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The diffusion decision model (Ratcliff, 1978) was used to examine discrimination for a range of
perceptual tasks: numerosity discrimination, number discrimination, brightness discrimination, motion
discrimination, speed discrimination, and length discrimination. The model produces a measure of the
quality of the information that drives decision processes, a measure termed drift rate in the model. As
drift rate varies across experimental conditions that differ in difficulty, a psychometric function that plots
drift rate against difficulty can be constructed. Psychometric functions for the tasks in this article usually
plot accuracy against difficulty, but for some levels of difficulty, accuracy can be at ceiling. The diffusion
model extends the range of difficulty that can be evaluated because drift rates depend on response times
(RTs) as well as accuracy, and when RTs decrease across conditions that are all at ceiling in accuracy,
then drift rates will distinguish among the conditions. Signal detection theory assumes that the variable
driving performance is the z-transform of the accuracy value, and, somewhat surprisingly, this closely
matches drift rate extracted from the diffusion model when accuracy is not at ceiling, but not sometimes
when accuracy is high. Even though the functions are similar in the middle of the range, the interpre-
tations of the variability in the models (e.g., perceptual variability, decision process variability) are
incompatible.
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In recent research, sequential sampling models have come to
provide good accounts of the processes involved in making simple
decisions (e.g., Pleskac & Busemeyer, 2010; Ratcliff, 1978; Rat-
cliff & McKoon, 2008; Ratcliff & Starns, 2009; Roe, Busemeyer,
& Townsend, 2001; Usher & McClelland, 2001; Wagenmakers,
2009). They show how response times (RTs) and accuracy jointly
arise from the components of processing that underlie perfor-
mance. One of these components, the decision variable, is the
quality of the information from a stimulus upon which a decision
is based.

Traditionally, psychometric functions that measure the effect of
an independent variable on performance have been constructed
from accuracy measures. Psychometric functions have been im-
portant in sensory domains such as audition and vision. In these
domains, thresholds are sometimes measured to serve as an index
of declines in performance from, for example, age or disease. In
such applications, the precise shape of a psychometric function can
have strong implications for theoretical interpretations of decre-
ments in performance.

In early research, accuracy was represented as the area under a
normal distribution above some criterion, and so the psychometric
function was a cumulative normal distribution (e.g., Woodworth,

1938). If the internal representation of the stimulus is normally
distributed and if the standard deviation is constant, then changes
in stimulus strength will correspond to movement of the normal
distribution along the independent variable, as in signal detection
theory (SDT). If accuracy values are transformed to z scores, then
the psychometric function of z-transformed accuracy is a straight
line. Other functions have been proposed, for example, the logistic
and Weibull (Macmillan & Creelman, 1991). But what is really
needed is a model of stimulus processing that will produce values
of the variable driving the decision process and, hence, the psy-
chometric function. Examples of such models are Nosofsky, Little,
Donkin, and Fific (2011), Nosofsky and Palmeri (1997), Ratcliff
(1981), Smith and Ratcliff (2009), and White, Ratcliff, and Starns
(2011).

In this article, a range of perceptual and cognitive paradigms is
used to provide a collection of empirical psychometric functions.
The tasks are two-choice tasks in which conditions move from
easy for one of the choices, to difficult for both choices, to easy for
the other choice. For each task, I compare psychometric functions
based on accuracy and z-transforms of accuracy with psychometric
functions based on the decision variable of a sequential sampling
model. I argue that it is only by use of a model that maps accuracy
and RTs jointly to underlying components of processing that a
complete picture of the information that drives decisions, and how
that information is affected by experimental variables, can be
obtained. I stress a crucial difference between SDT and sequential
sampling models: In the former, information from a stimulus
representation is mapped directly to responses, whereas in the
latter, decision processes intervene between the information and
responses. This difference means that psychometric functions
based on the decision variable can have different shapes than
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psychometric functions based on accuracy or z-transforms of it.
Note that, strictly speaking, a psychometric function relates a
stimulus magnitude to an observed dependent measure such as
accuracy (Link, 1992, p. 40), but here I use the term more loosely
to include drift rate functions and transformed accuracy functions.
Drift rate functions can be seen as transformations of three depen-
dent variables, accuracy, the distributions of RTs for correct re-
sponses, and the distributions of RTs for errors.

The model that I used was the diffusion model for simple
two-choice decisions, developed in Ratcliff (1978) and summa-
rized by Ratcliff and McKoon (2008). In this model, the value of
the decision variable (drift rate) for a stimulus drives a gradual
accumulation of noisy evidence toward one or the other of two
criteria, one criterion for each of the two choices. A response is
executed when the accumulation reaches one of the criteria. The
time taken for a decision is the time taken by this process plus the
time taken by nondecision processes, which include the processes
of stimulus encoding and response execution. The model separates
the contributions to performance of these components of process-
ing—drift rates, decision criteria, and nondecision processes.

The diffusion model is a proposal about the cognitive and neural
processes involved in human decision making. It, and variants of
it, have helped to understand the neural bases of decision making
in studies of animal neuroscience (e.g., Gold & Shadlen, 2001;
Hanes & Schall, 1996; Ratcliff, Cherian, & Segraves, 2003; Schall,
Purcell, Heitz, Logan, & Palmeri, 2011; Wong & Wang, 2006),
and the neural correlates of decision making in studies of human
neuroscience (e.g., Heekeren, Marrett, Bandettini, & Ungerleider,
2004; Philiastides, Ratcliff, & Sajda, 2006), including the time
course of decision processes and the brain areas involved in them.
For these and all other applications, the model can be accepted as
successful only if it is falsifiable; Ratcliff (2002) and Ratcliff and
Starns (2013) have demonstrated that it is.

The diffusion model can also be used as a measurement tool
(e.g., Tuerlinckx & De Boeck, 2005; van der Maas, Molenaar,
Maris, Kievit, & Borsboom, 2011), for example, to measure dif-
ferences among individuals in components of processing. The
individual difference variables that have been examined include
age (elderly, college-age, children; e.g., Ratcliff, Thapar, & McK-
oon, 2001, 2003, 2004, 2010; Ratcliff, Love, Thompson, & Opfer,
2012; Spaniol, Madden, & Voss, 2006), attention-deficit hyperac-
tivity disorder (Huang-Pollock, Karalunas, Tam, & Moore, 2012;
Mulder et al., 2010), dyslexia (Zeguers et al., 2011), sleep depri-
vation (Ratcliff & Van Dongen, 2009), hypoglycemia (Geddes et
al., 2010), alcohol (van Ravenzwaaij, Dutilh, & Wagenmakers,
2012), depression (White, Ratcliff, Vasey, & McKoon, 2009,
2010a), and anxiety (White et al., 2009; White, Ratcliff, Vasey, &
McKoon, 2010b). The studies of the effects of age on cognition
have been particularly noteworthy. The model has provided an
explanation of RTs and accuracy that solves the puzzle that RTs
often show a deficit in performance for older adults relative to
young adults (generalized slowing; Ratcliff, Spieler, & McKoon,
2000), whereas accuracy shows no deficit. The diffusion model
resolves this by showing that older adults are slower than young
adults because they value accuracy over speed more than young
adults do. They set more conservative decision criteria and their
nondecision processes are longer (e.g., Starns & Ratcliff, 2010,
2012), but the quality of the information upon which their deci-
sions are based (drift rates) does not differ.

For the experiments described here, the model was used as a
measurement tool in a different way. From a theoretical perspec-
tive, drift rates provide a meeting point between decision processes
and the perceptual or cognitive encoding processes that produce
the information needed for decisions and transform it into a rep-
resentation on which decisions are based. Thus, mapping out the
effects on drift rate of an independent variable across a range of
values provides a compelling target for models of perceptual or
cognitive processing. Such models should produce values of drift
rate that, when translated through the diffusion model, lead to an
accurate account of RTs and accuracy. In the experiments de-
scribed here, the ranges of the independent variables were wider
than is usually considered in order to examine drift rates for
accuracy values from floor to ceiling. One salient finding was that
drift rates can continue to change across conditions for which
accuracy is at ceiling. In this way, drift rates provide more infor-
mation about performance than does accuracy alone or
z-transforms of accuracy.

In the diffusion model, psychometric functions of drift rates
replace the three functions that would otherwise be required to
describe performance, one for accuracy (or the z-transform of
accuracy) and one each for RTs for the two choices (including
correct responses and errors). A sigmoid is the usual shape for
response proportion functions for the two-choice tasks used in the
experiments described here. For example, in a task for which
subjects are asked to decide whether an array of pixels is “bright”
or “dark,” the proportion of “bright” responses is near 1 for 100%
white pixels, stays near 1 as the proportion is reduced to about
75%, drops to near zero when the proportion is 25% white pixels,
then stays there until the proportion is zero. The functions for RT
are inverse V-shaped: RTs are short for very bright and very dark
stimuli (for both correct and error responses) and increase to a
maximum for stimuli in the middle of the range. In the paradigms
presented in this article, the psychometric functions of drift rates
sometimes followed the functions of accuracy and z-transforms of
accuracy, and sometimes did not. When drift rates changed across
conditions for which accuracy was at ceiling, it was because RTs
changed across those conditions.

