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Speed and Accuracy in the Processing of
False Statements About Semantic Information
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Data from eight experiments on semantic verification are presented. Two pro-
cedures were used, a standard reaction time procedure and a response signal
procedure. Data from the response signal procedure showed that for false cat-
egory-member statements (e.g., all birds are robins), there was an increasing
tendency to respond yes early in processing, replaced later in processing by an
increasing tendency to respond no. For statements involving antonym relation-
ships (all mothers are fathers), data from the response signal procedure showed
that there is no greater tendency to respond yes than for anomalous statements
(a chair is a wall). Results in the standard reaction time procedure could not
be predicted from the results in the response signal procedure. This suggests that
simple models of the semantic verification task that assume a single yes/no
dimension on which discrimination is made are not correct. Some suggestions
are made as to the kinds of properties that would be required for an adequate
model.

Research in the area of semantic memory
has focused on the structure of semantic in-
formation and the processes by which sub-
jects verify sentences expressing semantic
information. Models of the processes of ver-
ification have been developed and the con-
structs of the models translated into exper-
imental variables that are supposed to affect
the time required to verify sentences. These
variables have usually involved differences
in the information to be processed, such as
differences in semantic relatedness or pro-
duction frequency. For example, in the
model of Rips, Shoben, and Smith (1973),
the amount of overlap in semantic features
between the concepts of a sentence (e.g.,
between bird and robin in the sentence a
robin is a bird) is assumed to affect pro-
cessing time. This construct is measured by
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asking subjects to rate the semantic relat-
edness of the two concepts. The obtained
value of semantic relatedness is then used
to predict response time for verification of
a statement about the concepts. This is a
research strategy that concentrates on dif-
ferences in the information to be processed.
As such it has several problems: For ex-
ample, the constructs of a model may not
be measured correctly (McCloskey &
Glucksberg, 1979), or there may exist other
highly correlated or more important con-
structs (Glass, Holyoak, & O'Dell, 1974;
Smith, Shoben, & Rips, 1974).

The experiments presented in this article
reflect a different strategy. The interest is
not primarily in variables that are concerned
with differences in the information to be
processed. In fact, such variables are held
constant. Rather, the aim is to examine the
course of processing over time. This is done
in the first four experiments with a response
signal procedure. In the second four exper-
iments, results from ordinary reaction time
experiments are obtained for comparison
with the results from the response signal ex-
periments. The experiments are particularly
directed toward investigating the falsifica-
tion of negative statements (e.g., a mother
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is a father), because falsification data have
proven important in evaluating models of
semantic verification.

In the first part of the introduction, a brief
review of models of semantic processing is
presented. In this review, we concentrate on
the ways information is processed over time
and on the ways negative statements are
processed. A more complete review of the
area has been provided by Smith (1978).
Our review is intended to be sufficient to
provide the basis for evaluation of the models
in light of the data presented in the, eight
experiments.

Review of Models

Recent research on semantic memory
blossomed as a result of Collins and Quil-
lian's (1969) test of Quillian's (1967) theory
of semantic memory. In Quillian's theory,
concepts such as robin, bird, animal, and
thing are stored in a hierarchy with thing as
the root node and other concepts branching
off; for example, animal is one link from
thing, bird one link from animal, and robin
one link from bird. Processing is assumed to
proceed by means of activation spreading
along the links. In Collins and Quillian's
experiments, subjects were asked to verify
statements such as a robin is a bird or a
robin is an animal. The prediction made was
that the time to verify a statement would be
a linear function of the distance between the
concepts in the memory representation. This
prediction was confirmed and further exper-
iments followed.

Collins and Quillian's (1969) model does
not adequately account for data from falsi-
fication judgments. In this model, falsifying
a statement involving two unrelated concepts
(e.g., a rock is a thought) requires very long
processing time, but in fact such statements
are rejected rapidly. Also, Conrad (1972)
found that, in the studies of Collins and
Quillian, hierarchical distance in the seman-
tic network was confounded with semantic
relatedness. Partly in response to these prob-
lems, Rips et al. (1973) and Smith et al.
(1974) developed a feature comparison
model.

In the Smith et al. model, concepts are
represented by bundles of semantic features,

and a statement such as a robin is a bird is
verified by assessing the relative amount of
feature overlap between the two noun con-
cepts in the statement. Processing time is
determined by a two-stage decision mecha-
nism. In the first stage, the amount of over-
lap is computed by a parallel comparison
process; if the amount of overlap exceeds one
criterion or is less than a second criterion,
then a response is made. If the amount of
overlap lies between the two criteria, then
the second stage is executed. This model
predicts that the more feature overlap be-
tween two concepts, the faster and more ac-
curate positive responses are and the slower
and less accurate negative responses are.
Thus, verifying a robin is a bird should be
faster than verifying a penguin is a bird and
responding negatively to a bird is a robin
should be slower than responding negatively
to a bird is a penguin.

Holyoak and Glass (1975) tested the
Smith et al. (1974) model and found that
predictions of the model were contradicted
with respect to false statements about an-
tonyms (e.g., a mother is a father). They
found that these statements, in which the
two concept nouns are highly similar, were
actually rejected faster than statements in
which the nouns are less similar. The best
predictor of response time was found to be
the frequency with which one concept is pro-
duced by subjects in response to the other.
Holyoak and Glass (1975) also found that
in statements such as all fruits are oranges,
reaction time was determined by how closely
a possible counterexample (e.g., apples) was
associated with the subject noun.

These results led Glass and Holyoak
(1975) to develop a model they called the
marker search model. This model, like that
of Collins and Quillian, assumes that con-
cepts are stored in a semantic network, but
it also assumes that there are shortcut paths
between some concepts. Processing proceeds
by search through the network (whether the
search is serial or parallel is unspecified).
The search is ordered so that some types of
paths are searched before others. The order
is specified by production frequency, mea-
sured by a sentence completion procedure.
For true statements, the greater the produc-
tion frequency, the shorter the search and
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the faster a true response. For example, if
wings is produced frequently for all birds
have , then true responses for the state-
ment all birds have wings will be fast. For
false statements, a false response rests on
finding a contradiction or counterexample.
For a contradiction (e.g., all mothers are
fathers), the greater the production fre-
quency (of fathers as a response to false: all
mothers are ), the faster the response
time. For a counterexample (e.g., all birds
are robins), the greater the production fre-
quency of some other example (e.g., canaries
as a response to false: all birds are ),
the faster the response time. These assump-
tions are sufficient to explain the data for
verifying true statements and for rejecting
false statements of the types used by Hol-
yoak and Glass (1975) (contradiction and
counterexample statements). But the model
requires ad hoc assumptions to explain fast
falsification of anomalous statements (e.g.,
a rod is a thief).

McCloskey and Glucksberg (1979) re-
cently presented results that they argue con-
tradict both the feature comparison model
of Smith et al. and the marker search model
of Holyoak and Glass. McCloskey and
Glucksberg performed several experiments
in which the nature, of the statements in the
test list was varied. For example, one list
might contain only true statements in which
the concepts were highly semantically re-
lated, and false statements in which the con-
cepts were unrelated; another list might con-
tain both highly related and unrelated true
and false statements. For statements that
appeared in both lists, verification times were
longer (and accuracy poorer) in the second
case—that is, when highly related false
statements were included in the same list
with unrelated true statements. From these
results, McCloskey and Glucksberg argued
that the processing of a particular statement
depends not only on the information in that
statement but also on the context of other
statements in which the information is pro-
cessed.

