picture of the behavior of the standard deviations in
familiarity values for strong and weak items in pure and mixed
lists under the normal distribution assumptions of the global
memory models. The slope of the z-ROC curve provides the
ratio of new- to old-item standard deviations, and the mixed-
pure list comparison gives the ratio of the standard deviations
of new items for pure weak and pure strong encoding condi-
tions. For models other than the global memory models (e.g.,
Glanzer & Adams, 1990), predictions for the shape of the
z-ROC function and the ratio of ratios can also be generated
(see below).

Experimental Variables

The aim of the global memory models is to account for a
wide range of kinds of data from a wide range of experimental
procedures. The experiments that have examined list strength
and z-ROC functions have focused mainly on the strength
manipulation. The experiments in this article serve two main
purposes: first, to extend the database on these phenomena
and, second, to provide specific tests of models. To this end,
the experiments were designed to manipulate presentation
rate for words in the study lists, length of the study list, word
frequency, and category membership.

Rate of presentation was varied by Yonelinas et al. (1992) in
an examination of the list-strength effect. They used presenta-
tion rates varying from 50 ms up to 200 ms per item. Initially,
they found a list-strength effect when the items of different
strengths (different presentation rates) were randomly or-
dered in a mixed-strength study list, but when a blocked design
was used, there was no list-strength effect. The differentiation
model proposed by Shiffrin et al. (1990) predicts a list-strength
effect at very rapid presentation rates. The experiments
presented here further examined list-strength predictions and
also included confidence judgments so as to produce z-ROC
curves as a function of rate of presentation, allowing examina-
tion of their slopes at low learning levels.

The length of the study list is a central variable in the
memory models. As length increases, performance decreases,
and the models explain this as a result of increasing variability
in the familiarity values of new test items (SAM and TODAM)
or increasing forgetting of items studied early in the study list
(TODAM). List length is also at the center of controversies
surrounding the list-strength results and the resulting modifica-
tions of models designed to account for them (see Murnane &
Shiffrin, 1991). For example, Murdock and Kahana (1993)
presented a modification of the TODAM model in which a test
item is matched not just against items from the immediately
preceding study list but also against items from many preced-
ing lists (a continuous memory assumption). This makes the
standard deviations of new-item and old-item familiarity
values almost independent of the composition of the current
list and so correctly predicts that there will be no list-strength
effect. However, as in many models, fixing one thing has the
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possibility of breaking something else, and this continuous
memory version of TOD AM is tested later.

The materials variable word frequency has traditionally
played an important role in memory research because it has
large and opposite effects on recognition and recall perfor-
mance and thus provides a benchmark against which to test
models. Recognition of low-frequency words is usually better
than recognition of high-frequency words, whereas recall of
low-frequency words is usually worse than recall of high-
frequency words (except in lists of mixed frequency; Gregg,
Montgomery, & Castano, 1980). In general, in recognition,
high-frequency new test words have a higher false-alarm rate
than low-frequency new test words, whereas high-frequency
old test words have a lower hit rate than low-frequency old test
words. This means that the familiarity values of high-frequency
test words are, in general, nearer to the decision criterion than
the familiarity values of low-frequency test words. This sym-
metrical behavior has been termed the mirror effect by Glanzer
and Adams (1985, 1990). The global memory models have
difficulty predicting this effect, but Glanzer and Adams (1990;
Glanzer, Adams, & Iverson, 1991) have proposed an alterna-
tive model, the likelihood ratio model.

To test this model, Glanzer and Adams (1990) extended the
examination of word frequency to investigate the effect of
frequency on the slopes of z-ROC curves. They found a
systematic effect of frequency; for example, high-frequency
slopes were nearer 1 than were low-frequency slopes. For the
global memory models, one possible hypothesis is that decreas-
ing word frequency affects familiarity in the same way as
increasing study time; that is, it affects degree of match, and
perhaps variability. To examine this hypothesis, the experi-
ments presented here jointly manipulated strength through
study time and word frequency to determine whether word
frequency affects z-ROC curves in the same way as strength of
encoding (the Glanzer & Adams, 1990, results and the Ratcliff
et al., 1992, results suggest that this will not be the case).

So far, two ways to manipulate the degree of match between
a test item and memory have been described: varying the
strength of encoding for the item and varying word frequency.
Another way is to vary the similarity of the test item to other
items in the study list. This can be accomplished by using sets
of words from the same semantic category (e.g., vehicles). A
study list contains several words from the same category, and
the test list contains both old and new words from the category.
The new test words from the same category as studied items
should have a higher familiarity value than other new words.
We investigated whether this manipulation of familiarity has
the same effect on z-ROC functions as other manipulations of
familiarity in Experiment 6.

In some of the experiments here, we tested single subjects
for a number of sessions to examine individual differences in
z-ROC functions. Ratcliff et al. (1992) found that the slope of
the z-ROC function was about constant as strength of the
studied items varied, constant at a value of about 0.8. For
modeling, it is important to know whether all individuals share
this same constant value. If the value of the constant slope is
different for different subjects (e.g., 0.9 for one subject and 0.6
for another), then the models must have the flexibility to cover
a range of such individual differences.

Important Hedge

If the distributions of familiarity values underlying the ROC
functions are normal, then the z-ROC function is linear and
the slope equals the ratio of the new- to old-item standard
deviation (ajao) and the intercept is a d' measure (u.o - u.n)/
CTO. Most of the analyses in this article are presented in terms of
the slope and intercept of the fit of a straight line to an
empirical z-ROC curve or in terms of the fit of the standard
normal model to the raw confidence judgment scores. The
global memory models assume the underlying familiarity
distributions to be normal, and so the slopes and intercepts of
the z-ROC functions relate directly to the means and standard
deviations of the familiarity distributions of the models.

However, other distributions can also produce roughly
linear z-ROC functions (e.g., Lockhart & Murdock, 1970), and
these distributions may not carry the same implications for the
standard deviations of old and new test item familiarity values
as the normal distributions from the global memory models.
Thus, finding that the z-ROC curves are linear does not
necessarily mean that the underlying distributions are normal.
But the results presented here in terms of slopes and inter-
cepts can still be used to test alternative models that are based
on nonnormal distributions by producing predictions from
those models for the z-ROC functions. An analogy for using
z-ROC curves to summarize data in this way is the use of a
theoretical distribution (e.g., the convolution of normal and
exponential distributions) to summarize the behavior of reac-
tion time distributions (Ratcliff, 1978; Ratcliff, 1979; Ratcliff &
Murdock, 1976), which has proved useful both empirically and
theoretically. Confidence judgment data from all of the experi-
ments and all individual subjects in Experiments 3 and 5 are
presented in the Appendix.

Experiments 1 and 2

Rate of Presentation

One of the global memory models contradicted by failures to
find a list-strength effect was TOD AM, the model proposed by
Murdock (1982). Yonelinas et al. (1992) argued that the
failure to find a list-strength effect was due to a rehearsal
strategy used by subjects during study: In a mixed list, they
borrowed rehearsal time from strong items (items presented
for longer study time) and used it for weak items (items
presented for a shorter study time). Objecting to the various
rehearsal control conditions used by Ratcliff et al. (1990),
Yonelinas et al. claimed that a better control was to present
items so fast that rehearsal would not be possible. Their initial
experiments used rates of presentation as fast as 100 ms per
word, and they did find a list-strength effect: Strong items in a
mixed list were better recognized than strong items in a pure
list, and weak items in a mixed list were more poorly recog-
nized than weak items in a pure list. The experiments used a
random presentation procedure so that study items with short
and long presentation times were randomly intermixed. We
thought this could lead to "reverse" rehearsal borrowing:
When items were whizzing by at such fast rates, subjects might
have given up on the fast items and used their time to rehearse
the slow items. Experiments 1 and 2 tested this hypothesis (a
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preliminary report was presented in Ratcliff & McKoon, 1991)
by using presentation times of 50, 100, 200, and 400 ms, and
our results were confirmed by Yonelinas et al. (1992, Experi-
ment 6).

In addition to testing the list-strength effect over a range of
presentation times, we wanted to examine the slope of the
z-ROC curve to determine when it begins to increase (as
strength is decreased) from the constant value of 0.8 found by
Ratcliff et al. (1992) to the value 1, which must be obtained
when the hit rate equals the false-alarm rate at chance
performance. To obtain ROC functions, we used a confidence
judgment procedure. Subjects were required to make a recog-
nition response on a 6-point scale with values ranging from very
sure old (6) to very sure new (1). The response probabilities in
each confidence category were used to construct the z-ROC
curve by calculating cumulative probabilities successively from
the right-hand side of the distribution and then plotting the z
transforms of the hit cumulative values versus the z transforms
of the false-alarm cumulative values (see McNicol, 1972).

Data Analysis

We used two methods to analyze z-ROC functions, each
with some weakness, but each providing a check on the other.
The first method was multiple regression. If the distributions
of familiarity values for old and new test items are normal,
then the slope and intercept of a single z-ROC curve can be
estimated with simple linear regression, fitting zh against zfa. To
generalize for the situation in which there is a different z-ROC
curve for each experimental condition (e.g., strong vs. weak
items), we used multiple regression, for which an equation was
defined to represent the effect of each independent variable on
the zh scores in terms of zfa. For a simple pure-mixed,
strong-weak list design, the equation will be

blp bAs

b5 s zfa + b6p s + b7pszt!1,

where p - 0 for a pure list, p = 1 for a mixed list, s = 0 for
strong items, and s = 1 for weak items. The variables p and 5
are called dummy variables, and they allow for possible
systematic effects of the independent variables on perfor-
mance. For example, to test for an effect of strong versus weak
on the intercept, the null hypothesis would be bA = b6 - 0 (see
Draper & Smith, 1966; Kleinbaum, Kupper, & Muller, 1988,
for a discussion of this kind of use of multiple regression). F
tests for the significance of the coefficients b\-bl can be
generated to examine the effects of the independent variables
on slopes and intercepts. The data entered are the z values for
the hit and false-alarm rates (the five pairs of z values for each
condition, derived from the cumulative confidence judgment
data). The problem with the multiple regression method is that
it is based on the assumptions that the zfa values are fixed and
that all of the variability is in the zh values. Thus, the F values
obtained are not exact.

The other method we used is a maximum likelihood solution
that assumes variability in both zh and zfa. This method uses an
approximation of the normal distribution (the logistic distribu-

tion) to fit a distribution of raw confidence scores, producing
estimates of the slope and intercept of the z-ROC, as well as
standard errors in those estimates. The algorithm for this is
called EPCROC and was presented by Ogilvie and Creelman
(1968). Although this method has the appropriate statistical
properties, it does have a practical limitation for use with the
experimental designs presented in this article. The limitation is
that the method produces estimates of the standard errors on
the slope and intercept of the ROC function for each separate
experimental condition, so comparison of the different condi-
tions requires multiple comparisons of the estimated slopes
and intercepts. Essentially the problem is like that of perform-
ing multiple t tests on one set of data without using a method
for adjusting the significance level.