It should be noted that the use of a sequential sampling model to
describe the quality of the information produced by perceptual or
cognitive processes is not new. In 1992, Link (1992) reviewed the
uses of psychometric functions of accuracy and RTs from the
1800s through the early 1900s. To produce psychometric functions
of a decision variable that reflected both accuracy and RTs, he
applied a random walk sequential sampling model (a random walk
approaches a diffusion process in the limit as step sizes become
small; Smith, 1990) to data sets for several tasks. He found that his
equivalent of boundary settings multiplied by the decision variable
in his model was an approximately straight line (see also Link,
1975, 1978; Link & Heath, 1975). His model has not been devel-
oped to the point of predicting the shapes or locations of RT
distributions, and it usually does not account for RTs for errors.
Nevertheless, it is the precursor to diffusion models, and there are
more similarities between his model and current models than there
are differences (Ratcliff, 1978). The research presented here can be
viewed as continuing and extending his work to RT distributions
and correct and error RTs to a range of currently popular experi-
mental paradigms.
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There have been two previous studies (Ratcliff & Rouder, 1998;
Ratcliff, Van Zandt, & McKoon, 1999) that used the two-choice
diffusion model (Ratcliff, 1978) to produce psychometric func-
tions of drift rates. In those studies, there was feedback on each
trial to indicate to the subjects whether their response was correct
or incorrect. The feedback for a given stimulus was probabilistic—
sometimes feedback said one choice was correct and sometimes
the other was correct. The studies found that the drift rate for a
stimulus value tracked the probability of “correct” feedback for
that stimulus. In the tasks reported here, in all except two exper-
iments, feedback was not probabilistic, so that the drift rate func-
tion was not a joint function of the stimulus variable and feedback
probability.

Below, the diffusion model is first described in detail and then
it is applied to the data from 11 experiments that were chosen to
cover a variety of two-choice tasks and a variety of independent
variables. To anticipate, the model fit the data well. This means
that the psychometric functions of drift rate that it produced are
valid and thus can be used as targets for perceptual or cognitive
encoding models. Further, the shapes of drift rate functions and the
shapes of z-transform functions were sometimes the same and
sometimes different. The plots of z-transformed accuracy values
generally followed the drift rate functions closely in the middle of
the range of independent variables, when accuracy was less than
.9. However, in some tasks, there were differences in the extremes
for which accuracy was high. Models of the processes that encode
information from perceptual or cognitive stimuli are designed to
explain performance not just in the middle range of performance
but also at the extremes. In fact, it may be that the best discrimi-
nation between one model and another comes at the extremes. This
suggests that a clear picture of the information that should be
produced by perceptual or cognitive processes requires a model
that incorporates explanations of both accuracy and RT.

The Diffusion Model

In this article, the diffusion model is applied to two-choice tasks
(for diffusion models for single-choice and multichoice tasks, see
Ratcliff & Van Dongen, 2011, and Ratcliff & Starns, 2009, 2013,
respectively). Figure 1 illustrates the decision process: Evidence is
accumulated from a starting point z toward one of two criteria, or
boundaries, a and 0. A response is initiated when a boundary is
reached. RTs and accuracy are naturally integrated by the model:
RTs are determined by the time it takes for accumulated evidence
to reach one of the boundaries plus nondecision time, and which
boundary is reached determines which response is given.

The values of drift rate produced by perceptual or cognitive
processes must be divided at a point that reflects indifference
between the two possible choices. At this point, drift rate is zero.
For example, in a numerosity discrimination task with arrays of
asterisks, which numbers of asterisks should get “large” responses
and which should get “small” can be manipulated. For arrays that
vary from 1 to 100 asterisks, it could be that numbers below 25 are to be
considered by a subject as “small” and numbers 25 and above as
“large.” For a subject to be accurate, the zero point of drift rate
would have to be around 25; numbers below 25 would have
negative drift rates and numbers 25 and above would have positive drift
rates. If this were altered so that numbers below 75 were consid-
ered “small” and numbers 75 and above “large,” then for a subject

to be accurate, the zero point of drift would have to be around 75.
The zero point is called the drift criterion (Ratcliff, 1985; Ratcliff
& McKoon, 2008) and it is assumed to be under the control of the
subject. Within-trial variability (noise) in the accumulation process
results in items with the same mean value of drift rate terminating
at different times (producing RT distributions) and sometimes at
the wrong boundary (producing errors).

In most contexts, the model has successfully fit data with drift
rate and boundaries constant from the starting point of the accu-
mulation process to the boundaries. However, there have been a
few instances in which it was necessary that drift rate or bound-
aries change over the course of accumulation (e.g., Ratcliff &
Frank, 2012; Ratcliff & Smith, 2010; White et al., 2011). In
addition, even when the model fits data well with constant drift
rate and boundaries, there may actually be an increase in drift rate
over a small range at the beginning of the accumulation process.
Ratcliff (2002) simulated data in which drift rate was ramped up
over a few tens of milliseconds to a constant level. The model with
fixed drift rate approximated the ramped model. So, in the majority
of applications, using the model with fixed drift rates is appropri-
ate.

The values of drift rate, the boundaries, and the nondecision
parameter all vary from trial to trial. This assumption is required if
participants cannot accurately set the same values from trial to trial
(e.g., Laming, 1968; Ratcliff, 1978). Across-trial variability in drift
rate is assumed to be normally distributed with standard deviation
of �, across-trial variability in the starting point (equivalent to
across-trial variability in the boundary positions) is assumed to be
uniformly distributed with range sz, and across-trial variability in
the nondecision component is assumed to be uniformly distributed
with range st. These distributional assumptions are the ones usually
made, but they are not critical: If predictions are generated from
the model with alternative assumptions (e.g., beta-distributed start-
ing point, normally distributed nondecision time, or uniformly
distributed drift rates), fitting the model with the usual assumptions
to the predictions does not significantly change the estimates of
drift rate, nondecision time, or boundary separation, as long as they
are within their usual ranges (Ratcliff, 2013).

Figure 1. An illustration of the diffusion model. The top panel shows
three simulated paths with drift rate v, starting point z, boundary separation
a, and nondecision time Ter, which has range st.
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The time taken by nondecision processes can, and often does,
vary from one task to another for the same stimuli. For example,
nondecision time for an array of asterisks might be 200 ms shorter
for a simple RT task (“press a key as soon as an array appears on
the screen”) than a two-choice numerosity task (“decide whether
the number of asterisks is large or small”). This difference can be
attributed to the processes that encode the stimuli and transform
them to a decision variable. When perceptual or cognitive pro-
cesses transform the multidimensional features of a stimulus onto
a single value to drive the accumulation of evidence, the transfor-
mation and the value produced by it may be different for different
tasks. For a simple RT task, any stimulus representation might be
sufficient for a decision, but for a numerosity task, the dimension
would have to be numerosity or something that correlates with
numerosity. The number of possible dimensions on which deci-
sions can depend can be extremely large. For instance, for strings
of letters, the task could be to decide whether it is a word, whether
it has been presented earlier in an experiment, whether its letters
are red or green, whether they are in one font or another, and so on.

The boundaries that determine when the amount of accumulated
information is sufficient to reach a decision are under the control
of the individual doing a task. The boundaries can be set far apart,
making the probability of a correct response as high as possible, or
they can be set close together, making responses faster. Differ-
ences in the settings among individuals, and among individuals
from different populations, are frequently observed, as are differ-
ences that result from instructions to respond as quickly as possible
or as accurately as possible. The starting point of the diffusion
process is often estimated to be midway between the two bound-
aries, but if the proportions of the two responses are manipulated,
it moves toward the more probable boundary (Leite & Ratcliff,
2011; Mulder et al., 2010; Ratcliff, 1985; Ratcliff & McKoon,
2008; Ratcliff & Smith, 2004; Ratcliff et al., 1999; Wagenmakers,
Ratcliff, Gomez, & McKoon, 2008).

For the experiments presented in this article, only drift rates
were allowed to vary across conditions that differed in difficulty.
For all of the experiments except Experiments 3, 4, and 7, the
cutoff between the two choices divided them such that each choice
was correct on half the trials, which meant that the starting point
of the accumulation of evidence was roughly halfway between the
two boundaries. For Experiments 3, 4, and 7, the cutoff between
the two choices divided them unequally; the probabilities with
which the two choices were correct were .25 and .75. This meant
that the starting point was closer to the boundary for the more
likely choice (as has occurred in previous studies, e.g., Leite &
Ratcliff, 2011; Ratcliff, 1985; Ratcliff et al., 1999; Wagenmakers
et al., 2008).

To fit the model to the data from an experiment (Ratcliff &
Tuerlinckx, 2002), the values of all of the components of process-
ing identified by the model are estimated simultaneously from the
data (the starting point [z], the distance between the criteria [a], the
nondecision component [Ter], and the variability parameters [�, sz,
and st]), and a mean value of drift rate for each condition in the
experiment. The method uses quantiles of the RT distributions for
correct and error responses for each condition of an experiment
(the .1, .3, .5, .7, and .9 quantiles are usually used). The diffusion
model predicts the cumulative probability of a response at each RT
quantile. Subtracting the cumulative probabilities for each succes-
sive quantile from the next higher quantile gives the proportion of

responses between adjacent quantiles. For error RTs, if there were
less than six responses, a single probability mass was used. For the
chi-square computation, these are the expected values, to be com-
pared with the observed proportions of responses between the
quantiles (i.e., the proportions between .1, .3, .5, .7, and .9 are each
.2, and the proportions below .1 and above .9 are both .1) multi-
plied by the number of observations. Summing over (Observed-
Expected)2/Expected for correct and error responses for each con-
dition gives a single chi-square value that is minimized with a
general SIMPLEX minimization routine. The parameter values for
the model are adjusted by SIMPLEX until the minimum chi-square
value is obtained (Ratcliff & Tuerlinckx, 2002). These chi-square
values also provide an index of goodness of fit.

