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Classification implies decision making (or response selection) of some kind. Studying the 
decision process using a traditional signal detection theory analysis is difficult for two 
reasons: (a) The model makes a strong assumption about the encoding process (normal noise), 
and (b) the two most popular decision models, optimal and distance-from-criterion models, 
can mimic each other's predictions about performance level. In this article, the authors show 
that by analyzing certain distributional properties of confidence ratings, a researcher can 
determine whether the decision process is optimal, without knowing the form of the encoding 
distributions. Empirical results are reported for three types of experiments: recognition 
memory, perceptual discrimination, and perceptual categorization. In each case, the data 
strongly favored the distance-from-criterion model over the optimal model. 

To predict behavior, a theory of perception must include 
a decision process (e.g., a mapping or a rule) that ties 
internal perceptual effects of the stimuli to observable re- 
sponses. Empirically studying the decisional elements of 
perception is difficult because virtually all of the special 
properties of a data set can, in principle, be attributed to 
either encoding or decision-making aspects of performance. 
In most quantitative models, the solution to this problem is 
to adopt a simple decision rule (e.g., the criteria setting in 
signal detection theory) and allow this rule to introduce 
additional free parameters into the model. The estimates of 
these parameters are used to isolate the contribution of the 
decision-making process, and the overall fit of the model to 
the data is the measure of its validity. The drawback of this 
approach, of course, is that the decision model must be 
tested in conjunction with the encoding model. 

For experimental domains involving classification of 
some kind (e.g., discrimination, identification, or recogni- 
tion), there are two main classes of decision models: dis- 
tance-from-criterion models and optimal models. Distance- 
from-criterion models assume that an observer divides the 
different perceptual states induced by the stimuli into non- 
overlapping subsets and associates each of these subsets 
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with a different response. Thus, the response is based d i -  
rectly on the perceptual effect of the stimulus. Optimal 
models assume that the observer is able to transform per- 
ceptual information into a likelihood statistic, which tells 
which response is most likely to be correct for a given 
perceptual state. Using this statistical information, the ob- 
server can meet any performance objective (accuracy level 
or payoffs) that does not exceed the capacity of his or her 
encoding process. In contrast, the distance-from-criterion 
rule may or may not allow the observer to maximize per- 
formance level, depending on whether or not the response 
regions the observer chooses happen to match those of the 
optimal decision rule. 

There is some empirical evidence that the low-level types 
of decision making involved in many perception experi- 
ments may be at least highly sophisticated, if not entirely 
optimal. For example, some of the early ideal observer 
models of signal detection theory, that is, an optimal deci- 
sion process attached to a physical model of sensory trans- 
duction, can provide very good fits to standard psychophys- 
ical data, if certain aspects of the stimuli (signal phase or 
frequency) are assumed to be unavailable to the decision 
maker (e.g., Geisler, 1989; Green & Swets, 1966). More 
recently, Ashby and Maddox (1992) showed that partici- 
pants can learn extremely complex nonverbal decision rules 
in a perceptual categorization task, if the advantage of these 
rules (i.e., the potential gain in performance level) is suffi- 
ciently large. Finally, in a series of recent articles, Glanzer 
and colleagues pointed out several strong regularities of 
recognition-memory performance that are predicted in a 
natural way by the optimal decision rule but not by distance- 
from-criterion models (Glanzer & Adams, 1985, 1990; 
Glanzer, Adams, & Iverson, 1993). 

Apart from these results, most of the arguments are the- 
oretical, To many researchers, an optimal decision rule 
seems implausible because it assumes that a participant has 
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perfect statistical knowledge about the effects of the stimuli 
on the perceptual system (e.g., the exact shapes and loca- 
tions of the perceptual distributions). If these distributions 
were completely unknown to the participant, then a very 
large number of trials would be needed to estimate them 
with any precision (the tails of the distributions would be 
especially difficult to learn because the participant would 
have very few examples of these during the experiment). 
The counterargument is that accurate classification is cru- 
cial for the survival of any species and, therefore, would 
have every opportunity to reach the high level of develop- 
ment assumed by the optimal model. To explain how opti- 
mality can be achieved when the stimuli are unfamiliar to 
the participants, one can point to the learning that occurs 
early on in virtually all laboratory classification tasks: Re- 
fining of the decision model is at least as plausible an 
account of these results as improvement in encoding or 
perceptual aspects of the behavior would be. 

In this article, we describe some empirical tests that can 
be used to study the decision-making process and determine 
whether it is optimal. The tests take advantage of certain 
relationships that exist between the nature of the decision- 
making process and the ability of the participant to predict 
whether a given response will turn out to be correct (i.e., 
response confidence). Applied to three different kinds of 
classification experiments--recognition, discrimination, 
and categorization the data from all three suggest the same 
thing: Participants use a distance-from-criterion rule in per- 
ceptual classification and recognition judgments, rather than 
an optimal decision rule. All of the tests are based on the 
predictions of the optimal classification model about the 
distributions of the feeling of confidence across experimen- 
tal conditions (rather than, say, the average confidence 
level). Because the statistical theory will be unfamiliar to 
many, the problem of modeling confidence judgments is 
first introduced in a brief review of signal detection theory. 

Statistical Decision Rules and Classical 
Signal-Detection Theory  

In the classical theory of signal detection (e.g., Green & 
Swets, 1966), the presentation of a stimulus is assumed to 
induce an information state in the perceptual system, which 
is uniquely identified by a single number. Typically, the size 
of this strength value represents the participant's measure of 
the stimulus on a pertinent physical dimension (i.e., the 
judgment dimension). This measurement activity is noisy, 
with significant consequences for the participant. Instead of 
determining which stimulus objects cause which strength 
effects, the participant now must decide which objects are 
more likely to cause which strength effects. Therefore, 
likelihood is a fundamental concept of the theory. 

In a yes-no detection or discrimination task, the model 
assumes that the participant creates a fixed, exhaustive map 
from strength values to responses. A crucial, but often 
neglected, issue is how the participant chooses this decision 
rule (i.e., how the participant decides which strength values 
should be assigned to which responses). The decision rule 

cannot be chosen arbitrarily, because this would cause the 
performance level (e.g., percent correct) to be arbitrary (i.e., 
performance level would be independent of the stimuli). 
The simple fact that physical properties of the stimuli (e.g., 
their physical similarity) strongly affect performance there- 
fore implies that participants know (or guess wisely) some 
important facts about the relationship between strength ef- 
fects and their most probable source. Signal detection theory 
is mute about what this knowledge might be. 

Optimal Classification Models  

A natural hypothesis to consider, of course, is that the 
participant always knows which of the two stimuli is more 
likely to have caused the incident strength effect on a given 
trial. Letting A and B be the two candidate stimuli and S be 
the strength effect of the presented stimulus, this hypothesis 
is equivalent to assuming that the participant computes the 
stimulus likelihood ratio, 

P(B I S = t) fB(t)PB 
L -  

P ( A I S  = t) fA(t)Px 

where t is the observed value of S on the given trial; fA(t) 
and fB(t) denote the distributions (probability density func- 
tions) of S for Stimuli A and B, respectively; and PA and Pa 
are the a priori probabilities (relative frequencies) of these 
stimuli in the experiment. The participant responds A when- 
ever L is less than 1 and B whenever L is greater than 1. 
(The event L = 1 indicates indifference, and the response 
can be assigned randomly.) 

