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INTRODUCTION

History

At first glance, historically, models in decision-
making research seem to have very little in common
with neuroscience. Most decision-making models have
been concerned with predicting outcomes, or more pre-
cisely choices, from a set of inputs, the characteristics of
the options, and have been mute about the underlying
cognitive and neuronal processes underlying choice.
This interest in predicting outcomes has been associated
with a reliance on algebraic models that specify a trans-
formation of these properties of external options to a
rank ordering of the attractiveness of options, an idea
developed in some detail in Chapter 1. These models
said little about how the brain and cognition might trans-
form these inputs into output.

These days, that first glance would be very mis-
leading. Neuroeconomics today makes great use of
both models that are meant to provide accounts
of what should be chosen (normative models) and
models that describe what is actually chosen (descrip-
tive models). This has been facilitated by two impor-
tant trends: the first is that there is increasing
evidence of brain processes that correspond, in some
areas, to the output generated by the mathematical
expressions employed by some of these historical
models. For example, for simple choices, the value of
an option described by some of these models seems
to be encoded by the medial orbitofrontal cortex and
ventral striatum (see Chapters 8 and 20; Kable and
Glimcher, 2007; Knutson et al., 2007; Plassmann et al.,
2007; Rangel et al., 2008). The second is that
models of decision making are changing: faced with
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a plethora of possible accounts mapping inputs to
options, there is an emerging consensus that models
that make predictions about additional data, data
emerging from an understanding of cognitive pro-
cesses, would both winnow this plethora of possible
accounts and would help build more robust, useful
and reliable models.

This chapter consists of two parts. The first part
describes the history of modeling in choice with an
emphasis on the psychological, from normative to
descriptive and from algebraic to process models.
This review of the major areas of the psychology
of decision making focuses on three topics that are
central to the study of choices: (1) choice under
uncertainty (such as deciding whether or not to buy
a lottery ticket, a stock, or an insurance policy),
where the outcomes are uncertain; (2) choice under
certainty where the outcomes are known (such as
deciding which car to buy); and finally (3) choice
across time (such as deciding whether to study in
hopes of doing better in a distant exam or to,
instead, party tonight). The second part of this chap-
ter illustrates the newer style of computational pro-
cess models which describe the psychological and
neural processes in addition to predicting choices,
and illustrates this class of models in detail using
one important subclass that has had a great impact
in neuroscience: diffusion models.

MODELS OF RISKY CHOICE

Normative Origins

Most theories of choice are either normative models
that advise people about how they should make
choices, or descriptive models, portraying how they
actually make choices. The origins of normative
models of how to make choice under risk occurred
in the eighteenth century, in response to questions
presented by gambling. Recall that most gambles
consist of a set of outcomes and their associated
probabilities. Imagine simply flipping a coin to dou-
ble your money, say an initial stake of $10, or lose
it all. The coin flip gives each outcome a probability
of .5, and the two outcomes are either $0 or $20. The
early normative advice about how to choose between
two gambles was simply to choose the one with the
highest expected payoff:

EVðXÞ5
X
x

pðxÞUx ð3:1Þ

where x is the payoff for each outcome, 1. . .X, and p is
the probability associated with that outcome. Thus,

in our coin flip example, .53 $01 .53 $205 $10.
However appealing the idea of weighting payoffs by
their probability might have been in this early expected
value theory, this approach implied the uncomfortable
fact that the value of each increasing dollar to every
chooser was the same: it required that the pleasure gen-
erated by increasing one’s wealth, x, from $10 to $20 is,
according to Expected Value, exactly the same as the
impact of an increase from $999,980 to $1,000,000.

In response to this uncomfortable fact, Bernoulli
(1738) proposed that the decision maker should instead
pick the gamble with the highest expected utility where:

EUðXÞ5
X
x

pðxÞuðxÞ ð3:2Þ

The function that maps actual wealth, x, on the
x-axis into utility for wealth, u(x), is in this formulation
no longer linear but usually “concave,” for example,
a power function of the form, u(x)5 xθ, where θ is a
number less than or equal to 1. The exponent θ is thus
a parameter that describes the curvature of this func-
tion and serves as an index of an individual’s degree
of risk aversion. Put another way θ, 1 corresponds to
money having diminishing marginal returns, a point
developed in Chapter 1. This idea of expected utility
has been the dominant normative theory in economics,
in part because von Neumann and Morgenstern (1953)
provided an intuitively appealing axiomatic founda-
tion for expected utility (EU) maximization, which
made it a normatively attractive decision criterion not
only for repeated decisions in the long run, but
when extended by Savage (1954) also for unique risky
decisions even when the true probabilities are not
known to the decision maker. Here we gloss over the
very foundational conceptual differences between the
classical economic approach of Bernoulli and the neo-
classical approach of von Neumann and Morgenstern
that are the subject of Chapter 1.