To draw conclusions from the experimental results for the
ROC curves, we used a combination of the two methods. The
multiple regression method was used to test hypotheses about
the effects of the variables, and the EPCROC method was
used to obtain parameter estimates and the standard errors in
those estimates and to provide a check on the multiple
regression method. In almost all cases, the two methods gave
approximately equivalent results (e.g., within 1 standard er-
ror), thus we report the results from only one, the EPCROC
estimates. The standard errors derived from EPCROC were
consistent with the significance levels of the F tests, and the
parameter estimates from multiple regression and EPCROC
were in close agreement.

For the list-strength effect, we used an explicit F test derived
from the multiple regression model given earlier to look for a
mixed-pure by strong-weak interaction, testing the null hypoth-
esis that b6 was zero. We also used EPCROC to determine the
ratio of ratios of d' values. The ratio of ratios can be computed
from d'2, the intercepts of the z-ROC functions ([mixed strong
intercept]/[mixed weak intercept])/([pure strong intercept]/
[pure weak intercept]). The ratio of ratios can also be
computed from d\ by using the intercept divided by its
associated slope (crn/<ro; i.e., the cxo divides out of rf'2). We
report both of these ratios of ratios for completeness.

Method

Subjects and materials. Subjects were paid volunteers from the
Northwestern University undergraduate population. There were 16
subjects for Experiment 1 and 15 subjects for Experiment 2. Each
participated in one 45-min session, with each session consisting of 20
study-test lists. The materials were words from a pool of 1,650
two-syllable common English words not more than eight letters long
(an extended version of the Toronto word pool; e.g., Ratcliff &
Murdock, 1976).

Procedure. Stimuli were presented on a Goldstar computer moni-
tor with a fast P4 phosphor, and responses were collected on the
keyboard of a PC computer. There were three kinds of study lists: pure
weak lists, pure strong lists, and mixed lists. For Experiment 1, in a
pure list, each of 32 words was presented once for an equal amount of
time, 50 ms per word in a weak list or 200 ms per word in a strong list.
In a mixed list, sequential blocks of words had different study times:
the first block of 4 words at 50 ms, the next block of 12 words at 200 ms,
the next block of 12 words at 50 ms, and the last block of 4 words at 200
ms (the first and last blocks were buffer words), or the reverse ordering
of study times. For Experiment 2, the weak and strong study times
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Table 1
Slopes and Intercepts for 50-ms and 200-ms Study Times
in Experiment 1

Zfa

Figure 1. Z-transformed receiver-operating characteristic curves for
the 50-ms and 200-ms groups in Experiment 1. Curve 1 = mixed strong
condition, Curve 2 = mixed weak condition, Curve 3 = pure strong
condition, and Curve 4 = pure weak condition. The diagonal straight
lines are for comparison and have a slope of 1. fa = false alarm.

were 100 ms and 400 ms instead of 50 ms and 200 ms, respectively.
There was no interstimulus interval.

A recognition test list followed each study list. There were 64 total
test items, 32 old and 32 new presented in random order. Subjects were
instructed to respond on a 6-point scale from sure old (6), probably old
(5), maybe old (4), maybe new (improbably new (2), to sure new (1). The
keys on the keyboard used for the confidence judgments were the "x"

•1.5 1.5

Figure 2. Z-transformed receiver-operating characteristic curves for
the 100-ms and 400-ms groups in Experiment 2. Curve 1 = mixed
strong condition, Curve 2 = mixed weak condition, Curve 3 = pure
strong condition, and Curve 4 = pure weak condition. The diagonal
straight lines are for comparison and have a slope of 1. fa = false
alarm.

Condition

Mixed strong
Mixed weak
Pure strong
Pure weak

Slope

M

0.794
0.951
0.831
0.970

SD

0.022
0.025
0.026
0.028

Intercept

M

0.591
0.121
0.570
0.076

SD

0.032
0.029
0.034
0.034

through "m" keys on the bottom row of the keyboard. There was a
300-ms delay between each response and presentation of the next test
item. Subjects were instructed to try to distribute their responses over
all of the judgment categories and to avoid using just one or two.

Results and Discussion

Responses faster than 250 ms and slower than 5,000 ms were
eliminated from the analyses, as were responses to test items
from the first and last four positions in the study lists (the
buffer items) and the first position in the test list. Figures 1 and
2 show linear z-transformed ROC curves for the two experi-
ments. The estimates of the slopes and intercepts and the
standard errors in the estimates (SD) computed from EP-
CROC are shown in Tables 1 and 2.

For the items presented for 50 ms in the study list, subjects
were hardly able to discriminate whether a test item was in the
study list, as expected. The intercept of the ROC curve (a d'
measure equal to m/o-s for normal distributions) was near zero
(i.e., d' was about 0.1). Note, with d' near zero, the slope of the
ROC curve must approach 1 because there is no discrimina-
tion and the hit rate must equal the false-alarm rate. Subjects
reported that they could identify only about four or five words
per study list. This suggests that encoding produced a probabil-
ity mixture of a few weakly encoded words and many unen-
coded words. In this case, the slopes would be at 1 and d'
values at 0 for the unencoded items, and these would be mixed
with a few items with higher intercept and slope less than 1.

Subjects showed somewhat better discrimination with the
100-ms presentation rate in Experiment 2; the slopes of the
ROC curves were about 0.9, and d' was about 0.25. For the
200-ms presentation time in Experiment 1, slopes were about
0.8 to 0.85, and d' was near 0.6. For the 400-ms rate, slopes
were about 0.8, and d' was about 0.9.

For Experiment 1, the differences in slopes and intercepts
due to the different rates of presentation were significant with

Table 2
Slopes and Intercepts for 100-ms and 400-ms Study Times
in Experiment 2

Condition

Mixed strong
Mixed weak
Pure strong
Pure weak

M

0.813
0.876
0.782
0.921

Slope

SD

0.024
0.023
0.028
0.027

Intercept

M

0.795
0.250
0.974
0.259

SD

0.033
0.031
0.037
0.035
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the general linear model described earlier, F{2,12) = 20.4 and
F(2, 12) = 438.7, respectively (all significant F values have
p < .05). There was a marginal difference between pure and
mixed slopes, F(2, 12) = 2.8, p = .10, and a significant
difference between pure and mixed intercepts, F(2,12) = 16.3.
There was a significant effect of list strength (defined as an
interaction between pure vs. mixed and strong vs. weak) on the
intercept,F(l,12) = 11.8.

For Experiment 2, strength had an effect on both slope, F(2,
12) = 54.3, and intercept, F(2, 12) = 532.8, and the effect of
pure versus mixed study lists on slopes and intercepts was
marginally significant, F(2,12) = 2.5, p = .13, and F(2, 12) =
1.9, p = .19, respectively. There was a nonsignificant effect of
list strength on the intercepts, F(\, 12) = 1.5.

For both experiments, the ratio of ratios from the mixed-
pure list comparison was less than 1. When the ratios of ratios
were based on the intercepts (u,s/o-s; from Tables 1 and 2), the
values were 0.70 and 0.92, respectively, and when based on the
intercepts divided by the slopes (m/o-n), the values were 0.69
and 0.84, respectively. The reason for the differences in the
estimates of the ratios is that for very low d' values, a little
random variability leads to a large change in the ratio (e.g., a d'
difference from 0.1 to 0.2 can lead to a doubling of the ratio).

The results of Experiments 1 and 2 show that as study time
was reduced, old-new discriminability (d1) fell to near zero,
and the slope of the z-ROC approached 1. As study time
increased, the increase in d' was rather rapid, and by the time
d' had increased to 0.5, the slope had approached the
asymptotic value reported in Ratcliff et al. (1992). The ratio of
ratios remained at or below 1.0 for these two experiments,
replicating previous experiments and demonstrating no hint of
a list-strength effect (which would require a value greater than
1). The values of the ratio were extremely low for Experiment
1, reflecting numerical instability because the d' values on
which the ratios were based were near zero for the 50-ms
condition (see also Loftus, 1974).

Rapid presentation rates also provide a test of the differen-
tiation version of the SAM model proposed by Shiffrin et al.
(1990; pointed out by R. M. Shiffrin, personal communication,
January 1990). The differentiation model assumes that as
strength increases, an item becomes differentiated from other
items, and this is implemented as the residual strength of the
item to all other items being reduced. Specifically, as study
time is increased, context strength (the strength between a list
context element and a studied item) increases and residual
strength (preexperimental strength of connection between two
items) increases up to some point at which residual strength
begins to decrease as study time is increased more. The effect
of residual strength decreasing counteracts the increasing
context strength and produces the prediction that there will be
no list-strength effect (see Shiffrin et al., 1990, Figure 1). Thus,
at small values of study time, a list-strength effect should have
been obtained because the residual strength is still increasing,
but none was found. This result does not rule out the
differentiation model, but it means that for the differentiation
model to be correct, the rise of context strength must take
place over a study-time range other than the 50-400 ms used in
these experiments.

Experiment 3

List Length

The global memory models predict that increasing the
length of a study list will increase the variability of old-item
familiarity values. For example, in SAM, as list length in-
creases, the number of images in memory increases, which
leads to larger variance in both the old- and new-item
familiarity values. The other models make similar predictions:
List length increases the number of items in memory leading to
increased variance in familiarity. For all of the models, the
result of increased variance is a decrease in d'.

To examine these predictions, Experiment 3 measured the
slopes of z-ROC curves as a function of list length. Because list
length is a between-lists variable and because subjects could
easily become bored in the longer lists and not work to encode
the items, we decided to run the experiment with a group of
motivated subjects who would participate in 10 sessions each
(they were motivated by payments that were based in part on
performance). This design also provided the z-ROC slopes for
individuals to determine whether it is constant or whether it
differs for individual subjects.

Manipulation of list length provides for a test of a new
version of TOD AM proposed by Murdock and Kahana (1993)
in which it is assumed that memory is continuous across the
study lists of an experiment; memory is not reset after each
study-test list as in earlier versions of TOD AM. Because of the
continuous memory assumption, the variability in the familiar-
ity or match between a test item and memory is determined by
the contents of all of memory and so is largely independent of
the composition of the last studied list. Thus, this version of
TODAM correctly predicts that there should be no list-
strength effect. However, the continuous memory assumption
also leads to the prediction that performance on an old-test
item as a function of the lag between its study and test
positions should not vary with list length. To produce the
list-length effect, long lists have longer study to test lags on
average than short lists. We tested the prediction that serial
position functions for the same study test lags will overlay each
other by examining performance as a function of study and test
positions. (The new version of TODAM still predicts the slope
of the z-ROC function to be close to 1.)

Method

Subjects. There were 7 subjects from the Northwestern University
undergraduate population who were paid for participation in the
experiment. Five subjects completed 10 sessions preceded by 1
practice session, and 2 subjects completed 7 sessions preceded by 1
practice session.