By using this rule, the decision process always follows 
the betting odds the response is emitted that has the best 
chance of being correct. Following the betting odds maxi- 
mizes the expected percentage of correct responses, earning 
this decision rule the title "optimal classifier model." If the 
objective is to maximize expected payoffs rather than ac- 
curacy, and the payoff matrix is not symmetric, then the 
appropriate cutoff between A and B responses would not 
equal 1, but the decision rule would otherwise remain the 
same. To make optimal use of the information given to them 
by their senses, then, the participants must be able to com- 
pute L from S on each trial, which requires perfect knowl- 
edge about the probability distributions (which change with 
the stimuli) and the relative frequencies of the stimuli (PA 
and PB) during the experiment. Note that because L is 
computed from the observed value of S on each trial, it is 
also a random variable. Separating the trials by the two 
stimulus conditions, the four psychological variables in this 
model are SA, Sa, LA, and L a. 

Heuristic Decision Models  

If the participants do not have this exact knowledge about 
the distributions of the strength values, then for the reasons 
explained above, they must have at least partial knowledge 
of them. One example of partial knowledge of the sort 
required would be that participants know that the distribu- 
tions are unimodal or bell-shaped and can locate (or esti- 
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mate reasonably well) their mean values. In this case, the 
participants could adopt the heuristic strategy of placing a 
threshold on the strength values somewhere between the 
means of the two distributions. That is, the participants 
choose a value T, and if the observed value of S is less than 
T, then Stimulus A is chosen, and if the observed value of 
S is greater than T, then Stimulus B is chosen. 

The value of this strength threshold would be the familiar 
criterion value of signal detection theory. If L is an increas- 
ing function of the value of S, then this threshold model will 
be mathematically equivalent to the optimal classifier model 
for some value of the ratio PB/PA. For this reason, letting 
this ratio be a free parameter (i.e., allowing for response bias 
or an asymmetric payoff matrix) seems to make the models 
empirically indistinguishable. In fact, we show that the two 
models can be empirically distinguished, without knowing 
whether or not L increases with S. 

Model ing Confidence in a Classification Response 

The heuristic and optimal models are special cases of the 
following more general model: (a) The participant computes 
a perceived stimulus likelihood ratio (i.e., the participant 
decides which stimulus seems more likely to be correct and 
to what degree), and (b) the response that this perceived 
likelihood ratio favors is frequently (or always) the same 
response that the true or objective likelihood ratio given by 
L favors. Thus, the psychological construct of most impor- 
tance is not the strength effect but rather this perceived 
stimulus likelihood ratio. Because it must be based in some 
way on the strength effect, this psychological value will 
vary from trial to trial, even if the stimulus does not (i.e., it 
is also a random variable). 

To illustrate, suppose that the perceptual effect S is equal 
to some value t on a given trial. Using some unspecified 
function or rule, the participant computes the probability 
that Stimulus A will cause the event S = t and the proba- 
bility that Stimulus B will cause this event. The perceived 
stimulus likelihood ratio becomes the ratio of these two 
values. Because the value of S changes from trial to trial, so 
does the perceived likelihood ratio value. Stated formally, 
the idea is that the participant computes a ratio of perceived 
conditional stimulus probabilities, 

/3(B [S = t) 

E = /;(A IS = t ) '  

and sets a criterion on this value. That is, when E is less than 
some value T, then the response is A, otherwise the response 
is B. If T is not equal to 1, then this would indicate that the 
participant sometimes intends to choose a response that he 
or she believes is less likely to be correct (because by 
definition, all values of E less than 1 indicate higher con- 
fidence that the stimulus is an A, and all values of E greater 
than 1 indicate higher confidence that the stimulus is a B). 
Separating the trials by stimulus conditions, the perceived 
likelihood ratio variables are E A and E B. 

The fundamental assumption involved in all of the em- 

pirical tests to be described here is that this perceived 
likelihood ratio, E, can be studied empirically--in effect, it 
is an alias for the participant's feeling of confidence in his 
or her response choice. When the participant rates his or her 
confidence level on an integer scale ranging from 1 (most 
confident A) to n (most confident B), we assume that the 
possible values of E are divided by the participant into n 
contiguous regions and labeled with increasing integer val- 
ues from 1 to n. The rating response depends on which of 
these response bins the actual value of E falls into. (The 
partition could change from trial to trial without affecting 
the empirical tests that we propose. What is important is that 
this partition is independent of the value of E on a given 
trial, or not dependent in such a way that larger rating values 
do not imply larger E values.) 

Letting R represent a bipolar rating response on a given 
trial (i.e., small values of R represent high-confidence A 
responses and large values of B represent high-confidence B 
responses), the statistical measure of most interest will be 
the cumulative frequency distributions of R under the two 
different stimulus conditions. That is, the experimenter can 
estimate P(R A <- K) and P(R a <-- K) for each K. These 
estimates are useful because of the mapping relationship 
assumed between R and E. Specifically, 

P(R <-- k) = P(E <- Ct) 

and hence 

P(R A <-- k ) < P ( R  B <-- k) ----> 

P(EA < CO < P(EB <-- Ck) , 

P(RA <-k) = P(RB <-- k) ---> 

P(E^ - Ck = P(e .  _ C)k, 

and 

P(R A ~ k ) >  P(R B ~ k) --> 

P(EA <-- CO > P(EB <- CO. 

Most of the tests of the decision models described below are 
based on their predictions about these distributional inequal- 
ities, or dominance patterns. 

Of course, the same assumption about the mapping be- 
tween confidence and confidence ratings is required in 
signal detection theory analyses of confidence ratings. To 
make quantitative estimates of sensitivity and bias possible, 
however, signal detection theory adds the assumptions that 
(a) the mapping from confidence to confidence ratings is 
constant across trials (otherwise the strength distributions, 
and hence perceptual sensitivity, cannot be estimated), (b) 
the strength distributions are normal, and (c) the E values 
are monotone transformations of S. The reasons for the third 
assumption are discussed in the next section. 

Dependence of  Perceived Likel ihood Ratio on the 
Decision Rule 

To study the decision-making process more directly, that 
is, without making the extra assumptions of signal detection 
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theory, the predictions of the decision models about confi- 
dence must be determined. For the optimal classifier, the 
relationship is simple: Confidence and objective stimulus 
likelihood ratio are equivalent. Several important tests eas- 
ily follow from this basic identity. For the heuristic model, 
predictions about confidence come from some arguments 
about how the participant chooses the criterion (T) that 
divides the strength effects into the two types of responses. 
In a signal detection theory analysis of confidence ratings, 
the assumption is that to make the confidence judgments, 
the participant in effect sets more than one criterion on 
strength. The more general idea is illustrated as follows: 
First, note that as the relative frequency of, say, Stimulus A 
increases, the proportion of A responses given by a partic- 
ipant on B trials will increase (e.g., Green & Swets, 1966). 
Because the only decision parameter in the heuristic model 
is the criterion, this empirical result is explained by assum- 
ing that the relative frequencies of the stimuli cause the 
participant to move the criterion in one direction or the 
other, increasing the range of values for which the more 
frequent stimulus is seen as more likely. If the participant 
moves the criterion more and more to the right as, say, 
Stimulus A is more and more likely to be presented and 
more and more to the left as Stimulus B is more and more 
likely to be presented, then this implies that E increases with 
the signed distance between S and the criterion. The model 
is 

E = g ( S  - 7 0 ,  

where g(.) is an increasing function of its argument. 
Thus, the heuristic model is really a special case of a 

distance-from-criterion model of confidence. As noted 
above, the traditional signal detection theory analysis of 
ratings depends on the assumption that g(.) is an increasing 
function. If it is not, then the receiver operating character- 
istic (ROC) curve does not measure the perceptual effects 
distributions but rather another pair of distributions that 
depend in a fairy complex way on both perceptual and 
decisional processes. 

