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A Mathematical Model for Paced Serial Addition?

RoGER RATCLIFF?

Department of Psychology, University of Auckland, Auckland, New Zealand

The paced serial addition task is reminiscent of a series of tasks studied in the later
1950s which were concerned with recall under conditions of pacing. The information
processing operations in this task are completed in about a second and the paradigm
allows a large amount of data to be collected in a short time. Group performance shows
a primacy effect lasting a few seconds followed by a steady state. In this paper, a model
is developed for steady-state performance consisting of continuous time and discrete
components that generalize to a semi-Markov model. The model accounts for results
from the two experiments presented and deviations of the model from the data point
out distinct strategies being employed by the subject. The components of the model
have direct psychological interpretation and allow many of the processes underlying
performance to be specified.

1. INTRODUCTION

The paced serial addition task (PSAT) is typical of a group of tasks studied around
the late 1950s, which were all concerned with some aspect of paced performance
(for example, Mackworth & Mackworth, 1959; Sampson, 1956; Kay, 1953; Kirchner,
1958; Pollack & Johnson, 1963; with a review by Posner, 1963). There were two main
interests in these studies: first, the theoretical implications for memory span and
information processing under continuous paced conditions and, second, a pragmatic
concern with the performance of subjects on tasks similar to those found in industry
and other practical situations. In this paper a mathematical model is developed for
the PSAT which enables the processes underlying performance to be examined in
terms of recent views and theories. This, therefore, provides a basis for the examination
of these earlier studies in terms of the current approaches to memory and information
processing (Ratcliff, 1974).

The PSAT is set apart from most experimental paradigms currently employed in
the field of short-term processing (with the notable exception of Shepherd &
Teghtsoonian, 1961; Donaldson & Murdock, 1968), because each trial lasts 5 to 10 min.,

1 This work is based in part on my Ph.D. dissertation at Auckland University. I would like to,
thank my supervisor, Professor H. Sampson, for his advice and encouragement.
¢ Now at University of Toronto, Toronto, Canada.
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but information processing operations, such as encoding, storage, and retrieval, take
1 to 2 sec to complete. The following are the main characteristics of the PSAT.

Each trial consists of 241 digits between 1 and 9, randomly ordered. These are
presented to the subject one after the other. The subject’s instructions are to add
each digit to the one that immediately preceded it and call out the answer. The
experimenter controls pacing rate (rate of presentation) and stimulus duration in the
case of visual presentation. Both remain constant throughout the trial of 241 items.
The subject is given no immediate feedback on the accuracy of his responses. The
result at any serial position falls into one of three categories, correct response, error
response, or omission.

Effects on group performance of variables, such as pacing rate, halves of task and
stimulus duration, have been examined in some detail by Sampson and his co-workers
(Sampson, 1956, 1958a, b; Sampson & MacNeilage, 1960; Corballis & Sampson,
1963). In these studies it was found that group performance along a trial showed an
initial decay in proportion correct to a constant level of perfomance (Sampson &
MacNeilage, 1960) and this can be represented by:

Pi = ae~*l" + ¢, (1)

where ¢ is the position in the series; p; is the proportion of correct responses at z;
and ¢, 7, and a are fitted parameters that represent the final level of performance,
range of initial decay in performance and initial level above ¢, respectively. This
model can be used in comparing group trends and thus makes contact with much of
the previous work on the PSA'T'.

The development of the paper is as follows: First, a description of an experiment
is presented together with a brief description of important group results; second, a
model for individual performance is developed (the main focus of the paper); third,
this model is applied to the data from the experiment, fourth, a second experiment is
presented and the model applied, and fifth; psychological processes involved in the
task are discussed.

2. ExPERIMENT |1 AND GROUP PERFORMANCE

Method

Forty-eight male Auckland University students (unpaid volunteers), whose mean
age was 21.3 years (standard deviation 1.5 years), werée given the following written

14

instructions.

The experiment you are about to take part in is designed to investigate aspects of dynamic
human information processing. A series of numbers will be presented aurally from a tape
recorder and will be evenly spaced. Your task is to add the present (nth) number to the previous
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((n — 1)th) number in the series and call out the answer. For example, if the stimulus string
was 9438 27 4 ... the response string should be 137 11 109 11 ... The rate of presentation is
too rapid for you to get 100% correct, so when you lose track, try and start again as soon as
possible.

The first series of number is of 61 items, then the next three trials are of 241 items.