For all of the experiments reported here, the model was fit to the
data for each individual subject and the values were averaged
across subjects, except for Experiment 9 (there were few items per
condition, and thus the data were averaged across subjects and the
model fit to the average data). In a number of studies, we have
found that the average of the parameters for fits to single subjects
is quite similar to fits to the average data (Ratcliff et al., 2001;
Ratcliff, Thapar, et al., 2003, 2004).

Other Fitting Methods

To fit the diffusion model to data, there are several published
packages and methods. Two earlier packages are the fast-dm
package of Voss and Voss (2007) and DMAT (Vandekerckhove &
Tuerlinckx, 2008). With large numbers of observations per subject,
as in the experiments presented here, they each produce relatively
unbiased estimates of the primary model parameters (boundary
separation, nondecision time, and drift rates) with standard devi-
ations in model parameters that are quite low relative to the
standard error of the individual differences. The DMAT program
is a little more limited when the number of observations is small
because it will not use error RTs if the number of observations is
less than 11 (DMAT uses the same quantile-based method as the
chi-square method used here). There are also new Bayesian ap-
proaches to fitting the diffusion model (Vandekerckhove, Tuer-
linckx, & Lee, 2011), including a published fitting package by
Wiecki, Sofer, and Frank (2013). The latter package also includes
hierarchical fitting. There are some drawbacks of the Bayesian
methods, including sometimes long fitting times (over a week for
fitting many subjects with many observations per subject) and
sometimes numerical instability. But these are issues are being
solved, and the tools available for fitting the diffusion model are
quite comprehensive and sophisticated. In comparisons between
these methods, parameter values recovered from the different
packages for larger numbers of observation match each other as
well as the chi-square method used here, and conclusions drawn
from the different methods are the same.

Estimating Psychometric Functions When Accuracy Is
at Ceiling

The diffusion model offers the innovation that psychometric
functions of drift rate can be estimated for conditions in which
accuracy is at ceiling (e.g., Ratcliff, 2008). When accuracy is at
ceiling across some, but not all, of the conditions of an experiment,
the other conditions provide the error responses that are necessary
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for the model to estimate the across-trial variability in drift rate and
starting point. With the constraints from the other conditions, the
values of drift rates in the conditions for which accuracy is high are
mainly determined by the RTs in those conditions. For some of the
experiments below, drift rate functions were approximately linear
across the whole range of difficulty. For others, they were approx-
imately linear in the middle of the range but slightly flattened at
the ends, and for still others, the functions were nonlinear across
most or all of the range.

Experimental Methods

The experiments tested numerosity discrimination, number dis-
crimination, brightness discrimination, motion discrimination,
speed discrimination, and line length discrimination. For each
experiment, conditions ranged from easy to difficult, with some
conditions designed to be at floor in accuracy and some designed
to be at ceiling. For each experiment, the diffusion model fit the
data well, which means that the psychometric drift rate functions
constructed from the data are interpretable.

In the Results section for each experiment, accuracy, RTs, and
drift rate functions are discussed. After all the experiments, there
is a section that discusses the other parameters of the model, and
then a section that compares the drift rate functions for each
experiment with z-transformed accuracy functions. The differ-
ences between the drift rate and z-transform functions emphasize
the need for a sequential-sampling type of model that can produce
a decision variable that is defined by RTs as well as accuracy.

Except for Experiment 11, the subjects were undergraduates
from The Ohio State University or Northwestern University who
received course credit for their participation. In some experiments,
they were tested for one session of about 50 min. In other exper-
iments, they were tested for more than one session, and these
sessions were also about 50 min. For Experiment 11, the analyses
are based on data from an experiment conducted by Grinband,
Hirsch, and Ferrera (2006).

For all the experiments except Experiment 10, subjects were
instructed to respond as quickly and accurately as possible. For all
the experiments, the stimuli were displayed on the screen of a PC
and responses were collected from the PC’s keyboard.

Table 1 and the figures for each experiment show the averages
across subjects of the best-fitting values of the model parameters
(except for Experiment 9, in which the values are those obtained
from averaging the RT and accuracy data before fitting the model).

Numerosity Discrimination: Experiments 1, 2, 3, and 4

For these experiments, subjects were asked to determine
whether an array of asterisks was large or small (Espinoza-Varas
& Watson, 1994). This simple task has been used to investigate
differences in the component processes of decision making among
diverse populations, including elderly adults, children, hypoglyce-
mic adults, and sleep-deprived adults (Geddes et al., 2010; Ratcliff
et al., 2001, 2010, 2012; Ratcliff, Thapar, & McKoon, 2006;
Ratcliff & Van Dongen, 2009). It is especially useful for these
purposes because it makes no demands on memory.

This task has also been used to investigate the representations
and processes involved in knowledge of numeracy. Nonsymbolic
tasks such as the asterisk task have often been compared with

symbolic tasks (e.g., “Is 2 greater than 5?”), with the goals of
determining whether there are correlations between performance
on the two kinds of tasks and whether they might rely on the same
cognitive number system. The results have been mixed, with
significantly positive correlations only for some tasks in some
studies (Gilmore, Attridge, & Inglis, 2011; Holloway & Ansari,
2009; Price, Palmer, Battista, & Ansari, 2012; Sasanguie, Defever,
Van den Bussche, & Reynvoet, 2011; Maloney, Risko, Preston,
Ansari, & Fugelsang, 2010; Halberda, Ly, Wilmer, Naiman, &
Germine, 2012; Halberda, Mazzocco, & Feigenson, 2008). Anal-
yses of individual differences using correlations have been based
on accuracy and RTs separately (sometimes with IQ or achieve-
ment scores), but not with a model that relates them to each other
and to underlying processes.

Method

For the four experiments, on each trial, an array of asterisks was
displayed on the PC screen, with the number of asterisks ranging
from 2 to 98 in steps of two. The positions to be filled with
asterisks were chosen randomly from 100 positions laid out in a
10 � 10 array. Subjects indicated whether the number of asterisks
was large or small by hitting one of two keyboard keys. Experi-
ment 1 used a large/small cutoff of 50, Experiment 2 used prob-
abilistic feedback (e.g., Ratcliff et al., 2001), Experiment 3 placed
the large/small cutoff at 24. and Experiment 4 placed it at 74. In
Experiments 3 and 4, more small and large stimuli (respectively)
were added to equate the proportion of large and small responses.

Results

RTs greater than 2,500 ms and less than 250 ms were eliminated
from analyses, 0.9%, 2.2%, 0.7%, and 1.4% of the data for the four
experiments, respectively.

For Experiment 1, the proportions of large responses and the
mean RTs as a function of number of asterisks are shown in Figure

Table 1
Diffusion Model Parameters for the Different Experiments

Experiment a z Ter � sz st �2 df

1 0.130 0.058 0.366 0.114 0.069 0.174 206.7 233
2 0.134 0.062 0.344 0.185 0.095 0.190 335.9 233
3 0.137 0.042 0.335 0.139 0.064 0.122 256.9 233
4 0.138 0.094 0.341 0.160 0.055 0.115 304.6 233
5 (50 cutoff) 0.114 0.060 0.351 0.086 0.076 0.177 188.0 193
5 (20 cutoff) 0.118 0.063 0.347 0.117 0.092 0.154 173.2 193
6 0.142 0.068 0.333 0.243 0.077 0.163 259.6 193
7 0.149 0.049 0.330 0.162 0.081 0.119 246.4 193
8 0.116 0.063 0.357 0.110 0.025 0.084 948.5 474
9 0.123 0.063 0.482 0.099 0.028 0.207 — 393
10 0.150 0.077 0.313 0.158 0.031 0.121 341.9 173
11 (short cutoff) 0.261 0.130 0.417 0.122 0.054 0.179 142.7 142
11 (long cutoff) 0.238 0.116 0.446 0.104 0.034 0.206 165.4 142

Note. The length experiment had speed and accuracy blocks of trials.
Only boundary separation (and starting point) differed in fitting the speed
and accuracy blocks of trials. Boundary separation for the speed blocks was
0.082. a � boundary separation; z � starting point; Ter � nondecision
component of response time; � � standard deviation in drift across trials;
sz � range of the distribution of starting point (z); st � range of the
distribution of nondecision times; �2 � chi-square goodness of fit measure.
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2. The data for Experiment 2 were similar. For Experiments 3 and
4, the data were also similar except that the transition point
between large and small responses was moved downward (toward
24) for Experiment 3 and upward (toward 74) for Experiment 4.