Testable Predictions of  the Optimal Decision Model  

Objective Certainty Test 

One fundamental prediction of the optimal classifier is 
implicit in the definition of E, that is, that E = L for all 
values of S. If this representation of confidence is correct, 
then the subjective feeling of confidence will be perfectly 
correlated with the objective probability that the response 
will be correct. Among other things, this means that the 
proportion of correct responses should always increase with 
the reported level of confidence in the emitted response. 

A simple test of this prediction is to plot the proportion of 
times that Stimulus A was presented when the rating re- 
sponse, R, was equal to k, for each k. That is, the value 
P(A [ R = k) is plotted on the ordinate, against k values on 
the abscissa. If the participant is using the optimal decision 
rule, then this function should be nondecreasing (it is strictly 

increasing if there are more values of E than of R). If this 
empirical function is not monotone, then the optimal model 
can be immediately rejected. 

The distance-from-criterion model may or may not pre- 
dict this objective certainty property, depending on whether 
the objective likelihood ratio, L, is an increasing function of 
S. For example, the unequal variance, normal model of 
signal detection theory predicts that this function will not be 
monotone increasing but instead will be U-shaped. (How- 
ever, unless the difference in variances is large relative to 
the difference in the means, the decreasing portion may be 
too far into the tails of the distributions to be empirically 
detectable.) 

Stochastic Dominance Tests 

If small values of E indicate high confidence that the 
stimulus was an A, then it seems reasonable to expect E to 
be small more often when Stimulus A is presented than 
when Stimulus B is presented. If this were not true, in fact, 
then the participant could improve his or her performance 
by responding B when E was very small, even though small 
E values represent high confidence that the stimulus was an 
A. Improving performance is not possible if E = L, and thus 
the optimal model must make some strong predictions about 
the distributions of E A and E B. 

The general result is that the optimal model always 
predicts 

FeA(t) >-- Fe~(t) 

for each value of t, where F denotes the cumulative distri- 
bution function. This leads to the following empirically 
testable prediction: 

Distribution dominance property: If the participant is using 
the optimal decision rule, then 

P(RA --< k) --> P(R~ <- k) 

for all rating responses k. (The proof is given in the 
Appendix.) 

Thus, the optimal classifier predicts that the cumulative 
frequency distribution of the rating responses when Stimu- 
lus A is presented will always be greater than or equal to the 
cumulative frequency distribution of the rating responses 
when Stimulus B is presented. If this prediction is violated, 
then the optimal decision rule can be rejected. As before, 
the distance-from-criterion model may or may not make 
this prediction about the data, depending on what properties 
are assumed about the strength distributions (see the 
Appendix). 

Stronger Forms of  Stochastic Dominance 

The ordering of two cumulative distribution functions is 
one of several possible forms of stochastic dominance, that 
is, a way of saying that one random variable "tends to be 
smaller" than another (e.g., Townsend, 1990; Townsend & 
Ashby, 1983). Some of these forms of dominance are stron- 
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ger than others. For example, an ordering of the cumulative 
distributions is a stronger form of dominance than an or- 
dering of the means, because it implies the mean ordering, 
whereas an ordering of the means does not imply an order- 
ing of the cumulative distribution functions. 

The optimal classifier also predicts two additional forms 
of dominance that are even stronger than an ordering of the 
cumulative distributions. One of these is based on the so- 
called hazard rate function, 

f(O 
1 - F ( t ) "  

Theoretically, the cumulative distribution can be recovered 
exactly from the hazard rate function, and vice versa; there 
is no new information nor any loss of information in this 
redefinition of the distribution. However, empirically esti- 
mating hazard rate functions has some special advantages 
when a researcher wishes to identify the correct distribu- 
tional form for an empirical measure (Luce, 1986). 

The optimal model predicts that the hazard rate functions 
will also be ordered, that is: 

feA(t) fe,(t) 
> 

1 - F~,(t) --  1 - F~-.(t)" 

The other dominance prediction is between the convexity 
functions, that is: 

Mixed-Pure Paradigm 

A B1 

Pure Weak 

A B 2 

 ure Strong 

A BIB 2 

Mixed 

Strength Effect 

Figure 1. Strength effect distributions illustrating the three con- 
ditions of the mixed-pure paradigm. The means of the distribu- 
tions represent the physical sizes of the stimuli. 
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Figure 2. Likelihood ratio functions corresponding to the three 
conditions of the mixed-pure paradigm represented in Figure 1. 
Values less than one indicate greater likelihood that the strength 
effect is caused by the A stimulus, and values greater than one 
indicate greater likelihood that the strength effect is caused by the 
B stimulus. 

f~.(t) f~(t) 
F~(t) - F~^(t)" 

These functions also have some special theoretical signifi- 
cance in distributional analyses of empirical models (Bal- 
akrishnan, 1994; Dzhafarov & Rouder, in press). 

To test whether the hazard rate functions are ordered, the 
experimenter can plot the ratio of survivor functions (1 
minus the cumulative distribution function), 

1 - HB(k) 
U(k) - 1 - HA(k)' 

where HA(k) and He(k) are the cumulative frequency dis- 
tributions of the rating responses for the A and B stimulus 
conditions, respectively (we used H instead of F to empha- 
size the fact that the rating responses are observable). If  the 
hazard rate dominance property is satisfied, then this em- 
pirical function must be nondecreasing for all k. Similarly, 
to test for order in the convexity function, the experimenter 
plots the value 

HB(k) 
V(k) HA(k)' 

against k. 
If  these stronger forms of dominance are satisfied, then 

the empirical functions will be increasing. (Proofs of these 
results are given in the Appendix.) As before, the distance- 
from-criterion model may or may not make these domi- 
nance predictions, depending on the properties of the 
strength distribution functions. 

All three of these dominance properties, as well as the 
objective certainty prediction of the optimal model, are 
strongly supported by the empirical data from recognition- 
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memory, discrimination, and categorization experiments re- 
ported below. In this respect, the optimal model predicts a 
large and theoretically important set of empirical relation- 
ships in two choice classification tasks, when the different 
effects of the stimuli on the feeling of confidence are 
compared (i.e., in AB comparisons). In the next section, 
however, additional distributional tests are developed that 
will allow us to rule out the optimal decision model. 

Mixed-Pure  Paradigm 

To show that participants do not use the optimal decision 
rule, the empirical tests described next add a third stimulus 
to the classification task. In this mixed-pure paradigm (Rat- 
cliff, Clark, & Shiffrin, 1990; Shiffrin, Ratcliff, & Clark, 

1990), the two permissible responses are still A and B, but 
the B stimulus is now varied between conditions. Some- 
times it is a relatively weak stimulus and other times a 
relatively strong stimulus. For example, if the stimuli are 
lines differing in length, then Stimulus A is the shortest line, 
the weak Stimulus B (hereinafter B1) is longer than Stim- 
ulus A, and the strong Stimulus B (hereinafter Be) is longer 
than Bl. 

The participant's task is to respond A when Stimulus A is 
presented and B when either B1 or Be is presented. Some- 
times B z and A are the only two stimuli in a given block of 
trials (the pure weak condition), sometimes B 2 and A are the 
stimuli for the block (the pure strong condition), and some- 
times B~ and B 2 occur in equal proportions (i.e,, 25% of 
trials), while Stimulus A still occurs on half the trials in a 
block (the mixed condition). 