Procedure. The materials were the same as in Experiments 1 and 2.
Study lists contained 8,16, or 32 pairs of words (i.e., 16,32, or 64 single
words) presented at a rate of 1 s or 3 s per pair. Only pure lists were
used in this experiment, so all pairs in a list were studied at the same
rate. List length (long, medium, or short) was cued before study. Test
lists consisted of 32, 64, or 128 single words with equal numbers of old
and new test items in random order. Subjects responded on the same
6-point scale as in Experiment 1, with a 300-ms pause between a
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response and the next test item. Pilot studies found that some subjects
had veiy few responses in one or another of the response categories.
To avoid this, feedback as to the number of responses per response
category was presented after each list, and subjects were instructed to
equate the number of responses per category as much as possible over
the experiment (given, for example, that short lists would have fewer
low-confidence responses than would long lists). There were 18 lists
per session, 3 lists of each of the six types.

Results and Discussion

Data analysis was carried out as in Experiments 1 and 2, and
the data from the first position in the test list were eliminated.
To examine performance as a function of list length with the
number of items intervening between study and test positions
equated, we used data only from the last 16 studied words and
Items 2-32 in the test list. Note that this means the number of
observations for old items from longer lists is smaller than the
number of observations for old items from shorter lists
because, for the longer list, the first 32 test positions include
other studied items besides the last 16 (and these other items
were discarded from the analyses).

Figure 3 shows individual subject z-ROC curves for the six
conditions. In general, they group as follows: The three
upper-left lines represent strong items (3 s study time) and the
lower three weak items (1 s study time). Within each group of

Table 3
Slopes and Intercepts for List Length (LL) in Experiment 3

Condition

LL, 16 items
Weak
Strong

LL, 32 items
Weak
Strong

LL, 64 items
Weak
Strong

M

0.769
0.770

0.755
0.814

0.792
0.969

Slope

SD

0.033
0.049

0.035
0.054

0.046
0.071

Intercept

M

1.545
2.274

1.195
1.934

0.971
1.718

SD

0.036
0.045

0.042
0.051

0.053
0.058

Note. Study and test positions are equated for Items 2-32 in the test
list and for the last 16 items studied. These values are averaged over
the data of individual subjects, and the average standard deviation is
obtained by averaging the standard deviation for each subject and
dividing by the square root of the number of subjects (to give the
standard error of the mean).

three, generally, the upper left represents results from short
lists, whereas the lower right represents results from long lists.
Table 3 shows the results from the EPCROC fits to these data,
which were based on the averages of the parameters from an
EPCROC fit to the data from each individual subject. The
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Figure 3. Z-transformed receiver-operating characteristic curves for individual subjects in Experiment 3.
The six curves for each subject represent three list lengths crossed with two values of strength (study time).
The same study and test position ranges are used for each list length. When the curves separate, the strong
are at the upper left and the weak at the lower right. The order within the group of three (upper left, lower
right) is upper left, List Length 16; middle, List Length 32, and bottom, List Length 64. The curves are
presented to show separation and linearity. The diagonal lines have a slope of 1. fa = false alarm.
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Figure 4. Slope of the z-transformed receiver-operating characteristic
(ROC) plotted against the intercept for two strength values (the three
right-hand points represent strong items, the three left-hand points
represent weak items) and three values of list length (the left three
points are weak, the right three points are strong, and within each
group list lengths are 64, 32, and 16 from left to right). The error bars
represent 1 standard error in the slope.

main result is that there is little effect of list length on the slope
of the z-ROC function. Figure 4 shows this relationship: The
slope values are plotted for the three list lengths and two levels
of strength. Apart from one point (long study time for List
Length 64), there is no effect of list length on slope, and none
of the functions decrease as a function of strength (in fact each
increases nonsignificantly).

Regression analyses showed that there was a significant
effect of study time on intercept, F(3, 18) = 29.2, but not on
slope, F(3, 18) = 0.4, and there was a significant effect of list
length, F(2, 18) = 12.1, on intercept but not on slope,
F(2,18) = 0.01, (all significantps < .05).

Because items were studied in pairs, it might be thought that
a recall mechanism could have been used in conjunction with
recognition; for example, when recognition familiarity was low,
another list member might be recalled and used to increase
confidence that the test item was old. However, response times
in these experiments (especially with multisession subjects)
were in the range 700 to 800 ms, and this seems too fast for a
multistep process to take place (see Gronlund & Ratcliff,
1989).

Figure 5 shows smoothed serial position effects (using the
4[3RSR]2H method twice; Tukey, 1977, chapters 7 and 16) for
the six conditions. The critical result for testing the new
version of TODAM is that the serial position functions do not
lie on top of each other; performance is not constant as a
function of study-to-test lag. Averaging over the same first 32
test positions for each list length (as we did in the analyses and
as shown in Figure 5), items from short lists were better
recognized than items from long lists. The version of TODAM
that assumes test items are matched not only against the

immediately preceding study list but also against all other
preceding test lists (Murdock & Kahana, 1993) is contradicted
by this finding.

This experiment shows that the list-length manipulation
(decreasing list length) appears to operate on the z-ROC
functions in exactly the same way as a strength manipulation of
study time or number of repetitions. For all of these variables,
the slope of the z-ROC appears constant across levels of
strength. In addition, the serial position functions appear to
disconfirm a strong prediction of the version of TODAM that
incorporates the continuous memory assumption.

Experiment 4

Word Frequency

Experiment 4 was designed to examine whether the slope of
the z-ROC curve depends on word frequency and how word
frequency interacts with strength. Glanzer and Adams (1990)
found that z-ROC slopes were smaller for low-frequency words
than for high-frequency words. In our experiments, there were
two levels of word frequency (high and low) and two levels of
strength (manipulated by two values of study time) in a
mixed-pure list design. A mixed-pure design was used so that
the list-strength effect could be examined separately for high-
and low-frequency words, and the strength manipulation
allowed us to determine whether the slopes of the z-ROC
functions were consistently lower for low-frequency words as a
function of strength. In Glanzer and Adams's (1990) previous
examinations of word frequency effects, there was a possible
problem: In general, high-frequency words have lower d'
values than low-frequency words, and in Glanzer and Adams's
study, some subjects had low d' values. The combination of
these two factors could have tended to make the slope for
high-frequency words higher than the slope for low-frequency

o -

20 30

Study Position

Figure 5. Smoothed serial position curves for three values of list
length (the shorter curves represent shorter lists) and two values of
strength (the lower of the two curves of equal length is the weaker list).
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words because, as d' nears 0, the slope must approach 1 (see
Experiments 1 and 2). Experiments 4 and 5 were designed to
ensure that d' values were above 0.5 for all conditions.

Method

Materials. Two pools of words were formed from the Kucera and
Francis (1967) word frequency lists. Words in the low-frequency pool
had frequencies of either 4 or 5, and words in the high-frequency pool
had frequencies between 78 and 10,601. The words varied from 4 to 10
letters in length. Words derived from other common words by adding
suffixes (e.g., -ing, -ed, or -tion) were eliminated. In addition, no
plurals or proper names were included, nor were any words that were
deemed especially memorable or idiosyncratic in relation to the rest of
the words. This resulted in a high-frequency pool of 815 words and a
low-frequency pool of 871 words.

Subjects. There were 28 subjects from the Northwestern University
introductory psychology class who received credit in the class for
participation. Each subject participated in one session, for which there
were 17 study-test lists, with the first list as a practice list.

Procedure. Study lists were composed of pairs of words to minimize
the possibility of rehearsal trading strategies (see Ratcliff et al., 1990).
In a pure list, each of 16 pairs was presented for the same amount of
time, 2 s for weak or 5 s for strong items. In a mixed list, sequential
blocks of pairs in the study list had different study times: the first 2
pairs at 2 s, the next 6 pairs at 5 s, the next 6 pairs at 2 s, and the last 2
pairs at 5 s, or the reverse ordering of presentation times. For both
pure and mixed lists, within each middle block of 6 pairs, 3 pairs for
which both words were high frequency and 3 pairs for which both
words were low frequency were placed in random positions. The first
and last 2 pairs in a list were buffer items, and one word of each buffer
pair was high frequency and one low frequency. Subjects were
instructed to learn the pairs for later cued-recall tests. In the 16 lists

-1.0 -0.5 o.o 0.5
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Figure 6. Z-transformed receiver-operating characteristic curves for
high-frequency words for the 2-s and 5-s groups in Experiment 4.
Curve 1 = mixed strong condition, Curve 2 = mixed weak condition,
Curve 3 = pure strong condition, and Curve 4 = pure weak condition.
The diagonal straight lines are for comparison and have a slope of 1.
fa = false alarm.

Zfa

Figure 7. Z-transformed receiver-operating characteristic curves for
low-frequency words for the 2-s and 5-s groups in Experiment 4. Curve
1 = mixed strong condition, Curve 2 = mixed weak condition, Curve
3 = pure strong condition, and Curve 4 = pure weak condition. The
diagonal straight lines are for comparison and have a slope of 1. fa =
false alarm.

for a session, there were four of each type: pure weak, pure strong, and
the two kinds of mixed lists.

There were 64 test items for each study list, with equal numbers of
old and new test items in random order. Responses were recorded on
the same 6-point scale used in the earlier experiments. After each
response, there was a 250-ms blank interval followed by the next test
item. For two randomly chosen study lists, the recognition test list was
followed by a cued-recall test (the left member of the study pair was
presented and the subject was required to recall the right member).
Instructions recommended that pairs be learned for cued recall, and
the practice study-test list included a cued-recall test.

Results and Discussion

Data analyses excluded responses with reaction times less
than 250 ms and greater than 5,000 ms. Figures 6 and 7 show
z-ROC curves for high- and low-frequency words, respectively.
The estimated slopes and intercepts and the standard devia-
tions in the estimates obtained from EPCROC by using the
confidence judgment data pooled over subjects are shown in
the first eight lines of Table 4. (Note that linear regression oh
the averages of z scores for individual subjects produced
essentially the same results.) Figures 6 and 7 show parallel
z-ROC functions that do not differ systematically from linear-
ity. The slopes are in the 0.7 to 0.8 range, all significantly
different from 1. The frequency manipulation significantly
affected intercept, F(4, 24) = 154.1, and marginally affected
slope, F{A, 24) = 1.8, p = .16. The study-time (strength)
manipulation significantly affected intercept, F(4, 24) = 76.8,
and marginally affected slope, F(4, 24) = 2.0, p = .13. The
difference in slopes between weak and strong items was 0.021
(weak minus strong), and the difference in slopes between
low-frequency and high-frequency items was 0.065 (high fre-
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Table 4
Slopes and Intercepts for Word Frequency and Strength
in Experiment 4

Condition

HF
Mixed strong
Mixed weak
Pure strong
Pure weak

LF
Mixed strong
Mixed weak
Pure strong
Pure weak

HFfavs. LFfa
Mixed
Pure strong
Pure weak

M

0.716
0.765
0.825
0.801

0.703
0.734
0.693
0.719

0.923
0.997
0.929

Slope

SD

0.029
0.028
0.037
0.033

0.035
0.030
0.035
0.034

0.028
0.038
0.040

Intercept

M

0.950
0.631
0.879
0.566

1.550
1.072
1.291
1.091

-0.345
-0.287
-0.357

SD

0.041
0.038
0.044
0.043

0.046
0.041
0.047
0.046

0.027
0.038
0.039

Note. High-frequency (HF) hits are scaled against high-frequency
false alarms (fa) and low-frequency (LF) hits are scaled against
low-frequency false alarms.

quency minus low frequency). The next experiment, Experi-
ment 5, shows that the difference in slope as a function of
strength does not replicate, so the marginally significant effect
is probably due to the one exceptionally low data point in this
experiment, the mixed strong, high-frequency condition (which
had a slope of 0.716).