To account for their results, McCloskey
and Glucksberg (1979) developed a feature
comparison model that uses a Bayesian se-
quential sampling scheme to predict mean
reaction time and accuracy. During the

course of processing, features are sampled
sequentially; each time a feature is sampled,
the total proportions of positive and negative
evidence are calculated using Bayes's theo-
rem. When the probability of obtaining
those proportions is either larger than a pos-
itive criterion or smaller than a negative cri-
terion, a response is made. This model, like
the Smith et al. model, cannot account for
the fast negative responses obtained by Hol-
yoak and Glass (1975) for statements like
a mother is a father. There are also other
problems with the model proposed by
McCloskey and Glucksberg. First, the model
predicts that accuracy does not reach asymp-
tote as the boundary criteria are moved
apart. This means that subjects could achieve
an arbitrarily high level of accuracy. Second,
in the mathematical model, computations of
accuracy and reaction time are incorrect; the
feature comparisons that are assumed to ter-
minate at one of the boundaries include com-
parisons that would in fact have terminated
earlier at the opposite boundary.

The final model to be reviewed in the se-
mantic memory area is an updated version
of the Collins and Quillian (1969) model.
Collins and Loftus (1975) proposed that
there are two stages in the verification pro-
cess. In the first stage, the path between two
concepts in a semantic net is activated by a
spreading activation process^ Activation
spreads in parallel from a node and serially
between nodes. The greater the strength of
a link, the more activation is passed down
it. In the second stage, the path is evaluated.
The evaluation process consists of several
different subprocesses, some contributing
positive evidence (e.g., through a superor-
dinate connection or a match on defining
properties) and some negative evidence (e.g.,
through counterexamples, contradictions, or
negative superordinate connections). Posi-
tive and negative evidence cancel each other,
and the total amount of evidence is accu-
mulated in a Bayesian decision process.

Because the model incorporates many of
the processes proposed in other models (e.g.,
Glass & Holyoak, 1975; Smith et al. 1974),
it is capable of dealing with many of the
empirical results reported in the literature
(such as relatedness effects and fast nega-
tives). Problems with the model involve the
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spreading activation process: First, it seems
that the spreading activation process is re-
dundant. The evaluation process is neces-
sarily complex, involving partial matching
of patterns, coordinating multiple parallel
processes, and so on. Finding pathways be-
tween nodes would be relatively trivial and
could probably be integrated into the eval-
uation process. Second, Ratcljff and Mc-
Koon (1981) attempted to measure the rate
of spread of activation and found that only
a very short time is required for activation
to spread from concept to concept through
the memory representation of a paragraph.
In their experiments, subjects studied para-
graphs and then were required to recognize
whether target words had appeared in the
paragraphs. Each target was preceded by a
prime word that was either near to the target
in the structure of the paragraph or far from
it. The onset asynchrony of the prime and
target was varied (from 50 to 350 msec),
and it was found that near and far primes
facilitated response times for the targets
equally quickly (by 100 msec). In other
words, it was not true that activation re-
quired more time to spread to the target
from a far prime than from a near prime.
Thus, we suggest that the spreading acti-
vation process cannot be used to account for
different response times .in different kinds
of semantic judgments; response time dif-
ferences must be accounted for by the eval-
uation process.

All of the models that have been reviewed
were specifically designed for the semantic
verification task. They include assumptions
about the organization of information in se-
mantic memory as well as assumptions about
retrieval processes. We shall use one more
model, a model that makes assumptions
about retrieval dynamics but not about
memory organization, to examine the ex-
perimental data. This is a random walk
(diffusion) model, of the class of sequential
sampling models (Audley & Pike, 1965;
Laming, 1968; Link, 1975; Ratcliff, 1978;
Stone, 1960). The specific formulation pre-
sented by Ratcliff (1978) is used because it
deals with the relationship between reaction
time and accuracy and also accounts for data
from time course studies. In the area of se-
mantic memory, this model is similar to the

models of Collins and Loftus (1975) and
McCloskey and Glucksberg (1979) that as-
sume a sequential sampling process for re-
trieval. The diffusion model is used to com-
pare the results of time course studies with
the results of standard reaction time studies
in order to assess the ability of sequential
sampling models to relate these complemen-
tary measures of processing.

Empirical Investigations

The aim of the experiments presented in
this article is to provide data that are more
comprehensive than the data usually pre-
sented in the semantic memory area. Most
of the experiments in this area have been
concerned only with the statistic mean re-
action time. There are several reasons we
should go beyond this single statistic. First,
there is the problem of mimicking. Towns-
end (1972) demonstrated that it is possible
to mimic serial processing models with par-
allel processing models at the level of mean
reaction time. Thus, network models, which
usually assume serial processing from node
to node, can be mimicked by feature models,
which usually incorporate parallel process-
ing assumptions. In fact, Hollan (1975)
pointed out that network models and feature
models are formally isomorphic. Rips, Smith,
and Shoben (1975) argued in reply that even
though the representations of information
may be isomorphic, the processing mecha-
nisms are usually quite different. But it is
still likely that, with a minimum of ad hoc
assumptions, a serial search model could be
mimicked by a parallel feature model, and
vice versa, at the level of mean reaction time.

The second reason to look further than
mean reaction time is that error rates may
either covary with mean reaction time or,
sometimes, show a speed-accuracy trade-off
(e.g., Glass, Holyoak, & Kiger, 1979, Table
2). Some models are able to make predic-
tions about the relationship between accu-
racy and reaction time (e.g., McCloskey &
Glucksberg, 1979; Smith et al, 1974), but
others are mute on the subject (Collins &
Quillian, 1969; Glass & Holyoak, 1975).

Finally, the third reason to consider more
than just mean reaction time is that there
exists an alternative way of assessing the
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dynamics of processing; deadline or response
signal procedures can be used to measure
accuracy as a function of time—that is,'to
trace out the time course of processing
(Reed, 1973, 1976). These procedures can
be applied to the semantic verification task
by presenting the subject with a sentence to
verify and then requiring the subject to re-
spond at one of a number of experimenter-
determined times. Corbett and Wickelgren
(1978) have used the response signal tech-
nique to investigate the effect of category
dominance on semantic memory retrieval.
They found that dominance (the strength of
association from, a category to an instance)
affected only the asymptotic accuracy of a
response and not the time at which accuracy
rose above chance or the rate of approach
to the asymptote. These results show that
the response signal procedure can be used
effectively in the semantic memory area.

The response signal proce'dure was used
in Experiments 1-4 of this article to examine
the time course of processing in the semantic
verification task. In Experiments 5-8, a stan-
dard reaction time procedure was used in
order to provide data for comparison with
the response signal data. In both the re-
sponse signal and standard experiments, two
factors were varied. The first was the form
of the verification statement: "is a a

" or "all are " It was
thought that a response to the "all" version
would require the subject to be more certain.
The second factor was whether the parts of
the statement ("is a " and "a ")
were presented simultaneously or sequen-
tially. This manipulation was designed to
examine the effect of reading time of the
statement on processing.

In all eight experiments, the same mate-
rials were used; examples are shown in Table
1. We were particularly interested in the
response times for false statements because
in previous work they have been decisive in
the rejection of some models and the devel-
opment of others. There were three types of
false statements; the first type was labeled
opposites. The two concepts in these state-
ments were very similar and closely asso-
ciated; most were antonyms, although some
were simply different members of a cate-
gory. Corresponding to the opposites were

Table 1
Examples of Statements Used in-the
Experiments

Statement type Example

Opposite

Synonym

Category-member

Member-category

Anomalous

Description

A mother is a father.
A lion is a tiger.

A carpet is a rug.
A cellar is a basement.

A color is purple.
A bird is a robin.

A jeep is a vehicle.
A physicist is a scientist.

A problem is a swallow.
A captain is a sandwich.

A razor is sharp.
A banana is yellow.

synonyms, true statements in which the con-
cepts were as closely associated as the con-
cepts in the opposite statements. The second
type of false statements was category-mem-
ber statements; the first concept was the
name of a category and the second was a
member of that category. The response to
is a bird a robin should be no because there
are birds that are not robins. Corresponding
to these false statements were member-cat-
egory statements. The third type of false
statement was anomalous statements, state-
ments in which the concepts were not related
to each other. Finally, to avoid a prepon-
derance of false statements, there were de-
scription true statements.