Following this, subjects were given an unpaced auditory example to see if the
instructions had been understood. The criterion for proceeding with the experiment
was the ability of subjects to perform this unpaced test without error.

Subjects were divided randomly into three groups, one per pacing rate. All subjects
received a preliminary trial at 1.6 sec/digit using 61 items, then three trials at either
1.2, 1.6, or 2.0 sec/digit (one group at each pacing rate) using the same 241 digits
for each trial, followed 1 week later by two trials of 241 digits under the same pacing
conditions as before.

The long series of 241 items was made by splicing together four copies of a 61 item
series, omitting the first digit in the last three series. Thus, each subject operated
on the same series 20 times (4 X 5 trials) at the same pacing rate. This enabled
estimates to be obtained of the number of error responses attributable to individual
subject difficulties with the number sequence. The stimuli were presented from a
Phillips cassette tape recorder and responses were recorded manually on a specially
designed result sheet. Subjects were given a progress report on their performance at
the end of each trial.

Groups Trends

The group model, Eq. (1), was fitted to the data using a nonlinear least-squares
method. Using a 2 goodness-of-fit statistic, the group model was found to adequately
represent the data (see Appendix A) and values of ¢ and r as a function of practice
and presentation rate are shown in Fig. 1. Appendix A also gives two typical fits of
Eq.(1)to the data, which demonstrate the primacy effect and asymptote of performance.
It is important to know the range of the primacy effect because the individual model
presented later is designed to deal only with asymptotic performance.

Group Error Performance

Two easily classifiable types of error response were observed and labeled as follows:
«3 when the nth stimulus is added to the n — 2nd stimulus instead of the n — lst;
“4” when the previous response is added to the present stimulus. Other errors were
not easily classifiable and were labeled “5.”

A random block ANOVA design was used to test if the ratio of the different error
types was the same under all conditions of practice. Results showed that the difference
between the error types was significant (a << < 0.01 at each pacing rate)but the difference
in error types with practice was not significant (« > 0.05 at each pacing rate). This
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Fic. 1. Group model parameters ¢ and = as a function of practice and rate of presentation.

suggests that if errors are caused by a failure in the memory retrieval system, then
the system operates in the same way as the subject becomes practiced. On this basis
it is reasonable to group these three kinds of error into one category for further analyses.

3. Tue MobgL

Before proceeding with development of the model, it is necessary to investigate
the nature of individual asymptotic performance. Let us define a response run as a
string of correct responses and errors, not containing an omission, lying between two
omissions. Similarly an omission run is a string of omissions, not containing a response,
lying between two responses. It was found that the following hypotheses could be
accepted:

(@) Mean length of a response run is independent of the length of the preceding
omission run.

(b) Mean length of an omission run is independent of the length of the preceding
response run.

(c) Mean length of an omission run is the same whether a correct response or an
error response ends the preceding response run. '

These hypotheses were tested using #-statistics calculated for each comparison
for each subject under each practice condition. The following results were obtained
for trial 1, 1.2 sec/digit (other results are similar and will not be presented). The
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t_statistics for (a), (b), and (c) for subject 9 and (a) and (b) for subject 4 were significant
at a 5% level. This can be attributed to a pair-adding strategy adopted by these
subjects. This strategy arises when the subject finds his performance level is low and
that more correct responses can be made by adding each successive pair of digits and so
giving only every second possible response. This strategy is most easily seen using
an autocorrelation analysis. The autocorrelation function at even shifts is significantly
higher than at odd shifts, showing that every second response is of the same type.
Apart from these two subjects, there was only one other significant statistic out of the
remaining 42. These results show that assertions (a), (b), and (c) can be accepted.

In the PSAT there are very few errors, typically 5%, but 20% of omission runs
are initiated by an error. Hypothesis (c) above shows that the two types of omission
run can be grouped together. Also, as a first step, error responses are classified along
with correct responses in the first model for response runs.

From a psychological point of view it seems that processes operating while a subject
is engaged in a response run are different from those operating while engaged in an
omission run. In a response run, the subject is capable of producing a certain number
of responses before an interruption occurs, whereas an omission run gives an estimate
of the recovery time from an interruption. Therefore, these two performance com-
ponents are treated separately.