Descriptive Modifications

Starting as early as the 1950s, empirical evidence,
however, began to cast doubt on EU as a descriptive
choice model (Allais, 1953). While these data did not
catch the attention of many economists, by the early
1970s there were a significant number of empirical
observations that could not be accounted for by
expected utility (Kahneman and Tversky, 1979; see Wu
et al., 2004 for a historical overview). While there had
been piecemeal attempts to account for each of the fail-
ures of expected utility, prospect theory (Kahneman
and Tversky, 1984; Kahneman and Tversky, 1979)
presented three major changes to expected utility
intended to account for many of these known failures
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as well as several new problems identified by Kahneman
and Tversky (see the Appendix for a detailed descrip-
tion of prospect theory). These changes were: (1) intro-
ducing a transformation relating objective probabilities
to subjective probabilities; (2) defining outcomes
(utilities) not on total wealth as in expected utility but
rather on gains and losses relative to a dynamic reference
point; and (3) allowing losses to have a different
mapping into value than that of gains, a phenomenon
they called loss aversion.

Prospect theory is a descriptive theory of choice
because it attempts to describe the choices that people
make, and not, like a normative theory, how choices
should be made. In the intervening three decades, pros-
pect theory has flourished as the leading descriptive
model of decision under risk, and has been used to
account for many empirical phenomena (Kahneman
and Tversky, 2000). There have been many successful
attempts at implementing prospect theory in realistic
settings such as medical decision making (Bleichrodt
et al., 2001), consumer reactions to supermarket prices
(Hardie et al., 1993) and behavior in labor and real
estate markets (Camerer et al., 1997; Genesove and
Mayer, 2001). Paralleling recent developments in neu-
roscience, individual differences in prospect theory
parameters are serving as explanations for differences
in observed behavior in games (Tanaka et al., 2010)
and researchers have developed technologies for mea-
suring these parameters quickly (Toubia et al., 2012).
For a comprehensive review of prospect theory see the
Appendix; for a review of its applications see Wakker
(2010) and Camerer (2004).

Several different descriptive theories have, however,
emerged as alternative mappings between options and
choices (for example: Birnbaum, 2008; Birnbaum et al.,
1999; Loomes, 2010; Loomes and Sugden, 1982). One
robust set of findings is that the rank order of the
outcomes matters: the extreme outcomes of a gamble
have more impact on choices than would be expected.
In economics, these so-called rank-dependent models
(see Quiggin, 1993 for a review) and Tversky and
Kahneman’s Cumulative Prospect Theory (Tversky and
Kahneman, 1992) were developed to address these
results. The basic intuition that guides these models is
that decision makers give more weight to outcomes
that are particularly good, or particularly bad in the
set of possible outcomes when considering the relative
values of the available options.

These models have been very successful in predict-
ing choice, and in establishing insights into phenomena
such as framing and loss aversion. For all of their suc-
cess and impact however, prospect theory and

these related models share important properties with
expected value and expected utility theories: they define
a mapping between characteristics of the objects under
consideration and their value, but are mute to the cogni-
tive computations that may construct this mapping
(Brandstätter et al., 2006; Johnson et al., 2008), as in fact
do most of the alternatives to this class of theory.

Two particular properties of this entire class of
models that they share are: (1) the assumption that out-
comes are weighted by their probabilities; and (2) that
all outcomes are examined. Thus, if the decision maker
is faced with a complex decision with hundreds of
outcomes, all must be examined and combined. As we
will see, this is an important feature, perhaps even a
constraint, to which we will turn next.

Heuristic Models of Risky Choice

Developed in response to these observations, heuristic
models (see Payne et al., 1993 for a review) describe
shortcuts for making a choice or judgment that do not
necessarily include these two properties. For risky
choice, heuristic models differ from the preceding
classes of integration models with regard to both proper-
ties we have described: first, these models do not
always weight outcomes by their probabilities. Instead
they may, for example, calculate the differences in pay-
offs (González-Vallejo, 2002; González-Vallejo et al.,
2003; Tversky, 1969), or make a series of comparisons
such as which gamble has the biggest and most likely
outcome (Brandstätter et al., 2006). Second, they may
intentionally ignore available information; they may for
example not even consider outcomes with small payoffs
or small probabilities. If a gamble has a small probabil-
ity (say .01) of a small outcome (say losing $.10) this
option might be ignored entirely during the decision
process. These approaches present a stark contrast with
integration models, such as prospect theory.1

Heuristic models have strengths and weaknesses. One
important strength is that they often make predictions of
not only what is chosen, but also make predictions for
other characteristics of the choice process, such as how
long it will take to make a choice (reaction time), or what
information will and will not be examined while making
a choice. This kind of information can be very impor-
tant in separating models, because often very different
models can make very similar predictions. For example,
the priority heuristic (Brandstätter et al., 2006) proposed
that people made choices through a series of compari-
sons: first compare the amounts to win in the minimum
outcome, then the probabilities of the minimum
outcome, then the amounts of the maximum outcome.