There were clear ceiling effects in Experiment 1 (Figure 2, top
left panel), with the overall function appearing S-shaped. For the
seven conditions with the lowest numbers of asterisks, the propor-
tions of large responses (errors) were about the same, less than
about .1 (and less than about .05 for the most extreme conditions).
Likewise, for the eight conditions with the highest numbers, the
proportions of large responses were about the same, greater than
about .9 (and greater than .95 for the most extreme conditions).
However, RTs changed across these conditions: RTs decreased, by
about 75 ms, from the less extreme conditions to the more extreme
(Figure 2, top right panel). The data for Experiment 2 showed a
similar pattern.

For Experiments 3 and 4, ceiling effects extended over more
conditions than for Experiments 1 and 2. With the cutoff at 24,
accuracy was at ceiling (above .95) for all numbers of asterisks above
38 and with the cutoff at 74, it was at ceiling (above .95) for all
numbers less than 54. However, compared with Experiments 1 and 2,
the extreme conditions were further away from the cutoff. As a result,
RTs changed little across the ceiling conditions, by less than 27 ms
with the cutoff at 24 and less than 28 ms with the cutoff at 74.

For Experiment 1, the model fit the data well. Figure 3, left-hand
panels, shows quantile probability plots. The x-axis represents the

proportion of responses that were small (top panel) or large (bot-
tom panel). The x’s are the data, and the o’s and the lines between
them are the predictions from the model. The plots show the .1, .3,
.5, .7, and .9 quantiles of the RT distributions stacked vertically for
each of the conditions of the experiment, except the 8 to 10
conditions for which there were no responses for some subjects
and therefore mean RTs across subjects could not be computed.
The plots show how the shapes of the RT distributions change: As
difficulty increases, the distances between the slower quantiles
increase more than the distances between the faster quantiles. The
model captured this change in shape well (apart from a slight miss
in the .1 quantile for the small responses). The model fit the data
equally well for Experiments 2, 3, and 4.

The values of the diffusion model parameters that best fit the
data, averaged over subjects, are shown in Table 1 for all the
parameters except drift rate and in Figure 4A for drift rate. Table
1 also shows chi-square values that demonstrate that the model fit
the data well. In the paragraphs that follow, results for the starting
point of the accumulation of evidence and drift rates are discussed.
The other parameters are discussed at the end of all the experi-
ments.

The starting point, z, shifted in response to the different prob-
abilities of large versus small responses (such shifts are typical;
Leite & Ratcliff, 2011; Ratcliff, 1985; Ratcliff et al., 1999). It was
0.063 (z/a � 0.47) when the cutoff between large and small was 50
(Experiments 1 and 2), 0.042 (z/a � 0.31) when the cutoff was 25
(Experiment 3), and 0.094 (z/a � 0.68) when the cutoff was 75
(Experiment 4).

Figure 4A shows how drift rates varied with number of asterisks
(i.e., the figure shows psychometric functions based on drift rates).

Figure 3. Quantile probability plots for Experiments 1 and 6 (numerosity
and brightness discrimination, respectively). The x’s represent the exper-
imental data and the o’s joined by lines are the model predictions. The
conditions are shown on the x-axis in terms of proportions of responses.
Proportions on the right are for correct responses, and proportions on the
left for error responses (some of the error quantiles are missing because
some of the subjects had zero responses for those conditions). The RT
quantiles are, in order from bottom to top, the .1, .3, .5, .7, and .9 quantiles.

Figure 2. Plots of response proportions and mean RTs as a function of
number of asterisks for Experiment 1 (top panels), brightness for Experi-
ment 6 (middle panels), and dot separation for Experiment 10 (bottom
panels; plots show both the speed and accuracy instruction conditions).
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For Experiments 1 (accurate feedback) and 2 (probabilistic feed-
back), numbers of asterisks larger than about 50 have positive drift
rates and numbers smaller than about 50 have negative drift rates.
The functions are approximately linear across the whole range of
conditions. They do not level off as the functions based on accu-
racy do, that is, they do not show the ceiling effects that accuracy

does. The function for Experiment 2 is less steep than the function
for Experiment 1; thus, probabilistic feedback reduced the slope of
the drift rate function but did not change the shape of the function.

For Experiments 3 and 4, the zero point of drift (the drift
criterion) was shifted to match the cutoff between small and large.
For the conditions for which accuracy was .95 or better, drift rates

Figure 4. Panel A: Drift rates as a function of number of asterisks for Experiments 1 through 4, the four
numerosity discrimination experiments. The vertical lines show where the cutoffs for large and small stimuli
should intersect with zero drift rate. For all four experiments, the drift rates were near zero at this point. The
bottom right inset is an example of a stimulus. Panel B: Drift rates as a function of number for Experiment 5.
The vertical lines show where the cutoffs between “large” and “small” numbers should intersect with zero drift
rate and the drift rates were near zero at this point. Panel C: Drift rates as a function of the proportions of white
pixels in Experiments 6 and 7 (brightness discrimination). The bottom right inset shows an example stimulus.
The vertical lines show where the cutoffs between “bright” and “dark” stimuli should intersect with zero drift
rate and the drift rates were near zero at this point. Panel D: Drift rates as a function of motion coherence (the
proportion of dots moving coherently) and speed in Experiment 8 (direction discrimination). Panel E: Drift rates
as a function of speed and coherence for Experiment 9. The vertical line shows where the cutoff and zero drift
rate intersect. Panel F: Drift rate as a function of dot separation in Experiment 10. The bottom right inset shows
examples of stimuli. The vertical lines show where the cutoffs between “large” and “small” dot separation should
intersect with zero drift rate and the drift rates were near zero at this point.
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almost tripled, reflecting changes in RTs across the conditions.
The drift rate functions are approximately linear, except for some
flattening at the most extreme ends. For Experiment 3, the flatten-
ing begins around 60 asterisks, and for Experiment 4, it begins
around 40 asterisks.

The important finding from these studies is that application of
the diffusion model transformed a complicated pattern of data into
a much simpler one. The complicated pattern was that psychomet-
ric functions based on accuracy were highly nonlinear, that there
was a large number of conditions for which accuracy at ceiling,
and that RTs changed across the ceiling conditions (although not
as much as for conditions with lower accuracy). The psychometric
functions based on drift rate were simpler, approximately linear,
except for the more extreme conditions for Experiments 3 and 4.
In other words, drift rates show changes in performance for which
accuracy did not. Thus, for all but extreme stimuli, a model of
numerosity processing needs only to produce an approximately
linear function of stimulus difficulty. Given such a function, the
diffusion model handles the mechanisms that produce the proba-
bilities of large and small responses and their RTs. (The finding
that drift rates do not change across the most extreme conditions
suggests that the system that encodes numerosity sees these con-
ditions as quite similar to each other and quite dissimilar from
conditions near the cutoff.)

Number Discrimination: Experiment 5

The stimuli in this experiment were all the numbers between 1
and 99, except either 50 or 20. For each test item, a subject’s task
was to respond according to whether the number was above or
below a cutoff number, which was either 50 or 20.

For Experiments 1 through 4, the stimuli were nonsymbolic and
the model fit the data well. The question for Experiment 5 was
whether the model gives an equally good account for symbolic
stimuli. If so, then differences among individuals can be investi-
gated in terms of correlations between their drift rates for symbolic
and nonsymbolic information. As discussed, previous investiga-
tions have treated accuracy and RTs separately.

Method

The stimuli were two digit numbers, and in Experiment 5,
subjects were instructed to respond large if the number was greater
than 50 and small otherwise. In Experiment 6, the large/small
cutoff was 20 and there were equal numbers of stimuli greater and
less than 20.

Results

RTs greater than 1,500 ms and less than 250 ms were elimi-
nated, totaling about 2.1% of the data.

Accuracy was at or close to ceiling for most of the conditions of
the experiment. Only two out of 20 conditions had accuracy values
less than .88 when the criterion was 50, and only one condition out
of 20 had an accuracy value less than .88 when the criterion was
20. Across conditions that were at ceiling, RTs for correct re-
sponses declined by about 100 ms from the cutoff to the extremes
for both the 20 and 50 cutoffs.

The diffusion model was fit to the two cutoff conditions sepa-
rately and it fit the data well (see Table 1), just as well as for the

data of Experiments 1 through 4. Figure 4B shows the psycho-
metric functions for drift rates. For both cutoffs, the functions are
approximately bilinear. In accord with the difference between the
cutoffs, subjects moved their drift criterion (the zero point of drift)
to lie between 49 and 51 when the cutoff was 50 and between 19
and 21 when the cutoff was 20 (the vertical lines in Figure 4B).

This experiment demonstrates how switching from a psycho-
metric function based on accuracy to a psychometric function
based on drift rates can substantially change the demands made on
a model of perceptual or cognitive processes. The accuracy func-
tion would indicate that there is no change at all (or very little) in
the representation of number that determines responses across
conditions with ceiling accuracy. For example, for the cutoff at 50,
the representation could be the same (or very close to the same) for
99 asterisks as for 69 asterisks. In contrast, the drift rate function
is approximately linear above the cutoff and below the cutoff.

Brightness Discrimination: Experiments 6 and 7

In these experiments, subjects judged whether there were more
white pixels (“bright”) or more black pixels (“dark”) in a square
array of pixels. This task has been important in the development
and testing of the diffusion model because it provides data for
which accuracy and RT vary over a wide range, from ceiling to
floor (Ratcliff, 2002; Ratcliff & Rouder, 1998, 2000).