1 ° °  s o,I ,S,,mu,u, 
o e L 1 - - Pure Strong ,.J /,:" / / / /  

' [ 2 Mixed ,'7." /;."'5 / y  
0.71- 3 . . . .  Pure Weak , '~ /  f / /  

_. o., I- , , ' / i  / ,,y ,,u,u. 
# l /  # o..b ,, I l k ' :  ,'7 w. .  

o. I- ," A ' 7 i /  ........ > 
/ m ": ' ^ .  / , , / /'/" i / . /  Strong u,~" 1/" 2 ; ... i, / 

r . Y ~"JJ/ /  6 - - Mixed (B2) 
0,1 I- .."" J ~ i  7 Pure(B2~ 

0.9 

0.8 

~ O.S 

u. w 0.5 

0.4 

0.3 1 

I- .,, 

Confidence (E) 

Figure 3. Distribution crossover predictions of the likelihood ratio model. The functions in the 
upper panel represent confidence distributions resulting from normal, equal variance strength effects 
and an optimal decision rule, and the functions in the lower panel represent normal distributions of 
strength and variance increasing with the mean. 
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- - - " ' ' r ° ° '  

' / - - " ' x ' ~  ,7'.." . . / i / , '  
. . . . . .  , . , . w ,  , , , / / / i / , , ,  

-= °"t ,,7/,..f/ ' 
u.m 0.5 I" #/ ; / ! / /  

,"////I" . . u . u .  
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/ ~ / / , '  P,,r. Strong (e=) 

o. 1 I- ~ . , , , z "  - - - . ~ , ,  St,or~g (.,) 

Confidence (E) 

Figure 4. Confidence distributions predicted by the distance-from-criterion model when the same 
strength distributions as in the upper panel of Figure 3 are assumed, and the criterion separating A 
from B responses is placed where the distributions intersect (i.e., optimally). 

Predictions of the Optimal Classifier 

The three conditions of the mixed-pure experiment are 
illustrated graphically in Figure 1, using normal distribu- 
tions to represent the strength effects of the stimuli. Note 
that the optimal classifier computes E differently in all three 
conditions, because Stimulus B is defined differently in 
each of them. In the pure weak (PW) condition, 

A(t)PB, 

Epw fA(t)PA 

whereas in the pure strong (PS) condition, 

A2(t)PB, 

Eas = fA(t)PA " 

The same kind of formula defines E for the mixed (M) 
condition, the only difference being that the strength distri- 

bution of Stimulus B is a (weighted) average of the distri- 
butions of B] and B 2. That is, 

fm(t)Pe~ + fa2(t)PB2 
EM = fA(t)p A 

The empirical tests to be described next take advantage of 
the fact that the strength effect distribution depends only on 
the stimulus that is in fact presented, whereas the decision 
rule of the optimal classifier depends on the two stimuli that 
may or may not be presented on a given trial. Suppose, for 
example, that the cumulative frequency distributions of the 
Rating Response R when Stimulus A was presented in the 
pure weak condition is compared with the cumulative fre- 
quency distributions of R when Stimulus A is presented in 
the pure strong condition. Because the transformation from 
S to R is different in the two conditions, the predicted 
cumulative frequency distributions of R are also different, 

Table 1 
A Summary of the Distributional Predictions of the Optimal and Distance-From-Criterion Models of the 
Decision Process 

AA 
AB comparisons comparisons BB comparisons 

(1 - Ha)/ HA<PS ) --> 
F ( A I R  = k) (1 -- HA) Ha]H A HA(M) >-~ Ha2(Ps) ---~ HaI(M ) 

Model increasing HA --> Ha increasing increasing HA(PW ) /'/IB2(M ) H,al(PW) 

Optimal classifier Yes Yes Yes Yes No No No 
Distance-from-criterion Yes or no Yes or no Yes or no Yes or no Yes Yes Yes 

Note. In the "yes or no" cases, the prediction of the distance-from-criterion model depends on the distribution model for the strength 
effects of the stimuli. 
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Table 2 
Hit and False-Alarm Rates for  Recognition-Memory Data 

Condition Hit False alarm 

Pure weak .58 .39 
Pure moderate .70 .20 
Pure strong .79 .16 
Mixed: Moderate + weak 

Weak (B 0 .59 
Moderate (B2) .72 
A .20 

Mixed: Strong + weak 
Weak (Bl) .56 
Strong (Bz) .81 
A .18 

Note. The data were combined across participants. Hit = re- 
sponded "yes" to an old item; false alarm = responded "yes" to a 
new item. 

even though both of them represent responses to the same 
physical stimulus. In fact, the optimal classifier predicts that 
instead of being identical or ordered, these two cumulative 
frequency distributions will cross over at some point. The 
general result is that stochastic dominance should be vio- 
lated in all AA or BB comparisons within the mixed-pure 
paradigm. 

To see why these violations of dominance are predicted 
by the model, consider the likelihood ratio functions in 
Figure 2, which correspond to the strength distributions in 
Figure 1 for the three conditions of the experiment (pure 
weak, pure strong, and mixed). The abscissa represents the 
strength effect (S), and the ordinate represents the value of 
confidence that it produces (E). Because the height of these 
functions is equal to E, the model predicts that the same 
value of S does not produce the same level of confidence in 
the different conditions. A very small value of S in the pure 
weak condition, for example, should cause the participants 
to have less confidence than the same value of S when it 
occurs in the mixed condition (because the pure weak 
likelihood ratio function is closer to 1, or complete uncer- 
tainty, than the mixed likelihood ratio function). 

It turns out that the arrangement and crossover of the 
likelihood ratio functions are reproduced (with the order 
pattern reversed) in the predictions of the optimal classifier 
model about the cumulative distribution functions of E, 
leading to the following empirical test. 

Context sensitivity test: Assume that the likelihood ratio func- 
tions for the pure B, and pure B 2 conditions are monotone and 
that the B~ and B 2 strength distributions intersect at Point w. 
The optimal classifier model predicts that 

HA(wv)(k) <-- HA(M)(k) <-- H^(ps)(k), k -< r*; 

HA(r~v)(k) >- HA(M)(k) --> HA(Ps)(k), k --> r*. 

HB,(r,w)(k) <-- HB,(M)(k), k <-- r*; 

nB,(z,v)(k) >-- H,t(M)(k), k ~ r*. 

H.2(~)(k) >- HB~M~(k), k <-- r*; 

HB2(Pw)(k) --~ HB2(M)(k), k ~-~ r*, 

where H denotes the cumulative frequency distribution of the 
Rating Response R, the subscripts represent the condition (i.e., 
A = short line, B~ = medium line, and B 2 = long line; P = 
pure, W = weak, S = strong, and M = mixed), and r* is a 
rating-response value that depends on where the B] and B 2 
strength distributions intersect, Point w). 

The assumption that the likelihood ratio functions are 
monotone is not crucial for the crossover predictions of the 
model - -a  more general result is given in the Appendix. To 
illustrate the result for both assumptions (monotone and 
nonmonotone likelihood ratio functions), Figure 3 shows 
the cumulative distribution functions of E for the normal, 
equal variance strength model (i.e., the likelihood ratio 
functions are monotone; upper panel) and the normal, un- 
equal variance strength model (i.e., the likelihood ratio 
functions are nonmonotone; lower panel). 