In performing response signal experi-
ments, it has been usual to test individual
subjects for many sessions. The choice to be
made in our experiments was whether to test
subjects for many sessions and thus repeat
materials or to test subjects for only one ses-
sion and use the set of materials only once
per subject. If materials were repeated, sub-
jects could make use of their memory for
their previous response, thus confounding
semantic effects with response information.
On the other hand, testing for :only one ses-
sion would require averaging data across
subjects because of the small number of ob-
servations per subject per condition. Such
averaging would produce a slowing in the
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initial rise of the response signal curve "and
a slight slowing of the rate. We decided that
the problems associated with averaging would
be considerably less important than those
associated"with repeating materials.

Experiment, 1

In Experiment 1, the response signal pro-
cedure was used to trace the course of pro-
cessing over time. The first part of a state-
ment was presented for 500 msec, and then
the second part of the statement was pre-
sented, followed by a signal to respond. For
example, is a mother was presented for 500
msec, and then a father was presented. The
signal to respond (a row of asterisks) was
given at 50, 150, 300, 600, 1,000, or 1,500
msec after the second part of the statement.
Subjects were instructed to respond imme-
diately after the signal. They were given two
sessions of practice before the experimental
session to ensure that they would be able to
do this. Subjects were also instructed and
given training in interpreting the is a ques-
tion; for example, they were instructed that
the answer to is a bird a robin? is no because
all birds are not robins.

Method
Subjects. The subjects were 21 Dartmouth College

undergraduates who each participated in 3 1-hr, sessions
for $3 per session.

Materials. There were 240 anomalous statements
and 120 statements of each of the other types. These
statements were chosen from a larger pool of statements
according to semantic association ratings. The ratings
were collected'by asking 40 subjects to decide for each
statement how closely related the meanings of the two
concepts were on a scale of 1 to 7. Opposite and synonym
statements were chosen to have equal average ratings,
6.59 and 6.51, respectively, as were member-category
and category-member statements, 5.98 and 5.96, re-
spectively. These semantic association ratings were bal-
anced so that semantic ^elatedness would not be con-
founded with sentence type (e.g., subjects could not use
relatedness in deciding between opposites and syn-
onyms). The description statements (included in the
experiment to increase the number of true statements)
averaged 5.72, and the anomalous statements, 1.28. The
statements that were not included in the experimental
design were used for practice sessions.

Procedure. Stimulus presentation and data collec-
tion were controlled by a microcomputer interfaced to
Dartmouth's time-sharing system. Stimuli were dis-
played on a cathode-ray tube (CRT) screen, and sub-
jects responded by pressing keys on the CRT's keyboard
(the ? key for yes and the Z key for no).

There were two kinds of practice trials, which all sub-
jects received. In the first kind, a study-test procedure
was used. On each trial, four pairs of words were pre-
sented for study and then four test pairs were presented.
For each test pair, a subject had to decide whether the
two words of the pair had appeared together as a study
pair. The first word of a test pair was displayed for 500
msec and then withdrawn; the second word was pre-
sented; and then the signal to respond was given. The
response signal was presented at a variable lag after the
second word (50, 150, 300, 600, 1,000, or 1,500 msec).
The subject was instructed to respond as quickly as pos-
sible when he or she saw the response signal. Fast re-
sponses were encouraged by displaying a subject's re-
sponse time immediately after each response; subjects
were told to try to respond in less than 300 msec.

In the second kind of practice, a semantic verification
procedure was used. Statements were of the same types
as used in the final, nonpractice session. The first part
of the statement was presented for 500 msec, then the
second part of the statement, then the response signal,
and then, after the subject's response, the time from
signal to response. This sequence of events was exactly
the same as that used in the final, experimental session.

Each subject participated in three sessions. In the first
session, a subject was given three blocks of 30 study-
test trials. After each block, a subject's mean accuracy
and response time for each response signal lag were
calculated and shown to the subject. The subject was
encouraged to respond as quickly as possible, even
though accuracy was very bad at short lags. In the sec-
ond session, there were one block of 30 study-test trials
and two blocks of semantic verification statements. Each
block of verification statements was made up of 16 sets
of 30 statements. The subject initiated each set by press-
ing the space bar of the CRT terminal. Again, a sub-
ject's performance was assessed and described,to him
or her after each block. In the third session, there were
2 sets of 30 verification statements for practice and 28
sets of 30 statements for the experiment itself.

For the experimental materials (the statements used
in the final 28 sets of 30 statements), a new random
order of presentation of items was used for every two
subjects. The response signal lag for each item was cho-
sen randomly from the six possible lags.

Results

The results from this experiment are
shown in Figure 1 and Table 2. The course
of processing over time is shown in the
speed-accuracy curves of Figure 1. The
speed-accuracy curves were constructed by
calculating d measures in a standard d anal-
ysis. The (f measures were calculated from
group data; the average over subjects had
to be used because in some conditions there
were zero yes responses for some subjects.
The proportion of yes responses for the
anomalous statements was the false alarm
rate for the other five types of statements.
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Table 2
Results From Experiment I

Response
signal

lag
(in

msec)

50
150
300
600

1,000
1,500

50
150
300
600

1,000
1,500

Response
time for

yes
responses

(in
msec)

267
227
171
170
184
182

294
233
199
172
165
149

Response
time for

no
responses Probability

(in
msec)

Opposite

270
227
202
178
167
165

Synonym

262
216
195
197
188
183

of a yes
response

.262

.185

.103

.057

.031

.020

.468

.602

.753

.913

.929

.942

d'

-.02
.04
.00
.08

-.13
-.30

.54
1.19
1.96
2.98
3.22
3.30

Category-member

50
150
300
600

1,000
1,500

295
240
204
179
179
174

,276
231
226
205
178
174

.359

.406

.464

.402

.311

.235

.25

.71
1.19
1.38
1.24
1.02

Member-category

50
150
300
600

1,000
1,500

50
150
300
600

1,000
1,500

50
150
300
600

1,000
1,500

298
238
206
166
166
156

277
208
197
187
183
178

298
243
196
173
165
163

264
216
215
193
183
190

Anomalous

285
237
200
181
170
168

Description

268
230
201
183
178
188

,504
.602
.789
.873
.918
.918

.270

.176

.102

.048

.041

.038

.420

.572

.759

.887

.909

.936

.62
1.19
2.08
2.79
3.15
3.15

—
—

——
—

.41
1.12
1.98
2.85
3.09
3.26

Retrieval Time (sec)

Figure I . d as a function of retrieval time for Experi-
ment 1 for synonym (S), category-member (C-M), and
opposite (O) statements, with fits of the diffusion model
(continuous lines). (Error bars represent 97.5% confi-
dence intervals.)

For each of these five types of statements,
the proportion of yes responses served as the
hit rate. Thus the ordinate in Figure 1 rep-
resents the tendency to respond yes scaled
against the anomalous condition. The ab-
scissa represents the total retrieval time com-
puted by adding the mean response latency
at each response signal lag to the lag.

The anomalous statements were chosen to
scale the other statements against for several
reasons. First, scaling all of the other state-
ments against the same single statement type
allows comparisons between the other types
of statements directly. Second, the anoma-
lous statements are as discriminable from
true statements as false statements could
possibly be. Of all the types of statements
used in the experiments, only in the anom-
alous statements is there no semantic rela-
tion between the two concept nouns. Finally,
it is relatively easy to generate large numbers
of anomalous statements.

Reed (1973, 1976) and Corbett and Wick-
elgren (1978) have suggested that the cor-
rect, statistically unbiased measure for ac-
curacy is dT, which is calculated from
confidence ratings. The confidence ratings
allow the slope of the operating character-
istic to be calculated, and from this the sta-
tistically unbiased estimate dr of d can be
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computed. However, the choice we made at
the outset was not to repeat materials (be-
cause of the possibility the subjects would
be able to make use of information in mem-
ory about the previous response they made
to an item), so there were not enough ma-
terials per subject per signal lag to allow
meaningful estimates of dT for individual
subjects. Thus, unbiased estimates of d can-
not be calculated. This is not a problem,
however, because in the results that follow,
the absolute level of the d curves is not vital
to any conclusions; rather, relative levels are
important and these should have equivalent
amounts of bias.