This task has also been important in comparisons of cognitive
processing between elderly and young adults (e.g., Ratcliff,
Thapar, et al., 2003), showing that drift rates for older adults do not
differ from those for young adults. This finding is one of a number
of findings with the diffusion model that show that slower RTs for
older than young adults are often not due to deficiencies in the
information that drives decision processes.

Method

The stimuli for Experiments 6 and 7 were 64 � 64 squares of
black and white pixels on a 320 � 200 gray background, with the
brightness of a square manipulated by varying the proportion of
pixels that was white from .025 to .975 in steps of .05. The cutoff
between bright and dark was .5 for Experiment 6 and .25 for
Experiment 7 (there were 3 times darker than bright stimuli to
equate the proportions of the two responses).

Results

RTs greater than 2,500 ms and less than 250 ms were elimi-
nated, totaling, for Experiment 6, 1.7% of the data, and for Ex-
periment 7, 0.7% of the data.

For Experiment 6 (cutoff at .5), Figure 2 shows the proportions
of bright responses for each of the 20 conditions on the left of the
figure and RTs on the right. For the conditions with fewer than
.225 white pixels and more than .825 white pixels, accuracy was at
ceiling, between .927 and .936. For these conditions, RTs changed
by less than 15 ms. Between .225 and .825, RTs changed by up to
150 ms.

For Experiment 7 (cutoff at .25), for the conditions with fewer
than .075 white pixels and more than .375, accuracy was at ceiling,
greater than .95. For more than .525 white pixels, accuracy was
greater than .994, and in this range, in contrast to Experiments 3
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and 4, mean RTs varied relatively little (between 442 ms and 417
ms).

The model again fit the data well, as shown in the right-hand
panels of Figure 3. Because there were 3 times more dark stimuli
than bright stimuli, the best-fitting value of the starting point was
closer to the dark boundary than the bright boundary, with z/a �
0.33 (see Table 1). With the cutoff at .5 white pixels, the starting
point was approximately midway between the two boundaries,
z/a � 0.48.

Drift rates are plotted as a function of the proportion of white
pixels in Figure 4C. For Experiment 6 (cutoff at .5 white pixels),
the function is approximately linear in the middle of the range
(between .25 and .75 white pixels), but it levels off somewhat in
the right tail (above .75). The function for Experiment 7 (cutoff at
.25) is similar: It is roughly linear around the .25 cutoff, but above
.5 to .6, it flattens out.

For Experiments 1, 2, and 5, the cutoff between the two re-
sponses was in the middle of the range of stimuli, and the drift rate
functions showed approximately linear functions over the whole
range, in contrast to the accuracy functions. For Experiment 6, the
cutoff was also in the middle, but the finding was different: The
drift rate function showed ceiling effects, although still for fewer
conditions than accuracy.

For Experiments 3, 4, and 7, the cutoffs were not midway
between the extremes. For Experiments 3 and 7, the numbers of
conditions above the cutoff were extended substantially, and for
Experiment 4, the number below the cutoff was extended substan-
tially. Extending the range had the same effect for all three
experiments: Drift rate functions showed ceiling effects over a
larger range of conditions than when the cutoff was in the middle
of the range. However, in all three cases, the range of ceiling
effects for accuracy was larger than the range for drift rates.

Motion Discrimination: Experiment 8

Motion discrimination tasks (Ball & Sekuler, 1982; Britten,
Shadlen, Newsome, & Movshon, 1992) are currently popular in
neuroscience studies of decision making because both humans and
monkeys can perform the tasks. In monkey studies, the tasks allow
examination of transduction from brain areas corresponding to
motion detection to areas involved in decision making. In human
studies, the tasks have been used extensively to investigate deci-
sion making, and they have been used in neuroimaging studies to
relate features of the motion system to neurophysiology.

In the task typically used, which is the one used for Experiment
8, a stimulus is composed of a set of dots displayed in a circular
window. On each trial, some proportion of the dots move in the
same direction (either to the left or to the right) and the others
switch into random positions. A subject’s task is to decide whether
the dots that move are moving left or right. The smaller the
proportion moving in the same direction, the more difficult the
discrimination between left- and right-moving. In Experiment 8,
there were two independent variables: the proportion of dots that
moved in the same direction (termed “coherence”) and the speed
with which they moved.

For this experiment, as for all the other experiments in this
article, the form of the psychometric function that relates drift rate
to difficulty was determined by fitting the diffusion model to the
data. In contrast, when Palmer, Huk, and Shadlen (2005) analyzed

data from a motion-discrimination task like the task used for
Experiment 8, they examined a model in which drift rate was a
power function of motion coherence. Across a number of experi-
ments, the exponent in the power function was not significantly
different from 1. They made this assumption, as well as the
assumption that there is no across-trial variability in components
of processing, because these assumptions constrained their version
of the diffusion model to produce a simple relationship between
accuracy and mean RT. However, with these simplifying assump-
tions, as they discuss, their model cannot account for the relative
speeds of correct and error responses or for any biases toward one
or the other response choice (as in Experiments 3, 4, and 7). In
addition, it has not been shown that their model accounts for the
shapes of RT distributions though it would probably perform
adequately.

Method

This experiment was similar to Experiment 1 in Ratcliff and
McKoon (2008). A number of dots were placed in a circular
window on a video display and from frame to frame, some pro-
portion moved coherently, that is, by the same number of pixels to
the left or right. The other dots moved randomly. The probability
of dots moving coherently was .05, .10, .15, .25, .50, or .90. There
were also four levels of speed: The coherently moving dots moved
by one pixel from frame to frame, two pixels, three pixels, or four
pixels.

Results

RTs shorter than 300 ms and longer than 1,500 ms were elim-
inated; this removed less than 0.4% of the data.

For the highest levels of coherence (.25, .50, and .90) at the three
fastest speeds, accuracy was at ceiling. Collapsing over the three
speeds and the direction of movement, the probabilities of correct
responses for these three levels of coherence were .94, .99, and .99.
In contrast, there was no ceiling effect for RTs: Collapsing over the
three speeds and direction, RTs for correct responses declined
from 524 ms to 470 ms to 442 ms.

Accuracy moved off ceiling for the three lowest levels of
coherence (.05, .10, and .15) for all four speeds. It also moved off
ceiling for all the levels of coherence at the fastest speed. Collaps-
ing over speed and direction, accuracy for the .05, .10, and .15
levels was .66, .80, and .86, respectively, and RTs were 632 ms,
606 ms, and 566 ms. For .25, .50, .90 coherence for the fastest
speed, accuracy was .89, .96, and .98, and mean RT was 574, 507,
and 473 ms, respectively.

Figure 4D shows drift rates as a function of the proportion of
dots moving to the right. On the left hand side of the x-axis, the
conditions, from left to right, are the coherence values for left
moving dots, .90, .50, .25, .15, .10, and .05. On the right hand side,
again moving from left to right, are the coherence values for
right-moving dots, .05, .10, .15, .25, .50, and .90. The figure shows
four functions, one for each of the levels of speed. The absolute
values of drift rates are somewhat lower for the fastest speed, but
there is little difference between the other three speeds.

The drift rate functions are S-shaped. They are approximately
linear only for the three most difficult conditions. The S-shape
derives from differences in drift rates that are smaller between the
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easiest conditions (the farthest left and the farthest right) than
between the most difficult conditions (the middle conditions).
Collapsing over speed and direction, drift rates were .07, .14, .20,
.29, .46, and .60, for the .05, .10, .15, .20, .25, .50, and .90,
respectively. For all three of the easiest coherence conditions (.25,
.5, and .9), averaging over the four stimulus speeds, accuracy was
at ceiling (greater than .94), yet drift rates doubled.

Once again, the psychometric functions constructed by applica-
tion of the diffusion model provide a quite different target for
models of perceptual or cognitive processes than do the functions
based on accuracy. However, in contrast to Experiments 1 through
7, the drift rate functions are S-shaped; they do not have an
approximately linear shape in the middle of the stimulus range that
Experiments 1 through 7 do.

As noted, in the application of Palmer et al.’s (2005) version of
the diffusion model to their data, coherence and drift rate were
found to be linearly related. The S-shape in Figure 4D has drift
rates decelerating with increasing coherence, especially in the
extreme conditions (see also Ratcliff & McKoon, 2008, Figure 11).

Speed Discrimination: Experiment 9

Experiment 9 used stimuli similar to those used in Experiment
8, but the task was changed—instead of deciding whether the
direction of motion was to the left or right, subjects decided
whether the motion was fast or slow. Even though the stimuli were
similar, the change in task changed the patterns of the data and the
psychometric functions of accuracy and drift rates.

The changes in the data point to an issue raised in the introduc-
tion: Perceptual or cognitive processes need to produce a repre-
sentation of a stimulus that is appropriate for the task at hand. For
a dot-motion stimulus, speed might be the relevant dimension, or
direction, or density, or any of a number of other dimensions (or
combinations of them). Sometimes, the relevant dimension might
be independent of other dimensions and sometimes not, that is, the
dimensions might be “separable” or “integral” (cf., Garner, 1974;
Nosofsky, 1987). The example here shows what happens in the
motion task when speed as opposed to coherence in Experiment 7
is the dimension upon which the discrimination is made.

