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The effects of aging and IQ on performance were examined in 4 memory tasks: item recognition,
associative recognition, cued recall, and free recall. For item and associative recognition, accuracy and
the response time (RT) distributions for correct and error responses were explained by Ratcliff’s (1978)
diffusion model at the level of individual participants. The values of the components of processing
identified by the model for the recognition tasks, as well as accuracy for cued and free recall, were
compared across levels of IQ (ranging from 85 to 140) and age (college age, 60–74 years old, and 75–90
years old). IQ had large effects on drift rate in recognition and recall performance, except for the oldest
participants with some measures near floor. Drift rates in the recognition tasks, accuracy in recall, and
IQ all correlated strongly. However, there was a small decline in drift rates for item recognition and a
large decline for associative recognition and cued recall accuracy (70%). In contrast, there were large
effects of age on boundary separation and nondecision time (which correlated across tasks) but small
effects of IQ. The implications of these results for single- and dual-process models of item recognition
are discussed, and it is concluded that models that deal with both RTs and accuracy are subject to many
more constraints than are models that deal with only one of these measures. Overall, the results of the
study show a complicated but interpretable pattern of interactions that present important targets for
modeling.
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In memory research, there is general agreement on a distinction
between item and associative information. In tasks that tap item
information, participants are asked to decide whether a test item
was presented earlier in an experiment. In tasks that tap associative
information, participants are asked to decide whether two items of
a pair were presented earlier in the same pair or in a different pair.
This distinction has a long history in experimental psychology.
Murdock (1974), for instance, made the distinction a centerpiece
of his approach to memory, and he reviewed much of the earlier
work separating these two forms of memory. More recently, a
number of studies have provided compelling evidence for the
distinction (Clark & Shiffrin, 1992; Hockley, 1991, 1994; Hockley
& Cristi, 1996; Humphreys, 1976, 1978; Malmberg & Xu, 2007;
Murdock, 1974, 1992).

In this article, we set global memory models as the context for
our research on item and associative information (Dennis & Hum-
phreys, 2001; Gillund & Shiffrin, 1984; Humphreys, Bain, & Pike,
1989; McClelland & Chappell, 1998; Murdock, 1982; Shiffrin &

Steyvers, 1997). The item–associative distinction has been a fun-
damental component of these models since their beginnings. In all
of these models, item and associative information are stored to-
gether in a single memory store. Whether items are stored as
vectors (Murdock, 1982) or cue–target associations (Gillund &
Shiffrin, 1984), there are not two separate stores. Instead, item and
associative recognition correspond to different ways of retrieving
information from a single memory store. In contrast to global
memory models, there are dual-process models (see e.g., Kelley &
Wixted, 2001; Yonelinas, 1997). For these models, item recogni-
tion and associative information can depend on separate sources of
information. Item recognition is said to depend mostly on “famil-
iarity,” whereas associative recognition is said to depend mostly on
“recollection.” At the end of this article, we discuss dual-process
theories in detail.

The experiment presented in this article provides new results
that address the item–associative distinction. In the experiment,
item recognition was tested with participants studying lists of
single words, each followed by a test list of single words to which
they responded “old” or “new.” Associative recognition was tested
with participants studying lists of pairs of words, each followed by
a test list made up of pairs of words. Participants responded
according to whether the words of a pair had appeared in the same
pair in the study list (“intact”) or different pairs in the study list
(“rearranged”).

The first innovation reported here is that we applied the well-
established diffusion model for response times (RTs) and accuracy
to the data from associative recognition. Most previous studies of
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associative recognition have measured only accuracy. For this
study, we measured both accuracy and RTs. It is important to
stress that these two measures can behave differently as a function
of age. For item recognition, previous research has found that older
adults can be nearly as accurate as young adults, but they are much
slower. For associative recognition, one might find a similar result
for speed—older adults much slower—but one might also find
that they are less accurate. The fact that the two variables can
behave differently means that a full explanation of item and
associative recognition must accommodate both accuracy and RT
measures.

In previous articles, we and others have shown that the diffusion
model can account for changes in RTs and accuracy across con-
ditions in a range of experimental tasks, including animacy cate-
gorization, brightness discrimination, color discrimination, item
recognition, letter discrimination, lexical decision, numerosity dis-
crimination, recognition memory, and visual search (Ratcliff, 1978,
1981, 2002; Ratcliff & Rouder, 2000; Ratcliff, Van Zandt, &
McKoon, 1999; Voss, Rothermund, & Voss, 2004). In research in
domains such as aging, child development, sleep deprivation,
depression, anxiety, aphasia, hypoglycemia, and vigilance, diffu-
sion model analyses have led to new and different interpretations
of performance, in particular by taking into account differences in
speed–accuracy tradeoff settings across participants and experi-
mental conditions (Geddes et al., 2010; Ratcliff, Love, Thompson,
& Opfer, in press; Ratcliff, Perea, Coleangelo, & Buchanan, 2004;
Ratcliff, Schmiedek, & McKoon, 2008; Ratcliff, Thapar, & McK-
oon, 2001, 2003, 2004, 2006a, 2006b, 2007, 2010; Ratcliff & Van
Dongen, 2009; Schmiedek, Oberauer, Wilhelm, Su�, & Wittmann,
2007; Spaniol, Madden, & Voss, 2006; Wagenmakers, Van Der
Maas, & Grassman, 2007; White, Ratcliff, Vasey, & McKoon,
2009, 2010a, 2010b).

In the present experiment we used an individual differences
approach to ask questions about item and associative memory. The
diffusion model was used to describe and compare the components
of processing that underlie performance at the level of individual
participants. The model explains differences in performance
among individuals in terms of their speed–accuracy trade-off set-
tings and the quality of the information upon which their decisions
are based, as well as processes such as encoding and response
execution.

The second innovation for the research reported here is that
we examined the effects of both IQ and age on item and associa-
tive recognition. We used differential effects of IQ and age to
separate the retrieval of item information from the retrieval of
associative information. In essence, we show that item and asso-
ciative recognition decline differentially with IQ and age.

Our approach here can be distinguished from previous studies of
IQ. Much of the work using IQ has focused on an “abilities”
approach in which measures from a range of different tasks are
combined to represent a single construct. We know of little re-
search on the relationship between IQ and item or associative
recognition (Kaufman, DeYoung, Gray, Brown, & Mackintosh,
2009). Furthermore, what research has been done for IQ and
long-term memory has been framed in terms of, for example, how
working memory and speed-of-processing measures can be used to
account for individual differences in long-term memory (see e.g.,
Unsworth, 2010).

For the effects of aging, the situation is different, with consid-
erable research on the effects of aging on item and associative
memory. Data have suggested that associative memory declines
with age more than item memory (see e.g., Buchler & Reder, 2007;
Craik, 1983, 1986; Craik & McDowd, 1987; Healy, Light, &
Chung, 2005; Kausler, 1994; Naveh-Benjamin, 2000; Schonfield
& Robertson, 1966; Wahlin, Backman, & Winblad, 1995). For
item recognition, the decrements with age have been relatively
small (Balota, Dolan, & Duchek, 2000; Bowles & Poon, 1982;
Craik, 1994; Craik & Jennings, 1992; Erber, 1974; Gordon &
Clark, 1974; Kausler, 1994; Neath, 1998, Chap. 16; Rabinowitz,
1984; Schonfield & Robertson, 1966). For associative recognition,
Old and Naveh-Benjamin (2008) conducted a meta-analysis of
data from 90 studies and found larger age-related deficits for
associative recognition than for item recognition, under a wide
variety of experimental manipulations.

In summary, there were three specific goals for the experiment
described in this article. The first was to use Ratcliff’s diffusion
model (Ratcliff, 1978; Ratcliff & McKoon, 2008) to extract, from
RT and accuracy data, measures of the components of processing
involved in item and associative recognition. The aim was that
differences among individuals in their speed–accuracy criterion
settings could be separated out of their data so as to allow pure
comparisons of memory ability across the two tasks.

The second goal was to examine the effects of age and IQ on
item and associative recognition. We expected that item and as-
sociative recognition would decline in memory at different rates as
a function of age but perhaps interacting with IQ.

The third goal was to examine individual differences within age
groups. In the experiment, there were three groups of participants:
college-age individuals, 60- to 74-year-olds, and 75- to 90-year-
olds. IQs ranged from 85 to 140. We expected performance to be
worse for lower IQ participants, but perhaps how much worse
would depend on age. For example, high-IQ participants might
perform better than low-IQ participants for college-age partici-
pants but less so for 75- to 90-year-olds.

Our experiment was focused on item and associative recogni-
tion. However, to (modestly) connect with research on recall, we
included tests of cued and free recall, both of which require
associative information. For cued recall, participants studied pairs
of words and were then given the first word of each studied pair
and asked to recall the second. For free recall, they studied lists of
single words and were then asked to recall as many of them as
possible.

The Diffusion Model, Aging, and IQ

The diffusion model applies to two-choice tasks for which mean
RTs are short, typically less than 1.5 s. In the model, evidence
about a stimulus is accumulated over time from a starting point (z)
to one or the other of two criterial amounts, or boundaries, one for
each choice. The better the information from a stimulus, the faster
evidence is accumulated. The rate of accumulation of evidence is
called drift rate (v). A response is executed when the amount of
accumulated evidence reaches a criterion, either 0 for a negative
response or a for a positive response. The processes outside the
decision process (e.g., encoding, memory access, and response
execution) are combined into a single parameter of the model with
mean duration Ter). Within-trial variability (noise) in the accumu-
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lation of information from the starting point to the criteria results
in processes with the same mean drift rate terminating at different
times (producing RT distributions) and sometimes terminating at
the wrong boundary (producing errors).

The values of drift rate, the criteria, and the nondecision com-
ponent vary from trial to trial. This assumption is required if
participants cannot accurately set these parameters to have the
same values from trial to trial (see e.g., Laming, 1968; Ratcliff,
1978). Across-trial variability in drift rate is assumed to be nor-
mally distributed with standard deviation �, and across-trial vari-
ability in the nondecision component is assumed to be uniformly
distributed with range st. Across-trial variability in the distance
between the two criteria is equivalent to across-trial variability in
the starting point (if such variability is not too large), which is
assumed to be uniformly distributed with range sz. Across-trial
variability in drift rate and starting point are necessary for the
model to account for the relative speeds of correct versus error RTs
(Ratcliff et al., 1999). The model fits both correct and error RT
distributions (an example is given later).

Performance includes, in addition to across-trial variability,
“contaminant” responses—responses that are spurious in that they
do not come from the decision process of interest (e.g., distraction,
lack of attention). To accommodate these responses, on some
proportion of trials (po), a random delay is added to the decision
RT. The across-trial variability in po is uniform between the
maximum and minimum RTs for each experimental condition (the
assumption of a uniform distribution is not critical; recovery of
diffusion model parameters is robust to the form of the distribu-
tion; Ratcliff, 2008).

The model is designed to explain all aspects of the data: accu-
racy, mean correct and error RTs, RT distributions, and the relative
speeds of correct and error responses. With only a single 45-min
experimental session, the model can successfully fit data for indi-
vidual participants, with standard deviations in the parameter es-
timates for boundary separation, nondecision time, and drift rate
typically 3–5 times smaller than the standard deviations across
participants.

The diffusion model is tightly constrained. The most powerful
constraint comes from the requirement that the model fit the
right-skewed shape of RT distributions (Ratcliff, 1978, 2002;
Ratcliff & McKoon, 2008; Ratcliff et al., 1999). In addition, across
experimental conditions that vary in difficulty (and are randomly
intermixed at test), changes in accuracy, quantile RTs, and the
relative speeds of correct and error responses are all captured by
changes in only one parameter of the model, drift rate. The
response criteria cannot be adjusted as a function of difficulty
because it would be necessary for the system to know which level
of difficulty was being tested before the accumulation of evidence
began. It is also usually assumed that the processes that make up
the nondecision component of the model do not vary with diffi-
culty.