In Figure 1, the confidence intervals shown
are 97.5% confidence intervals. They are cal-
culated from a d value obtained from hit
rate plus one standard deviation and false
alarm rate minus one standard deviation and
from a d value obtained from hit rate minus
one standard deviation and false alarm rate
plus one standard deviation. The standard
deviations were calculated from SD =
[p(\ — p)/N]1/2, where p is the proportion
of hits (or false alarms) and N is the total
number of responses.

The first result to note from Figure 1 is
that the d function for category-member
statements is nonmonotonic. The curve rises
up to about 600 to 800 msec and then falls
as retrieval time increases further. This ef-
fect is even more pronounced in the propor-
tion of yes responses, as can be seen in Table
2. The difference between d at 600 msec and
d at 1,500 msec is .36, which is a difference
greater than three standard deviations.

The nonmonotonicity immediately sug-
gests that there are two components involved
in the processing of the category-member
statements, one component providing infor-
mation that biases toward a yes response and
a second component entering processing
later and adding a bias toward a no response.
The first component might involve the over-
all similarity of the two concept nouns in the
statements, and the second component might
involve the exact relationship specified by
the statement for the two nouns.

Two components would seem to be com-
patible with the Smith et al. (1974) model.
The first stage of their model, the feature

matching process, would produce evidence
indicating a positive response, but then the
second stage would indicate a negative re-
sponse. However, this account is not com-
pletely adequate. The first stage should give
the same amount of positive evidence for the
category-member statements as for the
member-category statements bepause the
concepts in these statements are equally se-
mantically related. Thus, the initial parts of
the speed-accuracy curves should be the
same for the two types of statements. In fact,
they are not the same; the category-member
curve rises to a lower asymptote in the initial
part of its curve than the member-category
curve does. This is demonstrated by the fact
that points on the category-member curve
are always below points on the member-cat-
egory curve. (Another demonstration is pre-
sented in the next section, in which the ran-
dom walk diffusion model is fit to the
curves.) The only way the difference in the
initial parts of the curves could be accom-
modated by the Smith et al. model would
be to include in the model an assumption
that the onset of the second stage is ex-
tremely variable, so variable that the first
stage occasionally terminates in almost zero
time. With this assumption, the category-
member curve would lie below the member-
category curve. Other kinds of models, for
example, a two-stage parallel processing
model, might be able to account for the dif-
ferent initial asymptotes without such an
assumption.

In the Glass and Holyoak model (1975;
see also Holyoak & Glass, 1975), a negative
decision for category-member statements is
made by generating a member of the cate-
gory and then finding a contradiction be-
tween the category member in the statement
and the generated member. To account for
nonmonotonicity in the speed-accuracy
curve, it would be necessary to assume a sec-
ond, parallel process that produces positive
evidence over the first part of the time course
of processing (and has a different onset time
than the first process). A similar mechanism
could be added to the Collins and Loftus
(1975) model, but it is difficult to see how
the McCloskey and Glucksberg (1979) model
could account for nonmonotonicity.
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The second result is that, at any response
signal lag, opposites are just as accurate as
anomalous statements (except perhaps at the
longest lag). This result holds for subsets of
items with equal Kucera and Francis (1967)
word frequencies. The result indicated that,
through the course of processing, there is just
as much evidence toward a negative response
for an opposite statement as for an anoma-
lous statement.

These data present problems for. the
feature-matching models (McCloskey &
Glucksberg, 1979; Smith et al., 1974). Both
of these models predict that opposite state-
ments would produce more yes responses at
short lags than anomalous statements be-
cause the concepts in the opposite statements
are very similar and so there would be con-
siderable feature overlap. At longer lags, the
second stage of the Smith et al. model would
produce no responses (and a nonmonotonic
speed-accuracy curve), but the McCloskey
and Glucksberg model would continue to
produce yes responses.

In contrast to the feature-matching mod-
els, the network models have no difficulty
with the result that responses to opposite
statements are very accurate even at short
response signal lags. A similar result has
been found by Holyoak and Glass (1975)
and Glass et al. (1974) with a standard re-
action time procedure, and our result ex-
tends their result to cover the course of pro-
cessing over time. It is exactly these kinds
of results that the Holyoak and Glass (1975)
model was designed to explain, and Collins
and Loftus (1975) have incorporated mech-
anisms like those of the Holyoak and Glass
model into their model. However, these net-
work models would predict that anomalous
statements would be less accurate than op-
posite statements, and this is not the case in
our data.

For the positive statements (synonyms,
member-category, and description), results
are much as would be expected from the
study of Corbett and Wickelgren (1978).
The d curves rise to an asymptote monoton-
ically, and all reach about the same asymp-
tote. To prevent clutter on the graph, only
the curve for synonyms is shown in Figure
1 (although the data are presented in full i n<
Table 2).

The Random Walk Diffusion Model

All of the current models of semantic
memory in their present form have been con-
tradicted by one or more aspects of the re-
sults of Experiment 1. A random walk
model, however, without assumptions about
semantic structure, can be used to interpret
the retrieval dynamics shown in the time
course curves (Figure 2) and to provide es-
timates of various parameters for the dif-
ferent conditions such as asymptotic accu-
racy, the time at which accuracy begins to
rise above zero, and the rate of approach to
the asymptote. In a random walk model, it
is assumed that evidence toward a response
cannot be assessed instantaneously and so
must be sampled continuously. The process
of evidence accumulation is represented by
the random walk process. Positive and neg-
ative evidence are accumulated continu-
ously, and positive and negative evidence
cancel each other.

For the response signal procedure, pro-
cessing of all statements is assumed to begin
with the same starting amount of evidence.
As processing proceeds, evidence about a
particular statement accumulates either pos-
itively or negatively. If the ;rate at which
evidence is accumulated (the drift rate) is
positive, then as time increases evidence
tends to accumulate toward the positive side
of the starting point. If the drift is negative,
evidence tends to accumulate toward the
negative side of the starting point. The de-
cision rule proposed by Ratcliff (1978) for
the continuous version of the random walk
(the diffusion process) is that if the process
is on the positive side of the starting point
when the response signal occurs, then re-
spond yes, or, if the process is on the negative
side, respond no.

To model a nonmonotonic cf function, it
is necessary to assume that the drift rate
changes at some time during processing. In
the fits presented later, the assumption is
made that the change in drift occurs at some
single point in time. If it were assumed in-
stead that drift rate changed over some dis-
tribution of time values, fits of the model to
data would not be altered significantly. (For
discussion of other possibilities, such as con-
tinuous changes in drift over time, see Rat-
cliff, 1980.)
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To model the response signal procedure,
it is necessary to assume that the drift rate
is subject to two sources of variability: The
first is variability in the drift rate itself dur-
ing the course of a single comparison. The
second is variability among the items of a
condition; responses to different items in the
same condition will vary in difficulty and so
vary in drift rate. For diffusion models of
the recognition process, it has been shown
that both these sources of variability are
necessary to fit time course data and reaction
time data (Ratcliff, 1978; Reed, 1976). If
variability within a trial were zero, then the
d' curve would rise to asymptote immediately
when any evidence became available. If
there were no variability in drift between
trials, then accuracy would not reach asymp-
tote, but instead would increase as a function
of the square root of time (or as a function
of the square root of the number of steps in
the discrete random walk).

The distribution of drift rates for nomi-
nally identical items is represented by a nor-
mal distribution («) with mean u and vari-
ance TI, n(u, T/X'where « represents the drift
rate toward a positive response. The quantity
s2 represents the variability in the drift rate
itself. To calculate the asymptotic d1 value
for a particular type of item, [n(u,»;)] scaled
against another type of item with a drift rate
of v, [n(v, 77)], the quantity <fasy = (« -
v)/r) is formed. Then the formula for the
time course curves for d' as a function of
time can be written:

For the nonmonotonic curves, it is assumed
that the drift rate changes at some time f l t
so the formulae for d are

- tER)/(t - tER)

-/«)]}'/'

where <f, is the asymptotic d for t < tt and
d'2 is the asymptotic d for t > tt.