The results of Experiment 4 show a strong mirror effect (see
Figures 6 and 7): The false-alarm rates for low-frequency
words were lower than the false-alarm rates for high-frequency
words, and the hit rates for low-frequency words were higher
than the hit rates for high-frequency words (this pattern held
for almost the whole range of confidence judgments). The
mirror effect, combined with the low-frequency and high-
frequency difference in slopes (0.065), replicates the results of
Glanzer and Adams (1990) and Glanzer et al. (1991). With
several variables in addition to frequency, they showed that, in
general, item types with higher d' values had higher hit rates
and lower false-alarm rates and also had lower ROC slopes
than item types with lower d' values. Implications of our results
for the Glanzer and Adams model are taken up in the General
Discussion.

The analyses just described compared high- and low-
frequency slopes by comparing high-frequency hits with high-
frequency false alarms and low-frequency hits with low-
frequency false alarms to produce z-ROC slopes for each. The
slope represents the ratio of the standard deviations of the
new-item familiarity distribution to the old-item familiarity
distribution (assuming normal distributions). So the analyses
just described reflect new compared with old high-frequency
distributions, and new compared with old low-frequency distri-
butions. It is also of interest to compare low-frequency new
distributions to high-frequency new distributions (see Glanzer
& Adams, 1990), which for normal distributions would provide
the ratio of the standard deviations of high-frequency new-
item distributions to low-frequency new-item distributions.
Results for these comparisons are shown in the last three rows
of Table 4. The results show that the slope is less than 1,
indicating a larger standard deviation for the low-frequency

new-item distribution, and that the intercept is less than zero.
This replicates the results presented by Glanzer and Adams
(1990), in which the slopes for various comparisons are
ordered so that the more extreme the performance, the lower
the slope of the z-ROC.

The larger standard deviation for the low-frequency distribu-
tion is plausibly explained by assuming that the familiarity of
low-frequency words is more variable for a given subject than
the familiarity of high-frequency words. A low-frequency word
like muse might be unfamiliar to one subject but quite familiar
to another, whereas most high-frequency words are uniformly
familiar across subjects. Thus, what we labeled a low-
frequency word on the basis of the Kucera and Francis (1967)
statistics might actually be high frequency for one subject and
very low frequency for another subject.

The ratios of ratios of d' values (the intercepts of the z-ROC
functions) provide a measure of the list-strength effect. Calcu-
lating the ratios of ratios from the intercepts of the z-ROC
curves produced a value of 0.969 for high-frequency words and
1.219 for low-frequency words. Computing the ratios from the
intercepts divided by the slopes (to give d' values based on an

instead of crs in the denominator, assuming normal distribu-
tions) gave values of 1.066 for high-frequency words and 1.227
for low-frequency words. The low-frequency words appeared
to show a slight list-strength effect, but it was not significant,
F(4, 24) = 0.86, and the high-frequency words showed no
list-strength effect.

Experiment 5

Word Frequency With Multisession Single-Subject Data

Because the joint behavior of strength and word frequency is
important in testing attention likelihood theory (Glanzer &
Adams, 1990), we decided to repeat Experiment 4 by collecting

Table 5
Slopes and Intercepts for Word Frequency and Strength
in Experiment 5

Condition

HF
Mixed strong
Mixed weak
Pure strong
Pure weak

LF
Mixed strong
Mixed weak
Pure strong
Pure weak

HFfavs. LFfa
Mixed
Pure strong
Pure weak

M

0.721
0.708
0.682
0.710

0.659
0.612
0.582
0.633

0.866
0.878
0.875

Slope

SD

0.021
0.016
0.020
0.018

0.024
0.017
0.023
0.021

0.020
0.017
0.018

Intercept

M

1.468
1.028
1.444
1.091

2.264
1.571
2.225
1.711

-0.501
-0.516
-0.515

SD

0.025
0.023
0.027
0.025

0.031
0.027
0.034
0.029

0.031
0.025
0.027

Note. High-frequency (HF) hits are scaled against high-frequency
false alarms (fa) and low-frequency (LF) hits are scaled against
low-frequency false alarms. These values are averaged over the data of
individual subjects, and the average standard deviation is obtained by
averaging the standard deviation for each subject and dividing by the
square root of the number of subjects (to give the standard error of the
mean).
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enough data to allow the performances of individual subjects
to be modeled. We collected data from 11 subjects who each
had from 7 to 11 sessions. This also enabled us to examine
subject differences; discussion of individual subject differences
is taken up in the General Discussion.

Method

The method was the same as in Experiment 4 with one change: The
presentation times per pair were 1.5 s for weak pairs (to produce larger
weak-strong performance differences) and 5 s for strong pairs. The 11
subjects provided a total of 97 sessions, after one practice session per
subject was eliminated.

Results and Discussion

The data were analyzed as in Experiment 4. The confidence
judgment data from individual subjects were fitted by EP-

CROC and then the slopes and intercepts for the individual
subjects were averaged to provide the results displayed in
Table 5. The z-ROC curves for each individual subject are
presented in Figures 8 and 9 and show mainly linear functions
but with large individual differences.

Analyses from the general linear model showed that word
frequency significantly affected the intercepts of the z-ROC
curves, F(4, 24) = 54.1, and marginally affected the slopes,
/r(4; 24) = 2.7, p = .06. The effect of word frequency on slope
was marginally significant in both Experiments 4 and 5, and
combining the data for the two experiments, the effect reached
significance. In Experiment 5, strength affected the intercepts,
F(4, 24) = 30.8, but not the slopes, F(4, 24) = 0.7 (all
significant ps < .05). The difference in slopes as a function of
strength was 0.002 and as a function of word frequency (high
frequency minus low frequency) was 0.109. The mirror effect

Zfa
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Figure 8. Z-transformed receiver-operating characteristic curves for high-frequency words for individual
subjects in Experiment 5. The four curves represent mixed strong, mixed weak, pure strong, and pure weak
conditions. The diagonal straight lines are for comparison and have a slope of 1. fa = false alarm.
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Figure 9. Z-transformed receiver-operating characteristic curves for low-frequency words for individual
subjects in Experiment 5. The four curves represent mixed strong, mixed weak, pure strong, and pure weak
conditions. The diagonal straight lines are for comparison and have a slope of 1. fa = false alarm.

was obtained for all of the subjects except one who had hit
rates inconsistent with a mirror effect. To compare high- and
low-frequency words, the slopes and intercepts for the z-
transformed, high- and low-frequency false-alarm rates are
presented in Table 5.

The list-strength effect was not significant^ < 1). The ratio
of ratios for high-frequency words based on the intercept (d'2)
was 1.079 and based on the intercept divided by the slope (d\)
was 1.018. For low-frequency words, the ratio of ratios based
on the intercepts was 1.108 and based on the intercepts divided
by the slopes was 0.946.

Overall, the results essentially replicate those of Experiment
4 except that the d' (intercept of thez-ROC) was much higher
for Experiment 5. This could be a result of practice effects in
conjunction with better motivated (paid) subjects.

It is interesting to note that in a session-by-session analysis,
the frequency advantage (d1) for low-frequency words in
relation to high-frequency words was maintained across the 10
sessions; that is, after 10 presentations, 1 in each session,
low-frequency words had not become equivalent in perfor-
mance to high-frequency words.

The results of Experiments 4 and 5 replicate the results
of Glanzer and Adams (1990) and extend them by showing
that the slope of the z-ROC varies as a function of word
frequency but not as a function of item strength. Thus,
low-frequency words have roughly constant z-ROC slopes as a
function of strength, and high-frequency words have a higher
slope that is constant as a function of strength. The implica-
tions of these results are presented in the General
Discussion.
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Experiment 6

Category Manipulations

Experiments 1 through 5 manipulated the degree of match
between a test item and memory by varying encoding time,
which varies the strength of an individual trace, and by varying
word frequency, which is a variable intrinsic to the item.
Another way to manipulate the degree of match between a test
item and memory is to vary the similarity of the test item to
studied items. We did this by including in the study lists
multiple words from the same semantic category. The aim of
Experiment 6 was to determine whether varying the similarity
of items within the list (compared with dissimilar new items)
has an effect on the slope of the z-ROC. The global memory
models predict the effect of similarity on the z-ROC to be the
same as the effect of the study-time manipulation, so TOD AM
would predict a slope of 1 and SAM and MINERVA 2 would
predict the slope decreasing as a function of the degree of
match.

In this experiment, subjects were presented with mixed and
pure study lists, and study time per item was varied. In each
study list, there were two sets, with four pairs of words in each
set and with all eight words of a set from the same category. At
test, new words from the two studied categories were tested
along with new words unrelated to the categories. To examine
the slope of the z-ROC as familiarity increased, we used the
responses to new unrelated test items as a single baseline
against which to scale all of the other conditions (except for the
word-pool items). The models all predict that the ordering of
conditions in terms of strength or d' is unrelated new items,
related new items, unrelated old items, and related old items.
Thus we should see the slope of the z-ROC become constant as
a function of strength and category condition once discrim-
inability exceeds about 0.5 (see Experiments 1 and 2).

Method

Materials and subjects. The 48 categories of words used in the
experiment were selected from the Battig and Montague (1969)
category norms. Proper name categories, snakes, and names of a state,
college, city, and building for religious services were excluded. The first
16 nonoverlapping single words from each category were used. An
extra pool of words was selected from the same pool as in Experiment
1. Seventeen subjects from the Northwestern University introductory
psychology pool participated for credit in a psychology course.