1The original description of prospect theory described similar ideas as editing operations that were applied before gambles were

evaluated.
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At each stage, if the difference between the options
exceeds 10%, the process stops and the gamble better
on that attribute is chosen. This process seems very dif-
ferent from the process implied by integration models
like prospect theory or expected utility, which both
weight outcomes by their probabilities and look at all
information. Despite these differences, the priority
heuristic makes choices that are very similar to prospect
theory and in some cases fit the data better. If it were
not for the predictions about what information is exam-
ined, the two models would both be strong candidates
as choice models. However, when one examines the
information that is acquired by the decision maker,
the priority heuristic appears to be a poor predictor
of information choice (Johnson et al., 2008). That is an
important distinction for fields like neuroeconomics
where the underlying process is of tremendous
importance.

More generally, the emphasis in heuristic models on
making predictions for different kinds of heuristic
behavior, and not just choices, is a real strength: by
making predictions for multiple dependent measures,
extra constraints are placed on the model and models
that mimic on one measure can often be discriminated
when both measures are examined. At the same time,
these models have not reached the point where they are
easily applied to real-world decision problems: there
is not much in the way of off-the-shelf technology that
allows these models to be applied to problems of
consumer choice and public policy, for example. Thus,
models like expected utility, and to a lesser extent,
prospect theory, remain the mainstay of applications.

MODELS OF RISKLESS CHOICE

Multi Attribute Utility Theory

Riskless choices involve choosing options where the
outcomes are known, like buying a car or smartphone,
and these options are usually thought of as consisting
of a set of features or attributes. In the case of a car,
these attributes might include price, gas mileage,
room, appearance, and acceleration.

The history of riskless choice, in many ways, paral-
lels the origins of the choice models described above.
The multi-attribute utility model served, in many ways
the role of expected utility in more classical models.
In such a model the utility of an offer is defined as:

Ui 5α1
XQ

q51
Viq ð3:3Þ

where Viq�fq(Xiq) represents a possibly nonlinear value
function for the qth attribute of the alternative i. This
model has lesser normative status because it does not

originate from a strong set of appealing axioms, but
the similarities between this model and expected
utility are striking. In this framework, all the pieces of
information about each of the alternatives considered
are summed, producing an aggregate utility for each
of the alternatives. In our car example, each attribute
of each car, like price or gas mileage has a value
(called a part-worth in the marketing literature), the
Viq in the equation above, and these are summed into
an overall utility for each car, the Ui. In some of the
most popular versions of this model, the probability
of an option being chosen is given by the p(choosing
option i)5Ui/

P
Ui or the ratio of the utility of the

option over the sum of the utilities of all the options.
This property is called the Luce Choice Axiom (Luce,
1977).

These models and their close relatives have been the
driving force behind much applied work in many
social sciences, in particular in marketing and econom-
ics and have been useful in thousands of studies.
However, such value maximization models (Tversky
and Simonson, 1993) make two kinds of strong predic-
tions that suggest that they do not correspond to the
underlying psychological properties that are actually
producing these choices in people. As detailed in the
next section, these concern both predictions for choice
probabilities as the number of options changes, and
predictions for the choice process itself.

Cognitive Limitations and Context Effects

The multi-attribute utility model, as a descriptive
model, falls short on two grounds. The first problem is
the assumption that the value of an option should be
independent of the choice set. To illustrate briefly, con-
sider Figure 3.1, and imagine that a decision maker is
faced with choosing between two choice options t (for
target) and c (for competitor). Figure 3.1 plots the
options in a space defined by two attributes. We are
interested in how the proportion of choices in a set of
decision makers might change when we add third
options, called decoys (and labeled d in Figure 3.1) to
different places in Figure 3.1. If choices obey the Luce
choice axiom (as we might hope they would), adding
an option can only reduce the share of existing options,
because the option can only make the denominator in
the ratio larger, lowering its probability. This property
is called regularity, and says that, if a set of decision
makers chose between c and t, then the addition of da

can only reduce the share of choices of both (Huber
et al., 1982; Tversky and Simonson, 1993). Empirically,
however, the choice share of the t is usually increased,
a result known as the attraction effect because da

seems to attract choices to t.
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More generally, these violations are termed context
effects (discussed in more detail in Chapter 24), because
the characteristic of the choice set, the context of the
choice, influences what is chosen. Two other context
effects also pose problems for most multi-attribute
analysis, compromise, in which the addition of dc in
Figure 3.1 increases the share of t more than predicted
by value maximization and similarity, where the addi-
tion of ds reduces the share of t more than predicted.
Together these three context effects provide a strong
set of constraints for models of riskless choice that
have not yet been entirely met by current models.