Figure 1 shows fits of the diffusion model

to the data from Experiment 1. The fits are
achieved by means of a minimization rou-
tine: Theoretical values of d1 are calculated
using the above equations, and the function
that is the sum of squares of experimental
minus theoretical values of d' is minimized
by varying the theoretical parameter values.
Eight parameters are used: asymptotic d
values for the three positive statements,
d\, d'2, an encoding and response time pa-
rameter rER, the time at which new infor-
mation becomes available for the category-
member statement ti, and the variance pa-
rameter s2/ri2 (assumed to be the same for
all five item types). The variance ratio pa-
rameter was estimated to be 447 msec, and
the encoding and response parameter, 332
msec. The estimate for the time at which
new information becomes available for the
category-member statements is 696 msec,
and the estimates for the asymptotic d's are
di = 2.15 and & = .91. The asymtotic d' val-
ues for the positive statement curves are es-
timated to be very nearly equal (3,91, 3.80,
3.81, for synonyms, member-category, and
description, respectively). The'fits of the dif-
fusion model to the data are good, falling
largely within the 97.5% confidence intervals
shown in Figure 1.

Up to this point, the diffusion model has
been presented as a description of the data
(i.e., simply as an empirical fit of the data).
However, the fact that the fits of the dif-
fusion model to the data are good shows that
a model of the sequential sampling type can
describe the time'course of processing of se-
mantic statements in the response signal par-
adigm. A diffusion model is particularly at-
tractive because it can be used to account
for several measures of performance, includ-
ing mean reaction time, accuracy, response
time distributions, and response signal curves.
The good fit of the model to the data of Fig-
ure 1 allows parameter estimates and com-
parisons of parameters (e.g., comparison of
the asymptote of the member-category
statements and the asymptote of the first
process for the category-member state-
ments).

It is appropriate to make some comments
about other methods of fitting response sig-
nal curves. The data presented above could
also be fit by exponential functions (e.g.,
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Corbett & Wickelgren, 1978; Dosher, 1979).
These functions would provide empirical
summaries of the data. However, any inter-
pretations of the data (e.g., does Condition
1 have a faster rise time than Condition 2?)
would depend on the exponential assump-
tion. Different models would give different
interpretations (e.g., equal rise times to dif-
ferent asymptotes in the exponential would
be fitted by different rise times to different
asymptotes using a ramp function). In gen-
eral, the time intercept and rate parameter
are model dependent, and conclusions based
on these parameters should be considered
carefully.

The goodness of fit of the diffusion model
to the data of Figure 1 could be measured
with a statistic such as R2 (Reed, 1973,
1976). However, such a measure must be
viewed with caution. It is necessary to de-
termine how much of the variance in the
data is due to noise and how much should
be accounted for by a model. If models are
to be discriminated on the basis of very high
R2 values, then noise in the data may be
determining the choice of model. It would
also be possible to determine whether dif-
ferent parameters were significantly differ-
ent from each other. (This has not been done
in empirical work reported so far using the
response signal method.) Estimates of vari-
ance in parameters could be obtained by
Monte Carlo methods.

For the experiments reported in this ar-
ticle, the fits of the diffusion model are suf-
ficient to describe the data, and the fits would
not be significantly improved with other
models. Furthermore, none of the major con-
clusions depends on the exact form of the
diffusion model, and none of these conclu-
sions would be altered by better fits.

Experiments 2, 3, and 4

In Experiment 1, the time course of pro-
cessing of semantic information was exam-
ined. The results showed that the time course
curve was nonmonotonic for category-mem-
ber statements and that accuracy for oppo-
site statements was equal to accuracy for
anomalous statements at all but the longest
response signal lags.

The next three experiments were designed
to replicate the results of Experiment 1 and
to address two further questions. First, what
happens if the whole statement is presented
at once? In Experiment 1, the first part of
a statement was presented 500 msec before
the second part. Presenting the first concept
early may have aided processing (as in a
priming effect) for some of the types of state-
ments; for example, for opposites, high as-
sociates may have been generated when the
first concept was presented early, resulting
in faster response times than would other-
wise have been the case. Second, what hap-
pens if the statement is changed from is a

a r to all are. ? In many
experiments using the semantic verification
task, the choice of the form of the statement
has not been considered. However, the re-
sults of Holyoak and Glass (1978) suggest
that the quantifiers all, many, some, a few,
and none form a unidimensional scale with
all requiring the most certainty for a re-
sponse and none the least. Thus, we can pre-
dict that responses to the all statements will
be more accurate than responses to the is
a statements. This effect may interact with
the time course curves to reduce the non-
monotonicity of the categoryi-member state-
ments.

Experiment 2

Method
In Experiment 2, the form of the statements was is

a a , and the parts of the statement were
presented simultaneously. (In the study-test practice,
the two test items were also presented simultaneously.)
There were 23 subjects and the response signal lags were
100, 250, 450, 700, 1,000, and 1,500 msec. In all
other respects, the experiment was the same as Experi-
ment 1.

Results

The results for Experiment 2 are shown
in Figure 2 and Table 3. The main results
of Experiment 1 are replicated. The d1 curve
for category-member statements shows a
significant nonmonotonicity, and opposite
statements are just as accurate as anomalous
statements except at longer response signal
lags.
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Table 3
Results From Experiment 2

Response
signal

lag

100
250
450
700

1,000
1,500

100
250
450
700

1,000
1,500

Response Response
time for time for

yes no
responses responses

(in (in
msec) msec)

Opposite

284 286
261 260
247 253
236 224
250 221
265 205

Synonym

282 298
265 259
248 250
236 254
216 260
206 261

Probability
of a yes
response

.394

.440

.376

.229

.139

.114

.412

.425

.481

.646

.721

.781

d'

.00

.01
-.03
-.16
-.06
-.17

.05
-.30

.26

.95
1.60
1.81

Category-member

100
250
450
700

1,000
1,500

280 285
263 268
249 260
240 250
236 235
226 220

.483

.419

.495

.534

.492

.299

.21
-.02

.27

.67

.99

.52

Member-category

100
250
450
700

1,000
1,500

100
250
450
700

1,000
1,500

100
250
450
700

1,000
1,500

276 285
277 262
245 259
229 256
215 260
210 247

Anomalous

284 285
270 265
256 255
248 236
243 228
243 215

Description

282 284
249 260
251 250
234 ' 242
213 245
205 262

.424

.426

.487

.675

.741

.800

.391

.436 ;

.390

.281

.155

.151

.388

.440

.496

.646

.717

.759

.09
-.02

.28
1.03
1.65
1.88

—
—
—
—
—

.00

.02

.29

.96
1.58
1.74

Retrieval Time (sec)
O 2

Figure 2. <f as a function of retrieval time for Experi-
ment 2 for synonym (S), category-member (C-M), and
opposite (O) statements. (Error bars represent 97.5%
confidence intervals.)

There are two main differences between
the curves shown in Figures 1 and 2. First,
the curves in Experiment 2 begin to rise
above chance at about 600-700 msec, much
later than the curves of Experiment 1 do.
This 300-400 msec difference can be attrib-
uted to the increased reading time required
in Experiment 2, in which the whole state-
ment was presented simultaneously. Second,
in Experiment 2, the asymptotic value
reached by the synonym curve (and also the
member-category and description curves) is
considerably lower than in Experiment 1.

Fits of the diffusion model were not made
for this data because it is difficult to estimate
where the curves first start to rise above zero.
This is because averaging across subjects
whose performance begins to rise above zero
at different points leads to an S-shaped d
function. In Experiment 1, on the other
hand, the variability in reading time was
much reduced by presenting the first part of
the statement 500 msec before the second
part.