In piloting the experiment, two things became obvious. First,
when coherence was very low, motion was judged to be fast
because the random flicker of the stimuli over frames was inter-
preted as rapid random motion. For this reason, only higher co-
herence values were used (.25, .5, .75, and 1.0). Second, with the
coherent dots sometimes moving left and sometimes right, subjects
reported that they sometimes, by mistake, responded according to
the direction of the movement, not the speed, so the paradigm was
changed such that the direction was vertically downward for all
stimuli.

Method

The stimuli were the same as for Experiment 8, but there were
10 levels of speed, from 1 to 10 pixels per frame (the four slower
speeds were equivalent to the speeds in Experiment 8). “Slow” was
considered the correct response for Speeds 1 to 5, and “fast” for the
others.

Results

Items with RTs less than 300 ms or greater than 2,500 ms were
eliminated, totaling about 3.6% of the data. Because there were
relatively few observations per condition (n � 28), accuracy and
RTs were averaged over subjects before fitting the diffusion model
to the data. Accuracy was above 90% correct for 20 out of the 40
experimental conditions.

Just as for all the preceding experiments, the drift rate functions
give a different and simpler target for modeling than the accuracy
functions. Figure 4E shows drift rates as a function of speed and
coherence. Overall, averaging over coherence, the speed function
is S-shaped, with an approximately linear portion in the middle of
the range. For the fastest-moving stimuli, 8, 9, and 10 pixels per
frame, drift rates differed little as a function of coherence (the four
drift rate functions converge in the top right hand corner of Figure
4E). But for all the slower speeds, from 1 pixel per frame to 7
pixels per frame, the increase in drift rates was large (middle and
bottom left of the functions in Figure 4E). For example, at 1 pixel
per frame (the left hand column of points), drift rate for the highest
coherence condition was about double that for the lowest coher-
ence condition. This is likely a consequence of random motion of
the low coherence stimuli appearing to be fast motion. It also
suggests that speed and coherence are not completely separable
(Garner, 1974) when judging speed.

The psychometric function for drift rates when the decision was
based on speed (Experiment 9) is somewhat different than when
the decision was based on direction (Experiment 8). Both are
S-shaped, but the function for speed asymptotes at the extremes,
whereas the function for direction does not. Manipulating speed
modulated direction judgments only for slow stimuli (Experiment
8), but manipulating coherence modulated speed judgments for all
except the highest speeds (Experiment 9). The finding that speed
and coherence have different effects is not surprising, but it does
make concrete the fact that different independent variables may
have quite different effects on performance. In other words, per-
ceptual or cognitive processes must transform the stimuli into
different representations for the two tasks.

Dot Separation: Experiment 10

The data for this experiment come from Ratcliff et al. (2001,
Experiment 2). The task required subjects to decide whether the
distance between two dots was large or small, and subjects were
instructed to respond as quickly as possible for some blocks of
trials and as accurately as possible for other blocks. The drift rates
reported by Ratcliff et al. were averaged over groups of eight
conditions each. Here, to give a more complete picture of the
results, the data are averaged over groups of only two conditions
each. In Ratcliff et al.’s experiment, there were elderly adults and
college-age adults. Here, I analyze the data only for the college-
age adults.

The dot separation task has been important in comparisons of
cognitive processing between young and older adults, for which it
has been used to show that drift rates can be as large for older as
younger adults. It has also been used with rhesus monkeys: Rat-
cliff, Cherian, et al. (2003) used the task to trace out and model the
time course of neural firing rates with single-cell recordings and to
map the firing rates onto the time course of behavioral responses.
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Results

RTs greater than 3,000 ms and less than 280 ms were excluded
from the analysis (less than 4% of the data). Two thirds of the
excluded data came from responses shorter than 280 ms for the
speed instruction condition for five of the 17 subjects.

Figure 2 shows accuracy and mean RTs for the 16 conditions
with accuracy instructions and the 16 with speed instructions.
Accuracy was at or near ceiling (over .94 correct) for Distances 24
through 32 and for Distances 1 through 6. The asymptote was
somewhat higher with accuracy instructions than with speed in-
structions. Across the ceiling conditions, there were small de-
creases in mean RTs of about 15 ms with speed instructions and
larger changes with accuracy instructions of over 48 ms.

The psychometric function for accuracy is S-shaped (see Figure
2), whereas the drift rate function (Figure 4F) is roughly linear in
the middle of the range of conditions, bending over very slightly in
the extremes. Again, consideration of drift rates instead of accu-
racy leads to a different target for perceptual or cognitive pro-
cesses.

Line Length: Experiment 11

Grinband et al. (2006) conducted an fMRI experiment in which
lines of 16 different lengths were presented to subjects for “long”
versus “short” judgments. The cutoff between long and short was
manipulated such that on some trials, the correct response for
Lengths 1 through 4 was “short” and the correct response for
Lengths 6 through 16 was “large.” On the other trials, the correct
response for Lengths 1 through 11 was “short” and the correct
response for lengths 13 through 16 was “Long.” On each trial, the
cutoff for that trial was cued by a circle—red for the shorter cutoff
and green for the longer one.

Grinband et al. (2006) used the cutoff manipulation and fMRI
signals to separate brain areas that were and were not affected by
the cutoff manipulation. They found that the brain areas that were
affected were decision-related areas and the brain areas that were
not were mainly areas that responded to stimulus information.

The behavioral data showed a shift in the accuracy psychometric
function such that when the cutoff was at 5, subjects mainly
responded “long” for stimuli between 6 and 11, and when the
cutoff was at 12, subjects mainly responded “short.” In the diffu-
sion model, this corresponds to moving the drift criterion that
separates positive from negative drift rates so that the zero point of
drift is at 5 for the small cutoff and 12 for the large one (Leite &
Ratcliff, 2011; Ratcliff, 1985).

Method

On each trial, there was a fixation point, then a red or green
circle, and then the line about which a decision was to be made.
The line remained on the screen until a response was made.

Results

For 16 out of 30 conditions, accuracy was at ceiling, with the
probability correct .94 or greater. Mean RTs changed from 795 ms
at the easiest condition to 1,505 ms at the most difficult condition.
Mean RT also changed by more than 300 ms over conditions in
which accuracy was over .94 (see Figure 5). The vertical lines are

the dividing points, 5 and 12, between large and small. With the
cutoff at 5, the functions are shifted to the left relative to the
functions with the cutoff at 12.

The model was fit to the data for the two cutoffs separately
because the duration of the cue was long enough that subjects
could change settings of decision-process parameters according to

Figure 5. Response proportion, correct mean RT, and drift rates for the
line length discrimination experiment (Experiment 11) of Grinband et al.
(2006). The gray and black circles represent the cues for the criterion
manipulation (red and green in the experiment) and the vertical lines show
the cutoffs for those cues. The lines at the top of the plot represent the
stimuli.
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whether the cutoff was 5 or 12. However, it turned out that
boundary separation, nondecision time, and starting point did not
differ significantly between the cutoffs, and thus the parameters in
Table 1 are averages of the two.

Drift rate varied approximately linearly as a function of line
length (see Figure 5), but the function was shifted between the two
cutoff conditions. When the cutoff was 5, stimuli above Length 5
had positive drift rates (toward the “long” boundary) and stimuli
below 5 had negative drift rates. When the cutoff was 12, drift
rates were positive above Length 12 and negative below. Thus, the
cues resulted in subjects moving their drift criterion between the
two cutoffs. These functions for drift rates contrast sharply with
the nonlinear accuracy functions.

Experiments 8 and 9 illustrated how drift rates are not a function
of stimulus properties alone, but instead functions of the interac-
tion between them and task requirements. Experiment 11 provides
another such illustration, with different (quantitative) representa-
tions needed for the long and short cutoffs.

The Other Parameters of the Diffusion Model

In the main, the parameters of the model other than drift rate
differed little from one experiment to another. In addition, except
for Experiment 11, the values of the parameters (see Table 1) are
all in the ranges that have been found in other studies with college
students as subjects. In other studies, values of drift rate, boundary
separation, and nondecision time show consistent individual dif-
ferences across subjects (as do drift rates) when the subjects
participate in several experiments (e.g., Ratcliff et al., 2010; Rat-
cliff, Thapar, & McKoon, 2011; Ratcliff, Thompson, & McKoon,
2013).

Boundary Separation

Except for Experiment 11, the average distances between the
boundaries were between 0.114 and 0.150. The averages for Ex-
periments 1 through 4 (numerosity) and 6 through 7 (brightness)
were about the same and slightly larger than the averages for
Experiments 5 (number), 8 (motion), and 9 (speed), which were all
about the same.

For Experiment 11, the distances between the boundaries were
larger than for the other experiments. The red and green circles
cued the cutoff between long and short lines on a trial-by-trial
basis, so subjects had to adjust their cutoff trial by trial. In addition,
the delays between stimuli could be as long as 4 s (because of the
fMRI requirements). Either of these factors could have induced
subjects to set wider boundaries.

Starting Point

For the experiments for which the difficulty dimension was
divided into approximately equal halves (all except Experiments 3,
4, and 7), the starting point was about halfway between the two
boundaries. For Experiments 3, 4, and 7, the proportions of the two
types of stimuli were not equal and, accordingly, the starting points
shifted toward the boundaries that represented the more likely type
of stimulus (cf., Leite & Ratcliff, 2011; Ratcliff, 1985).