The diffusion model has been applied to a range of experimental
tasks with younger and older adults as participants (Ratcliff,
Thapar, Gomez, & McKoon, 2004; Ratcliff et al., 2001, 2003;
Ratcliff, Thapar, & McKoon, 2004; Ratcliff et al., 2006a, 2006b,
2007, 2010; Spaniol et al., 2006; Thapar, Ratcliff, & McKoon,
2003). In particular, item recognition data have shown large in-
creases in RTs with age coupled with small changes in accuracy or
no changes in accuracy at all (Ratcliff, Thapar, & McKoon, 2004;

Ratcliff et al., 2006a, 2007, 2010). The RT data have suggested
large decrements in information in memory with age, whereas the
accuracy data have suggested only small decrements. The diffu-
sion model reconciles these seemingly inconsistent results by
mapping the two dependent variables onto the same underlying
decision process. We have found that large increases in RTs with
age are due mainly to increases in criteria settings and the duration
of the nondecision processes and that small or nonexistent deficits
in accuracy are due to small or nonexistent decreases in drift rates.
From these findings we have concluded that, for item recognition,
drift rates change little with age.

With IQ, item recognition data have shown a different pattern.
Ratcliff et al. (2010) found that accuracy increases with IQ but that
IQ has only small effects on RT. The model handles this with drift
rates. Drift rates increase with IQ, as would be expected, but the
changes in the criteria and the nondecision component are small.

Experiment

In the present experiment we used the four previously described
tasks: item recognition, associative recognition, cued recall, and
free recall. For the two recognition tasks, we collected sufficient
data to allow estimation of the components of processing identified
by the diffusion model at the level of individual participants. Also,
for all four tasks, we collected sufficient data to allow calculations
of meaningful correlations. We calculated correlations among all
the performance measures and, for the two recognition tasks, all
the components of the diffusion model.

The experiment was designed to answer several questions. One
was whether the diffusion model could be extended to associative
recognition. The second was whether there would be significant
correlations across participants between item recognition and the
associative recognition and recall tasks; if so, the data would
suggest that the tasks depend on a common representation in
memory.

Two further questions were, first, whether there were significant
effects of age and IQ on item recognition, associative recognition,
cued recall, and free recall and, second, whether the effects of age
were modulated by IQ. For example, it might be that performance
declined with age for low-IQ participants more than for high-IQ
participants, and perhaps this might be true for associative but not
item recognition.

In the experiment, each participant participated in three ses-
sions, one to test item recognition, one to test associative recog-
nition, and one to test cued and free recall. Some of the demo-
graphic measures described later were tested at the end of the first
session, some at the end of the second, and some at the end of the
third. All four tasks consisted of a series of study–test blocks. For
the item recognition task, each block was made up of 12 single
words to study plus one buffer word at the end of the study list,
followed by 26 test words, with the first two test words being
either the buffer word or a negative filler. For each test word,
participants were asked to respond “old” or “new” according to
whether the word had appeared in the immediately preceding study
list. For the associative recognition task, each block contained
eight pairs of words to study, each presented twice in random
order, with one buffer pair at the beginning of each block and a
different buffer pair at the end, followed by eight test pairs, with
the first pair testing either an intact buffer pair or a rearranged pair
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constructed from the two buffer pairs. For each test pair, partici-
pants were asked to respond “intact” if the two words had been
studied in the same pair or “rearranged” if they had been studied
in different pairs. For the cued recall task, each block contained 16
pairs of words to study, each presented twice, followed by the first
words of each pair presented as cues for recall. For the free recall
task, each block contained eight single words to study, each
presented twice, followed by instructions to recall the eight words.

For the associative recognition task, the words of all the test
pairs were presented for study, which means that only associative
information could be used to make a decision. Also, participants
were strongly encouraged to respond quickly. The aim was that
only associative information that was available immediately at test
could be used to make a decision, so that it would be unlikely that
participants would engage in strategic processes such as several
different recall attempts.

Method

Participants. In the experiment there were 46 college-age
participants, 45 participants 60–74 years old, and 43 participants
75–90 years old. The college-age participants were recruited at
Bryn Mawr College and Ohio State University and in surrounding
areas. The older adults were community-dwelling volunteers from
the Bryn Mawr, Pennsylvania, and Columbus, Ohio, areas. All
participants were paid for their participation—$15 per session for
the older adults, $12 for college-age participants who did not drive
to the lab, and $15 for those who did. All had a score of 26 or
above on the Mini-Mental State Examination (Folstein, Folstein, &
McHugh, 1975) and no evidence of disturbances in consciousness,
medical or neurological disease causing cognitive impairment,
history of head injury with loss of consciousness, or current
psychiatric disorder. They also completed the Center for Epidemi-
ological Studies—Depression scale (Radloff, 1977), for which
there were no significant differences among the three age groups.
To measure IQ, we asked participants to complete the Vocabulary
and Matrix Reasoning subtests of the Wechsler Adult Intelligence
Scale—Third Edition (WAIS–III; Wechsler, 1997). Means and
standard deviations for these participant characteristics are shown
in Table 1. With the exception of the raw IQ scores, there were no
significant differences on any of the measures shown in Table 1.

It is important to note that even though our 75- to 90-year-old
participants matched the younger ones on all the measures just
described, it is likely that, relatively speaking, they are higher
functioning. This is because they self-select into the experiment,
which means that they represent only older adults who are healthy
and mobile. Because of this self-selection, our data may actually
underestimate declines in performance with age relative to the
population from which our younger participants are drawn.

Stimuli. There were three pools of words: 800 high-
frequency words with frequencies from 78 to 10,600 per million
(M � 325, SD � 645; Kucera & Francis, 1967), 800 low-
frequency words with frequencies of 4 and 5 per million (M �
4.41, SD � 0.19), and 681 very low-frequency words with fre-
quencies of 1 per million or no occurrence in the Kucera and
Francis (1967) corpus (M � 0.365, SD � 0.48). All words oc-
curred in the Merriam-Webster Ninth Collegiate Dictionary
(Merriam-Webster, 1990). The words were screened by three
Northwestern University undergraduate students, and any words

that they did not know were eliminated. For all four tasks, stimuli
were chosen randomly without replacement from these pools.

Procedure. For all four tasks, stimuli were presented on the
screen of a PC. For item recognition and associative recognition,
responses were made on the PC’s keyboard. For cued and free
recall, participants’ responses were given verbally with an exper-
imenter recording them.

Item recognition. There were 50 study–test blocks. For each
block, the study list consisted of six high- and six low-frequency
words (in random order), each displayed for 1,300 ms and fol-
lowed by a 200-ms blank screen and then the next word. An
additional filler word, a very low-frequency word, was placed at
the end of the study list as a buffer item. The manipulation of word
frequency was included for both this and the associative recogni-
tion task in order to provide more conditions and therefore greater
constraints on fitting the diffusion model to the data.

The test list immediately followed the study list. The first two
test words were fillers—either two new, very low-frequency
words or one new, very low-frequency word and the last, buffer,
word of the study list (the first words of a test list are typically
slower than the others, so these two test words were eliminated
from data analyses). The remaining 24 test words, presented in
random order, were the 12 studied words plus 12 new words, six
high- and six low-frequency. Participants were asked to press the
?/ key on the keyboard if the test word had been presented in the
immediately preceding study list and the Z key if not. Participants
were encouraged to respond as quickly as possible while still
maintaining high accuracy. If the RT for a word was greater than
800 ms for college-age participants or greater than 900 ms for 60-
to 90-year-old participants, a message saying too slow was dis-
played for 300 ms. If the RT was shorter than 280 ms, a message
saying too fast was displayed for 1,500 ms. In all cases, there was
a 500-ms blank screen immediately prior to the next test word.
Participants were given no feedback on accuracy.

Associative recognition. There were 40 study–test blocks.
For each block, the study list consisted of four high- and four
low-frequency word pairs, each presented twice. The pairs were

Table 1
Participant Characteristics

Measure

College age
60–74 years

old
75–90 years

old

M SD M SD M SD

Mean age (in years) 20.4 2.2 68.3 4.4 82.0 4.1
Education (in years) 12.8 1.1 15.0 2.7 14.5 2.8
MMSE 28.7 1.4 28.3 1.5 28.0 1.1
WAIS–III Vocabulary

(scaled) 12.6 2.9 12.9 3.0 13.1 2.9
WAIS–III Vocabulary (raw) 46.3 10.1 51.2 10.7 49.3 10.9
WAIS–III Matrix Reasoning

(scaled) 12.0 2.8 12.3 3.2 12.4 3.6
WAIS–III Matrix Reasoning

(raw) 19.3 4.0 15.0 5.8 11.8 5.3
WAIS–III IQ 113.0 14.6 114.7 16.2 115.6 14.5
CES–D 10.8 7.7 10.0 8.9 10.5 6.4

Note. MMSE � Mini-Mental State Examination; WAIS–III � Wechsler
Adult Intelligence Scale—Third Edition; CES–D � Center for Epidemio-
logical Studies—Depression scale.
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presented in random order except that there was at least one other
pair between repetitions of a pair. Each pair was displayed for
1,800 ms, followed by a blank screen for 200 ms before the next
pair was displayed. Two additional pairs of words from the very
low-frequency pool served as buffer pairs, one placed at the
beginning and one placed at the end of the study list.

The test list immediately followed the study list. All of the
words in the test pairs had appeared in a study pair. The first test
pair was either the first or last buffer pair (intact) or one word from
each of the two pairs (rearranged). The remainder of the test list
consisted of two intact high-frequency pairs, two intact low-
frequency pairs, two rearranged high-frequency pairs, and two
rearranged low-frequency pairs, presented in random order. Par-
ticipants were asked to press the ?/ key if the two words of a test
pair had occurred in the same pair and the Z key if the words had
occurred in different pairs. The words in the test pairs always
occupied the same place as in the study list: If a word was the first
of a pair in the study list, it was the first of a test pair, whether the
pair was intact or rearranged. Participants were given the same
instructions as for the item recognition task: to respond as quickly
as possible while maintaining high accuracy.

For each test pair, the first word was displayed for 300 ms and
then the second word was presented immediately below the first.
The first word was displayed first in order to reduce the variability
in RTs that could result from reading times that included both
words. Both words remained on the screen until a response was
made. If a response was slower than 1,000 ms for college-age
participants or 1,100 ms for 60- to 90-year-old participants, too
slow was displayed for 300 ms. If the response was faster than 280
ms, too fast was displayed for 1,500 ms. There was a blank screen
of 500 ms immediately before the next test word. No feedback on
accuracy was given.

The too slow RT feedback was set relatively quickly—at 800–
900 ms for the item recognition task and 1,000–1,100 ms for the
associative recognition task—in order to encourage participants to
go with their first impression (i.e., the first information that was
available to them). For each task, the values were above the
median RT. With enough time, participants could engage in recall
processes that produced information about, for example, where an
item appeared in a study list, what other items were before or after
it, and so on. The too slow messages in our experiments were
intended to discourage such slow deliberative processes.

Cued recall. The number of blocks varied from participant to
participant as determined by the time available in a 30-min session.
The mean numbers of blocks were 10.6, 9.8, and 10.1, for the
college age, 60- to 74-year-old, and 75- to 90-year-old participants,
respectively. Ninety percent of the college-age participants com-
pleted 8–12 blocks, 90% of the 60- to 74-year-olds completed
7–12 blocks, and 90% of the 75- to 90-year-olds completed 8–12
blocks.

Each study list was composed of 16 pairs of words, half high-
frequency pairs and half low-frequency pairs. The pairs were
presented twice, in the same order. At test, the first word of each
pair was displayed on the PC screen, and participants were asked
to respond with the second word. They made their responses
verbally, recorded by an experimenter, with the participant decid-
ing when to go on to the next test cue. The test cues were presented
in the same order as the study pairs to equate lag effects (though

it is difficult to see how randomizing the order would change any
of the main trends in the results).