Response Run Model

Perhaps one of the simplest models that can be postulated for processes occurring
in a response run is a geometric model. In this, the probability that an omission occurs
at any position in a response run is (1 — p) and this means that the probability of
interruption is independent of the prior length of the run. Thus, the probability of
occurrence of a response run of length k is ' i

Pr(run length k) = (1 — P 2)

Given a random sample of N response runs, the likelihood function L (joint probability
~ density function for a random sample) is defined by '

L =110 — P, 3)

where n; = number of runs of length i. From this the maximum likelihood estimate $
is given by

p=@&—1% . (4)

where & = ;.4 nilY ;.1 m; is the mean response run length. Also the asymptotic
variance estimate v,? is given by

v,2 = p(1 — pF*IN. (5)
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Minimum variance unbiased estimators of p and o2 also exist (Chapman & Robson,
1960) and may be written

. ®—1
Pu = F(1/N) |
2 _ Pu(l —'Pu)z 1
wp =P TR (; + (P/N) — (2/N))‘

The sample size is large for data in Experiment 1 and so the unbiased estimates are
essentially the same as maximum likelihood and asymptotic variance estimates.
This model suggests two main questions about the psychological processes involved:
(a) How is the system organized while the subject is operating in a response run ?
(b) What processes result in or precede interruptions ?

Model for Correct Responses and Errors

The response run model, Eq. (2), can be rewritten as a Markov process with the
following state transition matrix and initial probability vector:

R 0  Pr(initial)
o (6170 0 ©

0 \O 1
where R is the response and O is the omission state. This formulation is equivalent
to Eq. (2)-and the maximum likelihood estimate of p is just the usual estimate of the
transition probability p:

number of transitions R to R  nX—n ¥ — 1

= total number of transitions from R~ n¥ X

Let us now extend Eq. (6) to account for the correct response error response distinction.
Assuming independence, the state transition matrix and initial probability vector
become: ‘

1 X 0 Pr(initial)
1 r ¢ l—r—gqy (1—u
X (s t 1 —s— t\’ ( u ) )
0 W0 0 1 / 0

where states 1, X, and 0 represent correct response, error response, and omission,
respectively; u represents the probability of starting a response run with an error
response; and 7, g, s, and ¢ are transition probabilities. The proportion of errors is
small with respect to correct responses so that the parameter r in Eq. (7) is approxi-
mately the same as p in Eq. (6); therefore, the two models converge. Tests of this
model are described as the model is applied to the data of Experiment 1.
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Because response runs and omission runs are independent ((a), (b), and (c) above),
Eq. (7) is written as a finite absorbing Markov chain (treated fully in Kemeny & Snell,
1960, Chap. 3). This is done because each response run is treated as an independent
Bernoulli trial and parameters are estimated on this series of Bernoulli trials over the
experimental trial. After describing the omission run model, it will be shown how this
model and the omission run model can be combined to form a semi-Markov model.

Omission Run Model

It was argued earlier that the number of responses omitted gives a crude measure
of recovery time. Let us suppose that recovery takes place through a-stages, the times
T, ..., T, spent in these stages being independently exponentially distributed with
probability density function pe~#t. Then recovery time T is T, + -+ + T, and has
a gamma distribution

p(pt)a—-le—ot

f@) = @=nr" ®)
The assumption that all processes in recovery proceed at the same rate is a desirable
approximation because of the small omission run lengths which give few degrees-of-
freedom in goodness-of-fit tests. Also, if a is fixed prior to fitting the data, then a one-
parameter distribution is obtained (just as an exponential is “really” a gamma with
parameter 1). It was found that a = 3 gave the best fit to a small sample of data. These
two assumptions may seem a little restrictive, but we shall see that the resulting
estimates of p show stable trends for each subject and provide an estimate of the
average rate of recovery. The fact that Eq. (8) was derived using assumptions of
independence and serial processing does not mean that the processes involved must
have these properties. Townsend (1972) and Murdock (1971) have shown that models
derived using such assumptions can be mimicked by parallel processing and hybrid
systems. o

Although the probability density function for recovery (Eq. (8)) is a continuous
function, the data are in discrete form. Therefore, to perform parameter estimation,
Eq. (8) must be manipulated to give discrete expected values of recovery.

The cumulative distribution function of the gamma is given by

T
Ft) =1— e (1 4 ’l’—f- 4ot i’-’rf—))

The probability of recovery in the interval #,_, to ¢; for a = 3 is given by
$(t;, p) = F(t) — F(ti)
= ferstent) — ooty {plt; — )t — plie™t)
- (e — ten ety — Jpitient, ©



PACED SERIAL ADDITION TASK 53

where t; is the time to the zth stimulus following the first stimulus after interruption.
This, therefore, is the probability density function for an omission run of length 7.