Procedure. Subjects were presented with 16 study-test lists (8
mixed lists and 8 pure lists). In a pure list, each of 16 pairs of words was
presented for the same amount of time, 2 s for weak or 5 s for strong. In
a mixed list, sequential blocks of pairs in a study list had different study
times: the first block of 2 pairs at 2 s, the next block of 6 pairs at 5 s, the
next block of 6 pairs at 2 s, and the last block of 2 pairs at 5 s (the first
and last blocks were buffers), or the reverse ordering of presentation
times. The category structure of a study list was as follows: In each list,
4 pairs of words from each of two categories were presented. Words
from these two categories are referred to as the category condition.
Three of the pairs from a category were placed in one of the middle
blocks (the first three positions or the last three), and 1 of the pairs was
placed in a buffer block. Three of the pairs from the other category
were placed in the other middle block in the same way, and the 4th pair
was placed in the other buffer. There were also 4 pairs of words for
which each word was selected from a different category (i.e., the words

came from eight different categories). These were labeled the random
condition. Three of these pairs were placed in one of the middle
blocks, and 1 pair was placed in a buffer block. Finally, eight words
from the extra word pool were used to make up the remaining pairs in
the study list, and this was termed the word-pool condition. Across the
16 study lists of the experiment, the different types of pairs (category,
random, and from the extra word pool) appeared equally often at each
serial position in the middle blocks for each mixed-pure study-time
condition (using a Latin square design). When a category was used for
the category condition, no words from that category were used in any
other study or test list in the experiment.

A test list was made up of the 32 studied items, plus 8 new items
from one of the categories that was used to make up 4 study pairs, 8
new items from the other category that was used to make up 4 study
pairs, 8 new items from categories for which no item appeared in the
study list, and 8 new items from the extra word pool. These test items
appeared in random order. Note that the 16 categories that were not
used to make up word pairs for the category condition were reused
across the 16 study-test lists, but individual items from those categories
were not repeated. The experimental lists were preceded by 2 practice
lists.

Subjects were instructed to study each pair of words for a cued-
recall test. Three such tests were given, one each after the 2nd, 6th,
and 10th lists. After each study list, subjects performed the same
confidence judgment recognition memory test as in the preceding
experiments.

Results

Z-ROC curves were constructed for responses from the
category, random, and extra word-pool items as a function of
mixed and pure lists and weak and strong study conditions, and
fits are shown in Table 6. The category hits were scaled against
the random false alarms, the random hits were scaled against
random false alarms, and the false alarms for new test items
from the studied categories were scaled against the false
alarms for the random new items. (The word-pool hits were
scaled against the word-pool false alarms because they are
different words from the category members in the other
conditions.) These comparisons represent two manipulations
of degree of familiarity: study time and whether a test item
matches other studied items from the same category. The
z-ROC functions are shown in Figure 10.

For old-test items, the statistical analyses were carried out
only on the category responses and the random responses as
these were the main focus of the experiment. Strength (study
time) had a significant effect on intercept, F(4, 24) = 9.7, and
no effect on slope, F(4, 24) = 0.54. The pure-mixed list
variable had no significant effect. Item type (category vs.
random) had a significant effect on intercept, F(4, 24) = 9.7,
and a marginal effect on slope, F(4,24) = 2.6, p = .059. There
was a significant list-strength effect, F(2, 24) = 3.8, but we
assume this is spurious because there was no list-strength
effect when the computation was based on the slope divided by
the intercept (all significant/re < .05).

The ratio of ratios for the list-strength effect was computed
for three comparisons. For the category items, the ratio of
ratios based on the intercept (d'2) was 1.030 and based on the
intercept divided by the slope (d\) was 1.255. For the random
items, the ratio of ratios based on the intercept (d'2 ) was 1.270
and based on the intercept divided by the slope (d\) was 0.921.
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Table 6
Slopes and Intercepts for Experiment 6: Match to Category
Items and Strength

Condition

Category
Mixed strong
Mixed weak
Pure strong
Pure weak

Random
Mixed strong
Mixed weak
Pure strong
Pure weak

Word pool
Mixed strong
Mixed weak
Pure strong
Pure weak

Category false alarms
Mixed strong
Mixed weak
Pure strong
Pure weak

M

0.529
0.656
0.615
0.625

0.576
0.416
0.520
0.518

0.495
0.565
0.477
0.604

0.709
0.777
0.702
0.694

Slope

SD

0.059
0.064
0.066
0.062

0.079
0.048
0.067
0.060

0.058
0.058
0.055
0.061

0.053
0.054
0.054
0.051

Intercept

M

2.507
2.186
2.424
2.167

2.568
1.676
2.246
1.873

1.962
1.600
1.944
1.521

0.233
0.248
0.176
0.325

SD

0.095
0.085
0.092
0.085

0.125
0.104
0.115
0.105

0.107
0.095
0.107
0.093

0.062
0.061
0.064
0.061

Note. Category items are items studied along with other items from
the same category. Random items are items from the categories but
there is no other list item from that category. Category and random
hits are scaled against random false alarms. Word-pool hits are scaled
against word-pool false alarms. Category false alarms are scaled
against random false alarms.

for which there were eight other members of the category, the
variability in familiarity values was greater than for category
new items for which there was no other member of the
category.

For the word-pool items, slope decreased as strength of the
old items increased. This was the only effect of strength on
slope in all of the experiments, and we assume it is spurious.
Only one of the effects was significant (the pure weak to pure
strong comparison). The average slope was much lower in
Experiment 6 than in the earlier experiments. However, the
range of values certainly fall within the range of individual
differences (see the General Discussion section for a review of
individual differences), and so the difference was probably the
result of the particular group of subjects in this experiment.

These results show that manipulating strength by using study
time and including similar items in the study list had remark-
ably similar effects. The slope of the z-ROC was constant as a
function of strength but was marginally affected by the category-
random manipulation (whether there were other similar items
in the study list). A similar result was found for the category
versus random false alarms, a slope different from 1. This
means that (under the assumption of normal distributions) the
effect of other items from the same category on the list as the
test item increased the standard deviation in the match value
for both old items and new items, which is a prediction of the
global memory models. However, as noted by Ratcliff et al.
(1992), the models did not predict the behavior of the slope of
the z-ROC as a function of strength manipulated by study time.

For the word-pool items, the ratio of ratios based on the
intercept (a"2) was 0.959 and based on the intercept divided by
the slope (d\) was 0.864. These data were somewhat noisier
than the data from the other experiments, but there were no
systematic trends in the ratios of ratios.

The category false alarms scaled against the random false
alarms present a minor puzzle. The EPCROC fits shown in
Table 6 deviated systematically from the linear regression
slopes (which were 0.84,0.88,0.78, and 0.83 as opposed to the
EPCROC slopes 0.70, 0.69, 0.71, and 0.78; see Table 6). The
reason for this is differential weighting as a function of number
of observations in the two methods. For the false alarm-false
alarm comparison, there were few high-confidence old re-
sponses, which means that EPCROC will not weight this
category much compared with the high-confidence new cat-
egory that had over half of the responses. The linear regression
analysis on the other hand weights all categories equally. For
the old-new comparisons, this is not a problem because when
there are small numbers of observations in one category for
false alarms, say, there are large numbers in that category for
hits leading to roughly equal weighting for both methods. The
values of the intercept (a") were close to zero, but the slope
was not close to 1 (cf. Experiments 1 and 2 in which low a"
resulted in slopes near 1).

The category false alarm versus the random false alarm
comparison provides an important result for modeling. The
finding that the slopes were less than 1 suggests that unlike the
case of repetitions of a single item, presentations of related
items increase the variance of the familiarity distributions
(assuming normal distributions): For the category new items

Nonlinear z-ROC Functions

Inspection of Figures 3, 8, and 9 shows that some subjects
have systematically curved z-ROC functions, several convex
and a few concave. There are two possible reasons for this. The
first is that the underlying distributions are not normal and do
not mimic normal distributions. Investigation of this possibility
would require the consideration of alternative distributions in
the context of some larger model. The second possibility is that
the curving is artifactual, caused, for example, by some
proportion of trials for which responding was random or
systematically different from other trials (e.g., changing deci-
sion confidence cutoffs systematically).

Contaminations like these raise complicated issues that will
require considerable further research. The aim here is to alert
readers to the possibility of mixtures and contaminations and
to point out what these effects might look like. It is easy to
demonstrate that contamination of the signal or noise distribu-
tions or both by a small proportion of data from trials on which
decision criteria shift leads to convex z-ROC functions. Two
examples of such contamination were examined with simula-
tions. Both examples assumed normal distributions of signal
(old-item familiarity) and noise (new-item familiarity; with the
noise distribution M = 0 and SD = 0.8, and the signal distribu-
tion M = 2.0 and SD = 1.0). These distributions produce a
z-ROC line zh = 0.8zfa + 2.0 (i.e., slope 0.8 and intercept 2.0).
Confidence judgment criterion values were set at -0.9,0.6,1.3,
1.8, and 2.9, and from the cumulative distributions, the
proportion of counts in each confidence category was deter-
mined for each of the ranges above the highest criterion, below
the lowest criterion, and between the criteria. To mimic what
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Category Items
Category F/A

Random Items Word Pool Items

0.0

Figure 10. Z-transformed receiver-operating characteristic curves for Experiment 6 for the following
comparisons: category hits (old items from a studied category) versus random (items from other
nonstudied categories) false alarms (fa), random hits (studied items from a category with no other
category members in the list) against random false alarms, category false alarms (words from a studied
category but not studied in the list) versus random false alarms, and word-pool hits versus word-pool false
alarms. Curve 1 = pure strong condition, Curve 2 = pure weak condition, Curve 3 = mixed strong
condition, and Curve 4 = mixed weak condition. The diagonal straight lines are for comparison and have a
slope of 1.

would happen when a subject varied some of these criteria for
some proportion of test items, contaminated distributions
were obtained by changing the two extreme criteria, moving
-0.9 to 0 and 2.9 to 2.0. Then 95% of the proportion of counts
for the uncontaminated distribution was added to 5% of the
counts for the contaminated distribution, leading to a simu-
lated distribution of counts in the confidence categories. Then
the counts were transformed back to a distribution function.
For the z-ROC curve obtained from these contaminated
distributions, the slope was affected little in relation to the
uncontaminated distribution, 0.816, but the intercept was

reduced by about 25% to 1.576. The z-ROC and the linear fit
are shown in the top panel of Figure 11 and show an almost
linear function.

The second simulation used the same distributions as the
first and the same criteria, but contamination was due to
spurious data introduced into all of the confidence judgment
categories. The spurious data came from a uniform distribu-
tion of counts in the confidence judgment categories, and 5%
of the counts from this contaminated distribution was added to
95% of the counts for an uncontaminated distribution. The
slope of the z-ROC curve was 0.847 and the intercept was
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ZHlts

ZFA

ZFA

Figure 11. Plots of z-transformed receiver-operating characteristic
functions: for top panei, altering the two extreme confidence judgment
criteria for 5% of the observations; for bottom panel, adding in 5%
uniform noise (i.e., equal numbers of observations in each confidence
category). The diagonal straight lines are for comparison and have a
slope of 1. FA = false alarm.

1.289, so that the intercept was changed a lot, but again the
slope was affected by less than 10%. In contrast to the first
simulation, this z-ROC function is convex and looks like
the convex data shown for some of the subjects in Figures 3, 8,
and 9.