Free recall. Participants were tested on between 16 and 26
lists, as determined by the time available in a 30-min session. The
number of lists per participant averaged 23.7, 21.4, and 22.5, for
the college-age, 60- to 74-year-old, and 75- to 90-year-old partic-
ipants, respectively. Ninety percent of the college-age participants
completed 19–26 lists; 90% of the 60- to 74-year-old participants,
15–26 lists; and 90% of the 75- to 90-year-old participants, 14–26
lists.

Each study list consisted of four high- and four low-frequency
words presented twice in random order (with the restriction that
two other words intervene between the two presentations of a
word) plus one very low-frequency word presented as the last
word in the study list. Each study word was displayed for 1,300
ms, followed by a 200-ms clear screen before the next study word.
Participants recalled a list verbally, with an experimenter recording
their responses and with the participants deciding when to go on to
the next list.

The study lists were short, only nine words, because we found
in piloting the experiment that the oldest participants were near
floor, some recalling none of the words. So we opted to provide an
easy free recall task in order to keep morale up. With only nine
words to study, this task is probably not comparable to the other
tasks, because recall could come from short-term as well as long-
term memory. In the other tasks, there was enough separation
between study and test that only long-term memory was being
tested. Therefore, although the free recall data can be used in
correlational analyses, to see whether good performance on free
recall is associated with good performance on the other tasks,
declines in free recall with age cannot be compared directly with
declines in the other tasks.

Empirical Data: Accuracy and RTs as a Function of
Age, IQ, and Task

Summary

1. For accuracy in item recognition, our finding is consistent
with previous research (see e.g., Ratcliff et al., 2001, 2003; Rat-
cliff, Thapar, & McKoon, 2004; Ratcliff et al., 2006a, 2006b,
2007, 2010): There was little decline with age.

2. For accuracy in associative recognition, our finding is also
consistent with previous research (see e.g., Naveh-Benjamin,
2000). Accuracy declined considerably with age for all three
associative tasks: associative recognition, cued recall, and free
recall.

3. The results for IQ were different for the college-age and 60-
to 74-year-old participants than for the 75- to 90-year-old partic-
ipants. For college-age participants and 60- to 74-year-olds, accu-
racy on both of the recognition tests increased significantly with
IQ. But for the 75- to 90-year-olds, it did not; performance for
most of the 75- to 90-year-olds was close to floor. For all three
groups, there were modest increases with IQ for cued and free
recall.

4. For accuracy in associative recognition, the interaction of age
and IQ was striking. For the highest IQ participants, the drop in
performance with age was precipitous—from about 75% correct to
about 65% to close to 50% (floor), for college-age, 60- to 74-year-
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old, and 75- to 90-year-old participants, respectively. For the
lowest IQ participants, performance was near floor for all three age
groups.

5. RTs increased with age for the two recognition tasks. RTs
decreased as IQ increased for the recognition tasks, except among
the college-age participants (cf. Ratcliff et al., 2010).

In the next sections, we provide details and analyses of variance
for these results. Then we use the diffusion model to explain the
data in terms of components of processing that underlie perfor-
mance, and then we examine individual differences.

Accuracy, Median RTs, and Age for Item and
Associative Recognition

For college-age participants, for both item recognition and as-
sociative recognition, responses below 300 ms and above 1,500 ms
were excluded. This was 0.8% of the data for item recognition and
1.8% for associative recognition. For 60- to 90-year-olds, re-
sponses for both tasks were excluded if they were below 300 ms or
above 3,500 ms. For the 60- to 74-year-olds, this was 0.3% of the
data for both tasks. For the 75- to 90-year-olds, 0.5% of the data
were excluded for item recognition and 0.6% of the data for
associative recognition. For both tasks, if there was a too slow
message, the data were included in analyses unless they fell
outside of the cutoff values just listed.

The left panel of Figure 1 shows accuracy and median RTs for
“old” and “new” responses as a function of age for high- and
low-frequency and old and new words. The right panel shows
accuracy and median RTs for “intact” and “rearranged” responses
as a function of age for pairs made up of two high-frequency words
or two low-frequency words.

Comparing associative recognition with item recognition, accu-
racy decreased with age for associative recognition but not for item
recognition, F(2, 125) � 24.7 and F(2, 125) � 1.1, respectively.
RTs increased with age for both tasks, F(2, 125) � 49.8 and F(2,
125) � 48.0, respectively. In the next paragraphs, we give further
details. Although these details heavily constrain the diffusion
model in fitting the data, they are not central to the general
conclusions about aging and individual differences that we draw.

For item recognition, for all three groups of participants there
was a mirror effect in accuracy, with hit rates for low-frequency
words higher than for high-frequency words and false alarm rates
lower for low-frequency words than for high-frequency words.
The d� values for college-age participants, 60- to 74-year-olds, and
75- to 90-year-olds for high-frequency words for item recognition
were 1.23, 1.19, and 1.03, respectively. For low-frequency words,
the d� values were 1.77, 1.77, and 1.60, respectively. For compar-
ison, the same d� values for associative recognition were 0.96,
0.51, and 0.29 for low-frequency pairs and 0.93, 0.50, and 0.35 for
high-frequency pairs for the three age groups, respectively. Thus,
for item recognition, we see a mirror effect (see Figure 1) with d�
for low-frequency words higher than for high-frequency words,
but there was no effect of word frequency on associative recogni-
tion.

The RT difference between high- and low-frequency words
changed relatively little with age, probably because of emphasis on
speed in the instructions and because of the RT feedback. For the
two older age groups, errors were slower than correct responses
(“old” responses to not-studied items were slower than “new”

responses to not-studied items, and “new” responses to studied
items were slower than “old” responses to studied items). The
college-age participants showed little difference for these compar-
isons.

For associative recognition, the decrease in accuracy with age
was the result of a decrease in accuracy for rearranged, not intact,
test pairs (cf. Chalfonte & Johnson, 1996; Light, Patterson, Chung,
& Healy, 2004; Mitchell, Johnson, Raye, Mather, & D’Esposito,
2000). There was an overall bias such that “intact” responses were
more likely for low- than high-frequency pairs, both for correct
responses and errors.

“Rearranged” responses slowed more with age than did “intact”
responses. For intact pairs, RTs for correct responses were shorter
than for error responses, but for rearranged pairs, the opposite was
true. This reflects a general bias such that “intact” responses were
faster than “rearranged” responses.

Accuracy, Median RTs, and IQ for Item and
Associative Recognition

Figure 2 plots accuracy and median RTs for correct responses as
a function of IQ and age, averaged over high- and low-frequency

Figure 1. Accuracy and median response times (RTs) for old and new
responses for item recognition and “intact” and “rearranged” responses for
associative recognition. Note that RTs are not much longer for associative
recognition than for item recognition because the first word of a test pair
in associative recognition was presented for 250 ms prior to the second
word and RT was measured from presentation of the second word. There
is less than a 2% difference between HF and LF words in cued and free
recall. Y � college-age participants; O � 60- to 74-year-old participants;
V � 75- to 90-year-old participants; HF � high-frequency words; LF �
low-frequency words.
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words, old/new items for item recognition, and intact/rearranged
pairs for associative recognition. The numbers of college-age, 60-
to 74-year-old, and 75- to 90-year-old participants, respectively, in
the IQ groups were as follows: low-IQ groups: 15, 15, and 14;
middle-IQ groups: 15, 15, and 15; and high-IQ groups: 16, 15,
and 14.

For item recognition, accuracy was above chance for the lowest
IQ participants for all three age groups. The increase in accuracy
with IQ was significant, F(2, 125) � 18.8. The decrease in RTs
with IQ was also significant, F(2, 125) � 3.2, although this effect
occurred only for the 60- to 74-year-old and 75- to 90-year-old
groups.

For associative recognition, the interaction between age and IQ
was one of the central findings of this experiment. Accuracy was
near chance for the lowest IQ participants for all three age groups.
For the college-age and 60- to 74-year-old participants, accuracy
increased as IQ increased, F(2, 125) � 21.1. This was not true for
the 75- to 90-year-old participants, whose performance was close
to chance for all levels of IQ; the interaction between age and IQ
was significant, F(4, 125) � 3.38. Median RTs, on the other hand,
varied little with IQ, F(2, 125) � 0.8.

Accuracy, Age, and IQ for Cued and Free Recall

Accuracy for high- and low-frequency words for the two recall
tasks averaged over levels of IQ is plotted in the top panel of

Figure 3. Accuracy decreased with age, F(2, 125) � 26.8 and F(2,
125) � 16.3, for cued and free recall, respectively, more for cued
than for free recall, probably due to the short lists for free recall
(only nine words), compared with the 16 pairs of words for cued
recall. For neither task were there significant effects of word
frequency. Significant effects of word frequency on recall perfor-
mance have often been found in the literature, but nonsignificant
effects have sometimes been obtained when high- and low-
frequency words were mixed within a list (see e.g., Gillund &
Shiffrin, 1984), as they were in this experiment.

Figure 3. Panel A: Accuracy in cued and free recall as a function of word
frequency and age. For cued recall, both words in the study pair are high
frequency (HF) or low frequency (LF). Panels B and C: Overall accuracy
as a function of IQ for the three participant groups in cued and free recall.
Y � college-age participants; O � 60- to 74-year-old participants; V � 75-
to 90-year-old participants.

Figure 2. Accuracy and median correct response times (RTs) averaged
over word frequency and response type for item and associative recogni-
tion as a function of IQ.
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Accuracy increased with IQ for both cued and free recall for all
three participant groups, F(2, 125) � 66.9 and F(2, 125) � 27.6
for cued and free recall, respectively. Accuracy as a function of IQ
is plotted in the bottom two panels of Figure 3. In cued recall, for
the 75- to 90-year-olds, the advantage of higher IQ was less than
for the 60- to 74-year-olds and college-age participants, with an
interaction, F(4, 125) � 3.6. But for free recall, the effect was not
significant, F(4, 125) � 2.0. For cued recall, just as for associative
recognition, accuracy for the higher IQ participants dropped con-
siderably when comparing college-age participants (about 50%
accuracy) with 75- to 90-year-olds (a little less than 15% accu-
racy).

One possible reason the effects were smaller for free recall than
for cued recall is that in free recall, some items might have been
retrieved from short-term memory. To test this hypothesis, we
examined the data with the first two items that were recalled
eliminated from the analyses. If short-term memory were a factor,
then with those items eliminated the change in accuracy would be
larger as a function of age and IQ. However, with the first two
recalled items excluded, the size and pattern of the results did not
change (and the interaction was still not significant). This suggests
that short-term memory was not a major factor responsible for the
smaller decline in performance for free recall relative to cued
recall.

Diffusion Model Analyses

The diffusion model was fit to the data for each task for each
participant by minimizing a chi-square value with a general sim-
plex minimization routine (Nelder & Mead, 1965). In this proce-
dure, the values of all the parameters, including the variability
parameters, are estimated simultaneously, fitting the model to all
the data from all the conditions of an experiment. The minimiza-
tion routine adjusts the parameters of the model until it finds the
parameter estimates that give the minimum chi-square value (see
Ratcliff & Tuerlinckx, 2002, for a full description of the method).
The data entered into the minimization routine for each experi-
mental condition are the .1, .3, .5, .7, and .9 quantile RTs for
correct responses and error responses and the corresponding ac-
curacy values. The diffusion model is used to generate the pre-
dicted cumulative probability of a response by each quantile RT.
Subtracting the cumulative probabilities for each successive quan-
tile from the next higher quantile gives the proportion of responses
between adjacent quantiles. For the chi-square computation, these
are the expected values, which are to be compared with the
observed proportions of responses between the quantiles (i.e., the
proportions between 0, .1, .3, .5, .7, .9, and 1.0, which are .1, .2, .2,
.2, .2, and .1) multiplied by the number of observations. Summing
over (Observed � Expected)2/Expected for all conditions gives a
single chi-square value to be minimized.