The second challenge is plausibility: as was the case
for integration models of risky choice such as expected
utility and prospect theory, a multi-attribute utility
model of riskless choice must by design consider
all relevant information, for all the alternatives. This
seems computationally implausible for larger sets of
options and attributes. This is, essentially, the same
assumption that proved problematic for risky choice.
Patterns of information search have been examined
using eye movement recording, verbal reports, and
manual information acquisition, all of which show that
for large choice sets some information is ignored. In
fact, a common pattern of search suggests that multi-
ple processes are employed with large sets of options:
the first compares the options on a limited number of
attributes, followed by a closer and more complete
examination of a small subset of attributes. The obser-
vation that decision makers can be quite selective in
information acquisition, particularly with larger sets of
options and attributes, supports the idea that heuristic
shortcuts are involved in riskless choice as well.

Heuristic Models of Riskless Choice

Together, these considerations led to the develop-
ment of a set of simplified choice procedures for

making choices. Paralleling heuristics for risky choice,
these heuristic models both ignore information and
combine information using shortcuts such as direct
comparison or by computing differences. A large list
of potential alternative choice procedures arose from
these changes in assumptions. One example would be
elimination by aspects (Tversky, 1972), a model that
suggests that a decision maker has a cutoff for each
attribute (for price: “I won’t buy any car costing more
than $30,000”) and compares each to that standard,
selecting the option that first passes all of these cutoffs.
Other heuristic choice procedures include comparison
of alternatives on each attribute, the additive difference
rule (Russo and Dosher, 1983; Tversky, 1969), and pro-
cedures that chose the alternative that is best on the
most important attribute, a lexicographic procedure
(Johnson and Payne, 1985; Gigerenzer and Goldstein,
1996). These heuristics stand in stark contrast to the
idea that the value of each option is calculated exhaus-
tively, an idea that motivates much contemporary
neuroeconomic thinking about choice. But that may be
changing. It has recently been argued that relative
evaluation, how options compare to each other, is a
very important, if not the most important, component
of choice even in a neuroeconomic domain (Vlaev
et al., 2011).

While there are clearly a profusion of models, the
richness of description seems necessary to understand
choice in complex settings with many options and/or
attributes. But this richness may also be a weakness:
many different procedures appear to be used, even in
the course of a simple decision (Payne et al., 1991).
This complexity makes the application of these proce-
dures for understanding choice challenging, and these
applications have been quite limited.

MODELS OF CHOICE OVER TIME

A third major stream of theory concerns choice
that involves time, a subject dealt with in detail in
Chapter 10. This is, prototypically, a choice between a
smaller reward that is received sooner, and a larger
reward that is received afterwards. Again an algebraic
input�output model, discounted utility, has served as
the basis for much theoretical and empirical work and
has normative basis in a set of axioms (Rubinstein and
Fishburn, 1986). The basic idea of the model is that one
assumes two things: first that the longer one has to
wait for a reward the less it is worth and second that
this rate of decline in value with delay is exponential.
That is to say that the value of a reward is assumed to
decline by a constant fraction at each period of time.
The standard form for this model describes the utility
of consuming a reward at each time period as simply
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FIGURE 3.1 Context effects in choice.
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the product of the reward’s intrinsic utility and the
fractional decline in value imposed by a delay of
duration d:

Uðx; dÞ5UðxÞαd ð3:4Þ

where the utility of x is reduced by a proportion α,
each time period or α to the d for each of the d time
periods. The proportion, α is often called the discount
rate.

While the idea was not originally thought of as a
normative model (Frederick et al., 2002), this equation
has been appealing, in part, because it has a marked
similarity to the standard formulas for discounting
cash flows and compounding interest in the financial
world.

While this form has been the dominant model and
basis for extensive work in economics, empirically,
there have been many departures from its predictions.
In their classic review Frederick et al. (2002) describe
several findings that are inconsistent with Discounted
Utility. The first, hyperbolic discounting, refers to the
fact that the empirically observed discount rate is not
constant but decreases with time; the longer the delay
the lower the apparent discount rate. The second, the
magnitude effect, refers to the fact that the observed
discount rate depends upon the amounts involved,
with larger amounts being discounted at lower rates.
Finally while the model would say that discounting
should be constant independent of whether one is
accelerating a reward closer to now, moving consump-
tion forward, or delaying a reward to later in time,
the direction effect shows that the observed rate of dis-
counting depends on whether one is accelerating or
delaying a reward. Roughly speaking, people are
about twice as impatient when a reward is delayed
than when it is pushed forward.