Given a random sample of N omission runs, with z; of length 7, the likelihood
function is

L~ [T W, o
Now

[+ o]

In(L) = ), nl—pt; + In{etr — 1 + p(t; — £1)e?s — pt; + $p*(t; — t,)%e"s — $p%t7%}).

=1

Thus, the maximum likelihood estimate j satisfies

In(L
o)) _ o
ap o=p
1.e.,
i tel—t—tz—}—tzt—te"tl—I—l"zt—tztePl
Z”i[_t + - P ft( 1) - P(zﬁt 1) :2 2%_0 (10)
i=1 et — 1 + p(t; — ty)ePs — pt; + 3p2(t; — 1))%P — p%,

The solution of (10) can be obtained numerically for each set of data (the value of #;).
The asymptotic variance of p can be found as before as follows:

2
= Bl
where
gti, p) = —(te" — t; — pt® + ptilts — tl)fot‘ + 3p2(t; — ;)% tyefh)?
[#(2: , p)es] |
+ [t — 1) + ptyeta(2t2 — 38, + 1,2) + 3p2(t; — 1,)? ty%e"h],

Now

B[E5] = 1 i [

= 3. Mg, ) [ B0

=1
— NY etiglt; , p).
i=1

Thus, the asymptotic variance is given by:

1
02 = — . 11
N3z, etgt;, p) an
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Semi-Markov Model

The model for correct and error responses and the omission run model can be
combined to produce a semi-Markov model (Barlow & Proschan, 1965; Hunter, 1969).
A semi-Markov process can be defined as follows.

Consider a stochastic process which moves from one to another of a finite number
of states 4, ,..., 4,, with successive states forming a Markov chain, whose transition
matrix is given by X = (x,;). Furthermore, the process stays in a given state a random
length of time whose distribution function Y;(¢) depends on the state being visited,
A, , as well as the one to be visited next, 4; .

Let us write Z; for the state being occupied at time ¢, then {Z, ; ¢ > 0} is called a
semi-Markov process. For the PSAT, the transition matrix X is given by:

1 X 0
1 r g 1—7r—q
X ( st l—s—t) (12)
0 1l —u u 0

and the time distribution Y(2) is given by:

1 X 0
g g@) g(2)
X (g(t) (1) g(t)) - )
0 \b(r) 1) #)

where g(t) 1s a distribution function which is zero for ¢ greater than the interstimulus
interval. It should be noted that at fast rates of presentation one omission run may
immediately follow another because the subject may recover, get ready to produce
the next response but fail because the next stimulus has arrived. This would lead to a
modification of Eq. (12) with a nonzero entry in cell 0, 0.

Although this model unifies the response and omission run models, it goes no
further than these models and the experiments will be analyzed in terms of the
component models.

4. RESULTS FROM APPLICATION OF THE MODEL TO EXPERIMENT 1

The response and omission run models are evaluated in much the same way and
so are treated together in this section. A y%-statistic is used to test these two models
using observed and expected values of the number of runs of each run length.?

3 In fitting this model the first response run was ignored on the assumption that this accounted
for the primacy effect.
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Individual Model Results for Experiment 1