The model can successfully fit data from single participants if
there are around 300–1,000 total observations per participant,
which can be collected in 45 min or less for tasks such as those
considered in this article. Although such numbers of observations
lead to variability in parameter estimates from their true values, the
variability is much less than the differences among individual
participants. In consequence, correlations of parameter values can
be meaningfully used to examine individual differences.

In the analyses that follow, we use the model’s parameters in
two ways. One is to examine correlations among model parameters
across participants in order to examine individual differences on
the four tasks. The other is to average over participants to examine
the overall effects of age and IQ on the components of processing
measured by the model parameters.

Goodness of Fit

Before we move to the explanations of the item and associative
recognition data offered by the model, and comparisons with the
cued recall and free recall data, it is important to demonstrate that
the model’s predictions match the data. In other words, when the
best fitting parameter values are determined (by the fitting method
described earlier), the predictions from the model using those
parameter values should closely match the data. As we detail in the
next paragraphs, the match between predictions and data was
good.

The first result to note is that the model fitted the associative
recognition data well. This is the first time the model has been
applied to associative recognition, and so this extends the domain
of application of the diffusion model.

Goodness of fit is illustrated in Figure 4 with one condition for
the item recognition task (studied, high-frequency words) and one
for the associative recognition task (intact, high-frequency pairs).
These conditions had a relatively broad range of accuracy values
across participants and showed the largest individual differences.
(The total number of figures would be too large to show all
conditions). The figure plots predictions from the model against
the data for each participant. The accuracy values show deviations
between predictions and data of no more than about 8%. For the
RT quantiles for correct responses, there are only a few misses of
more than 100 ms, except for the .7 and .9 quantiles, for which
variability was larger (see Ratcliff & Tuerlinckx, 2002). For error
responses, there are more misses because there were fewer num-
bers of observations and variability was large.

For each of the model’s parameters, Table 2 shows the mean
(the average over participants) of the best fitting value and its
standard deviation. Table 2 also shows chi-square goodness of fit
values averaged over participants. The critical value for 33 degrees
of freedom is 50.7. The mean values are only a little higher than
this, showing, along with the predictions in Figure 4, that the
model fits the data well (see Ratcliff, Thapar, Gomez, & McKoon,
2004, for discussion of the quality of fits of the diffusion model to
data).

Diffusion Model Parameters, Age, and IQ

As we pointed out earlier, comparisons of performance for
younger and older adults have frequently rested on accuracy data
alone, setting aside RT data. Interpretations of age and IQ effects
from accuracy alone (or from RTs alone) might be appropriate if
RTs and accuracy were highly correlated across individuals.
Young participants would be both faster and more accurate than
older participants. High-IQ participants would be both faster and
more accurate than lower IQ participants. But the effects of age
and IQ on RTs and accuracy are not always the same. In the data
described earlier for item recognition, the older participants dif-
fered from the younger participants in RTs but not accuracy. The
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differences in performance for lower compared with higher IQ
participants were larger in accuracy than in RTs. For associative
recognition, the older participants differed from the younger par-
ticipants in both RTs and accuracy.

To preview the aging results, drift rates decreased with age by
only a small amount for item recognition but by a much larger
amount for associative recognition. Both boundary separation and
the duration of the nondecision component increased with age, for
both item and associative recognition.

To preview the IQ results, drift rates increased with IQ except
for associative information for the 75- to 90-year-old participants.
Boundary separation and the duration of the nondecision compo-
nent were not significantly affected by IQ.

Drift rates. The top panels of Figure 5 show drift rates for
item and associative recognition as a function of age and IQ, and
for comparison, Figure 3 shows accuracy for cued and free recall.
The drift rates shown in this and subsequent figures are the
averages over experimental conditions. For item recognition and

Figure 4. Plots of accuracy and the .1, .3, .5 (median), .7, and .9 response-time (RT) quantiles for data (y-axis)
and predicted values from fits of the diffusion model (x-axis) for correct and error responses for a single
condition for item recognition (Item recog.) and a single condition for associative recognition (Assoc recog.) for
all participants in the three age groups. For Item recog., the data are for high-frequency words presented twice,
and for Assoc recog., the data are for high-frequency, intact pairs.
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associative recognition, drift rates for “new” or “rearranged” con-
ditions were negative. These were changed to positive values and
averaged with the “old” or “intact” drift rates.

Drift rates for item recognition decreased only minimally with
age, although the effect was significant, F(2, 125) � 3.2. For
associative recognition, the decrease in drift rates with age was
much larger, F(2, 125) � 29.1.

Drift rates increased significantly as IQ increased, F(2, 125) �
19.0 and F(2, 125) � 17.9, for the item and associative recognition
tasks, respectively. These effects were qualified by interactions:
For associative recognition, the increase in drift rate with IQ was
significantly smaller for the 60- to 74-year-olds than for the
college-age participants, F(4, 125) � 5.1, and the 75- to 90-year-
old participants were near floor for all levels of IQ. For item
recognition, the increase in drift rate with IQ was larger for the
college-age participants and the 60- to 74-year-olds than for the
75- to 90-year-olds (a marginally significant interaction), F(4,
125) � 2.3, p � .06.

It should be emphasized how bad performance was for the 75-
to 90-year-old participants, worse than might be expected. Their
drift rates for associative recognition and their accuracy in cued
recall were substantially lower than for the 60- to 74-year-old
participants, and their drift rates for item recognition were also
somewhat lower, suggesting an overall memory deficit.

Moreover, their drift rates and cued recall accuracy increased
only minimally with IQ. For associative recognition, there was no
significant increase at all with IQ (near-zero drift rates for all
levels of IQ). The only instance for which 75- to 90-year-olds’
performance was not significantly worse than the 60- to 74-year-
olds’ was free recall, but that is likely a function of the way the free
recall task was structured (with only nine items; see earlier dis-
cussion).

Criteria settings and the nondecision component. Figure 5
shows the effects of age and IQ on boundary separation and the

nondecision component. As a function of age, the results replicate
those of earlier studies (Ratcliff et al., 2001, 2003; Ratcliff,
Thapar, & McKoon, 2004; Ratcliff et al., 2006a, 2006b, 2007,
2010). Older participants were slower than younger participants
because they set wider criteria and their nondecision component
was longer. In associative recognition, for the older participant
groups, “intact” responses were faster than “rearranged” re-
sponses, and in the diffusion model fits, this was explained by a
bias in the starting point z toward the “intact” decision boundary.

The effects of age on boundary separation and the nondecision
component were significant; for associative and item recognition,
respectively, for boundary separation, F(2, 125) � 22.7 and F(2,
125) � 32.4, and for the nondecision component, F(2, 125) � 37.1
and F(2, 125) � 72.4.

In contrast, the effect of IQ was not significant for either
parameter (Fs � 1.3). The lack of effect on boundary separation
suggests that the speed/accuracy trade-off settings that individuals
adopt are independent of IQ.

Diffusion model variability parameters. In this and other
research on aging using diffusion model analyses, the parameters
representing variability are usually not significantly different
across conditions. This is partly because the differences are small
but also because they have larger variability than do the other
parameters (Ratcliff & Tuerlinckx, 2002). However, in order to
explain the relative speeds of correct and error responses, the
variability parameters are required (Ratcliff & McKoon, 2008).

In terms of statistical tests, variability in the nondecision com-
ponent (its range, st) increased as a function of age for item
recognition and associative recognition, F(2, 125) � 17.6 and F(2,
125) � 5.9, and it increased as function of IQ for item recognition,
F(2, 125) � 4.5. The standard deviation in drift across trials
(normally distributed with standard deviation �) increased with
both age and IQ for item recognition, F(2, 125) � 5.7 and F(2,
125) � 6.0, respectively, but not associative recognition. The only

Table 2
Means in Parameter Values for Participant Groups and Item and Associative Recognition

Task, parameter, and
participant group a z Ter � sz po st v1 v2 v3 v4 �2

Item mean
College age 0.083 0.047 0.476 0.136 0.039 0.004 0.176 0.119 0.249 �0.262 �0.314 78.3
60–74 years old 0.116 0.061 0.575 0.180 0.041 0.001 0.187 0.108 0.217 �0.264 �0.325 65.9
75–90 years old 0.130 0.058 0.623 0.202 0.044 0.001 0.222 0.052 0.164 �0.242 �0.292 71.5

Associative mean
College age 0.093 0.043 0.461 0.150 0.029 0.000 0.231 0.087 0.156 �0.161 �0.124 45.5
60–74 years old 0.130 0.049 0.569 0.134 0.019 0.000 0.292 0.035 0.107 �0.075 0.005 53.4
75–90 years old 0.138 0.051 0.600 0.116 0.023 0.000 0.310 0.014 0.080 �0.050 0.022 53.5

Item SD
College age 0.014 0.011 0.048 0.092 0.023 0.009 0.062 0.093 0.117 0.132 0.163 25.8
60–74 years old 0.028 0.019 0.067 0.101 0.032 0.005 0.065 0.137 0.142 0.155 0.179 19.9
75- to 90-year-olds 0.037 0.020 0.062 0.100 0.042 0.003 0.075 0.141 0.133 0.132 0.142 29.0

Associative SD
College age 0.017 0.010 0.069 0.141 0.029 0.001 0.069 0.125 0.133 0.137 0.153 12.7
60–74 years old 0.036 0.013 0.089 0.108 0.023 0.001 0.066 0.097 0.108 0.093 0.098 20.7
75–90 years old 0.044 0.019 0.087 0.083 0.028 0.000 0.061 0.068 0.071 0.071 0.059 16.5

Note. a � boundary separation; z � starting point; Ter � nondecision component of response time; � � standard deviation in drift across trials; sz � range
of the distribution of starting point z; po � proportion of contaminants; st � range of the distribution of nondecision times; �2 is the chi-square goodness
of fit measure (with 33 degrees of freedom, the critical value is 50.7). For item recognition, v1 is for old high-frequency words, v2 is for old low-frequency
words, v3 is for new high-frequency words, and v4 is for new low-frequency words. For associative recognition, v1 is for intact high-frequency pairs, v2

is for intact low-frequency pairs, v3 is for rearranged high-frequency pairs, and v4 is for rearranged low-frequency pairs.
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other significant effect was a decrease in the range of the starting
point (sz) for associative recognition as a function of IQ, F(2,
125) � 3.9. None of these effects are particularly large, so we did
not attempt to interpret them further.

Individual Differences

As discussed earlier, the values of the diffusion model param-
eters were averaged across participants, and the means and the
standard deviations in the means are shown in Table 2. To calcu-
late the standard deviation in a parameter value for a single
participant, we relied on the Monte Carlo simulations done by
Ratcliff and Tuerlinckx (2002). They generated sets of simulated
data from the diffusion model for several conditions of an exper-
iment, where the conditions differed in drift rate. For each set, they
fitted the model back to the simulated data. Because of variability
in the simulated data from one set to another, the parameter
estimates obtained from fitting the model vary across the data sets.
This variability (SD) represents the variability in parameter esti-
mates for a single participant. The SD values for each parameter of
the model are shown in Table 4 in Ratcliff and Tuerlinckx’s article
for 250 observations per condition. For example, in row E, when
the true value of a was 0.16, Ratcliff and Tuerlinckx found an SD
of 0.012 across repeatedly fitting different simulated random sam-
ples of data generated with the same parameter values.

As the number of data points per condition increases (or decreases),
the SD of single participants’ parameter values decreases (or in-
creases) as a function of the square root of the number of data points.
Ratcliff and Tuerlinckx (2002) used 250 observations per condition.
So to translate their estimates to our experiment, we multiplied their
SD estimates by ��250/N), where N was the number of observations
in the conditions of our experiment. In other words, we scaled Ratcliff
and Tuerlinckx’s estimates of the SDs in parameter values against the
numbers of observations per condition in our experiment.