Experiment 3

Method

In Experiment 3, the form of the statements was all
are The parts of the statement were pre-

sented sequentially; all are was presented for 500
msec, and then the second concept was presented. There
were 14 subjects and the response signal lags were 50,
150, 350, 700, 1,250, and 2,000 msec.
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Table 4
Results From Experiment 3

Response
time for

Response
time for

yes no
Response responses responses Probability

(in (in of a yes
msec) msec) response d'

50
150
350
700

1,250
2,000

50
150
350
700

1,250
2,000

50
150
350
700

1,250
2,000

50
150
350
700

1,250
2,000

50
150
350
700

1,250
2,000

50
150
350
700

1,250
2,000

308
249
243
230
244
348

329
260
247
228
215
214

303
285
245

Opposite

290
253
239
220
211
204

Synonym

282
245
248
256
222
230 ,

Category-member

297
252
261

247 226
228
254

313
272
243
228
215
209

302
248
263
242
250
256

295
284
248
217
217
219

213
212

Member-category

283
242
247

- 237
241
216

Anomalous

299
~ 253

239
226
212
212

Description

278
239
238
232
226
211

.284

.243

.139

.089

.043

.022

.378

.409

.611

.823

.883

.915

.302

.341

.312

.175

.099

.070

.369

.413

.601

.832

.886

.874

.276

.250

.149

.084

.077

.056

.335

.383

.599

.820

.864

.896

.03
-.02
-.04

.01
-.32
-.46

.29

.44
1.32
2.27
2.60
2.96

.09

.26

.54

.44

.12

.12

.26

.45
1.30
2;32

2.62
2.74

—
—
——

—

.17

.38
1.30
2.29
2.50
2.85

Figure 3. d as a function of retrieval time for Experi-
ment 3 for synonym (S), category-member (C-M), and
opposite (O) statements, with fits of the diffusion model
(continuous lines). (Error bars represent 97.5% confi-
dence intervals.)

Results

The results for Experiment 3 are shown
in Figure 3 and Table 4. These results rep-
licate the effects found in Experiments 1 and
2. First, opposite and anomalous statements
are equally accurate at short response signal
lags, with opposite statements becoming a
little more accurate at long lags. Second, the
category-member curve shows nonmonoto-
nicity, although the size of the effect is at-
tenuated. The curve rises to half the maxi-
mum height of the curves in Experiments 1
and 2 and begins to fall at an earlier point
in time to a considerably lower asymptote.
This pattern is shown by the fits of the dif-
fusion model. In Experiment 3, the time at
which secondary information becomes avail-
able for the category-member statements is
estimated at 503 msec, compared with 696
msec in Experiment 1. The asymptotic d
values are d\ = 2.56 and ̂  - -.05, com-
pared with 2.15 and ,91 in Experiment 1.
This pattern of results fulfills the expectation
that the all version of the statements would
lead to greater accuracy for the category-
member statements relative to the anoma-
lous statements and indicates that the im-
provement occurs mainly in the second part
of processing (cf2).

The parameter estimates for positive re-
sponses are much the same as for Experi-
ment 1; ef = 3.65, 3.61, and 3.60 for syn-
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onyiiis, member-category, and description,
respectively. The variance ratio estimate is
about double that for Experiment 1 (1,051
msec). This could be simply a result of dif-
ferent subjects in the two experiments (in-
dividual differences in this parameter are
usually quite large; see Reed, 1976). Since
the rate parameters are averaged over many
subjects in the two experiments, however,
the difference in the variance ratio estimate
may be due to the difference in experimental
manipulations in the two experiments. The
response and encoding time parameter was
estimated at 354 msec.

Experiment 4

Method
This experiment completes the manipulations of Ex-

periments 1, 2, and 3. The parts of a statement were
presented simultaneously, and the form of a statement
was all are There were 15 subjects, and the
response signal lags were 100, 300, 550, 900,1,400, and
2,100 msec.

Results

The results for this experiment are shown
in Figure 4 and Table 5 and are similar to
those found in the first three experiments.
Opposite statements are just as accurate as
anomalous statements, except at the longest
lag, where opposites are slightly more ac-
curate. For the category-member state-
ments, nonmonotonicity is difficult to detect
because the curve does not rise very high.
This is consistent with the result of Exper-
iment 3 and the hypothesis that the all form

Table 5
Results From Experiment 4

C-M

Response Response
time for time for

yes no
Response responses responses Probability

(in (in of a yes
msec) msec) response d'

Figure 4. tf as a function of retrieval time for Experi-
ment 4 for synonym (S), category-member (C-M), and
opposite (O) statements. (Error bars represent 97.5%
confidence intervals.)

100
300
550
900

1,400"
2,100

100
, 300

550
900

1,400
2,100

280
264
279
260
237
212

287
268
266
238
219
210

Opposite

280
259
253
236
212
215

Synonym

279
260
251
252
249
238

.347

.361

.225

.138

.106

.053

.372

.429

.393

.619

.793

.831

.06

.20
-.06
-.13

.06
-.24

.13

.39

.45
1.28
2.14
2.37

Category-member

100
300
550
900

1,400
2,100

284
270
268
272
236
229

276
260
262
250
221
215

.265

.314

.359

.261

.185

.123

-.20
.05
.34
.31
.44
.22

Member-category

100
300
550
90fr

1,400
2,100

100
300
550
900

1,400
2,100

100
300
550
900

1,400
2,100

282
279
263
232
226
214

281
263
260
245
245
237

283
256
262
242
227
212

281
261 ,
259
256
239
235

Anomalous

284
260
253
240
221
215

Description

276
253
259
242
244
233

.333

.377

.384

.647

.813

.858

.325

.286

.236

.166

.092

.077

.360

.343

.434

.664

.738

.809

.03

.26

.43
1.36
2.22
2.48

_

—
—
—
—

.10

.16

.56
1.40
1.97
2.28
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of the statements gives greater accuracy
than the is a form. The three positive curves
once again fall nearly on top of each other
and so, once again, only the curve for syn-
onyms is shown. As in Experiment 2, it is
difficult to estimate the point at which ac-
curacy rises above zero, so fits of the dif-
fusion model were not attempted.

Experiment 5

Experiments 5 through 8 were designed
to produce the reaction time data corre-
sponding to the response signal data from
Experiments 1 through 4. The correspon-
dence of response signal experiments to re-
action time experiments is Experiment 1 to
Experiment 6, Experiment 2 to Experiment
5, Experiment 3 to Experiment 8, and Ex-
periment 4 to Experiment 7. The aim was
to collect data using the same materials with
both procedures in order to investigate con-
straints on models that would not be obvious
from either procedure alone. This point can
be illustrated by using the example of a se-
quential sampling model (e.g., McCloskey
& Glucksberg, 1979) and the opposite and
anomalous statements.

For a sequential sampling model, the data
for the opposite and anomalous statements
in a reaction time experiment are under two
constraints. The first constraint comes from
the model itself and is independent of the
response signal results. This constraint is
that responses to opposite and anomalous
statements cannot show a speed-accuracy
trade-off. In other words, responses to one
of the types of statements can be slower and
less accurate than responses to the other type
of statement, or the responses can be equal
in speed and accuracy. But responses to one
of the types cannot be slower and more ac-
curate than responses to the other type (as
long as information begins to accumulate at
the same point in time for the two types and
the functions are monotonic). The only way
one type of statement could be slower and
more accurate than another in a sequential
sampling model is for the subject to change
the decision criteria, that is, to demand more
evidence for one type of statement before
responding. But subjects cannot do this for

one type of statement independent of the
other type of statement, because they have
no way of knowing which type of statement
is which until evidence has accumulated.