The first of these anomalies is usually modeled
by changing the way that rewards are valued, from
assuming a constant discount rate to one which dis-
counts rewards more when they will be received
sooner, these models are called hyperbolic (Kirby and
Herrnstein, 1995) or quasi-hyperbolic (Laibson, 1997)
models and have been the subject of intense interest
and debate in neuroscience, much of which is dis-
cussed in Chapter 10 (Glimcher et al., 2007; Kable
and Glimcher, 2007; McClure et al., 2007, 2004). In
contrast, modeling the other two anomalies has not
drawn as much attention until recently. Scholten and
Read (2010) have recently proposed a model that pro-
vides accounts for all three anomalies. It, like many of
the heuristic models of risky and riskless choice sug-
gests that decision makers compare the rewards that
will be received and the times at which they will be
received.

An additional anomaly concerns discount rates
themselves. In real economic settings there should be
a relationship between how much it costs to borrow
money, the market interest rate, and a person’s
discount rate. The reason is simple: if one is tempted
by an immediate reward, but if waiting increases the
reward, one could always borrow the larger amount
now, and repay the loan when the larger amount
arrives. This is profitable if the discount implied by
the choice is greater than the cost of borrowing. Thus,
people should never choose a smaller sooner option
if the rewards to waiting are larger than the cost of
borrowing. However, not only are stated personal
discount rates higher than the cost of borrowing in
surveys and laboratory experiments, but this is also
true in classic field studies with real and financially
costly choices. For example, members of the military
frequently chose lump sum payments (Warner and
Pleeter, 2001) rather than a series of payments that
were much larger, implying a personal discount rate of
over 20%. There is to date no formal model that
accounts for this, but the idea that people overestimate
future money and time resources (Zauberman and
Lynch, 2005) is one appealing explanation. There is
both behavioral (Read et al., 2005) and neural evidence
(Peters and Büchel, 2010) that the predicted accessibil-
ity mediates discounting: concrete dates for future
events increases patience.

COMPUTATIONAL PROCESS MODELS

A separate effort to model very simple choices
originated in psychology over the last 30 years that
differs in several ways from the models described in
the previous section. The main domain of study for
these popular models has been the analysis of tasks
that require two alternative decisions that are made
reasonably quickly in what is assumed to be a one-
step process. Decisions with mean reaction times
(RTs) less than 1.0�2.0 s are the typical subject of
these models. Very importantly, these models make
predictions not only about the choices of subjects but
also about other features of the decision process
like the RTs or the reported confidence that subjects
have in their decisions. This is a point developed in
detail in Chapter 13.

Such models have recently been quite influential in
neuroscience, in part because the tasks they describe
are close to the simple tasks typically used in both
human brain imaging experiments and in the study of
nonhuman primate decision making. They have also
been influential because they make specific predictions
about the structure of the underlying neural processes.
The remainder of the chapter focuses on one class of
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these models that has proven to be very useful, diffu-
sion models. Two closely related accounts, important
because they have been able to account for some con-
text effects of the kind described above are: Decision
Field Theory (described in Chapter 4; Roe et al., 2001)
and Leaky Competing Accumulator Models (Usher
and McClelland, 2004).

DIFFUSION MODELS OF
RAPID DECISIONS

Diffusion models assume that noisy information is
accumulated to one of two or more decision criteria,
and that the time taken by the model to reach a crite-
rion accounts for the response time (RT) distributions
observed for both correct and error responses made by
subjects. In the classic diffusion model of Ratcliff and
colleagues (Ratcliff, 1978; Ratcliff and McKoon, 2008),
we begin by assuming a process which drifts to the
right at a constant rate from an initial position as
shown in Figure 3.2. Typically time is treated as a dis-
crete variable that starts at 0. The horizontal position
of the particle at any time, t, is thus simply t. The parti-
cle is hypothesized to diffuse upward or downward a
small amount at each increment of time with the
upward and downward directions reflecting two
possible alternatives in a two alternative choice task.
The magnitude of the particle’s diffusion is controlled
by the amount of evidence provided to the model
in that increment supporting either the “upward” or
“downward” decision. The vertical position of the
particle at any given point of time thus reflects the
sum of the evidence for the upwards and downwards
decisions available at that time. Once the particle is
observed to cross a fixed upper or lower criterion line,
the model records a decision, as shown in Figure 3.2.
If, as is usually assumed to be the case, the evidence is
noisy or stochastic then the path traced by the process
enroute to the boundaries will vary from repetition to

repetition � yielding an estimate of the reaction time
distribution for each alternative under any given set of
conditions.