In the associative recognition experiment there were about 80
observations per condition, and in the item recognition experiment
there were about 190 observations per condition. Thus, using
Ratcliff and Tuerlinckx’s (2002) Table 4, we found SDs in indi-
viduals’ parameter values, with the following results: The SD in a
(for a single participant) was roughly 2.5–4 times smaller than the
SD across participants (the SDs that are shown in Table 2); the SD
in Ter was roughly 3–5 times smaller than the SD across individ-
uals, and the SD in v was roughly 3 times smaller than the SD
across individuals (except for the older participants in associative
recognition, for whom drift rates approached a floor of zero).

These results mean that one can examine individual differences.
For each parameter of the model, the SD in its value for a single
participant is much smaller than the SD in the parameter’s value
when that value is obtained by averaging over the means of all the
participants in an experiment.

The relatively small SDs for individual participants are especially
noteworthy because there was only a single, 45-min session of data
collection. The data from a single session produce parameter esti-
mates that have small enough variability relative to differences among
individuals (i.e., enough power) to allow meaningful individual dif-
ference analyses to be carried out on the main components of the
model: boundary separation, nondecision time, and drift rates.

Correlations Among Model Parameters and Data

We conducted correlational analyses among accuracy, RTs, IQ,
and the main parameters of the diffusion model—drift rate, crite-
rion setting, and the nondecision component. To obtain accuracy
and median RT values for item and associative recognition, we
averaged the accuracy values and median RTs for correct re-
sponses over conditions to give a single value of accuracy and a
single value of median RT for each participant. The correlations
are shown in Tables 3 through 6. A correlation above .29 is
significant at the .05 level for a group of 45 participants (the
numbers of participants in the three groups were 46, 45, and 43 for
college age, 60- to 75- to year-olds, and 75- to 90-year-olds,
respectively). Generally, correlations for the 75- to 90-year-old
group were lower than for the other groups.

The results are easy to summarize. They fell into two sets of
intercorrelations, with few exceptions. First, accuracy values for
the four tasks, drift rates for the item and associative recognition
tasks, and IQ were all significantly correlated with each other.
Second, for the item and associative recognition tasks, RTs, crite-
ria settings, and the nondecision component were all significantly
correlated between the two tasks. And third, there were no signif-
icant correlations between the measures of these two groups. In the
next paragraphs, we discuss these results in more detail.

Table 3 shows correlations between IQ, accuracy of cued recall,
and accuracy of free recall, on the one hand, and accuracy and

Figure 5. Values of drift rate, boundary separation, and the nondecision
component as a function of IQ and age of the three groups of participants.
The dotted lines are the averages over the three groups. Y � college-age
participants; O � 60- to 74-year-old participants; V � 75- to 90-year-old
participants.

474 RATCLIFF, THAPAR, AND MCKOON



median RT in item and associative recognition, on the other hand.
For the college-age and 60- to 74-year-old groups, the mean
correlations between IQ and accuracy values for the four tasks
were all positive and high. The correlations between the median
RTs for the two recognition tasks were greater than .59. The
correlations between median RTs and IQ, and median RTs and
accuracy, were different for the different participant groups. There
were positive correlations between the accuracy measures and the
RT measures for the college-age participants. But this flipped to
largely negative values for the older groups. This suggests that the
better performing and higher ability young participants took longer
to make decisions (adopting more conservative decision criteria).
But for the older participants, who adopted more conservative
decision criteria (Starns & Ratcliff, 2010), better accuracy and
ability produced shorter RTs.

Table 4 shows correlations of IQ, drift rates for item and
associative recognition, and accuracy values for cued and free
recall for the three participant groups. Scatter plots, histograms of
the values, and the correlations are also shown in Figure 6 for the
60- to 75- to year-old participant group. The plots are presented to
illustrate the correlations. The main result is that for the college-
age participants and the 60- to 74-year-olds, all these measures
correlated significantly with each other, with correlations greater
than .36.

For the 75- to 90-year-old participants, the correlations were
lower, but this was because of floor effects in associative recog-
nition and cued recall. The correlations between the two IQ mea-
sures for the 75- to 90-year-olds were also lower, partly because
the range of the Matrix Reasoning scores was much smaller than
for the other two groups (see Table 1), and so the range was
compressed relative to the SD.

We might not have expected to see declines in the correlations
for the 75- to 90-year-olds relative to the other groups between
item recognition drift rate, IQ vocabulary score, and free recall
because these quantities did not decline with age. The correlations
between the IQ vocabulary score, and both the item recognition
drift rate and free recall, are smaller than for the younger groups.

Table 3
Correlations Between Cued and Free Recall, IQ, and Accuracy and Median RT for Item and
Associative Recognition

Group and measure

Accuracy Median RT

Item
recognition

Associative
recognition

Item
recognition

Associative
recognition

College age
IQ .656 .533 .245 .313
Cued recall .775 .616 .080 .129
Free recall .592 .454 .290 .185
Accuracy item recognition .687 .340 .293
Accuracy associative recognition .300 .430
Median RT item recognition .596

60–74 years old
IQ .540 .657 �.092 �.471
Cued recall .767 .747 �.003 �.413
Free recall .620 .721 �.073 �.532
Accuracy item recognition .745 .023 �.442
Accuracy associative recognition .136 �.379
Median RT item recognition .718

75–90 years old
IQ .333 .331 �.281 �.387
Cued recall .388 .325 �.152 �.074
Free recall .400 .575 �.180 �.275
Accuracy item recognition .597 .231 �.210
Accuracy associative recognition .038 �.307
Median RT item recognition .639

Note. RT � response time.

Table 4
Correlations Between Raw IQ Matrix Reasoning and
Vocabulary Scores and Drift Rates for Item and Associative
Recognition and Cued and Free Recall

Group and
measure

IQ
vocabulary Item drift

Associative
drift

Cued
recall

Free
recall

College age
IQ matrix .602 .362 .524 .420 .459
IQ vocabulary .604 .675 .683 .648
Item drift .628 .595 .405
Associative drift .724 .574
Cued recall .614

60–74 years old
IQ matrix .690 .666 .497 .572 .613
IQ vocabulary .581 .473 .678 .488
Item drift .718 .745 .719
Associative drift .729 .519
Cued recall .652

75–90 years old
IQ matrix .200 .267 .176 .225 .247
IQ vocabulary .343 .282 .390 .308
Item drift .483 .208 .580
Associative drift .279 .376
Cued recall .450
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But the correlation between item recognition drift rate and free
recall is high. This suggests that the reduction in the size of the
correlations in Table 4 for the 75- to 90-year-old group relative to
the other groups is due to two things: floor effects in both asso-
ciative recognition and cued recall and a reduction in the reliability
of the IQ vocabulary score. The correlation between item recog-
nition drift rate and free recall is higher than that for college-age
participants, which means that there is no general decline in the
correlations across every pair of tasks.

For item recognition (see Table 5), there were significant cor-
relations between accuracy and drift rate and between median RT
and both boundary separation and the duration of the nondecision
component. The correlations between IQ and boundary separation
and between IQ and the nondecision component were not consis-
tent across participant groups (though some were just significant).
For associative recognition, the same pattern was obtained, but the
correlations were usually smaller.

Table 6 shows correlations of boundary separation and the
nondecision component of processing between item and associa-
tive recognition and with cued and free recall accuracy. Boundary
separation and the nondecision component correlated between

item and associative recognition. There were weaker correlations
between boundary separation in one recognition task and the
nondecision component in the other task. Few of the other corre-
lations were significant.

Overall, the pattern of correlations suggests first that IQ,
accuracy in the two recall tasks, and drift rates in the two
recognition memory tasks may all represent a common memory
ability that drives individual differences. Second, the finding
that nondecision duration and boundary separation are not
strongly related to the memory measures or to IQ (see Table 5)
suggests that they are governed by different factors from the
memory measures. Third, the high correlations between the two
recognition tasks for boundary separation and the nondecision
component suggest that these reflect some common decision
mechanism, a mechanism separate from the drift rates that drive
the decision process.

Discussion

Our goal was to examine item recognition and associative
recognition and to constrain explanations of performance on these

Figure 6. Scatter plots, histograms, and correlations for the Matrix Reasoning (IQ–M) and Vocabulary (IQ–V)
subtests of the Wechsler Adult Intelligence Scale—Third Edition (Wechsler, 1997), as well as item and
associative recognition drift rates (Item v and Assoc. v, respectively) and cued and free recall accuracy (Cued
and Free, respectively).
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two tasks by jointly varying age and IQ. At the same time, we
wanted to better understand the interactions of age and IQ.

First, before addressing these issues, we needed to show that the
diffusion model explained the data well for the two recognition
tasks—which it did for both item and associative recognition. The
quality of the fit of the model to the data is shown by chi-square
tests and by data such as those in Figure 4, where predicted and
experimental values of accuracy and quantile RTs are plotted
against each other.

Associative recognition provided an important test of the diffu-
sion model in that the model had not previously been applied to
associative recognition tasks. The fact that the model was success-
ful expands greatly the theoretical and empirical tasks and issues
that the model can address.

It is important that the model successfully predicts both accu-
racy and RT data. In many previous studies, item recognition has
been compared with associative recognition only in terms of

accuracy, ignoring RTs. However, understanding the data from the
experiment presented here, and likely from most other experi-
ments, would not be possible without taking both measures into
account. In the experiment presented here, we found that accuracy
and RTs did not correlate significantly.

If one were to consider accuracy measures alone, then the
conclusions would be as follows: no deficit in item recognition
with age, a deficit in associative recognition with age for higher IQ
participants, and a general deficit for lower IQ participants. In
contrast, if one were to consider RT measures alone, then the
conclusion would be a general speed-of-processing deficit for both
item and associative recognition. The diffusion model allows these
two patterns to be reconciled and explained within a single frame-
work.

For the discussion in the next few paragraphs, we describe the
data in terms of the components of processing the model abstracts
from accuracy and RT data: the quality of the evidence on which
a decision is based (drift rate), the amount of evidence that is
required before a decision is made (boundary settings), and the
nondecision component (which includes such processes as encod-
ing the stimulus and response execution).

One striking result concerns the behavior of drift rates as a
function of age and IQ. Drift rates for associative recognition for
high-IQ participants decreased dramatically with age—to the point
that their drift rates were nearly equivalent to those of low-IQ
participants, for whom drift rates were only a little above zero at
all age levels. This result is even more striking because it differed
from the pattern for item recognition; for item recognition, the
advantage of high-IQ participants over low remained approxi-
mately constant with age.

In more detail, this result is demonstrated in the interactions of
age and IQ (see Figure 4). For item recognition, drift rates in-
creased with IQ for all three age groups: doubling for the college-
age participants and 60- to 74-year-olds (from about .15 to about
.30) and increasing somewhat less for the 75- to 90-year-olds, from
about .15 to about .20.

In contrast, for associative recognition, drift rates increased with
IQ differentially for the three age groups. For college-age partic-

Table 6
Correlations of a, Ter, and Cued and Free Recall

Group and
variable

Ter

item
a

associative
Ter

associative
Cued
recall

Free
recall

College age
a item �.028 .541 .088 .101 .292
Ter item .182 .554 .238 .186
a associative .160 .168 .408
Ter associative .202 .306

60–74 years old
a item .407 .789 .008 �.117 �.178
Ter item .381 .539 �.240 �.294
a associative �.015 .137 �.040
Ter associative .048 .128

75–90 years old
a item .332 .590 .176 �.142 �.162
Ter item .441 .456 �.062 �.260
a associative .291 �.213 �.265
Ter associative �.032 �.025

Note. Ter � nondecision component of response time; a � boundary
separation.