These examples are quite simple, but they make the impor-
tant point that variability in criterion settings and noise in the
data can have large effects, including producing nonlinear
z-ROC functions (note the examples do not deal with convex-
ity, which might have a similar explanation). It might be
thought that a nonlinear z-ROC is a signature of nonnormal
distributions, but Figure 11 shows that it might also be the
result of noise added to normal distributions, and that the first
investigation of nonlinear z-ROC functions should be to see
whether noise could be contaminating the data. Although this
is only a nonsystematic initial attempt to look at the problems
of averaging and contamination by random data in the z-ROC
analysis, it is clear that nonlinearity in the shape of the z-ROC
does not necessarily mean nonnormal distributions (or distribu-
tions that mimic the normal).

General Discussion

To summarize the empirical results, we begin by listing the
resuJts that replicate the findings of Ratdiff et al. (1992). The
most basic result is that the z-ROC curves appear to be linear,

consistent with the assumption of the global memory models
that the distributions of familiarity values for old and new test
items are normal. Given linearity, the z-ROC curves can be
used to test predictions of the global models.

The second major result contradicts predictions of the
global memory models: the slopes of the z-ROC curves average
about 0.8, independent of the strength of encoding of studied
test items. For the global memory models, the slope is the ratio
of the standard deviation of new test item familiarity to the
standard deviation of old test item familiarity, and the models
predict that this ratio should be about 1 (Murdock, 1982) or
that it should decrease as a function of strength (Gillund &
Shiffrin, 1984; Hintzman, 1986). Ratcliff et al. (1992) consid-
ered the possibility that the constant slope resulted from an
averaging artifact: If studied items of different strengths are
averaged together (e.g., from different study and test posi-
tions), the distribution of familiarity for old items becomes
wider and the slope of the z-ROC must decrease below 1. They
rejected this possibility empirically by performing analyses in
which the data were broken down by study and test position to
show that there were no significant differences for weaker
items (early study and late test) compared with stronger items
(late study and early test). Theoretically, this artifact can be
ruled out because the difference in strength among studied
items required to produce a 0.8 slope was too large to be
plausible. For the experiments reported here, we again consid-
ered the averaging artifact, and again, analyses based on study
and test position showed no systematic differences.

The third result is that the standard deviation for the
new-item familiarity value is about the same whether the new
items are tested following a pure weak or pure strong encoding
list or a mixed list. There is no significant list-strength effect
(the ratios of ratios, Rr, were always about 1), in contradiction
to the models' predictions (outlined in the introduction).

Five out of the six experiments contained a list-strength
manipulation, and Table 7 shows a summary of the ratios of
ratios for each experiment and condition. The overall result is
that the average ratio of ratios was 1.03 when calculated from
the intercept (d'2) of the z-ROC and 0.98 when calculated from
the intercept divided by the slope (d\). This result extends yet
further the generality of the finding of no list-strength effect
(Murnane & Shiffrin, 1991; Ratcliff et al., 1990; Yonelinas et
al., 1992).

The experiments reported here add to and generalize
previous results in several ways. First, the rapid presentation
rates for study items used in Experiments 1 and 2 show how the
z-ROC function changes as d' approaches zero. With rapid
presentation rates, subjects cannot easily redistribute re-
hearsal across study items; they cannot use study time for slow
items to rehearse fast items (see Ratcliff & McKoon, 1991; also
Yonelinas et al., 1992). The results show approximately con-
stant slopes for d' values between 0.5 and 2.5. Below 0.5, the
slope quickly approaches 1 (as it must) as d' approaches 0.

In the experiments reported by Ratcliff et al. (1992), the
familiarity of a test item matched against memory was manipu-
lated only by strength of encoding; study items were presented
for either a longer time or a shorter time. The slope of the
z-ROC did not change as a function of strength, and the failure
to find a list-strength effect held constant across strength
values. In the experiments reported here, we added two more
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manipulations of familiarity—list length and similarity to other
items in the study list—and combined them with study time.
With a longer list length, the familiarity of a studied item
decreased, but the slope of the z-ROC remained constant.
With the familiarity of new test items increased by taking them
from the same semantic categories as studied items, the slope
of the z-ROC still held constant. And the list-strength effect
predicted by the global memory models was not obtained with
any of these manipulations.

The pattern of results that is translated to familiarity
distributions, assuming normal distributions, is shown in Fig-
ure 12 (copied from Ratcliff et al., 1992). The constraints on
the models provided by the data are shown in the figure. The
standard deviation of the familiarity values for new test items is
the same for mixed lists, pure strong lists, and pure weak lists,
for which strength can be manipulated by study time, number
of repetitions, list length, or similarity. The standard deviation
of familiarity values for old test items is 1.25 times greater, as
dictated by the 0.8 slope of the z-ROC curves, and it is constant
as a function of strength. This figure represents the simplest
description of the data under the assumption of normal
distributions. It could be that theoretical familiarity distribu-
tions might be only one component of several processes
determining the shapes of the distributions illustrated here.
But a more complex model of this kind has yet to be developed.

The critical issue is whether the global memory models can
accommodate the patterns shown in Figure 12. Since Ratcliff
et al. (1992), there have been two suggestions about how this
might be done. One is the differentiation version of SAM
discussed by Shiffrin et al. (1990). In this model, as study time
increases, the context strength between the studied item and
context increases, whereas the residual item strength is as-
sumed to increase up to some short encoding time and then
decrease counteracting the increase in context strength. This
makes the overall familiarity of a new test item constant as a
function of strength of old test items, and constant familiarity
gives constant standard deviation and the correct prediction
that there will be no list-strength effect. The initial increase in
residual item strength leads to a predicted list-strength effect
at short presentation durations, but we did not find this in

Table 7
Ratio of Ratios (Rr) for Experiments 1, 2, 4, 5, and 6

Mixed Ust

Experiment and condition

Exp. 1 Study Time
Exp. 2 Study Time
Exp. 4, HF
Exp. 4, LF
Exp. 5, HF
Exp. 5, LF
Exp. 6, Category
Exp. 6, Random
Exp. 6, Word pool

Average

Rr based on
intercept of
the z-ROC

0.70
0.92
0.97
1.22
1.08
1.11
1.03
1.27
0.96

1.03

Rr based on the
intercept divided by

the slope of the
z-ROC

0.69
0.84
1.07
1.23
1.02
0.95
1.26
0.92
0.86

0.98

Familiarity of\Strength

Pure Weak Ust

New
Items'

Note. Rr refers to the ratio of mixed strong to mixed weak divided by
the ratio of pure strong to pure weak. z-ROC = z-transform of the
receiver-operating characteristic; HF = high frequency; LF = low
frequency.

Familiarity or Strength

Figure 12. An illustration of the behavior of the strength distributions
as a function of mixed versus pure list and as a function of strength
differences. The new-item strength standard deviation remains con-
stant as a function of list type; the standard deviation of the old-item
distribution remains constant as a function of strength and is larger
than the standard deviation for new items. Reprinted from "Testing
Global Memory Models Using ROC Curves" by R. Ratcliff, C.-F.
Sheu, and S. D. Gronlund, 1992, Psychological Review, 99, p. 530.
Copyright 1992 by the American Psychological Association.

Experiments 1 and 2, although the rates of presentation we
used may have missed the critical region. But, as discussed in
Ratcliff et al. (1992), the model still predicts that the slope
of the z-ROC function will decrease as a function of strength
or*/'.

Murdock and Kahana (1993) proposed a new variant of
TODAM with a continuous memory assumption. According to
this assumption, the items in memory against which a test item
is matched are not only the items from the immediately
preceding study list but also all of the items from all earlier
study lists. With this assumption, TODAM predicts correctly
that there will be no effect of list strength. Shiffrin, Ratcliff,
Murnane, and Nobel (1993) criticized this model on several
grounds, including the problem that it has not been tested
against recognition memory phenomena other than the list-
strength effect and that it cannot (in any obvious way) account
for list discrimination effects (Anderson & Bower, 1972) or the
effects of repeating new test items (Ratcliff & Hockley, 1980).
In the discussion of Experiment 3, we pointed out that it
incorrectly predicts equal performance across list lengths for
test items with equivalent study-test lags. In addition, the
model cannot account for the constant 0.8 value of the z-ROC
slope; it predicts a slope near 1.

Besides accounting for the pattern of data leading to the
theoretical distributions (based on the assumption of normal
distributions) shown in Figure 12, new versions of the global
memory models will also have to allow for individual differ-
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Table 8
Slopes and Intercepts per Subject Averaged Across Conditions in
Experiment 3 (List Length) and Experiment 5 (Word Frequency)

Subject

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8
9

10
11

Slope

M SD

Intercept

M

Experiment 3, List Length
0.847
0.687
0.763
0.897
1.041
0.885
0.787

Experiment 5.
0.742
0.642
0.560
0.533
0.699
0.630
0.773
0.433
0.791
0.833
0.694

0.058
0.036
0.029
0.079
0.049
0.047
0.034

, Word
0.025
0.022
0.015
0.021
0.017
0.016
0.033
0.017
0.026
0.029
0.039

2.415
1.616
0.982
1.766
1.425
1.467
1.388

Frequency
1.550
1.336
1.348
1.672
1.406
1.587
1.692
1.441
1.409
2.038
2.122

SD

0.060
0.061
0.041
0.060
0.042
0.045
0.046

0.029
0.028
0.029
0.033
0.027
0.030
0.035
0.038
0.032
0.035
0.041

Note. Slopes and intercepts are averaged over strength and fre-
quency manipulations for word frequency and over list length and
strength for list length. The standard deviations are for the straight
line fit to the data averaged over all the mixed-pure and strong-weak
conditions for that subject.

ences in the value of the slope of the z-ROC curve. In
Experiments 3 and 5, individual subjects were tested for large
numbers of sessions, and Table 8 shows slopes and intercepts
averaged over high- and low-frequency words and all strength
values for Experiment 5, and averaged over all list lengths and
strengths for Experiment 3. The slopes vary from a low of 0.433
to a high of 1.041 (with small standard errors in the slopes), a
range that corresponds to that obtained from Murdock and
Dufty's (1972) individual subjects (reported in Ratcliff et al.,
1992). Thus the models must be capable of producing slopes of
the z-ROCs that vary for individuals between 0.5 and 1.0.

Another critical problem is presented by the mirror effect
and the effects of word frequency on recognition memory
performance. The global memory models could explain the
change in slope of the z-ROC curves as a function of word
frequency. The assumption would be that the standard devia-
tion of low-frequency words is greater than the standard
deviation of high-frequency words. This assumption seems
intuitively reasonable; high-frequency words are probably
highly familiar to all subjects, but some low-frequency words
are unfamiliar to some subjects. However, the models do have
the problem noted earlier that the old and new distributions of
familiarity are nearer to the criterion for high-frequency
compared with low-frequency words, and none of the models
have satisfactorily accounted for this result. The mirror effect
has been addressed by a different kind of model from the
global memory models, Glanzer and Adams's (1990) attention
likelihood model (see also Glanzer, Adams, Iverson & Kim,
1993).