Nondecision Times

Nondecision times were remarkably similar across most of the
experiments. The exceptions were Experiments 9 (dot movement
speed) and 11 (line length). For these experiments, nondecision
times were longer than for the other experiments, suggesting that
the processes that produce representations and turn them into drift
rates are slower for these tasks.

Differences in nondecision times among tasks are not unusual,
as noted in the introduction of this article. Ratcliff et al. (2006,
2010) found systematic differences in nondecision time when the
same subjects were tested on several tasks. For recognition mem-
ory and lexical decision, nondecision times were 50 ms to 150 ms
longer than for numerosity judgments. This suggests that the
processes that construct decision-related representations of infor-
mation from memory (episodic or semantic) take more time than
the processes that construct decision-related representations for
simple perceptual dimensions. However, for most of the tasks
examined in the experiments reported here, nondecision times
were quite similar.

Across-Trial Variability Parameters

The across-trial variability parameters have much higher stan-
dard deviations in their estimates than drift rates, boundary sepa-
ration, and nondecision time (Ratcliff & Tuerlinckx, 2002). No
systematic differences were found across the experiments and all
the values were in the ranges that have been found in other
experiments.

Comparisons Between SDT and Diffusion-Model
Psychometric Functions

The simplest SDT model for psychometric functions assumes
that stimulus evidence is normally distributed and that changing
the strength value of a stimulus moves the normal distribution
along the strength axis (e.g., Macmillan & Creelman, 1991). If this
model is correct, then the psychometric function of accuracy
plotted against stimulus values is a straight line. In this section, I
compare psychometric functions of accuracy, z-transformed accu-
racy, and drift rates.

For the first comparison, I generated predictions for accuracy
from the diffusion model as a function of drift rate for three values
of boundary separation and two values of across-trial variability in
drift rate (see Figure 6). The values of boundary separation
spanned those that are typical for fits of the model to individual
subjects’ data for tasks like the ones presented here. Across-trial
variability in drift rate was either 0 or 0.12; the latter is typical of
the values in Table 1. Figures 6 shows the resulting plots of drift
rates against z-transformed accuracy.

The questions are whether and how drift rates add informa-
tion to what would be obtained with accuracy or z-transformed
accuracy. For accuracy, it is clear that they do: Accuracy
flattens across drift rates, giving the S-shaped functions in the
examples in Figure 2.

In more detail, when there is no across-trial variability in drift or
starting point, and the starting point is midway between the two
boundaries, accuracy as a function of drift rate turns out to be a
logistic function (e.g., substitute z � a/2 in Equation A8 of
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Ratcliff, 1978). The logistic function is very similar to the cumu-
lative normal distribution, and because it has a closed form, it has
been used in SDT as an alternative (e.g., DeCarlo, 1998; Ogilvie &
Creelman, 1968).

For z-transformed accuracy, the shape of the function depends
on the amount of across-trial variability in drift rate. With across-
trial variability near zero and the separation of the boundaries
large, the function is S-shaped. However, when the across-trial
variability in drift rate is 0.12, the functions are close to linear,
suggesting, in this case, that drift rates would not add information
beyond that of z-transforms. For example, if drift rate were linear
with stimulus value, then the z-transform of accuracy would be
linear with stimulus value if the across-trial variability in drift rate
was not near zero. However, in practice, differences in
z-transforms, unlike drift rates, cannot be estimated when accuracy
is at ceiling.

I also compared z-transforms with drift rates for Experiments 1
through 11. For each experiment, I computed the z-transforms of
accuracy for each subject in the experiment and then averaged
these values (except for Experiment 9, in which the group data
were used). These z-transforms and drift rates are plotted in
Figures 7 and 8 against the independent variables for each exper-
iment. I also computed the z-transforms of the accuracy values for
the data averaged over subjects, but these tracked the z-transforms
for the individual subjects, so only the latter are shown in the
figures. For both ways of computing the z-transforms, I used the
standard correction that a probability of 0 or 1 was replaced by
0.5/N or 1–0.5/N, respectively.

Across the 11 experiments, the drift rate and z-transformed
accuracy functions are sometimes quite similar and sometimes

quite different. For numerosity discrimination, in Experiment 1,
the drift rate function is approximately linear over almost the
whole range, whereas the z-transformed accuracy function levels
off in the tails. For Experiment 2, the two match well because
accuracy does not reach ceiling—the highest accuracy values are
.91. For Experiments 3 and 4, there are substantial misses between
the two functions, with z-transformed accuracy leveling off much
earlier than drift rates because RT decreased even as accuracy
asymptoted. Misses in the tails of the functions also occur for
number discrimination (Experiment 5) for the cutoff at 20, with the
drift rate function increasing for numbers greater than 20, whereas
the z-transformed accuracy function is almost constant. There are
smaller misses in the tails for motion discrimination, speed dis-
crimination, and dot separation (Experiments 8, 9, and 10).

In contrast, for brightness discrimination (Experiments 6 and 7)
and number discrimination (Experiment 5), with the cutoff at 50,
accuracy and RT asymptote in the same range, and drift rate tracks
z-transformed accuracy values. The result from number discrimi-
nation is surprising because the high ceiling levels of accuracy in
many of the conditions were accompanied by decreases in RT. In
Experiment 1, 3, and 4, similar results produced a change in drift
rate functions as stimuli became easier, whereas the z-transformed
accuracy values did not change.

Finally, for the line length experiment, the drift rate functions
are approximately linear, whereas the z-transformed accuracy
functions diverge at intermediate values of line length and then
converge at the extremes. This may be because the experiment has
the lowest number of observations per subject per condition, and
thus the divergence between the functions may reflect ceiling
effects.

To summarize across the 11 experiments, the plots of
z-transformed accuracy values generally follow the drift rate func-
tions closely in the middle of the range of the independent vari-
ables, when accuracy is less than .9. However, most models of the
processes that encode information from perceptual or cognitive
stimuli are designed to explain performance not just in the middle
range of performance but also at the extremes. In fact, it may
be that the best discrimination between one model and another
comes at the extremes.

One consequence of these findings for SDT should be high-
lighted. In the default SDT analysis, the accuracy psychometric
function is the cumulative normal distribution. With this model,
the z-transform of accuracy as a function of the independent
variable should be a linear function. In some cases, the functions
were roughly linear, but in others, they deviated from linearity
(Figures 7 and 8).

General Discussion

The diffusion model, like other sequential sampling models,
provides a meeting ground between, on the one side, the processes
that produce a representation of a stimulus and transform it into a
representation that is decision-related, and, on the other side, the
decision process that makes use of that representation. Any stim-
ulus has a number of dimensions on which a decision could be
made, for example, dot direction in Experiment 8 and dot speed in
Experiment 9. The dimensions must be collapsed onto a single
decision variable (sometimes the variables are separable so that
one can be discounted, whereas other times, they are not; e.g.,

Figure 6. Plots of z-transformed accuracy and accuracy against drift rate.
Across-trial variability in starting point was 0.04, and the other parameters
are shown in the figure (nondecision time and across trial variability in
nondecision time do not affect accuracy predictions). Boundary separation,
a, is presented in the box in each panel.
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Garner, 1974). In the case of the diffusion model, this variable is
drift rate.

In SDT and most accuracy-based modeling applications, RTs
are not considered. It might be thought that if SDT could give an
adequate account of accuracy, then a simple decision model could
be tagged on to the end of it to account for RTs (e.g., a transfor-
mation of perceptual strength to latency; see discussion in Ratcliff
et al., 1999, p. 275). However, given the variety and complexity of
relations between accuracy and RTs that are observed empirically,
even models that could perfectly predict accuracy would almost
certainly be invalidated by RT data. One example of complexity is
provided by experiments in which subjects are given instructions
to respond as quickly as possible on some trials and as carefully as

possible on others (e.g., Ratcliff et al., 2001, 2003, 2004, 2006;
Ratcliff & Rouder, 1998; Ratcliff & Smith, 2004; Thapar, Ratcliff,
& McKoon, 2003). Despite the changes that this manipulation
produces in accuracy and RTs, drift rates remain approximately the
same.

When drift rates and z-transformed accuracy values are plot-
ted against independent variables, they have about the same
shape when accuracy is not at ceiling. Given this, it might be
thought that the theoretical interpretations of the two are com-
patible, but this is not the case. In SDT, all variability in
processing comes from across-trial variability in the represen-
tations of stimuli produced by perceptual or cognitive pro-
cesses. In the diffusion model, variability is broken down into

Figure 7. Plots of drift rate and the z-transform of accuracy against the independent variable for Experiments
1 through 5.
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across-trial variability in the representations (i.e., in drift rate),
across-trial variability in the starting point, and within-trial
variability in the decision process. Because the diffusion model
has multiple sources of variability, across-trial variability in
drift rate is not the same as across-trial variability in a SDT
representation (Ratcliff, 1978).

Psychometric Functions for Experiments 1 Through 11

If the diffusion model is to provide a meeting ground between
perceptual or cognitive processes and the decisions made on the
basis of the stimulus representations produced by those processes,
then the model must give a good account of accuracy and RT data,
qualitatively and quantitatively.