Some other types of dominance violations predicted by 
the optimal model are also illustrated in Figure 3. Notice, 
for example, that the cumulative distribution functions of E 
when Stimulus B 1 is presented in the pure weak condition 
and when Stimulus B 2 is presented in the pure strong 
condition also cross over. Unfortunately, although we can 
give a proof of this prediction for strength distributions like 
those in Figure 1 (i.e., the A stimulus distribution is shifted 
to the right by some amount to obtain the B stimulus 
distributions) and for some general types of nonmonotone 
likelihood ratio functions, we do not have a general proof of 
it for the case of the monotone likelihood ratio models. 
Thus, we cannot prove that this particular test of the optimal 
decision model is as strong as the others. 

Pred ic t ions  o f  the D i s tance -From-Cr i t e r i on  M o d e l  

Recall that if the participant uses the distance-from-crite- 
rion rule, then in each condition, a criterion (T) must be 

1 
0.6°"70'8°'9 f Recognition Memory 

0'5 I 0.4 

0.3 f 0.2 
0.1 

I I I I I I 

Rating 

Figure 5. The probability that the test word is a studied item, 
given that the rating response is k, for each k (each possible 
confidence rating) in the recognition-memory experiment (data 
combined across participants and mixed-pure conditions). Note 
that the middle regions of the abscissa represent the least confident 
values (5 and 6) and the extremes the most confident values (1 and 
10). 
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Figure 6. The ratio of cumulative frequency distributions of 
confidence under A versus B stimulus conditions (convexity test) 
for each condition of the recognition-memory experiment (data 
combined across participants). 

chosen to divide the strength values into A and B responses. 
The perceived likelihood ratio, E, is then an increasing 
function of the signed distance of S from this criterion, that 
is, E = g(S - T). If T and g(.) are the same in all conditions, 
then obviously there would be no difference between the 
cumulative frequency distributions of the rating responses 
when the same stimulus is presented, for example, 
HA(Pw)(k ) = HA(M)(k ) = HA(Ps)(k), for all k. If the criterion 
is affected by the context but the g(.) function is the same 
across conditions, then the cumulative distributions of E 
will simply shift in one direction or the other--shifting the 
distributions implies stochastic dominance between them. If 
the shift in the value of T is small, then the shift in the 
distributions will be small. 

For the distance-from-criterion model to predict the dom- 
inance violations that the optimal model predicts, the g(.) 
function would need to have a very special kind of depen- 
dence on the mixed-pure stimulus condition. Predictions of 
this model when g(.) is a linear function and the response 
criterion is placed optimally (i.e., maximizing the percent- 
age of correct choice responses) are shown in Figure 4 for 

the same strength distribution model used to illustrate 
the predictions of the optimal classifier (upper panel of 
Figure 3). 

The complete set of empirical tests is summarized in 
Table 1. For the earlier group (the AB tests), the optimal 
model predicts that dominance will hold, whereas for the 
AA and BB comparisons involved in the context sensitiv- 
ity test, the model predicts that dominance should be vio- 
lated. The distance-from-criterion model does or does not 
predict dominance in the AB tests, depending on the 
strength distributions. For the AA and BB comparisons, 
however, it predicts that dominance should hold. The di- 
rection of the dominance (which distribution is larger) de- 
pends on the relative placements of the criteria (T). The 
pattern represented in Table 1 is based on the assumption 
that the criterion moves toward the location that maxi- 
mizes percentage correct, which means that /'pure weak < 
Tmixed < Tpure strong" 

The empirical data reported below do not exhibit the 
dominance violations predicted by the optimal model. The 
cumulative frequency distributions of the rating responses 
are not strongly affected by the stimulus condition. Their 
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Figure 7. The log of the ratio of survivor functions (hazard rate 
dominance test) plotted against the Rating Response k for the 
different conditions of the recognition-memory experiment. 
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Figure 8. Cumulative frequency distributions of confidence ratings by condition in the recogni- 
tion-memory experiment. 

order pattern is instead consistent with a distance-from- 
criterion model in which the choice criterion value (T) 
changes by small amounts with the stimulus condition while 
g(.) is the same across conditions. Thus, a simple version of 
the distance-from-criterion model provides an efficient 
summary of the results. 

Experiment 1: Study-Test Recognition Memory 

Me~od 

To test the predictions of the optimal decision model for recog- 
nition memory, we used a version of the mixed-pure paradigm, 
with single-word stimuli and three levels of study strength. The 
five separate conditions were (a) pure weak, (b) pure moderate, (c) 
pure strong, (d) mixed: weak + moderate, and (e) mixed: weak + 
strong. For word recognition, the strength effect of the stimulus 
represents the familiarity effect of the item. This familiarity effect 
was manipulated by increasing the number of repetitions of an 
item within the study list. 

Participants. Thirty students from an introductory psychology 
course at Northwestern University participated, in partial fulfill- 
ment of a course requirement. Individual sessions lasted about 50 
min. 

Procedure. Word stimuli were presented on CRT screens con- 
trolled by a PC. The three levels of the strength manipulation were 
one, two, and four repetitions for weak, moderate, and strong 
conditions, respectively. The total number of different items in 
each study list was held constant at 22, with the first and last 3 
items excluded from sampling at test. All other studied items, plus 
an equal number of new items, were presented once at test. Each 
study item was presented for 250 ms, with 250 ms between items. 
The sequencing of the study items was random; however, no 
immediate repetitions of the same word were allowed. Time be- 
tween test items was participant-determined (self-paced testing). 
Although the average number of items intervening between study 
and test of a given item was always the same, the average time 
between study and test varied for a given item type (see Murnane 
& Shiffrin, 1991, for a discussion of the effects of timing and 
sequencing in this kind of design). All items were randomly 
sampled from Kucera and Francis's (1967) word pool, with inclu- 
sion in the sample conditioned on length of the word (between 5 
and 10 characters) and frequency (5 or more occurrences per 
million). 

The confidence rating scale was defined by the numbers 1 to 10 
on the top of the keyboard, with 1 indicating most  sure new and 10 
indicating most  sure old. Attention was drawn to the fact that the 
cutoff between what would be considered new and old responses 
on the scale was between the 5 and 6 key responses. Participants 
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Table 3 
Hit and False-Alarm Rates for Discrimination and 
Categorization Data 

Condition 

Participant 1 Participant 2 

Hit False alarm Hit False alarm 

Pure weak 
Pure strong 
Mixed 

Weak (B 0 .66 
Strong (B 2) .92 
A .36 

Discrimination 
.69 .33 .65 .32 
.84 .22 .85 .26 

.69 

.89 
.41 

Pure weak 
Pure strong 
Mixed 

Weak(B 0 
Strong (B 2) 
A 

Categorization (lines) 
.64 .32 .67 .45 
.76 .24 .81 .36 

.54 .65 

.80 .86 
.32 .41 

Pure weak 
Pure strong 
Mixed 

Weak (B 1) 
Strong (B 2) 
A 

Categorization (numbers) 
.48 .24 .67 .40 
.68 .15 .88 .35 

.44 .68 

.72 .89 
.23 .39 

Note. Hit = responded "yes" to an old item; false alarm = 
responded "yes" to a new item. 

were also asked to be conservative in their use of the extremes of 
the scale, so that differences between relatively high levels of 
confidence could be distinguished, if possible. The purpose of this 
instruction, which was successful (see below), was to increase the 
chances that the criteria would extend into the tails of the confi- 
dence distributions. Instructions emphasized accuracy of perfor- 
mance, and no pressure was induced on response time or on the 
total number of lists completed during a session. 

level of confidence, the probability that the response is 
correct is roughly 90%. For the least confident response (the 
middle of the abscissa in Figure 5), the probability drops to 
about 60% (50% is the chance level). Thus, the confidence 
reports are very good predictors of accuracy. 