To take a concrete example, consider a brightness
discrimination task in which subjects report whether
or not a stimulus is brighter or darker than some
remembered reference intensity. In a diffusion model
of that decision-making process, a bright stimulus will
induce a positive drift rate (towards the top boundary)
and if the accumulated evidence reaches the top
boundary, a “bright” response is executed � a “dark”
response would then correspond to the bottom bound-
ary. In Figure 3.2A, the arrows show the drift rate
from the starting point to the “bright” boundary for a
bright stimulus (red arrow), a slightly bright stimulus
(green arrow) and a dark stimulus (blue arrow).

The three paths in Figure 3.2A show three different
decisions all from the same drift rate. Because the deci-
sion process is noisy, particles can of course occasion-
ally hit the wrong boundary, produce error responses
like those observed in behavior. Interestingly, both
correct responses and errors show right-skewed distri-
butions of response times consistently with the same
shape just like those observed in real behavior (see
Ratcliff and McKoon, 2008, Figure 8). This is one of the
very powerful things about the model. Empirical RT
distributions are right skewed with an approx.
exponential tail and hundreds of subjects have been fit
that keep showing this shape. The diffusion model
keeps producing exactly this shape.

Non-Decision Component

Outside of the accumulation of evidence captured
by the drifting particle, there are other processes such
as stimulus encoding, memory access, and movement
processes that produce the behavioral response of the
subject. There is also the process of transforming the
stimulus representation into a decision-related variable
that drives the decision process. These components of
processing take time that is not captured directly by

Bright

Dark

(A) (B) (C)

FIGURE 3.2 (A) Quality of evidence from perception or memory. (B) Speed/accuracy tradeoff reflected in boundary separation changes.
(C) Bias towards top boundary (blue) changes to bias towards bottom boundary (red).
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the model and are combined into one “non-decision”
component which has a mean duration of Ter. The total
processing time for a decision is thus taken to be the
sum of the time taken by the decision process and the
time taken by the non-decision component.

Boundaries, Speed-Accuracy, and Bias Effects

Experiments have examined biasing subjects using
instructions such as “be fast” or “be accurate,” by
rewarding the two responses differentially or by mak-
ing one response more likely to be correct than the
other. Perhaps surprisingly, nearly all of these variables
can be captured in the model by adjusting the locations
of the upper and lower criteria, or boundaries. For
example, as shown by the red arrows in Figure 3.2B,
responses can be speeded at the expense of a higher
error rate by moving the decision criteria closer to each
other, from the blue to the red settings. The model can
be biased toward one versus another response by mov-
ing the decision criteria from the blue to red settings as
in Figure 3.2C. And perhaps most interesting is the
observation that changes in accuracy and RT with
manipulations that change either the speed�accuracy
tradeoff or that induce bias in responding are well
accounted for by changes in the simple boundaries that
represent the two decision criteria.

Across-Trial Variability

There was a significant problem with early models
of these kinds, which were originally implemented
as random walk models (the discrete version of a dif-
fusion process) (Stone, 1960), as well as with the sim-
plest diffusion model. If the starting point is midway
between the boundaries, correct and error RT distribu-
tions are identical � a feature that is not observed in
real data. One way to handle this problem is to allow
model parameters to vary from trial-to-trial. If

parameters are drawn from a distribution, observed
patterns of correct versus error RTs are easily pro-
duced. This is presumed to reflect the notion that sub-
jects cannot hold the parameter values exactly constant
from one trial to the next (Ratcliff, 2013). There is
direct evidence for variability in drift rates from trial
to trial in perceptual judgments using single trial EEG
regressors to divide data based on the quality of the
stimulus as judged by the electrical signal (regressor).
Drift rate estimates differ as a function of the regressor
(Ratcliff et al., 2009).

Figure 3.3 illustrates how this mixing of parameters
works with just two values of the parameter instead
of with a full distribution as would normally be done.
Figure 3.3A shows two drift rates, the red one pro-
duces high accuracy and fast responses, the blue one
produces lower accuracy and slow responses. The
mixture of these produces slow errors because 5% of
the 400-ms process averaged with 20% of the 600-ms
process gives a weighted mean of 560 ms which is
slower than the weighted mean for correct responses
(491 ms). Figure 3.3B shows the effect of different
starting points: the red distributions are for processes
that start further away from the correct boundary.
Processes that start near to the correct boundary have
few errors and the errors are slow (because there is a
greater distance to travel), while processes that
start further away have more errors and the errors are
fast. The combination leads to errors faster than correct
responses.

Model Constraints

The separation of drift rate from the decision crite-
ria and non-decision processes is one key contribution
of the model. In the model, stimulus difficulty affects
drift rate but not criteria, and speed�accuracy shifts
are represented in the criteria, not the drift rate.