For all of the experiments, the diffusion model fit the data well.
For Experiments 1 and 7, Figure 3 illustrates the match between
RTs and accuracy from the data, and RTs and accuracy generated
from the best-fitting values of the parameters of the model. For
these and the other experiments, the fits between the model and

data were good across all the conditions. Chi-square values (see
Table 1) were all between the number of degrees of freedom and
3 times that number, the same range as has been observed in other
applications of the model. Although there were significant values
for some subjects, the chi-square test is conservative, and very
small differences between data and model can give large contri-
butions to chi-square values (e.g., Ratcliff, Thapar, Gomez, &
McKoon, 2004).

For all of the experiments, accuracy showed ceiling effects that
extended across several levels of stimulus difficulty. In some, but
not all, of the experiments, RTs continued to decrease across these
levels. These decreases in RTs were responsible for increases in
drift rates when both accuracy and z-transformed accuracy func-
tions asymptoted. For some of the experiments, the drift rate
function was approximately linear across most of levels of the
independent variables. For others, there was flattening of the
function for the very easiest conditions. Phenomenologically, as
stimuli become more and more extreme, they begin to look quite

Figure 8. Plots of drift rate and the z-transform of accuracy against the independent variable for Experiments
6 through 11. For the speed discrimination experiment, only the highest and lowest functions are shown to reduce
clutter. The two intermediate accuracy functions show the same deviation between drift rate and z-transformed
accuracy functions as for the lower accuracy functions.
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similar to each other and quite different from stimuli near the
cutoff between the two responses.

The finding that z-transformed accuracy functions follow the
shapes of drift rate functions closely in some of the experiments
but not others is an important one. At this point, there is no
theoretical basis that I know of to understand when there will be
differences between the two and when not, and there do not seem
to be any generalizations that can be drawn from the experiments
presented here. This indicates that generalizations and empirical
relationships between drift rate and z-transform functions need to
be investigated on a case-by-case basis.

The Drift Rate Criterion

At the beginning of an experiment, subjects decide, probably
implicitly, where the split should be between stimuli for which
they make one response and stimuli for which they make the other
response. In the diffusion model, this is the drift rate criterion; it
sets the zero point, above which drift rate is positive and below
which it is negative. This is exactly analogous to the criterion in
SDT. Subjects can change the drift criterion quickly, between
trials, as evidenced in Experiment 11, in which the cutoff between
the stimuli for one response and the stimuli for the other changed
on a trial-by-trial basis.

For all the experiments described in this article, subjects set the
drift rate criterion on the basis of verbal instructions, and they did
so immediately at the beginning of an experiment. For example,
when subjects were told to call anything over 24 asterisks “large”
and anything below or equal to 24 “small,” they were able to
respond correctly even on the first few trials. This suggests that a
large component of criterion placement was prior experience.
There have been investigations of how criteria are learned over the
course of an experiment through feedback (e.g., McKinley &
Nosofsky, 1995; Turner, Van Zandt, & Brown, 2011). However,
how criteria are set by verbal instructions and experience is an
open question.

Investigation into how criteria are set is further complicated by
considering relations between human and animal performance. In
animal studies of perceptual decision making, months of training
are often required before testing can begin, which can mean that a
tight connection is established between stimulus and response.
However, humans demonstrate a high degree of flexibility, with
verbal instructions calibrating performance. They can perform any
one of a number of different discrimination tasks based on a single
stimulus. In general, this process of calibrating and focusing on the
decision variable has rarely been studied experimentally.

A broader point is that the range of values on some dimensions
is quite large. For example, the human visual and auditory systems
have dynamic ranges that can discriminate stimuli in the range of
at least 109 in luminance for vision and power for sound. For any
particular task, only parts of the range may be used: Discriminating
between two visual stimuli in moonlight is at a different part of the
luminance scale than discriminating between two stimuli in bright
sunlight. The human processing system can discriminate quite
small differences in these wide ranges of scales. Gallistel (2011)
has discussed this issue and described the notion of autoscaling.
The idea is that the processing system (the measurement instru-
ment in Gallistel’s discussion) has a limited dynamic range, but
that the range and the degree of sensitivity are adjusted to the

stimulus range. In other words, a difference of 10 asterisks be-
tween two arrays of asterisks is moderately discriminable in the
middle of a 1 to 100 scale, but not in the middle of a 1 to 1,000
scale.

Independent Variables and Drift Rate

Although the diffusion model provides estimates of drift rate as
a function of independent variables that are manipulated in an
experiment, it cannot be assumed that the independent variables
are actually responsible for changing difficulty and, hence, chang-
ing drift rates. For example, in brightness discrimination with
arrays of black and white pixels, it might be that luminance is the
variable determining drift rate, that the proportion of black to white
pixels is the determining variable, or that the density of local areas
of black and white pixels is the determining variable. These
different dimensions are all correlated when all that is manipulated
is the proportion of black to white pixels, as was done in Exper-
iments 6 and 7.

It also cannot be assumed that, whatever the dimension control-
ling drift rates, there is a single, simple processing stream that
maps directly from the representation produced by perceptual or
cognitive processes to the variable on which the decision is based.
This might suggest that the time taken for nondecision processes is
independent of task. However, as noted in the introduction, this
does not occur. Encoding processes need to transform stimulus
information into different representations for different tasks, and
there is no reason to think that these transformations will take the
same amounts of time.

To reiterate what was said in the introduction of this article,
nondecision time can be around 200 ms shorter when all that is
required is a key press as soon as a stimulus appears than when a
two-choice decision is required (e.g., Ratcliff & Van Dongen,
2011, supplementary Table S4). In terms of the diffusion model,
this means that the information produced by the perceptual pro-
cesses that translate stimulus information into a decision variable
may need to be different for different tasks.

Studies by Philiastides et al. (2006) and Ratcliff, Philiastides,
and Sajda (2009) take this argument a step further. They examined
two tasks that used the same stimuli: faces and cars. For one task,
subjects decided if a stimulus was a face or a car. For the other
task, the stimuli were colored red or green, and subjects decided if
the stimulus was red or green. For face–car discrimination, Phili-
astides et al. observed two EEG components, one earlier than the
other by over 130 ms. For red–green discrimination, the late
component disappeared. They interpreted these data as showing
similar representations of perceptual information for the two tasks
but different representations of decision-related information.

Integrated Models and Functional Forms

One way to approach differences in the representations pro-
duced by perceptual and cognitive processes for different tasks is
to develop models that integrate encoding and decision processes.
One aid in developing such models is to derive functional rela-
tionships between model components and independent variables.
For example, Ratcliff (1978) showed how several independent
variables affected RT and accuracy and drift rate in recognition
memory, and discussed how the drift rate might provide a meeting
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point with memory models. For a two-choice perceptual task,
perceptual processes transform the features of a stimulus that are
relevant to the decision onto a unidimensional variable, and the
value of this variable would then drive the decision process (e.g.,
Ashby, 2000).

There have been several successful efforts to do this, such that
the models do more than produce a simple drift rate function for
only one independent variable. Nosofsky et al. (2011; see also
Nosofsky & Palmeri, 1997) spelled out the processes that could
generate a measure of the similarity of one stimulus to another in
a short-term memory task, with this measure driving a sequential-
sampling accumulator model. The model produced an impressive
account of RT and accuracy data from a large number of condi-
tions with only a few parameters. In a model proposed by Ratcliff
(1981), perceptual processes transform strings of letters into dis-
tributed representations. The representation of each letter in the
string overlaps with the representations of letters that are nearby in
the string and the amount of overlap between a study string and a
test string drives a diffusion decision process. This model ac-
counted for the relative difficulty of stimulus conditions and RT
and accuracy values. Smith and Ratcliff (2009) developed a model
to explain the effects of stimulus contrast, masking, and attention
on perception, which, when coupled with a diffusion decision
process, produced a successful explanation of RTs and accuracy.
White et al. (2011) successfully explained data from perceptual
conflict tasks with a model that computed a shrinking spotlight
over a distributed representation of stimuli combined with a dif-
fusion decision process.

Conclusions

In all of the 11 experiments above, I examined the mapping
between perceptual or cognitive processes and the decision
variable that drives a diffusion decision process. In some cases,
the mapping was approximately linear across the whole range
of stimulus difficulty, and in some, it flattened out at the
extremes. For all 11 experiments, the psychometric function
plotting drift rates was crucially different than the functions of
accuracy and RTs. The shapes of z-transformed accuracy func-
tions matched the shapes of drift rate functions well in the
middles of the ranges of independent variables, but sometimes
not in the tails. In terms of the data, a miss between drift rates
and z-transformed accuracy was signaled by a continuing de-
crease in RT, as the stimulus became easier, after accuracy had
asymptoted.

The challenge implicit in this research is threefold. First, models
like those described in the previous section are needed that can
map from a stimulus to a representation of the stimulus to a
decision variable (such as the examples reviewed in the previous
section). Second, such a model must account for the effects of a
large enough number of independent variables so that a compre-
hensive picture of processing can be observed (e.g., Nosofsky et
al., 2011; Smith & Ratcliff, 2009). Third, such a model must be
able to map from multidimensional stimuli to a single-dimensional
decision variable in different ways for different tasks. The diffu-
sion model and other sequential-sampling models provide a test of
models like these—whether the encodings of stimuli that they
produce can feed through the decision model to give correct
predictions for performance.
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