Glanzer and Adams's (1990) Attention Likelihood Theory

The attention likelihood model was developed primarily to
account for the mirror effect in recognition memory. The
model assumes that each item in memory is represented by a
list of N features, where these features can be marked or not
marked. Before an item is encoded, some proportion of its
features (p[new]) is already marked. At encoding, some
additional (typically) small proportion is marked, for a total
proportion marked of p(old). The proportion marked at
encoding is a function of the item's type: the more attention
evoking the item (e.g., a low-frequency word in contrast to a
high-frequency word), the greater the proportion of marked
features. At retrieval, the subject examines some (again,
typically small) number n of features for a test item, and then
decides whether the number of these that are marked (x) is
likely to represent an old item or a new item. The number n
sampled at retrieval is a function of an item's type just as at
encoding. The decision rule compares a likelihood ratio
computed for a test item to a criterion (or set of criteria if a
confidence judgement procedure is used). The likelihood ratio
is the probability of the observed number of marked features
given the item is old divided by the probability of the observed
number of marked features given the item is new, that is, the
probability of x-marked features from a binomial distribution
with total number of (observed) features n and probability
parameter p(old) divided by the probability of x-marked
features from a binomial with n features and probability
parameter p(new). Therefore, to find the probability that a test
item is old, the subject has to know the values of p(old),
p(new), and n for that kind of test item. (Note that the total
number of features N, does not enter this calculation except
through p[old] and p[new].) To explain the mirror effect,
higher values of p(old) and n are assumed for low-frequency
words than for high-frequency words. But the attentional
mechanism that gives these higher values is unspecified, and
the model provides no insight into what features of the
stimulus in memory give a low-frequency word extra attention
in relation to a high-frequency word.

Glanzer and Adams (1990; see also Glanzer, et al., 1993)
attempted to show that the attention likelihood model could
account qualitatively for the behavior of the slopes of z-ROC
curves as a function of word frequency and other materials
variables (e.g., concreteness). To do this, Glanzer and Adams
assumed that the slope of a z-ROC curve was the ratio of the
standard deviations for the new- and old-item likelihood
distributions. However, this assumption is incorrect because
the relationship between slope and standard deviation ratio
only holds for normal distributions (as in the global memory
models), not for the likelihood distributions in the attention
likelihood model. If the model is correctly fit to the data, that
is, the parameter p(new) is set to produce standard deviation
ratios in the 0.6 to 0.7 range obtained in empirical data, then
the model predicts z-ROC slopes that are much larger than
those in real data (e.g., standard deviation ratios of 0.6 to 0.7
give z-ROC slopes of around 0.9). To understand this, consider
the distributions in Figure 13. To produce standard deviation
ratios in the 0.6 to 0.7 range (Glanzer & Adams, 1990), the
p(new) value must be in the range of 0.05 (for n around 60).
But when p(new) is set to 0.05, then the new (left-hand)
distribution has a truncated left tail (i.e., a high probability of
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10 15
Counts

Figure 13. Binomial distribution for the Glanzer and Adams (1990)
model. The parameters are p(new) = .05,p(old) = .107, andn = 60.

zero counts, or marked features), as shown in the figure (the
probability of zero counts, the minimum, is at 0.07). Figure 13
also shows the distribution for p(old), set at a value of 0.1
(which would produce d' values in the range of the experimen-
tal data). To obtain the ROC functions from these distribu-
tions, cumulative proportions are obtained moving from the
right-hand side of the figure, and these probabilities can then
be transformed to z scores to give z-ROC functions. To
understand the discrepancy between the ratio of standard
deviations and the slope of the z-ROC, consider the result if
the left-hand tail of the new distribution was not truncated in
Figure 13. Then, the z-ROC would be about the same as for
the truncated tail case, but the standard deviation for new-item
distribution would be much larger. The conclusion is that for
these nonnormal distributions, the slope of the z-ROC cannot
be computed from the standard deviations; instead it must be
computed directly from the ROC functions.

To predict slopes of the empirically obtained values from the
ROC functions, the attention likelihood model would have to
use extreme values of p(new) and p(old). To produce a slope
of about 0.8, the values would have to be p(new) = 0.01 and
p(old) = 0.05 with n = 50, the distributions shown in Figure 14.
The problem with these distributions is that they are quite
different from those assumed by Glanzer and Adams (1990).
In particular, of the hundreds of features for an item, the
decision mechanism would be provided with only zero, one, or
two marked features for a new item (typically) against only
zero to six marked features for an old item (typically), which is
a very small sample on which to base decisions. Any ROC

Counts

Figure 14. Binomial distribution for the Glanzer and Adams (1990)
model. The parameters are/>(new) = .01,/>(old) = .05, and n — 50.

function with parameter values near these would have only
three or four distinct points corresponding to nonzero counts
in the new-item distribution in Figure 14, which is contrary to
the data. Given these problems, it is difficult to know whether
the Glanzer and Adams model could be reworked to produce
empirically adequate fits to the z-ROC data as well as hit and
false-alarm rates for the mirror effect.

A key feature of the attention likelihood model is the
transformation embodied in the scale of the decision axis, the
transformation from an absolute strength criterion to a likeli-
hood ratio criterion. This transformation does not, by itself,
affect the shape or slope of the z-ROC curve; for example, for
two overlapping distributions with a criterion set somewhere in
the middle, stretching the scale (as likelihood theory does)
leaves the proportion of each distribution above the criterion
the same no matter how much the scale is stretched or shrunk
on the right or left (note, however, that the ratios of standard
deviations would be affected by such stretching). Thus the
slopes and shapes of the z-ROC functions are independent of
the particular decision rule adopted (likelihood or strength
criterion) and instead are determined by the distributional
assumptions.

Glanzer et al. (1993) made clear predictions about how the
study-time variable is modeled in attention likelihood theory.
A mixed-list design in which some of the items are strong and
some weak is the best design for testing the model because the
value of p(new) is fixed and common to weak and strong old
items, in contrast to pure lists in which it might change as a
function of list type. To examine predictions from attention
likelihood theory, we generated z-ROC curves for parameter
values p(new) = 0.01, n = 50, and p(old) = 0.02,0.03,0.05, and
0.07 (to represent four degrees of strength). The predicted
intercept values for the z-ROC curves were 0.614,1.051,1.701,
and 2.211, and the slope values were 0.925, 0.881, 0.825, and
0.788, so that the slope fell as the strength of the items
increased, contrary to data. Thus, under the assumption that
subjects cannot adjust criteria on the basis of strength in a
mixed-list design, the attention likelihood model fails to
account for the pattern of empirically obtained z-ROC curves
in precisely the same way as the models of Gillund and Shiffrin
(1984) and Hintzman (1986, 1988), as discussed by Ratcliff et
al. (1992).

Another problem for the attention likelihood model is that it
assumes that only the representation of the test item is
accessed at test, not the representations of other items in
memory. Experiment 6 shows that a test item does contact
other items because category and random test items are from
the same pool of category members and what differentiates the
two classes is whether other items of the same category were
presented with them in the study list. Hit rates for an old item
and false-alarm rates for a new item were higher when other
items from the same category were studied in relation to the
cases in which there were no other members of the category in
the study list.

The results reported in this article cause problems for
attention likelihood theory. But attention likelihood theory is
currently the most comprehensive mechanism available for
dealing with the mirror effect, and it is hoped that the results
presented here will provoke further development of this
model.
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Conclusion

The data presented in this article extend the experimental
results of Ratcliff et al. (1992). The slope of the z-ROC
function was affected only by type of materials (e.g., high- vs.
low-frequency words) and not by strength manipulations, such
as amount of encoding, list length, and similarity of other study
and test items and that is counter to the predictions of the
global memory models. The findings of individual differences
among subjects both in slope and shape of the z-ROC provide
additional problems for the models. The models must be able
to predict individual differences in the slope from 0.5 to 1.0,
and shape differences must be ruled out by appealing to
averaging effects as discussed earlier or by predicting or
assuming alternative distribution shapes. These data provide
empirical findings to add to the database for developing and
extending the global memory models. An important challenge
both theoretically and empirically is to understand why few
manipulations have an effect on the slope of the z-ROC
functions (within the standard errors reported here) and what
this means in the global memory models for the shapes and
behaviors of the distributions of familiarity underlying recogni-
tion memory.
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Appendix

Condition

Counts
Confidence category

- + + +

Rapid presentation times, Experiment 1
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

788
172
788
261
477
192
235
151

1585
355

1585
551
776
401
649
496

1160
345

1160
414
527
290
719
480

656
283
656
280
321
267
442
350

555
308
555
223
258
316
254
221

Rapid presentation times, Experiment 2
MS new 466 1468 1399 597 496
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 1
W, LL 16, New
W, LL 16, Old
S, LL 16, New
S, LL 16, Old
W,LL32,New
W, LL 32, Old
S,LL32,New
S.LL32, Old
W, LL 64, New
W, LL 64, Old
S, LL 64, New
S,LL64, Old

Subject 2
W, LI 16, New

W, LL 16, Old
S, LL 16, New
S, LL 16, Old
W, LL 32, New
W, LL 32, Old
S, LL 32, New
S, LL 32, Old
W, LL 64, New
W, LL 64, Old
S, LL 64, New
S, LL 64, Old

Subject 3
W, LL 16, New
W, LL 16, Old
S, LL 16, New
S, LL 16, Old
W, LL 32, New
W, LL 32, Old
S, LL 32, New
S,LL32,Old
W, LL64, New
W,LL64, Old
S, LL 64, New
S, LL 64, Old

Subject 4
W, LL 16, New
W, LL 16, Old
S, LL 16, New
S, LL 16, Old
W, LL 32, New

69
466
148
519
125
167
85

285
1468
452
683
263
629
399

314
1399
451
601
256
848
556

267
597
254
224
227
329
268

List length, Experiment 3

136
18

404
19
52
5

274
5

20
1

236
2

46
4

75
3

35
5

60
2

34
2

50
1

107
35

108
27
91
22
71
17
73
14
85
4

240
53

290
36

196

197
42
42
3

205
25

117
4

200
7

147
2

73
20
73
5

79
12
76

7
48

4
84
4

135
54

132
44

122
32

112
39

119
15

114
12

21
10
11
4

47

58
13
0
0

95
18
10
0

125
12
26
2

127
46

105
19

106
22

106
8

112
14
86

7

102
48

109
37
95
29
96
20

105
9

87
9

14
12
3
5

23

24
53
0
0

60
40
5
2

69
24
10
3

64
104
54
60
97
42
68
32
91
21
85
15

46
61
53
66
63
37
75
41
75
19
77
17

12
15
3
8

13

323
496
235
211
293
254
259

33
158

5
29
45
67
15
34
72
45
18
35

16
63
14
31
29
30
12
12
37
20
22
6

49
105
45
88
55
42
58
58
68
31
59
36

8
20
3

10
22

per Confidence Category

+ + +

299
432
299
165
184
442
156
142

345
537
345
256
151
631
159
223

13
185
15

413
4

78
10

197
2

18
10
90

3
85

5
207

4
41
4

86
5

19
5

51

24
164

19
202
24
79
24
68
36
24
30
46

27
210

15
258
28

Condition

Subject 4 (continued)
W,LL32, Old
S,LL32,New
S, LL 32, Old
W, LL 64, New
W, LL 64, Old
S, LL 64, New
S, LL 64, Old