RT = 400 ms
Pr = 0.95

RT = 400 ms
Pr = 0.05

Weighted
Mean RT
= 491 ms Weighted

Mean RT
= 396 ms

Weighted
Mean RT
= 560 ms

Weighted
Mean RT
= 370 ms

Correct
responses

Correct
responses

Error responses Error responses

a a
v v

z

0

(A) (B)

0

z = 
a/2

RT = 600 ms
Pr = 0.80

Pr = 0.80
RT = 450 ms

Pr = 0.95
RT = 350 ms

Pr = 0.05
RT = 450 ms

RT = 600 ms
Pr = 0.20

Pr = 0.20
RT = 350 ms

v2

v1

FIGURE 3.3 (A) Effect of different drift rates. (B) Effect of different starting points.
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Thus if difficulty varies, changes in drift rate alone
must accommodate all the changes in performance-
accuracy and the changes in the spreads and locations
of the correct and error RT distributions. Likewise,
changes in the criteria affect all the aspects of perfor-
mance. In these ways, the model is tightly constrained
by data.

Model Fitting

It is important to note that to fit this model to
data, accuracy and RT distributions for correct and
error responses have to be simultaneously fitted as
described in the next chapter. Also, it is worth noting
that in any data set there is a potential problem
imposed by so-called outlier RTs (Ratcliff, 1993). To
fit RT distributions, a good compromise that reduces
the influence of outliers is to use quantiles of the RT
distribution and fit the model to the proportion of
responses between the quantiles. Because propor-
tions are used, accuracy is automatically included in
this computation. For details of how to fit the model
to data, see Ratcliff and Tuerlinckx (2002) and fitting
packages by Vandekerckhove and Tuerlinckx (2007)
and Voss and Voss (2007).

Mapping from Accuracy and RT to Drift Rate

In simple tasks, as task difficulty increases, accuracy
goes from near 100% correct to chance (50% correct)
and RT changes from fast to slow. An example of this
is shown in Figure 3.4 in a simple numerosity discrimi-
nation task in which an array of asterisks is presented
on the screen and subjects have to decide whether the
number is larger or smaller than 50. The diffusion
model was fitted to these data and the right panel
shows drift rate, which is approximately linear. This
shows that the diffusion model (which fits the accu-
racy values as well as RT distributions for correct
and error responses) extracts a simple (in this case)
linear function from the nonlinear accuracy and RT
functions.

Applications

One aspect of research on diffusion models in
psychology is in their applications to answer questions
about the effects of differences in groups of subjects
and individual differences among subjects. These
applications are usually embedded in the literatures of,
for example, aging, clinical applications, development,
sleep deprivation, ADHD, dyslexia, numeracy, and so
on. In aging research, for example, in many but not all
tasks, age does not affect drift rates but does result in
a larger non-decision time and wider boundary settings
(though boundary separation can be altered in older
adults by convincing them it is ok to go faster at the
expense of making a few more errors). In the same
studies, differences in IQ across individuals within age
groups affect drift rates but not non-decision times or
boundary separations. The values of these three model
parameters for each subject are highly correlated across
tasks which show that the model uncovers stable indi-
vidual differences in quite different tasks (e.g., numer-
acy, word/nonword discrimination, and memory, see
Ratcliff et al., 2010, 2011). This set of dissociations pro-
duces quite a different view of the effect of age on speed
of processing. Also, the size of these effects is large and
individual differences three- to five-times larger than
estimation error are achieved in just one 40-min session
of data collection per task. From a practical point of
view, because of the stable individual differences
obtained from fitting the model, this approach offers
the possibility of practical applications in clinical and
neuropsychological testing domains.

Competing Models

The diffusion model described to this point is one of
a class of models that have related features. Others
include the leaky competing accumulator model
(Usher and McClelland, 2001) that assumes two racing
diffusion processes, and the linear ballistic accumula-
tor (Brown and Heathcote, 2008) that assumes two rac-
ing deterministic accumulators. Both these models also
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assume variability in model components across trials.
In studies that have been carried out, interpretations of
the major effects of different independent variables are
the same across the models (Donkin et al., 2011;
Ratcliff et al., 2005). This means, that within reason,
conclusions from one model will produce about the
same conclusions for the other model.

Multichoice Decision Making, Confidence,
and Simple RT

The two-choice diffusion model is quite well estab-
lished, but there is considerably less research on (but a
growing interest in) how these models can be extended
to choice problems with more than two options
being considered. It is more difficult to conduct well
designed experiments that vary the number of alterna-
tives alone and there is more model freedom because
different parameters are needed for the different
choices. Models have been advanced to examine visual
search (Basso and Wurtz, 1998; Purcell et al., 2010)
to motion discrimination (Niwa and Ditterich, 2008),
and other more cognitive approaches (Leite and
Ratcliff, 2010). Also, confidence judgments in decisions
and memory are multichoice decision and these are
being seriously attacked (Pleskac and Busemeyer,
2010; Ratcliff and Starns, (in press); Van Zandt, 2002).
In many of these approaches, a variety of competing
models are compared, but as yet, conclusions about
which architectures are more promising are only just
starting to develop.