Stochastic dominance: AB comparisons. The distribu- 
tion dominance and convexity tests described above can be 
applied simultaneously by plotting the ratio of the cumula- 
tive frequency distributions, HB[H A. If  this function is al- 
ways between 0 and 1, then the distribution dominance 
property is satisfied; if it is also increasing, then the con- 
vexity dominance test is satisfied as well. Dominance of the 
hazard rate functions is tested by plotting the logarithm of 
the U(k) function defined above (otherwise, the range of the 
ordinate axis is extremely large, making the shape of the 
functions difficult to identify). The estimated empirical 
functions are presented in Figures 6 and 7 for old versus 
new items. For each of the seven conditions, all of the 
dominance predictions of the optimal model are clearly 
supported. To make the same predictions about confidence, 
the distance-from-criterion model must assume that the 
strength distributions exhibit this dominance pattern (e.g., 
they are all normal with equal variances). 

Context sensitivity test. Because there are many condi- 
tions and the conclusions are consistently the same, Figure 
8 shows the results of the context sensitivity test for some 
representative cases. Recall that the optimal model predicts 
that when the cumulative frequency distributions are com- 
pared across conditions (e.g., mixed-pure) for the same 
stimulus type, crossovers should occur according to a spe- 
cific pattern (see above). Instead of following any crossover 
pattern, a much better description of these results is that the 
functions are not very different and they are ordered. In the 
new item conditions (upper left panel of Figure 8), for 
example, the order is: pure weak -< mixed - pure strong. 
This is the pattern predicted by the distance-from-criterion 
rule if the choice response criterion shifts by small amounts 
toward its optimal position for each condition. The bottom 
two panels compare the old item cumulative frequency 

Results and Discussion 

Table 2 lists the percentages of correct old (or hits) and 
incorrect old (or false alarms) responses for the five differ- 
ent conditions of the experiment (pure weak, pure moderate, 
pure strong, mixed weak + moderate, mixed weak + 
strong). The pattern of results (e.g., relatively small effects 
of mixed versus pure conditions) is typical of recognition 
performance (e.g., Ratcliff et al., 1990). The analyses that 
follow are based on averages of the estimated functions for 
each participant and distribution test (aggregating in this 
way does not affect predictions about dominance). The total 
sample sizes ranged from 1,900 to 2,000 per stimulus 
condition. 

Objective certainty test. In Figure 5, the probability that 
the stimulus is an old item, conditioned on the participants' 
rating response, is plotted for each rating category, with the 
data collapsed across participants and the five conditions. 
This function is clearly monotone increasing. At the highest 
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Figure 9. The proportion of trials that the stimulus was a B, 
when the rating response was k, for each rating category k in the 
categorization and discrimination experiments combined. 
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Figure 10. Ratios of cumulative frequency distributions of confidence for line-length discrimi- 
nation and categorization experiments. 

distributions for weak and moderate study items. Instead of  
crossing over, these are also strongly ordered. 

To summarize, the data exhibit the strongest testable 
forms of  stochastic dominance when A and B stimulus 
conditions are compared, but there is no evidence for the 
violations of  dominance predicted by the optimal model 
when A-to-A and B-to-B comparisons are performed be- 
tween conditions of  the mixed-pure paradigm. The dis- 
tance-from-criterion rule suggests an immediate and simple 
explanation: The g(.) function above is constant across 
conditions, and the criterion (T) changes with condition. 

Exper iments  2 and 3: Discr imina t ion  and 

Categor iza t ion  

Me~od 

A similar mixed-pure design was used to apply the empirical 
tests to elementary perceptual tasks. Two participants were paid 
for their participation in 13 hr of total session time each, providing 
relatively large samples of single participant data that could be 
analyzed individually. There were three types of conditions, with 
the following order reversed for Participant 2: (a) line-length 
discrimination, (b) line-length categorization, and (c) number 
categorization. 

The categorization tasks used the randomization technique de- 
veloped recently by Ashby and colleagues (e.g., Ashby & Gott, 
1988)• In its application here, the computer was used to generate 
samples from distributions like those in Figure 1. The magnitude 
of the sample became the magnitude of the stimulus on a given 
trial. In the line-length categorization task, the magnitude of the 
sample was used to determine the length of a line presented on the 
screen, and in the number categorization task, the sample value 
itself was presented on the screen. In both cases, the participant 
was asked to decide which distribution the stimulus was sampled 
from, A or B. 

In the line-length discrimination and categorization tasks, the 
stimuli were horizontal, single pixel lines presented on a liquid 
crystal diode (LCD) video display. Lengths of the lines in the 
discrimination task were 6.60 cm, 6.75 cm, and 6.90 cm, with a 
viewing distance of approximately 45 cm. Horizontal location of 
the lines was randomized, with the line appearing within a centered 
15-cm region of the display• The response was a confidence rating 
on a scale from 1 to 10 (same as that in the recognition experi- 
ment), with keys 1 and 10 representing highest confidence short 
and long line length, respectively, and 5 and 6 representing lowest 
confidence short and long line length, respectively. 

In the perceptual categorization task, length of the line was a 
random sample from a normal distribution with means equal to 6.7 
cm, 7.1 cm, and 7.6 cm for the three stimulus conditions. Standard 
deviation was a constant 0.7 cm. The same distribution models 
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Figure 11. The log of the ratio of survivor functions (hazard rate dominance test) for the 
discrimination and categorization experiments. As in Figure 7, the functions are shown for rating 
responses up to 7; beyond this point, they continued to increase. 

were used to generate stimuli in the numerical categorization task; 
however, instead of line length, the actual integer value represent- 
ing the number of pixels used to generate the line stimuli was 
presented as a stimulus. In all other respects, the methods were 
identical in all three conditions, as detailed below. 

Participants. The 2 participants were undergraduate students at 
Northwestern University. They were paid $7 per hour for a total of 
13 hr (each) of participation. 

Procedure. For each participant, the first session lasted 1 hr 
and was counted as a warm-up. The stimuli were blocked accord- 
ing to the mixed-pure design defined above. Each block was 
identified to the participant before it began as a mixed, a pure 
weak, or a pure strong block of trials, and the meaning of this 
language was carefully explained. Each block began with a dem- 
onstration series of trials sampled using the appropriate stimulus 
mixture and requiring no response. A stimulus was presented for 1 
s, and the correct response to it was then displayed. The demon- 
stration consisted of 9 trials for the discrimination task and 32 
trials for the categorization tasks. In all three tasks, the demon- 
stration was followed by 32 response trials in which feedback was 
given on each trial. Performance was self-paced, with short breaks 
allowed at any time and a required 10-15-min break after the first 
55 rain. Total time for individual sessions was 2 hr. 

Results and Discussion 

Table 3 lists the percentage of  correct B responses (hits) 
and incorrect B responses (false alarms) for each of  the 
conditions of  the experiment. For most of  the analyses, 
results o f  the discrimination and perceptual categorization 
conditions are presented together, following the same order 
that was used for the recognition-memory data, apart from 
the additional analyses to be included. The corresponding 
results from the numerical categorization condition were 
omitted because they merely replicated those o f  the percep- 
tual categorization condition. In fact, overall, the major 
conclusions are the same for all three tasks: There was 
substantial support for stochastic dominance in AB compar- 
isons, but there was no evidence for the intersection patterns 
predicted by the optimal model in AA or BB comparisons. 