Subject 5
W, LL 16, New
W, LL 16, Old
S, LL 16, New
S, LL 16, Old
W.LL32, New
W,LL32,Old
S, LL 32, New
S,LL32,Old
W, LL 64, New
\17 T I f^A t~\\AW, JLL. o4, U l a
S, LL 64, New
S, LL 64, Old

subject 6
W, LL 16, New
W, LL 16, Old
S, LL 16, New
S, LL 16, Old
W, LL 32, New
W, LL 32, Old
S, LL 32, New
S, LL 32, Old
W, LL 64, New
W, LL 64, Old
S, LL 64, New
S, LL 64, Old

Subject 7
W, LL 16, New
W, LL 16, Old
S, LL 16, New
S, LL 16, Old
W, LL 32, New
W, LL 32, Old
S, LL32, New
S, LL 32, Old
W,LL64, New
W.LL64, Old
S, LL 64, New
S,LL64,Old

High frequency
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Low frequency
MS new
MS old
MWnew
MWold
PS new
PS old

23
255

14
152
14

184
5

163
19

192
18

122
13

113
10
99

o
105

2

136
29

153
10

102
12

118
13

104
7

89
5

153
24

216
18
89
19

140
12
81
14
53
4

Confidence category

13
20
4

58
0

39
0

131
23

124
17

112
21

125
16

115
1A
lu

120
5

128
36

130
25

106
7

117
7

102
6

98
6

177
45

156
45

188
44

193
20

186
21

187
14

-

6
11

1
27
3

24
5

67
12
59
14
42
18
49

5
65

rJ

53
7

101
37

114
21
97
24

105
6

89
4

90
8

54
29
34
24
72
11
60
13
74
7

74
4

+

8
8

11
22
11
18
5

30
51
34
28
46
25
44
30
48
1 A
ID
52
12

36
47
20
38
48
26
32
20
55
11
42
12

27
43
11
24
29
23
25
13
33
11
39
16

Word frequency, Experiment 4

738
105
738
147
433
102
353
151

1157
72

1157
143
543
125

1026
187

1026
278
518
197
488
254

1063
154

1063
225
488
167

611
127
611
166
285
116
299
157

501
65

501
112
237
112

378
130
378
156
184
139
200
168

229
85

229
131
102
99

+ +

21
9

14
22
11
17
6

36
88
31
69
82
56
71
52
91

59
32

19
44
12
28
42
30
22
24
47
14
28
16

40
120
26
89
45
93
35
67
80
33
69
38

381
194
381
176
165
177
152
181

242
166
242
181
107
195

+ + +

77
22
95
44
31
44
56

38
269

24
316
49

108
45

116
59

62
56

43
273
38

341
69

119
57

149
77
63
90
73

15
199
21

261
10
53
18
90
21
20
22
36

273
526
273
408
163
438
119
294

218
736
218
528
99

644

(Appendix continues on next page)
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Appendix (continued)

Condition

Low frequency (continued)
PWnew
PWold

High frequency
Subject 1

MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 2
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 3
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 4
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 5
MS new
MS old
MW new
MWold
PS new
PS old
PWnew
PWold

Subject 6
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 7
MS new
MS old
MWnew
MWoJd

573
133

Counts per
Confidence category

481
196

-

251
124

+

121
117

Word frequency, Experiment 5

300 407 66 144
28

300
32

167
21

149
43

605
78

605
118
311
76

349
96

136
14

136
33
78
17
72
19

784
65

784
117
427
64

344
98

52
3

52
4

29
5

30
4

30
0

30
4

26
0

18
1

358
12

358
32

54
407

74
211

60
215
47

324
62

324
73

151
69

142
54

223
46

223
63

116
38

118
49

203
24

203
54
76
26

120
52

285
28

285
44

164
33

122
44

116
13

116
17
70
22
70
16

200
7

200
35

12
66
19
37
13
36
12

38
11
38
10
11
13
13
10

292
54

292
71

155
57

141
67

72
18
72
18
32
13
65
27

391
55

391
86

202
57

184
77

625
80

625
123
317

74
313
116

40
6

40
11

39
144
39
58
43
70
38

40
13
40
21
29
26
19
18

402
77

402
106
189
92

187
97

46
21
46
28
21
21
31
18

340
95

340
114
130
86

192
132

456
150
456
187
213
143
227
178

49
13
49
19

+ +

116
179

184
64

184
65
95
63
78
60

144
75

144
64
80
76
61
67

202
79

202
90
91
80

107
102

95
48
95
50
41
34
29
56

185
126
185
110
89

110
94

128

40
38
40
32
9

25
11
38

120
51

120
53

+ +

78
454

179
283
179
251

72
280

92
280

129
241
129
194
57

220
56

235

20
206
20

115
11

196
14

146

76
304
76

213
38

322
50

229

27
173
27

122
26

189
18
95

13
199

13
117

5
216

1
131

113
235
113
186

Confidence Category

+ Condition

Subject 7 (continued)
PS new
PS old
PWnew
PWold

Subject 8
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 9
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 10
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 11
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Low frequency
Subject 1

MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 2
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 3
MS new
MS old
MWnew

194
29

185
30

469
51

469
95

263
64

193
81

175
27

175
27
75
23
95
32

172
6

172
18

105
7

94
24

424
10

424
26

226
21

217
24

625
21

625
55

338
24

327
42

821
54

821
90

406
64

450
82

566
28

566

100
24
90
24

233
33

233
53

105
28

110
50

237
31

237
36

115
29

125
46

426
34

426
39

223
22

210
43

189
4

189
29
77
16
86
23

364
27

364
53

189
23

190
56

264
37

264
57

139
40

112
35

256
14

256

Confidence category

-

19
7

25
9

95
16
95
25
37
21
51
31

205
43

205
53

120
42
95
46

183
11

183
20

100
17
90
30

18
0

18
4
7
3

18
10

26
3

26
4
9
3

14
4

19
2

19
9
9

10
11
4

178
23

178

+

19
9

31
24

66
34
66
38
25
29
38
46

128
45

128
58
74
54
66
52

95
39
95
66
45
64
61
50

26
5

26
12
14
9

20
11

50
16
50
16
16
15
20
21

24
10
24
9

11
8
9
7

176
25

176

+ +

66
39
60
60

22
34
22
48
13
31
18
43

71
52
71
37
40
58
28
48

58
137
58

121
27

146
33

125

111
25

111
38
67
27
65
38

102
33

102
44
44
22
44
26

55
41
55
45
23
33
18
33

72
57
72

+ + +

50
228
57

189

11
144

11
101

4
163

5
61

64
126
64

125
24

130
39

112

30
121
30

115
10

127
14

108

112
280
112
227
57

260
42

230

112
380
112
308

44
392
45

329

95
336

95
269
49

323
39

316

28
328

28
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Appendix (continued)

Condition

Subject 3 (continued)
MWold
PS new
PS old
PWnew
PWold

Subject 4
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 5
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 6
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWotd

Subject 7
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

OUDJCCI o

MS new
MS old item
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 9
MS new
MS old
MWnew

68
296

18
286

46

1010
52

1010
102
518

55
486

93

390
10

390
21

215
24

203
26

153
1

153
4

122
0

73
3

569
24

569
45

313
30

299
55

550
32

550
61

286
38

229
44

236
7

236

46
131
21

108
38

125
13

125
38
47
15
72
37

432
31

432
74

190
25

207
63

260
11

260
32

133
6

122
19

190
21

190
42
96
22
85
25

208
18

208
26
96
19
95
24

308
12

308

Counts
Confidence category

•

38
80
22

101
32

24
7

24
12
25
2

19
18

279
24

279
64

134
27

129
48

602
54

602
82

276
56

333
90

14
3

14
9
3
4
8
8

53
12
53
12
20

7
32
15

164
7

164

+

59
78
41
89
51

16
12
16
13
9
5

11
19

108
57

108
75
52
50
55
84

229
108
229
135
101
100
105
136

18
4

18
15
8
8

13
25

37
19
37
29
24
19
32
32

63
23
63

+ +

66
47
52
46
82

56
32
56
44
12
34
26
43

61
89
61
99
37
80
35

104

26
57
26
46

6
34

6
44

37
34
37
36
14
25
24
45

33
34
33
52
11
26
20
55

49
47
49

per Confidence Category

+ + +

203
7

325
9

229

33
358

33
262

17
360

20
265

10
269

10
147
11

274
10

155

9
249

9
180

1
283

1
187

52
250
52

177
14

247
19

178

8
245

8
128

6
223

6
140

55
239
55

Condition

Subject 9 (continued)
MWold
PS new
PS old
PWnew
PWold

Subject 10
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Subject 11
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

16
123

10
151
16

239
4

239
18

121
8

117
9

625
14

625
43

311
13

316
34

Confidence category

21
152

18
148
23

472
12

472
24

272
16

245
25

109
5

109
9

61
7

54
17

-

31
72
17
73
23

127
6

127
10
66
9

69
18

7
0
7
1
6
1
5
2

+

27
37
30
26
20

58
20
58
47
19
43
31
40

15
6

15
4

14
3

15
13

Categorized materials, Experiment 6
Category

MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

fxallUUHl

MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

Word pool
MS new
MS old
MWnew
MWold
PS new
PS old
PWnew
PWold

494
34

450
37

532
36

450
44

309
14

281
52

315
27

296
37

268
31

265
40

279
34

239
37

245
46

285
59

198
46

224
62

123
22

135
28

116
23

126
37

140
28

141
56

120
24

150
50

118
26
97
38

119
29

115
43

63
16
61
22
57
16
60
19

59
21
78
18
66
26
63
40

61
48
82
66
70
54

100
59

23
26
26
27
22
30
23
32

33
29
21
43
43
32
40
25

+ +

62
33
49
20
51

32
166
32

139
19

146
19

157

66
14
66
22
35
17
29
23

44
66
55
93
65
86
73
96

11
37
19
41
13
34
12
43

20
40
16
36
17
51
14
34

+ + +

166
31

212
30

202

19
170

19
107

5
157
12

129

58
297
58

245
21

295
29

247

101
578

99
501

76
551

92
487

7
285

10
231

10
274

10
224

9
247

13
207

6
236

16
202

Note. Number of counts in each confidence category from sure new ( )tosureold(+ + +)by experiment. Experiments 1,2,4, and 6 have
group data (subjects ran one session each) whereas Experiments 3 and 5 have individual subject data because subjects ran in multiple sessions. The
experiments have responses with long reaction times (e.g., more than 9 s) eliminated. These data are used to construct the z-ROC (receiver
operating characteristic) functions shown in the figures in the experimental results. LL = list length; W = weak; S = strong; MS = mixed strong;
MW = mixed weak; PS = pure strong; PW = pure weak.
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