In contrast, relatively little work has been done
recently on simple RT or “one-choice” decisions. In
these kinds of tasks, there is only one key to hit when
a stimulus is detected. Ratcliff and Van Dongen (2011)
presented a model that used a single diffusion process
to represent the process accumulating evidence. The
main application was to the psychomotor vigilance
task, a task in which the subject is seated in front of
a millisecond timer which starts some variable time
after the prior response. The data are a single RT dis-
tribution and the model is designed to fit that (there is
no accuracy measure). Results showed good fits, and
that drift rate tracked an independent measure of alert-
ness. There were correlations in drift rates for a simple
brightness detection task and a two-choice brightness
discrimination task. These results provided validation
beyond goodness of fit of the model to data.

Use in Neuroscience

One of the major advances in understanding decision
making is in neuroscience applications using single cell
recording in monkeys (and rats), and human brain
activity including fMRI, EEG, and MEG. All these
domains have had interactions between diffusion model
theory and neuroscience measures. Hanes and Schall

(1996) suggested a connection between diffusion models
and single cell recording data, and this was taken up
in work by Shadlen and colleagues (e.g., Gold and
Shadlen, 2001). Ratcliff and colleagues (2003) showed
that the buildup in single neuron activity in the monkey
superior colliculus neurons was mirrored by simulated
paths in a diffusion model, so that the average of a
number of paths moving to a decision bound in the
model matched the average firing rate for neurons
involved in producing a decision. Pouget and collea-
gues (2011) have used single cell data (from the fron-
tal eye fields) and behavioral data in a visual search
paradigm with monkeys to discriminate among clas-
ses of diffusion models. Their research program is
aimed at directly linking neural and behavioral levels
of analysis by using the input from one class of
visual neurons in the FEF to drive decision-related
neurons. There have also been significant modeling
efforts to related models based on spiking neurons to
diffusion models (e.g., Deco et al., 2012; Roxin and
Ledberg, 2008; Wong and Wang, 2006). Diffusion
models are also being used in human neuroscience
using fMRI and EEG techniques, although often in
non-reaction time tasks. One effort is to look for
stimulus independent areas that implement decision
making (e.g., vmPFC, Heekeren et al., 2004). Other
approaches have mapped diffusion model parameters
onto EEG signals (Philiastides et al., 2006). Reviewing
this research would require a chapter by itself, and
indeed, Chapters 8 and 20 provide just such reviews.

JUDGMENT

We have emphasized choice in our short review of
concepts from Judgment and Decision-making research.
There are many other topics, normally grouped under
the label of “judgment” that should be of interest to
neuroeconomics. Concepts in areas such as probabilistic
inference have strong parallels to the issues that we have
examined in choice: there are normative models in many
cases, and heuristic models that have more descriptive
accuracy, but known departures from normative pre-
dictions. One general theme that might be both useful
for, and informed by neuroeconomics is the idea of
attribute substitution (Kahneman, 2003; Morewedge
and Kahneman, 2010; Shah and Oppenheimer, 2008).
The basic idea pursued in this line of research is that
if one is trying to estimate one quantity, such as the
soundness of an argument, one might, without aware-
ness, substitute another quantity that is easier to com-
pute or more available, such as the ease with which one
can read the font in which the argument is presented.
These, and many other related issues would benefit
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from an understanding of the neural substrate of these
meta-cognitive processes.

CONCLUSION

In this brief overview, we have shown two different
approaches used in psychology to model choice. The
first, with a long historical tradition covers both simple
and complex choices in three different domains: deci-
sions under risk, riskless choice, and over time. While
broadly they can predict choices in many domains,
the development of concerns with underlying cognitive
and neuronal processes is relatively recent. This contrasts
with more recent computational process models that are
concerned with simpler choices but make predictions for
choices and errors, and have a strong conceptual connec-
tion to neural firing rates. As seen in Chapter 8, we are
starting to see models at the intersection of the two, for
example explaining context effects using a type of diffu-
sion model. We think this melding of approaches is a
very promising area for future explorations.
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González-Vallejo, C., 2002. Making trade-offs: a probabilistic and context-
sensitive model of choice behavior. Psychol. Rev. 109 (1), 137�154.
Available from: http://dx.doi.org/10.1037//0033-295X.109.1.137.
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13. Dynamic Experiments for Estimating Preferences: An
Adaptive Method of Eliciting Time and Risk Parameters.

Toubia, O., Johnson, E.J., Evgeniou, T., Delquié, P., 2013. Dynamic
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