Objective certainty test. The estimated P(A [ R = k) 
functions are shown in Figure 9 for the data-combined 
conditions for each participant. Although there were two 
violations of  monotonicity, they occurred in the extremes o f  
the response scale and represented small proportions esti- 
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mated from extremely small sample sizes (15 samples for 
Participant 1 and 7 samples for Participant 2, out of a total 
of more than 3,000 responses per participant). Thus, the 
results strongly favor models predicting monotonicity of 
this function in its estimable range. 

Stochastic dominance: AB comparisons. The convexity 
and hazard rate tests for discrimination and categorization 
are shown in Figures 10 and 11, respectively. Once again, 
the functions are monotone increasing, with the only excep- 
tions occurring in the extremes, where the sample sizes 
make the estimates unreliable. In Figure 10, there is a 
striking similarity between the shapes of the functions in the 
two experiments, adding some prima facie support for the 
idea that physical noise in the categorization task has the 
same qualitative effect that internal noise has in discrimi- 
nation tasks. 

Stochastic dominance: AA and BB comparisons. The 
cumulative frequency distributions for each stimulus by 
stimulus condition (pure weak, pure strong, and mixed) are 

shown in Figure 12. The results are very similar to those of 
recognition memory; that is, the functions are very close 
together with no well-defined intersections, and without the 
pattern of a single intersection followed by increasing sep- 
aration that would be indicative of an optimal decision rule. 

The conclusions from all three experiments are therefore 
the same. Dominance between the cumulative frequency 
distributions from A versus B stimulus trials is strongly 
supported, but violations of dominance for the same stim- 
ulus in different B conditions (e.g., A in the pure weak 
condition versus A in the mixed condition) is not. 

Direct estimates of the confidence by strength functions. 
One final analysis that was applied to the categorization 
data served to illustrate why the optimal model failed to 
make the correct predictions about the distributions. Recall 
that the tests that counterindicate the optimal decision rule 
are based on the effect that the stimulus condition (pure 
weak, pure strong, or mixed) should have on the feeling of 
confidence caused by a given piece of perceptual informa- 
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Figure 12. Cumulative fr~uency distributions of confidence ratings by stimulus (A or B) and 
mixed-pure condition for the discrimination and categorization experiments (data combined across 
participants). 
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tion about the stimulus (S). In the categorization tasks, 
physical variability in the stimuli is presumably large rela- 
tive to the expected perceptual noise level. Thus, except for 
a negligible error, the physical size of the stimulus itself 
should be a good measure of perceived size. 

In Figure 13, the mean confidence rating as a function of 
the stimulus size (line length or number size) is plotted for 
the three conditions of the mixed-pure categorization tasks. 
Empirical results axe shown in the four upper panels, and 
predictions of the optimal and distance-from-criterion mod- 
els are shown in the two lower panels. For the distance- 
from-criterion model, the choice criterion (T) was set at its 

optimal point for each condition (i.e., the point that maxi- 
mizes percentage correct), and for both models, additive 
normal noise was added to the confidence criteria to mimic 
the effects of perceptual or criterial noise in the mapping 
from confidence to ratings. All functions, both empirical 
and theoretical, were smoothed by a 25-point Hamming 
window (i.e., the plotted value at Abscissa Point X becomes 
the mean of the 25 unsmoothed values to the left and the 
right of X) and truncated in the extreme tails (i.e., where 
small sample sizes cause the estimates to become erratic). 

The main result of this analysis is straightforward: The 
functions are fairly close together, indicating that the effect 
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of context (mixed vs. pure)on confidence is not strong. A 
close analysis, however, shows that a dominance pattern 
does exist. To illustrate this result more clearly, Figure 14 
shows the values of the confidence functions for a more 
central range of stimulus values. Notice that all three func- 
tions are different, the order being: pure weak -> mixed - 
pure strong. Once again, this is the pattern predicted by a 
distance-from-criterion model that assumes that the choice 
criterion is adjusted by the participant in the direction of the 
optimal location (i.e., the location that maximizes the per- 
centage of correct responses). Thus, a simple version of this 
model, in which the criterion is affected by context but not 
the transformation function, g(.), seems to account for all of 
the major results of this study. 

General Discussion 

A somewhat different, and ultimately more general, ap- 
proach to modeling classification performance is to begin 
with the assumption that participants choose the response 
that they believe is most likely to be correct. In this case, the 
proportion of errors represents the proportion of trials in 
which an incorrect response seemed more likely to the 
participant, that is, for which the perceived likelihood value 
was largest. This value could depend on the perceptual 
information in a number of different ways, and so the 
problem is to find a test of the decision-making process 
without knowing how the perceptual encoding process 
works. 

Evidence for the Distance-From-Criterion 
Decision Model 

Many theories of perception do not make a strong com- 
mitment about the nature or the contribution of decision 
processes in laboratory perception tasks. The main purpose 
of the theory is to explain how the internal perceptual 
representations of the stimuli are obtained, and therefore the 
implicit assumption is made that a stimulus is classified 
incorrectly when it is perceived incorrectly, or incorrectly 
enough within the context of the experiment. When a signal 
detection theory analysis is used to separate decision-mak- 
ing effects from encoding-level effects on performance, the 
idea is still that participants base their judgments directly on 
the percept, and thus sensitivity is represented by a pair of 
perceptual distributions. 

The idea that classification data measure the perceived 
likelihood ratio is not inconsistent with classical signal 
detection theory; this model merely adds an assumption 
about the decision process (i.e., the distance-from-criterion 
model), which causes the response proportions to measure, 
in effect, both the perceptual and perceived likelihood ratio 
effects of the stimuli. However, the emphasis on the per- 
ceptual distributions in signal detection theory tends to 
disguise the importance of the likelihood ratio in the orig- 
inal sources of the model (i.e., statistical decision theory). 
For example, to predict some very simple facts, including 
the lawful effects that physical similarity of the stimuli has 
on performance level, the decision maker must have sub- 
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stantial knowledge about the relationship between percep- 
tual experiences and the objective likelihoods of the stimuli. 
That is, the perceived likelihood ratio must be at least 
reasonably close to the true likelihood ratio, even though the 
function used to transform the perceptual effect into a 
response must change radically whenever the stimuli 
change. 

The main conclusion of the empirical analyses reported 
here is that the perceived likelihood ratio and the objective 
likelihood ratio of an optimal decision system are close but 
not identical. In short, the participants did not use an opti- 
mal decision rule. If they did use such a rule, then a very 
specific pattern of crossovers should have been observed 
between the cumulative frequency distributions of confi- 
dence ratings obtained from a participant when the same 
stimulus was presented under different discrimination con- 
ditions (i.e., what the other stimuli in the discrimination task 
were, see Table 1 and Figure 3). There was no sign of this 
crossover pattern in the empirical data we examined. 

A better model for the decision process is the distance- 
from-criterion rule. Specifically, the participant chooses a 
single perceptual state, which serves as a cutoff value be- 
tween the two discrimination responses, and perceived like- 
lihood ratio is assumed to be some increasing function of 
the distance of the incident percept from this criterion. The 
superiority of this model goes beyond the issue of whether 
any response bias exists or not, because the data also rule 
out the possibility that participants use the correct formula 
when computing the likelihood ratio but insert an incorrect 
estimate of the a priori probabilities of the stimuli (i.e., the 
/3 value in signal-detection theory). This kind of bias 
changes the quantitative predictions of the model but not its 
qualitative predictions (i.e., violations of stochastic domi- 
nance in the mixed-pure paradigm). 