The second constraint on the data of a
reaction time experiment for a sequential
sampling model conies from the response
signal data. The result that accuracy is equal
for the two types of statements implies (for
the sequential sampling models) that accu-
racy and response time must be equal in the
reaction time procedure. This is because, if
the items are of equal difficulty in the re-
sponse signal procedure, they must be of
equal difficulty in the reaction time proce-
dure. According to a sequential sampling
model, items of equal difficulty must be
equal in response speed and accuracy. Thus,
for a sequential sampling model of the type
proposed by McCloskey and Glucksberg
(1979), the only result possible with the re-
action time procedure is equal response
times and accuracies for the opposite and
anomalous statements except at long reac-
tion times, at which opposites may be a little
faster and more accurate.

It might seem that sequential sampling
models could allow other results by invoking
a rechecking process. A mandatory recheck-
ing process for one type of statement would
lead to slower and more accurate responses
for that type of statement. The problem with
a rechecking process is that it adds consid-
erable complexity to otherwise simple mod-
els. In a sequential sampling model, pro-
cessing no longer would involve only the
accumulation of a quantity of homogenous
evidence; rather the quality of the evidence
would be used to decide whether rechecking
is necessary. This would be completely con-
trary to the spirit of sequential sampling
models because not only is a yes-no decision
made, but also the type of statement is dis-
covered, and this would necessitate the in-
clusion of other processes. Similarly, in the
Smith et al. (1974) model, the quality
(rather than the quantity) of Stage 1 evi-
dence would have to be used to decide
whether Stage 2 processing should proceed.
This would, of course, completely change the
model.

A secondary aim of Experiment 5 was to
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provide sufficient data to allow examination
of response time distributions (see Ratcliff,
1979; Ratcliff & Murdock, 1976) in order
to place further constraints on models of re-
trieval processes.

Method

Subjects. The subjects were 37 Dartmouth College
undergraduates who each participated in a 1-hr, session
for extra credit in an introductory psychology course.

Materials. The statements used in this experiment
were the same as those used in the final, experimental
sessions of Experiments 1-4.

Procedure. The statements were presented in the
form is a a , and the parts of the statement
were presented simultaneously. The statements were
presented in a different random order for every two
subjects. They were divided into 28 sets of 30 statements
each (preceded by 2 sets for practice). A subject initi-
ated each set by pressing the space bar on the CRT's
keyboard. Each statement was displayed until the sub-
ject made a response; then there was a SOO-msec pause,
and then the next statement was presented. Subjects
were encouraged to respond quickly and accurately.

Results

Table 6 shows mean response time and
accuracy for each type of statement. Figure
5 shows group response time distributions
(Ratcliff, 1979) for the anomalous, opposite,
category-member, and synonym conditions.
The distributions for the other positive con-
ditions are very similar to the synonym dis-
tribution, so they are not shown.

The results of most interest are those for
opposite and anomalous statements. The
data show a speed-accuracy trade-off; op-

Table 6
Results From Experiment 5

1 -

Statement type

Opposite
Synonym
Category-member
Member-category
Anomalous
Description

Response Response
time time

for yes for no
responses responses
(in msec) (in msec)

1,135
1,288
1,282
1,298
1,274
1,226

,118
,283
,477
,278
,322
,252

Probability
of yes

responses

.058

.822

.367

.861

.036

.836
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Note. Standard error in correct reaction time is ±7 msec.

Figure 5. Group reaction time distributions for Ex-
periment 5 for anomalous (A), opposite (O), synonym
(S), and category-member (C-M) statements.

posites are faster and less accurate than
anomalous statements. Even though the ac-
curacy difference is small (.058 vs. .036), it
is highly significant (z = 5.5, p < .000001),
as is the reaction time difference (204 msec,
SE = 9 msec).

There are three possible explanations of
this trade-off that can be ruled out. First,
the trade-off is not due to high error rates
for just a few items; the same items were
used in the response signal experiments in
which opposite and anomalous statements
were equally accurate. Second, the trade-off
is not due to high error rates for just a few
subjects; inspection shows that the majority
of subjects show the trade-off. Third, it could
be that the higher accuracy for anomalous
statements is the result of an optionally ac-
tivated rechecking process (e.g., the second
stage of the Smith et al., 1974, model). Such
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a probability mixture of processes would be
apparent in the distributions of response
times. The fastest responses in the distri-
butions for opposite and anomalous state-
ments would be equally fast, but there would
be more slow responses in the anomalous
distribution (i.ei, there would be an elon-
gated tail). As can be seen in Figure 5, the
distributions do not show this pattern. There
is no overlap between the fastest responses
for the two conditions; the fastest responses
for the anomalous condition are 100 msec
slower than the fastest responses for the op-
posite condition, and in fact the whole dis-
tribution for the anomalous condition is
shifted and skewed relative to the opposite
condition.

As discussed earlier, for some models the
response signal curves constrain the reaction
time _and accuracy data such that they
should be the same for opposite and anom-
alous statements because, during the course
of retrieval, these statements gave equal val-
ues of accuracy (see Figure 2). Therefore
the speed-accuracy trade-off for opposite
and anomalous statements immediately dis-
confirms sequential sampling models like
that proposed by McCloskey and Glucks-
berg(1979).

The category-member condition shows a
longer mean reaction time and higher error
rate than the anomalous condition. This re-
sult suggests that the category-member
statements are more difficult than the anom-
alous statements, as would be expected from
the response signal time course curves in
which accuracy for the category-member
statements was always poorer than accuracy
for the anomalous statements. The group
reaction time distribution for the category-
member condition shows a shift and skewing
relative to the anomalous condition. This
suggests that the slower response times for
the category-member statements are not
caused by an additional, sometimes acti-
vated, rechecking process; such a process
would result in a probability mixture of pro-
cesses and there is no evidence for such a
mixture in the response time distributions.

As in the response signal experiments, the
positive conditions all show roughly the same
general levels of speed and accuracy. How-

ever, accuracy for the synonym and mem-
ber-category conditions exhibits a large dif-
ference (highly significant), whereas response
times are almost equal. For the sequential
sampling models, this result is inconsistent
with the response signal data. In the response
signal experiments, when response time was
equal for the synonym and member-cate-
gory conditions, accuracy was also equal.
Therefore this result, like the results for op-
posite and anomalous statements, show that
for some models the response signal and re-
action time results are inconsistent.

Group reaction time distributions for the
positive conditions are very similar to each
other, and so only the distribution for the
synonym condition is shown.

Before we present further discussion of
these results, the results from the reaction
time analogues of Experiments 1, 3, and 4
are presented.

Experiment 6

Method

In Experiment 6, the form of the statements was is
a « , and the first part of the statement was
presented for 500 msec prior to the'second part. There
were 11 subjects. In all other respects, the experiment
was like Experiment S.

Results

The results are shown in Table 7. As in
Experiment 5, there is a speed-accuracy
trade-off between the anomalous and op-

Table 7
Results From Experiment 6

Response Response
time time

for yes for no Probability
responses responses of yes

Statement type (in msec) (in msec) responses

Opposite
Synonym
Category-member
Member-category
Anomalous
Description

706
826
798
832
762
826

756
889

1,032
847
842
848

.142

.791

.338

.814

.136

.795

Note. Standard error in correct reaction time is ±11
msec.
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posite conditions, and, in the category-mem-
ber condition, accuracy is poorer and re-
sponse time longer than in the anomalous
condition. However, unlike in Experiment 5,
accuracy and reaction time for the synonym
and member-category conditions are com-
patible.

Experiment 7

Method

In Experiment 7, the form of the statement was all
are , and the parts of the statement were

presented simultaneously, There were 11 subjects.

Results

Results from Experiment 7 are shown in
Table 8. Once again there is a speed-accu-
racy trade-off betweenx the anomalous and
opposite conditions. In this experiment, as
in the last one, positive responses do not show
significant speed-accuracy trade-offs.