Table 5
Correlations Within Tasks

Task, group, and
measure a Ter v Accuracy

Median
RT

Item recognition
College age

IQ .135 .370 .522 .656 .245
a �.028 .277 .215 .348
Ter .543 .404 .498
v .696 .255
Accuracy .340

60–74 years old
IQ �.167 �.288 .638 .540 �.092
a .407 .058 �.215 .640
Ter �.180 �.197 .745
v .738 .059
Accuracy .023

75–90 years old
IQ �.135 �.291 .352 .333 �.281
a .332 �.075 �.034 .580
Ter �.138 �.110 .547
v .458 �.080
Accuracy .313

Associative recognition
College age

IQ �.007 �.209 .169 .533 .256
a .332 �.075 �.075 �.256
Ter �.138 �.013 �.124
v �.285 .143
Accuracy .399

60–74 years old
IQ .131 �.079 .517 .657 �.471
a �.015 �.105 .173 .470
Ter .168 .231 .303
v .707 �.490
Accuracy �.345

75–90 years old
IQ �.320 �.171 .240 .331 �.387
a .291 .143 .102 .579
Ter .275 �.051 .446
v .543 �.244
Accuracy �.305

Note. a � boundary separation; Ter � nondecision component of RT;
v � drift rate; RT � response time.
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ipants, the increase with IQ was about fourfold (about .05 to about
.20). For the 60- to 74-year-olds, the increase was about .05 to
about .10, only a twofold increase, and for the 75- to 90-year-olds,
IQ had no significant effect at all, with drift rates about .03 for all
levels of IQ. We discuss this contrast between item and associative
recognition next.

Figure 7 collapses over IQ to summarize the impact of age on
drift rates for item and associative recognition and accuracy for
cued and free recall. Each line represents performance of the 60-
to 74-year-olds or the 75- to 90-year-olds relative to performance
of the college-age participants (normalized to 1). To a good ap-
proximation, as expected, age affected associative memory but not
item memory. The figure shows a drop in drift rates and accuracy
from the college-age participants to the 75- to 90-year-olds in all
four tasks. The decline for item recognition is much smaller than
the decline for associative recognition and cued recall, and there is
little decline from college-age participants to 60- to 74-year-olds in
item drift. (As noted earlier, the small decline for free recall was
likely the result of the task being easy, with only eight words to
recall, each studied twice.)

One question that might arise is: Could younger adults be more
accurate than older adults if they adopted more conservative de-
cision criteria (for speed–accuracy manipulations, see Ratcliff et
al., 2001, 2003; Ratcliff, Thapar, & McKoon, 2004). Figure 1
showed that accuracy is quite similar for the college-age partici-
pants and the 60- to 74-year-olds, but the latter adopt wider
decision criteria. If the college-age participants adopted more
conservative decision criteria, their RTs would slow and their
accuracy would increase. It is instructive to see how large the
effects might be. We took the parameter values from the college-
age participants (see first line in Table 2) and generated predictions

for accuracy values and mean RTs. For the four conditions, accu-
racy values were 0.73, 0.86, 0.79, and 0.84 and mean RTs were
602, 586, 606, and 597 ms. Then we repeated generating the
predictions but substituting the boundary separation and starting
point values for the 60- to 74-year-olds (see second line in Table
2). With the boundaries increased, accuracy values were 0.74,
0.89, 0.88, and .92 with mean RTs 720, 673, 684, and 664 ms.
(There is a small amount of bias in the college-age participants’
value of z, which makes the accuracy differences between the first
two and second two conditions not quite symmetric). The conclu-
sions drawn from this exercise are that moving boundaries out
increases accuracy by only about 4% but changes mean RT by
about 89 ms. Thus changes in speed–accuracy settings have a
relatively large effect on mean RT but a relatively small effect on
accuracy. In Figure 1, the increase in accuracy is hardly noticeable
except for perhaps the condition for new high-frequency words
(the third condition).

We note in passing that our results cannot be described by the
phrase “use it or lose it,” which is commonly used as a description
of an approach to preventing cognitive decline (Hultsch, Hertzog,
Small, & Dixon, 1999). “Use it or lose it” would predict that higher
IQ participants’ drift rates would decline less with age than would
lower IQ participants’ for both item and associative memory. This
is because high-IQ participants likely engage in more intellectual
activity (e.g., reading books, solving crossword puzzles) on a daily
basis than do low-IQ participants. However, this was not the case:
Drift rates suffered more for the higher than the lower IQ partic-
ipants in associative recognition, although less so for item recog-
nition. The lack of significantly differential decline for item infor-
mation is consistent with work by Lindenberger and Baltes (1997);
Rabbitt, Chetwynd, and McInnes (2003), and Singer, Verhaeghen,
Ghisletta, Lindenberger, and Baltes (2003), who found little dif-
ferential decline as a function of ability (but see Deary, MacLean-
nan, & Starr, 1998, who did find evidence for differential age-
related declines as a function of ability).

Turning to the other components of processing—boundary sep-
aration and the nondecision component—the effects of age were
similar to those in other published results (Ratcliff et al., 2001,
2003; Ratcliff, Thapar, & McKoon, 2004; Ratcliff et al., 2006a,
2006b, 2007, 2010). For both item and associative recognition, the
distance between the boundaries was larger for the older partici-
pants than for the college-age participants, and the duration of their
nondecision component was longer. However, neither boundary
separation nor the nondecision component was affected by IQ (see
also Ratcliff et al., 2010).

Starns and Ratcliff (2010) provided an explanation for the
difference in the decision criteria adopted by younger and older
adults. They found that younger adults are more likely to focus on
getting the maximum number of responses correct per unit time,
and to do this they are willing to sacrifice some degree of accuracy.
In contrast, older adults are unwilling to make errors that they
could avoid, that is, responses for which they might realize a few
moments later that they were incorrect.

We calculated, in addition to the results already described,
correlations among all the performance measures and all the com-
ponents of the model. The first result was that the model separated
components of processing and measures of performance into two
groups: Drift rates correlated with accuracy and IQ but not RTs,
and boundary separation and the nondecision component corre-

Figure 7. Relative values of drift rates for item and associative recogni-
tion, and accuracy values for cued and free recall, as a function of age.
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lated with RTs but not accuracy or IQ. This provides a clear
dissociation between components of processing in the model and
age and individual differences.

The second result was that item and associative recognition
appear to share those mechanisms of decision making that are
outside of drift rate: For both boundary separation and the nonde-
cision component, there were strong correlations between the two
tasks.

The third, and most interesting, result was the high correlations
between item and associative drift rates, around .5 to .6. This
suggests that the two tasks rely on shared information in memory.
But this result conflicts with the finding described earlier, namely
that drift rates in item recognition change little with age, whereas
drift rates for associative recognition decline substantially. We
discuss this conflict in the next section.

The failure to find significant correlations between IQ and RTs
might be surprising. It might be expected that RTs would slow as
IQ decreased (see e.g., Detterman, 1987), but this was not the case
in this study. The diffusion model explains this finding: Different
participants adopt different speed–accuracy criterion settings (i.e.,
different distances between the two boundaries; Ratcliff et al.,
2010), and these settings are not a function of IQ. If participants
could be encouraged to adopt similar speed–accuracy settings, then
the correlation between IQ and RT would be greater.

Memory Models

Concerning hypotheses about memory systems, the data from
the item and associative recognition tasks provide a challenging
pattern for models to accommodate. A model must provide corre-
lated levels of drift rates between the two tasks, but it also must
dissociate drift rates in item recognition from drift rates in asso-
ciative recognition (and cued recall) as a function of age.

Models that base item and associative recognition on exactly the
same information in memory have problems because they cannot
accommodate the differential changes with age. At the same time,
models that base item and associative recognition on completely
different information in memory have problems because they
cannot accommodate the high correlations between drift rates for
the two tasks. The main conclusion is that memory models must
allow for differential memory strength for item and associative
information as well as large correlations between item and asso-
ciative information.

We consider, as examples of memory models, Murdock’s
(1982) model and Shiffrin and Steyvers’s (1997) model. In Mur-
dock’s model, items are represented as vectors of features. When
a memory is formed, item vectors are added into a memory vector.
The probability that a particular feature will be added into memory
is a parameter of the model (e.g., the probability is larger with
longer study times per item). An association is represented as a
convolution between two-item vectors, which itself is a vector.
The probability with which features from the convolution are
encoded is different from the probability for item information.
Thus, in the model, associative information is weighted separately
from item information. This would allow the model to accommo-
date the sparing of item information along with the large drop in
associative information with age by assuming that associative
information is not stored as well, and the difference becomes
greater with age. However, there is no a priori explanation for why

this would happen. The model would also have to add a relation-
ship across individuals between the probability of storing a feature
of an item and storing a feature from an association in order to
account for the high correlations between item and associative
information in each age group.

In Shiffrin and Steyvers’s (1997) retrieving effectively from
memory model, items are encoded as vectors of features. To form
pairs, two items are concatenated. Associative recognition is mod-
eled by matching a test pair against memory, and item recognition
is modeled by matching a single item against memory. In this
model, it is difficult to see how item and associative information
could decline differentially as a function of age. However, hypoth-
eses about associative information have not yet been fully devel-
oped and investigated.

The main problem with using memory models to address issues
of age and individual differences is that, to our knowledge, there
have been no attempts to do so. In fact, in the cognitive modeling
literature in general, there have been few attempts to examine and
understand individual differences, especially across different par-
ticipant populations and how they might be similar or different
across tasks.

Dual-Process Models

The research reported here is relevant to a recent view of
memory that is quite different from the global memory models, a
view that has been labeled dual process. Unlike the global memory
models for which item and associative recognition depend on the
same representation of information in memory, in dual-process
models item recognition is based on two different representations
that are stored separately. In setting the context of our research in
terms of the global models, we argue against the dual-process
approach. In the dual-process approach, a contrast is drawn be-
tween “familiarity” and “recollection.” Subjectively, recollection
is a process by which details of a study episode are available to
support recognition performance. Familiarity is simply a feeling of
“knowing” that an item was presented in an earlier study episode.

In support of the dual-process view, Jacoby (1991; Jacoby &
Kelley, 1992) developed a method for separating familiarity and
recollection, the “include/exclude” method. The paradigm is an
item recognition experiment in which participants study two lists
of words, followed by a test list. In the “include” test condition
they respond “old” if a word appeared on either list, and in the
“exclude” test condition they respond “old” only if the word
appeared in one of the lists but not the other. Correct “old”
responses in the include condition are taken to rely on both
familiarity and recollection, and incorrect “old” responses in the
exclude condition are taken to be failures of recollection. The
probability that responses depend on recollection information is
then estimated as P(R) � P(I) � P(E), where P(I) is the probability
of an “old” response in the inclusion condition and P(E) is the
probability of an incorrect “old” response in the exclusion condi-
tion. The probability that items are recognized on the basis of
familiarity is P(F) � P(E)/[1 � P(R)]. Although we disagree that
this paradigm allows the separation of two distinct processes, it is
likely the case that exclude decisions do require the use of recol-
lection. It is the conclusions drawn about item recognition with
which we disagree.
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One problem with this process dissociation method, pointed out
by Ratcliff, Van Zandt, and McKoon (1995), is that it cannot fail
to produce separate, independent estimates of familiarity and rec-
ollection. There are two parameters in the model and two data
points. The method will always produce a split of data between
familiarity and recollection whether that is appropriate or not, and
so the method is not falsifiable.

Ratcliff et al. (1995) used simulated data to demonstrate this
problem. They showed that the method cannot be used to deter-
mine whether two sorts of information or only one underlie per-
formance, nor, if there are two, can it guarantee accurate recovery
of their relative contributions. Ratcliff et al. performed simulations
for which performance was determined by only one process (using
the search of associative memory model; Gillund & Shiffrin,
1984). Applying the process dissociation method still yielded
separate estimates of familiarity and recollection. One conclusion
that has been taken from this demonstration is that a single-process
model can always explain results from experiments used to support
dual-process models. However, that is not exactly the claim that
was made by Ratcliff et al. Rather, what was claimed was that the
process dissociation method cannot be used to determine whether
both familiarity and recollection or only one of them is responsible
for performance.