Final Comments: Implications o f  Stochastic 
Dominance Between Perceived Likelihood 
Ratio Distributions 

Although the optimal model can be rejected, it is worth 
noting that this model did correctly predict, without any data 
fitting or any assumptions about the encoding effects, that 
stochastic dominance will always be satisfied whenever the 
rating distributions for the two stimulus conditions are com- 
pared (see Table 1). To explain these dominance properties 
of the data, together with the predictiveness of the confi- 
dence level (i.e., the objective certainty test), the distance- 
from-criterion rule must assume that the objective likeli- 
hood ratio function is monotone (e.g., Green & Swets, 
1966). This ensures that the objective likelihood ratio is a 
monotone function of distance from the criterion, which 
ensures that the highest level of dominance in the stochastic 
dominance hierarchy will hold for both the perceptual ef- 
fects and perceived likelihood ratio (confidence) distribu- 
tions (e.g., Townsend, 1990; Townsend & Ashby, 1983). 

In principle, there is no reason why the perceptual effects 
distributions should not have a monotone likelihood ratio 
function. Ultimately, this type of constraint implies that the 
encoding system makes the decision problem much easier 
than it might be, because setting a single criterion on the 
percept under these circumstances allows the decision pro- 
cess to perform at a level arbitrarily close to that of the 
optimal decision rule. Therefore, the ultimate conclusion of 
this study is that decision processes are not optimal in the 
pure sense of statistical decision theory, but they are rea- 
sonably sophisticated and efficiently matched with the en- 
coding process. 
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A p p e n d i x  

D e r i v a t i o n s  o f  the  S tochas t i c  D o m i n a n c e  Tes t s  

All of the model predictions described in the text are stated with 
respect to the cumulative frequency distributions of the observable 
rating responses. To prove the results, we show that the necessary 
relationships hold for the cumulative distribution functions of the 
feeling of confidence (E); in each case, the application to rating 
distributions follows from the assumed relationships between con- 
fidence and confidence ratings discussed in the text. 

Proof of  Stochastic Dominance Predictions of  the 
Optimal Decision Model  

A useful result in statistical decision theory is that the likelihood 
ratio of two random variables that are themselves the product of a 
likelihood ratio transformation of two other random variables (e.g., 
L^ and L a are computed from S A and S B) is necessarily monotone 
(since "the likelihood ratio of the likelihood ratio is the likelihood 
ratio," Green & Swets, 1966, p. 26). Townsend and Ashby (1978) 
showed that a monotone likelihood ratio for two variables implies 
that their hazard rate functions are ordered, which implies that their 
cumulative distribution functions are ordered. 

To prove that the convexity functions are ordered, note first that 

fL,(t) fLA(t) 
FL,(t) -- FL^(t) 

if and only if 

f~(t)FLA(t) -- fL^(t)FLa(t) >- O. 

This quantity can be rewritten as 

t t 

0 0 

t t 

0 0 

t 

= d s  

0 

The fact that the likelihood ratio function, 

A~(t) 

AA(t)' 

is increasing with t guarantees that the integrand in the last ex- 
pression is positive for all values of s, which establishes the result. 

To show that the optimal classifier model predicts that the two 
ratios 

1 - Fen(t) 

1 - FE^(t) 

and 

FeB (t) 
Fen (t) 

must be increasing if the participant is using the optimal decision 
rule, note that 

and 

d [ 1 - Fes( t )]  fe , ( t )  fe , ( t )  

- -  " " d t  l ° g [ . ~ J  = l - FE^(t) l -  Fe.( t)  

d F/%(01 
Se,( t )  S .^ ( t )  " 

Because d/dt log[g(t)] has the same sign as dldt g(t), these equal- 
ities imply that the two ratio functions must be increasing if the 
hazard rate and convexity function dominance properties hold. 

Finally, to show that the distance-from-criterion model does not 
necessarily make any of these dominance predictions, suppose that 

V~(t) = V^(a t + 0). 

This makes the strength distributions a location-scale pair, 
which implies that dominance of their cumulative distribution 
functions will be violated if a is not equal to 1. Violation of lower 
levels necessarily implies violation of all higher levels of the 
stochastic dominance hierarchy, and monotonicity of the g(.) trans- 
formation to EA and Es ensures that the same violations occur for 
the cumulative distribution functions of these variables. 

Proof  That the Optimal Classifier Model  Predicts 
Violations of  Stochastic Dominance in A A  and BB 
Comparisons of  the Mixed-Pure  Paradigm (Context 

Sensitivity Test) 

The Strength Likelihood Ratio Function, Ls Is Monotone 
and the B 1 and B 2 Strength Distributions Intersect 

Let g p w ( t ) ,  g M ( t ) ,  and Kps(t) be the likelihood ratio functions 
under the three different mixed-pure stimulus conditions (PW = 
pure weak, M = mixed, and PS = pure strong). Let t* be the 
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strength value at which the strength distributions of the B~ and B 2 
stimuli intersect, that is, 

fB.(t*) = f.2 (t*). 

Let v* be the value of the likelihood ratio functions at this point, 
that is, 

v* = Kpw(t*) = Ku(t*) = Kps(t*). 

Because the likelihood ratio functions axe monotone, their inverse 
functions exist. Therefore, 

P(L~<~)  <- v) = P[s^ <- f:'-~(v)], 

P(LA~) -< v) = P[SA ---</CMI(V)], 

e(1.^cps~ < v)  = P[SA ---/C~(v)], 

where the superscript - 1  denotes the inverse function. From the 
fact that the B~ strength distribution must be larger than that of B~ 
for strength values less than v*, and smaller for values greater than 
v*, it follows that 

x-~(v) < ~ ( v )  < ~ ( v ) ,  v < v* 

~w~(V) > ~ ' ( v )  > ~s~(V), v > v*. 

From this the statement about the cumulative distribution functions 
of the three noise conditions follows directly. Essentially the same 
arguments apply for the mixed-pure comparisons of E under Bt 
and B 2 stimulus conditions. 

The Strength Likel ihood Ratio Funct ion Is Nonmonotone  

Because the term nonmonotone is not a specific statement about 
the shape of the function, there are many ways to proceed. We add 

the assumptions that (a) the likelihood ratio functions Kpw(t) and 
Kps(t ) decrease then increase, with Kvs(t) initially greater than, 
subsequently less than, and finally greater than Kpw(t) (i.e., the 
functions intersect twice), and (b) the minimum value of Kps(t) is 
less than that of Kew(t). This particular set of assumptions was 
chosen because it describes the normal, unequal variance model of 
Figure 3. 

First, note that the second assumption immediately implies that 

F,..,,,,,,:,(v) <-- F,.,,,,,,,(v) <-- F~,,~,(v) 

for sufficiently small values of v, The first assumption implies that 
for large enough values of v, the interval of strength values such 
that gt, w(t) is less than v is larger than that of KM(t), which is 
larger than that of gps(0. This implies that 

F~,~,(v) > F~.,(v) >- F~,~,~,(~) 

for sufficiently large values of v, which proves that the functions 
must intersect. The proofs for the B~ and B 2 stimulus conditions 
follow virtually the same steps. 

The predictions of the distance-from-criterion model stated in 
the text depend on simple results about the effects of monotone 
transformations of random variables. For example, consider the 
case in which g(.) is the identity function, that is, g(S - 7 )  = S - 

T. The perceived likelihood ratio distributions are all shifted by the 
amount T; hence, they are effectively identical to those of the 
strength distributions. 
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