In Experiments 3 and 4, we found that the
accuracy of the category-member state-
ments relative to the anomalous statements
was significantly increased by changing the
statement from the is a form to the all form.
In Experiment 7, we found that the effect
of all is to speed the responses to the cate-
gory-member statements so that they be-
come just as fast as responses to the anom-
alous statements, whereas accuracy is
significantly lower (.140 errors vs. .020 er-
rors). It was argued before that the speed-
accuracy trade-off for the opposite and

Table 8
Results From Experiment 7

Statement type

Response Response
time time

for yes for no Probability
responses responses of yes
(in msec) (in msec) responses

Opposite
Synonym
Category-member
Member-category
Anomalous
Description

,347
,433
,434
,449
,887
,378

,337
,495
,434
,415
,479
,459

.032

.816

.140

.848

.020

.838

Note. Standard error in correct reaction time is ±12
msec.

Table 9
Results From Experiment 8

Response Response
time for yes time for no Probability

responses responses of yes
Statement type (in msec) (in msec) responses

Opposite
Synonym
Category-member
Member-category
Anomalous
Description

1,301
1,050
1,103
1,054
1,611
1,008

940
1,550
1,103
1,349
1,098
1,392

.038

.892

.089

.886

.033

.832

Note. Standard error in correct reaction time is ±12
msec.

anomalous conditions was inconsistent with
sequential sampling models of the form pro-
posed by McCloskey and Glucksberg (1979)
because those models predict that accuracy
and reaction time should be correlated. The
results for the category-member and anom-
alous statements provide further evidence
that these models are inadequate.

Experiment 8

Method

In Experiment 8, the form of the statement was all
are , and the first part of the statement was

presented 500 msec prior to the second part. There were
9 subjects.

Results

The results for Experiment 8 are shown
in Table 9 and replicate the results from
Experiment 7. There is a speed-accuracy
trade-off for the opposite and anomalous
conditions, and the category-member con-
dition gives reaction times almost the same
as for the anomalous condition, but accuracy
is much poorer. For positive responses, the
description condition shows a speed-accu-
racy trade-off relative to the category-mem-
ber and synonym conditions.

General Discussion

In the experiments of this article we have
presented data that provide new insights into
the processes underlying semantic verifica-
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tion. After describing the major findings, we
offer suggestions for the kind of processing
system required to deal with these findings.

First, the data from the response signal
experiments show a nonmonotonic function
for category-member statements (e.g., a
bird is a robin). Early in processing, there
is an increasing tendency to respond yes.
This tendency is replaced later in processing
by an increasing tendency to respond no.
This suggests that, at some time in process-
ing, either new information becomes avail-
able or a new stage of processing is encoun-
tered. These two kinds of information or
processing can be tentatively identified with
similarity information and relational infor-
mation, respectively.

The nonmonotomic function for the cat-
egory-member statements is inconsistent
with the models of McCloskey and Glucks-
berg (1979), Glass and Holyoak (1975), and
Collins and Loftus (1975). It offers some
support to the two-stage assumption of the
Smith et al. model (1974), but does not sup-
port the exact predictions of the model be-
cause the early parts of the category-mem-
ber and member-category curves are dif-
ferent.

The second result of note is that opposite
statements are just as accurate as anomalous
statements at all except the longest retrieval
times (at which opposites are slightly more
accurate). This is true despite the fact that
the relatedness of the two concepts in the
opposite statements was high. This result is
inconsistent with the models of McCloskey
and Glucksberg (1979) and Smith et al.
(1974). High accuracy on opposite state-
ments is consistent with the Collins and Lof-
tus (1975) and Glass and Holyoak (1975)
models, which were specifically designed to
account for such data but equally high ac-
curacy on anomalous statements is not con-
sistent with these models.

The third important result comes from
comparison of the reaction time data with
the response signal data. For opposite and
anomalous statements, there is a speed-ac-
curacy trade-off; responses to opposite state-
ments are faster and less accurate than re-
sponses to anomalous statements. This result
is inconsistent with the McCloskey and

Glucksberg (1979) and Collins and Loftus
(1975) models, which both incorporate a se-
quential sampling decision mechanism. With
this mechanism, accuracy and response time
must be correlated across experimental con-
ditions, unless the subject can know which
condition is being tested and adjust criteria.
This was not possible in the experiments
presented here. A speed-accuracy trade-off
is also inconsistent with the Smith et al.
(1974) model. The Glass and Holyoak (1975)
model does not make strong predictions
about data for anomalous statements but
would predict that longer reaction times
would be correlated with lower accuracy.

To summarize, the Smith et al. (1974)
model has problems in dealing with the
highly accurate opposite statements and
with the speed-accuracy trade-off. The
McCloskey and Glucksberg (1979) model
has problems with all three of the major
findings (the nonmonotonic d function for
category-member statements, the accuracy
on opposite statements, and the speed-ac-
curacy trade-off). The Glass and Holyoak
(1975) model has problems with the non-
monotonic d function, the speed-accuracy
trade-off, and equal accuracy for opposite
and anomalous statements. Filially, the Col-
lins and Loftus (1975) model has problems
with the speed-accuracy trade-off, equal
accuracy for opposite and anomalous state-
ments, and, in an unelaborated form, with
the nonmonotonic d function.

The diffusion model fitted to the speed-
accuracy curves in Experiments 1 and 3 has
the same problems as the other sequential
sampling models in dealing with the speed-
accuracy trade-offs found in Experiments 5-
8. However, a multiple counter diffusion
model (like that described below), in which
evidence was accumulated mainly in two
counters, would approximate the two-di-
mensional model, and thus the fits presented
in Experiments 1 and 3 would still be valid.
If more than two counters were accumulat-
ing significant amounts of evidence over the
same period, the fits would not be quanti-
tatively accurate but would still capture
qualitative aspects of the data.

In one or another respect, the results of
the experiments presented here disconfirm
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all of the current models of semantic mem-
ory. However, the results do suggest one
property that a model for the verification
task should possess, and that is that different
statements are assessed by different mech-
anisms. This is necessary to allow the pos-
sibility of speed-accuracy trade-offs for dif-
ferent statements. This suggestion is similar
to that made by Collins and Loftus (1975)
in their model, except that instead of evi-
dence being either positive or negative for
an overall yes or no decision, evidence is ei-
ther positive or negative for a type of state-
ment.

There is currently one theoretical scheme
that fits this suggestion, the logogen model
(Morton, 1969). The logogen model was de-
veloped to account for data from word rec-
ognition studies, but it can be easily modified
for semantic verification studies. In this
model, different counters accumulate evi-
dence for different types of statements, and
a response is initiated when one of the count-
ers reaches a criterion amount of evidence.
In the model proposed by Morton, the cri-
terion is absolute—it does not matter whether
one of the other counters has accumulated
a lot or a little evidence. The problem with
this is that, as the criterion is increased (e.g.,
with "respond accurately" instructions), the
reaction time distribution becomes more
normal. This is the opposite of what is ob-
served empirically.

Another possibility is that the criterion is
relative; for a response to be initiated, the
evidence in one counter must exceed the
maximum of the other counters by some cri-
terial amount (see Audley & Pike, 1965, for
further discussion). In the two-counter case,
the relative criterion model is a random walk
or diffusion process. In the multicounter
case, the model is a multidimensional gen-
eralization of the random walk. Thus, the
model has many of the properties of the
models of Collins and Loftus (1975) and
McCloskey and Glucksberg (1979). This
system could produce speed-accuracy trade-
offs (e.g., with the opposite and anomalous
statements) by allowing different criteria or
counter starting points for the different types
of statements. The model produces reason-
able predictions about the shape of reaction

time distributions; as mean reaction time in-
creases, the distribution becomes more
skewed. The relative criterion model is also
capable of producing reasonable predictions
about the shapes of response signal curves.
Thus the model has an adequate retrieval
mechanism and can capture most aspects of
the data presented in this article, but it has
little to say about the representation of se-
mantic information. However, the represen-
tation would have to allow different kinds
of information to become available at dif-
ferent times during the course of processing
in order to give nonmonotonic d curves.

In conclusion, the challenge for research
in the area of semantic memory is clear:
Models must be developed that are tightly
constrained but that accommodate the com-
plexity of the processing involved in making
judgments about semantic information.
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