A major point of contention has been the use of receiver oper-
ating characteristics (ROC) functions and their z-transformations
to argue for and against dual-process and single-process models of
item recognition. Yonelinas (1994) extended the dual-process
model to confidence judgments and ROCs. In his model, the
familiarity process is represented by an equal-variance signal-
detection model (if equal variances are not assumed, the model is
not identifiable). Recollection is represented by an all-or-none
(high threshold) process. If recollection remains constant at all
levels of the criterion setting and if familiarity and recollection are
independent, then P(“yes”�”old”) � P(R) 	 P(F 
 crit) �
P(R)P(F 
 crit), where R signifies recollection and F signifies
familiarity. By moving the criterion, an ROC function can be
swept out. The result is z-transformed ROC functions that are often
approximately linear with slopes less than one. However, Ratcliff
et al. (1995) showed that the key assumption that recollection is
constant across levels of criterion settings is not supported by data.

Since this initial work, a large amount of research has been
conducted, and the conclusions vary: Some support the dual-
process view, others provide a different version of it, still others
assume that only a single dimension (not separate familiarity and
recollection) underlies performance. Some models use a single
source of familiarity based on an unequal-variance signal-
detection model to explain z-ROC functions (see the debate in
Cohen, Rotello, & McMillan, 2008; DeCarlo, 2002; Dunn, 2004,
2008; Rotello, MacMillan, & Reeder, 2004; Starns & Ratcliff,
2008; Wixted, 2007; Wixted & Stretch, 2004; Yonelinas, 1997).
For some researchers, there are two kinds of information that are
independent of each other; for others, there is a continuous dimen-
sion between the two kinds; and for others, there is only one kind
of information.

There have been two recent studies that challenge the dual-
process view. Ratcliff and Starns (2009) designed a model for
recognition memory that can explain the RTs of confidence judg-
ments for recognition memory, as well as the probabilities with
which responses in the different confidence categories are made. In

their model, the decision process is composed of racing diffusion
processes, one for each confidence category. z-ROC slopes less
than 1 can be explained in terms of differences in decision criterion
settings, even if the memory familiarity distributions for old and
new items have equal SDs.

Starns, Ratcliff, and McKoon (2010) conducted an item recog-
nition experiment that manipulated speed/accuracy instructions,
the proportions of old and new test items (five different propor-
tions), word frequency, and number of repetitions. Four partici-
pants were tested for 20 sessions each. When instructions stressed
speed, most responses were made under 570 ms and the z-ROC
slope was less than 1. To produce a less-than-1 slope, Yonelinas’s
(1994) dual-process model requires that familiarity and recollec-
tion both contribute to performance. However, responses were too
fast for recollection to contribute. It follows that the unity or
nonunity of z-ROC slopes does not provide a diagnostic for single-
versus dual-process theories.

Both the Ratcliff and Starns (2009) and Starns et al. (2010)
studies pushed this domain of research to jointly account for RT
distributions and ROC functions. Attempting to explain both will
produce a new set of modeling issues that will supersede both
accuracy-based signal-detection models and dual-process models,
and this will require complete reworking of those models or even
completely new models.

There are several other empirical results that challenge famil-
iarity/recollection dual-process hypotheses. Experiments by Gron-
lund and Ratcliff (1989; also Ratcliff & McKoon, 1982) mapped
out the time course of availability of information using a response-
signal procedure. Participants studied lists of pairs of words, with
a test list of pairs following each study list. In one condition, the
test pairs were made up of either two old words, one old word and
one new word, or two new words, and participants responded
“old” if the two words had appeared on the study list and new if
they had not, irrespective of whether they had occurred in the same
pair at study. For associative recognition, they responded “intact”
if the two words had been studied in the same pair and “rear-
ranged” otherwise. To examine the time course of processing, a
response signal was given after each test pair was presented, with
the signals varying from 50 ms to 2,500 ms after the pair. Partic-
ipants were instructed to respond immediately at the signal.

Gronlund and Ratcliff’s (1989) data raise two issues for dual-
process hypotheses. First, if associative recollection information
was used in the item recognition task, then accuracy for item
recognition should have been better for intact than rearranged
pairs. Although Gronlund and Ratcliff did find such a difference,
it was small (d� � 0.34), and it was much smaller than the
difference in accuracy between intact and rearranged pairs when
the task was associative recognition (for which the d� difference
varied between 1.24 and 1.96 in different experiments). Clark and
Shiffrin (1992) found a similar result: a larger difference in accu-
racy between intact and rearranged pairs when the task was asso-
ciative recognition than when it was item recognition. Taking the
data from Gronlund and Ratcliff’s study at face value, there are
between 1.24 and 1.96 d� units of associative information avail-
able, yet only 0.34 units are used in item recognition. If partici-
pants were using an explicit recall strategy, then one recall attempt
would be needed for intact pairs, whereas two successful attempts
would be needed for rearranged pairs (to make sure each word in
the pair had an associate). The probability of two successful recall
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attempts would be lower than that of one attempt, and the differ-
ence would depend on the cued recall probability. The findings of
both studies suggest, contra simple dual-process hypotheses, that
participants had more associative information available to them
than was used in item recognition.

The second issue raised by Gronlund and Ratcliff’s (1989) study
was that item and associative information became available at
different points in time. Accuracy for decisions requiring only item
information was above chance by 330 ms. Accuracy for decisions
requiring associative information did not begin to rise above
chance until after 570 ms (see also McElree, Dolan, & Jacoby,
1999; Ratcliff & McKoon, 1989).

Like Gronlund and Ratcliff (1989), Clark and Shiffrin (1992),
and Starns et al. (2010), Gillund and Shiffrin (1984) found data
inconsistent with associative recollection information being used
in item recognition decisions. They investigated the effects of three
variables that would be thought to affect recollection (or search
processes, as they termed the recollective process): the number of
times an item was repeated in a study list, the depth of encoding of
the studied items, and the type of distractor that was used in the test
list. They also manipulated participants’ decision times. According
to the dual-process view, larger effects of the three variables
should have been observed when decision time was long, but
instead there were no interactions of the three variables with short
versus long decision times.

The results of all of these studies strongly suggest that when
associative information might be used to help an item recognition
decision, it is not. The failure to use associative information might
occur because it requires more active effortful retrieval processes,
processes that would be used only if a task required this sort of
information (as in “intact”/”rearranged” decisions).

Buchler, Light, and Reder (2008) conducted a study that found
that participants can access different sources of information in
associative recognition; for example, they can access information
about each word of a pair separately, and they can access infor-
mation about the association. The results were interpreted in terms
of a dual-process model (source of activation confusion [SAC];
Reder et al., 2000), but unlike the dual-process models based on
process dissociation, SAC has structure and makes predictions
across a range of experimental variables. However, like the global
memory models, it is mute on the relationship between accuracy
and RT.

The dual-process models based on process dissociation contrast
with global memory models in terms of their goals. The global
models attempt to explain the effects of many experimental vari-
ables on performance in many experimental tasks. In contrast,
dual-process models focus on explaining performance in terms of
two processes that rest on the two different sorts of information,
familiarity and recollection. These dual-process models, as cur-
rently instantiated, do not specify processes or representations in
detail, as the global memory models do, and so they typically do
not produce predictions about how performance will change as a
function of independent variables or how performance on one task
relates to another.

Furthermore, the dual-process models provide no account of the
interdependence between the two dependent variables, RT and
accuracy, in either item recognition or associative recognition
tasks. In contrast, the diffusion model (Ratcliff, 1978) explains the

two variables simultaneously. Decisions are based on a single,
continuously available source of information.

There is also a variety of electroencephalograph (EEG) and
functional magnetic resonance imaging (fMRI) data that address
the issue of single-process versus dual-process views of item
recognition. In EEG studies, event-related potential (ERP) com-
ponents have been identified by subtracting the ERP signals of one
brain region from the ERP signals of another as a function of
experimental variables such as studied/not studied, correct/
incorrect, and encoding strength (e.g., deep versus shallow encod-
ing; Rugg, 1995; Rugg & Curran, 2007). Two ERP components
have been reliably estimated in several studies: a frontal compo-
nent, identified with familiarity, that occurs in the range of 300–
500 ms after onset of a test item, and a parietal component,
identified with recollection, that occurs in the range of 400–500
ms after onset (Eichenbaum, Yonelinas, & Ranganath, 2007; but
see MacKenzie & Donaldson, 2007; Yovel & Paller, 2004). Many
of these studies have shown that different brain areas become
active during item recognition and that these areas seem to corre-
spond to different kinds of information. However, activity in a
particular region of the brain does not mean that information
corresponding to that activity is used in making a decision.

In another line of research, a mnemonic accumulator hypothesis
has been proposed, mainly on the basis of fMRI evidence. The
hypothesis is that there is a link between activity in the posterior
parietal cortex and memory retrieval (Cabeza, Ciaramelli, Olson,
& Moscovitch, 2008; Konishi, Wheeler, Donaldson, & Buckner,
2000; Wagner, Shannon, Kahn, & Buckner, 2005). One possibility
is that activity in the parietal regions represents the integration of
memory-strength signals from separate processes and/or brain
areas for familiarity and recollection. However, because of the
temporal uncertainty in the fMRI signal, it is not clear when and
what are the sources of information actually entering the decision
process.

Most recently, in an fMRI study, Johnson, McDuff, Rugg, and
Norman (2009) provided a multivoxel pattern-classification anal-
ysis of an item recognition task. In this task, participants were
required to use a scale that was made up of a remember judgment
and four confidence judgments to be used if a remember judgment
was not made. They trained pattern classifiers on the fMRI signals
for three encoding tasks for words that denote objects (describe
how an artist would draw the object and rate the difficulty, report
how many functions the object has, and report how difficult it
would be to read the word backward). At test, they found rein-
statement of the encoding patterns both when the participants
indicated that they remembered the item and when they had only
a feeling of familiarity. They argued that both sources of informa-
tion are present and combined in making a recognition judgment
and that even recollective information is better viewed as contin-
uously available information as opposed to threshold information.
However, they offered the caveats mentioned in the previous
paragraph: that fMRI cannot be used to determine the time course
of reinstatement and that fMRI signals may reflect processing that
occurs after a response is made.

In sum, we see four major problems with the dual-process
approach. One is that, as Ratcliff et al. (1995) showed, there is no
way to falsify the claim that item recognition is composed of two
processes. Even if data are generated from a single process, the
process-dissociation method produces estimates of two processes
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(an exception is the SAC model [Reder et al., 2000], which
predicts patterns of results across many more than two conditions;
see also Norman & O’Reilly, 2003). The second problem is that
experiments designed to find effects of associative information on
item recognition have failed to show more than a modest contri-
bution (Clark & Shiffrin, 1992; Gillund & Shiffrin, 1984; Gron-
lund & Ratcliff, 1989). The third problem is that, by focusing on
separating familiarity and recollection in item recognition tasks
(either behaviorally or in terms of brain activity), dual-process
theory has taken a step backward. There has been little attempt to
understand the actual processes underlying familiarity and recol-
lection. Dual-process approaches contrast with the global memory
models’ attempts to understand how retrieval processes operate
and how information is represented in memory. Fourth, the avail-
able EEG and fMRI data do not show conclusively that there are
two components of processing associated with different brain
regions that both contribute to item recognition decisions.

We argue that, in contrast to dual-process views that propose
that recollection and familiarity both contribute to item recognition
decisions, item recognition depends on only a single source of
information in memory (as long as a participant is performing
relatively passively, as is usually the case in the tasks relevant
here). There is absolutely no doubt that, for many test items,
participants could recover information about them (as in recollec-
tion) and base a decision on the recovered information. It is also
not clear that a binary distinction between sources of information
is the correct one. Item information and associative information are
associated, as in the correlations across individuals presented ear-
lier, but they dissociate with age. Source memory seems to be
different from item information, and in the models that link item
information to context (see e.g., Dennis & Humphreys, 2001), the
representation of source (context) and associative information are
quite different. Accessing source or associative information is a
slow, effortful process, and we see little evidence for this being
used routinely in simple item recognition tasks.

Associative Deficits

Naveh-Benjamin (2000; see also Burke & Light, 1981; Chalf-
onte & Johnson, 1996; Spencer & Raz, 1995) has proposed that
problems in binding are responsible for associative deficits with
age; this has been called the associative deficit hypothesis (ADH).
Binding is said to involve the creation and retrieval of links
between units of information, such as the link between two items
of a pair or the link between an item and its context. Examples of
the sorts of links that have been studied empirically are words in
a particular color, words in positions on display screens, words
presented in a male or female voice, the temporal order of two
items, and item pairings for verbal and nonverbal material. The
ADH focuses on the distinction between memory for single units
and memory for associations between units and provides an ac-
count for why item information remains relatively intact with age,
whereas associative information is reduced. But the ADH does not
propose specific mechanisms that might be responsible for deficits
for some kinds of information but not others.

Li, Naveh-Benjamin, and Lindenberger (2005) proposed a spe-
cific, three-layer connectionist model that allows the difference
between item and associative information as a function of age to be
explained in a single architecture. Items of a pair are encoded into

separate vectors in the input layer, and three separate sets of hidden
units map from the input vectors to two output vectors. Two sets
of hidden units map the input item vectors to the output item
vectors, and the third set of hidden units maps from both input
vectors to both output vectors. Item recognition is represented by
how well an input vector for an item is produced at output (the dot
product between the input vector and the output vector), and
associative recognition is represented by how well an input vector
for a pair is produced at output (the dot product between the vector
pair at input and output). The deficit in aging was modeled by a
change in a single gain parameter that modulated the mapping
from input to output (via a sigmoidal function). The model was
able to account for the data from Naveh-Benjamin’s (2000) Ex-
periment 2. In that experiment, participants were instructed to
study pairs as single items or as pairs, and item and associative
recognition were tested.

This kind of model is a candidate to explain the differences that
have been found between item and associative recognition, but it
needs to be developed further and evaluated in ways that are
standard in the memory models literature; for example, it needs to
address catastrophic interference (McCloskey & Cohen, 1989;
Ratcliff, 1990), mirror effects (Glanzer & Adams, 1990), the list
strength effect (Ratcliff, Clark, & Shiffrin, 1990), and so on. For an
example of a model that addresses these issues, see Shiffrin and
Steyvers (1997).

Cognitive Ability Studies

In research on IQ and cognitive abilities, intelligence has been
divided into fluid intelligence and crystallized intelligence (see
e.g., Carroll, 1993). To relate our results to this approach, and
because we included WAIS measures of fluid intelligence (matrix
reasoning) and crystallized intelligence (vocabulary), one might
assign associative recognition to the fluid intelligence class of
tasks (cf. Li et al., 2004) because associative recognition declines
with age. Also, because item recognition declines relatively little
with age, it might be assigned to the crystallized class of tasks.
This classification would then predict higher correlations across
individuals between WAIS matrix reasoning and associative rec-
ognition and between WAIS vocabulary and item recognition than
would the other two comparisons (see Table 4). In fact, apart from
the lower correlation between matrix reasoning and item recogni-
tion drift rate for college-age participants, the correlations between
item and associative recognition drift rates and the two IQ mea-
sures appear to be similar across the three age groups.

Schmiedek et al. (2007) analyzed data from eight choice-RT
tasks (including verbal, numerical, and spatial tasks) from Ober-
auer, Suß, Wilhelm, and Wittmann (2003) using an ex-Gaussian
analysis (Hohle, 1965; Ratcliff & Murdock, 1976) and an EZ-
diffusion model analysis (Wagenmakers et al., 2007). They found
that drift rates in the diffusion model mapped onto working mem-
ory, speed of processing, and reasoning ability measures (each of
these was measured by aggregated performance on several tasks).
These results are similar to the relationship between IQ measures
and drift rates found in this article and in Ratcliff et al. (2010).
However, they also found significant correlations between drift
rates, boundary separation, and nondecision time. Our study (like
Ratcliff et al., 2001, 2003; Ratcliff, Thapar, & McKoon, 2004;
Ratcliff et al., 2006a, 2006b, 2007, 2010) found only weak corre-
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lations between boundary separation and nondecision time and no
significant correlations between drift rates and either boundary
separation or nondecision time. There are some important differ-
ences between the Oberauer et al. study and the study reported
here. First, we used a much larger range of IQs (Oberauer et al.,
2003, used university students); second, we used several age
ranges; and third, we had smaller numbers of participants per
group (the latter would not be responsible for the lower correla-
tions) but many more observations for item and associative rec-
ognition. It is possible that the low number of observations and use
of the EZ method in the Oberauer et al. study have produced
spurious correlations in the model fits (see Ratcliff, 2008), but
simulation studies would have to be conducted to evaluate this.

One of the main features of our study is that it allows decom-
position of speed of processing and accuracy into model compo-
nents within a unified single-model structure. This allows factors
responsible for individual differences in RT and accuracy to be
identified. In traditional abilities approaches, only one of these
dependent variables is used in analyses. Because the different
measures behave in different ways, analyses based on only one of
them produce an incomplete picture of individual differences.

In individual differences applications to aging, a psychometrics
approach is useful in a practical sense to identify the general
categories of deficits that appear with age. However, from a
theoretical perspective, it is limited because it averages over tasks
and measures and so cannot provide an account of the processes
involved in the individual tasks. Also, because performance is
averaged over tasks, it is not a priority to understand processing
differences within tasks within an “ability.” This, in a sense, is the
converse problem to memory models’ current lack of attempt to
deal with individual differences.

In other research, the effects of task and condition difficulty
have been shown to interact with age and ability (see e.g., Baltes
& Kliegl, 1992; Salthouse, 1992). There are undoubtedly some
abilities that decline with age in a way that older adult performance
cannot improve to the level of younger adults (see e.g., Baltes &
Kliegl, 1992). However, other studies have demonstrated abilities
that show little decline with age (Ratcliff et al., 2007). It may be
that performance declines with the increased complexity of a task
(see e.g., Salthouse, 1992) because resources needed to perform
the task (e.g., working memory) decline with age. Our results
complement this research by showing that one component of
memory (item recognition) shows little decline with age, even at
all performance levels, but large differences with IQ, whereas
associative recognition shows large declines with IQ and age.

Our results show decreased correlations of IQ with advanced
age. Results of this kind have been argued to show a depletion of
resources for cognitive tasks so that as performance declines,
differences based on ability (e.g., IQ) are reduced and differences
based on genetic factors become a larger proportion of individual
differences (see e.g., Lindenberger et al., 2008; Nagel et al., 2008).
It might seem that the results presented here are consistent with
this hypothesis because correlations are smaller for the 75- to
90-year-old group. But there are only three correlations that do not
have measures in which performance is approaching floor (if
performance is near floor, correlations are automatically reduced).
These are correlation between IQ vocabulary, item recognition
drift rate, and free recall proportion. Of these, the correlation of
item recognition drift rate and free recall does not show a decline.

An important demonstration by our study is that behavioral data
can be much richer than what is typically used in genetic studies.
For example, Papassotiropoulos et al. (2006) showed that the
polymorphism rs17070145 in the KIBRA gene was associated
with episodic memory performance. A follow-up study by
Schaper, Kolsch, Popp, Wagner, and Jessen (2008) replicated
Papassotiropoulos et al.’s study, but one by Need et al. (2008)
failed to replicate. In these studies, the behavioral data were
limited; for example, Papassotiropoulos et al. used a single list of
items for recall. Schaper et al. had participants learn a single list of
15 nouns, and these were recalled five times, then recalled 30 min
later, and then recognition was tested. In the Need et al. study, one
test involved list learning and recall, and another test involved
story recall. In the Schaper et al. study, the effect size corre-
sponded to a recall difference of about 13%, and in the Need et al.
study, the effect size able to be detected was about 3% with power
90%, so the null result was not because of lack of power.

The assumption made in these genetic studies is that any mem-
ory task (even with extremely limited data per participant) taps
into a single ability, namely episodic memory (see Thapar, Petrill,
& Thompson, 1994). Our experiment shows that data in item
recognition, associative recognition, and recall are multifaceted. It
shows individual differences and values that change across age
that are much larger than the differences reported as a function of
genetic differences. Our study also shows that some aspects of
performance decline at different rates as a function of age and
that some are related to IQ and some are not. Interestingly, the
correlations of memory measures with IQ support the notion
that single tests can index general memory ability within a
single age group of participants. Thapar et al. (1994) investi-
gated the heritability of memory ability in the Western Reserve
Twin Project (Thompson, Detterman, & Plomin, 1991). This
study is unique in that its test battery includes measures of
memory ability that tap memory span, verbal memory, and
visual memory. Results showed low intercorrelations across the
memory measures, and the estimates of genetic and environ-
mental influences on memory ability varied across memory
measures. It seems that genetic studies of memory are in their
infancy, and the reliability of the effects needs to be more
systematically investigated. Moreover, the amount and quality
of the behavioral measures are impoverished relative to what
are usually seen in cognitive research.

Our study also provides practical points that should be consid-
ered in conducting new research. First, researchers investigating
individual differences in aging will need to carefully consider the
ages of participants because the data clearly show different trends
for younger older adults relative to very old adults (Lindenberger
& Baltes, 1997). Mixing the two might mean averaging over
different patterns of results. Second, the performance of young
adults is also highly variable and impacted by ability. Although
this is not necessarily surprising, it does mean that it is critical for
researchers to classify young adults into ability groups when
examining how ability is affected by aging. Third, the ADH
proposed by Naveh-Benjamin (2000) will need to address the
performance of low-IQ young adults. To our knowledge, there has
been no discussion of how low-ability young adults might struggle
with associative recognition tasks.
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Conclusion

The results of this study begin to provide a theoretical frame-
work to show how speed of processing is related to memory
performance across age groups and individuals. The experiment
also provides archival results for the relationship between ability
measures, memory, and speed of processing in memory tasks.

This study reports the first account by a sequential sampling
model of associative recognition accuracy and RT. The results
show dramatic declines in memory as a function of age in asso-
ciative recognition but small declines in item recognition (as is
well known in the aging literature; see e.g., Naveh-Benjamin,
2000). The results also show dramatic differences in performance
on both item and associative recognition as a function of IQ.

The results show strong regularities in individual differences in
memory tasks. Drift rate, accuracy in recall tasks, and IQ measures
are all highly intercorrelated. In contrast, boundary separation is
correlated across the two tasks, as is the duration of the nondeci-
sion component, but neither is correlated with IQ or drift rates.
Boundary separation and nondecision duration are affected by age
but not IQ. For item recognition, the effect of age on drift rate is
small, but the effect of IQ is large. The effects of age and IQ on
drift rate for associative recognition are both large. In sum, the
differences in item and associative recognition as a function of IQ
and age present important targets for memory models.
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Correction to Greville and Buehner (2010)

In the article “Temporal Predictability Facilitates Causal Learning,” W. James Greville and Marc J.
Buehner (Journal of Experimental Psychology: General, 2010, Vol. 139, No. 4, pp. 756–771),
Figure 2 (p. 759) contained an error. The terms e|¬c and ¬e|c were mislabelled as ¬e|c and e|¬c.
The corrected figure appears below.

Figure 2. The effect of attribution shift in parsing an event stream with a fixed temporal window: c3 e
intervals that are longer than the temporal window simultaneously decrease impressions of P(e|c) and increase
impressions of P(e|¬c).
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