TABLE 1

55

Pacing
rate
(sec/ Number
Subject  digit) p vy @ Xs2° dfpc  p Up xo®  dfp ofruns

1 1.2 0.280 0.047 0.38 1 1.62 0.12 8.26 1 67

2 1.2 0.614 0.042 0.71 2 1.75 0.15 0.15 1 51

3 1.2 0.766 0.034 5.41 2 1.72 0.17 0.49 1 37

4 1.2 0.165 0.038 — — 224 0.15 37.39 1 81

5 1.2 0.317 0.042 0.37 2 3.26 0.24 2.14 1 84

6 1.2 0.557 0.048 3.59 2 1.26 0.11 3.55 3 47

7 1.2 0.717 0.037 0.81 2 1.99 0.19 2.34 1 41

8 1.2 0.415 0.051 4.52 2 1.32 0.10 1.64 3 55

9 1.2 0.235 0.043 0.15 1 1.99 0.14 10.62 1 75
10 1.2 0.491 0.047 6.71 2 1.71 0.13 1.49 2 58
11 1.2 0.581 0.051 2.51 2 0.86 0.08 8.08 3 39
12 1.2 0.569 0.047 3.64 2 1.27 0.11 5.38 3 47
13 1.2 0.509 0.049 0.42 1 1.38 0.11 0.97 2 52
14 1.2 0.767 0.032 9.81 2 3.92 0.44 — — 41
15 1.2 0.578 0.042 0.69 2 2.68 0.22 1.55 1 60
16 1.2 0.562 0.045 7.67 2 1.65 0.14 0.86 2 53
17 1.6 0.910 0.021 — — 327 0.61 — — 18
18 1.6 0.694 0.036 2.94 3 2.03 0.19 0.05 1 50
19 1.6 0.728 0.036 1.14 2 1.95 0.20 0.03 1 41
20 1.6 0.284 0.046 0.66 1 1.16 0.08 13.57 2 68
21 1.6 0.683 0.039 5.81 2 2.08 0.20 — — 45
22 1.6 0.673 0.036 5.53 3 2.94 0.29 — —_ 46
23 1.6 0.765 0.032 069 2 2.55 0.27 0.45 1 45
24 1.6 0.744 0.035 1.24 2 1.73 0.17 — — 41
25 1.6 0.921 0.020 — — — — — — 14
26 1.6 0.742 0.038 - 0.01 1 0.99 0.10 — — 34
27 1.6 0.669 0.037 3.26 3 2.69 0.26 — — 53
28 1.6 0.518 0.043 3.69 2 1.81 0.14 2.02 1 65
29 1.6 0.871 0.024 — — 324 0.50 — — 26
30 1.6 0.797 0.030 0.74 1 2.64 0.30 — — 37
31 1.6 0.856 0.025 — — 2.12 0.36 — — 28
32 1.6 0.583 0.044 8.42 2 1.19 0.10 3.91 2 53
33 2.0 0.888 0.024 — — 223 0.35 — — 21
34 2.0 0.818 0.028 —_ — 3.66 0.67 — — 36
35 2.0 0.765 0.032 0.11 2 2.95 0.38 — — 43
36 2.0 0.881 0.023 — — 1.90 0.27 — — 23

Table continued
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TABLE 1 (continued)

Pacing
rate
(sec/ ‘ Number
Subject  digit) ? v, ¢ x:2° dfp° P Yy Xp® dfp of runs

37 2.0 0.855 0.025 — — — - — — — 30
38 2.0 0.568 0.043 0.85 2 1.20 0.10 4.88 2 58
39 2.0 0.620 0.039 9.07 3 2.16 0.19 — — 60
40 2.0 0.750 0.125 — — — — — — 4
41 2.0 0.888 0.023 — — 235 0.36 — — 23
42 2.0 0.796 0.031 0.77 1 1.44 0.15 0.29 1 Kk
43 2.0 0.791 0.031 1.38 1 1.98 0.22 — — 37
44 2.0 0.793 0.030 5.26 2 2.18 0.25 — — 38
45 2.0 0.884 0.024 — — 253 0.41 — — 22
46 2.0 0.914 0.020 — — 3.8 0.69 —_— — 18
47 2.0 0.812 0.029 0.03 1 3.64 0.67 — — 35
48 2.0 0.896 0.022 — —  3.28 0.69 — — 21

Note. These results are for trial 1 at the three pacing rates. See Table 1A for further data.

@ g is the square root of the asymptotic variance.

> A small table containing critical values of x? is presented below for direct comparison.

¢ Degrees-of-freedom is given by number of frequency classes minus two. Frequency classes
are grouped when the number of entries is less than five thus reducing degrees-of-freedom.

TABLE 1A

Critical Values of x? for Various Probability Levels « and Degrees-of-Freedom

Degrees-of-freedom

—

o 1 2 3 4

0.01 6.64 9.21 11.34 13.28
0.05 3.84 5.99 7.82 9.49
0.20 1.64 3.22 4.64 5.99
0.50 0.46 1.39 2.37 3.36
0.80 0.06 0.45 1.01 1.65

Response and Omission Run Models

An illustrative sample of results for the response and omission run models applied
to Experiment 1 are shown in Table 1 and Fig. 2. In Table 1 it can be seen that some
of the 2 values are statistically significant even at a probability level of o« = 0.01,
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@hich means that the data are not in full accord with the postulated probability density
tunction. Several of the worst fits of the models to the data for trial 1 at 1.2 sec/digit

are now examined.
Subjects 1, 4, and 9 developed a strategy of adding every successive pair of digits;
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Fic. 2. Experimental results and theoretical fits to response and omission run models for
trial 1 at 1.2 sec/digit (16 subjects) in Experiment 1.
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this strategy can be seen from an autocorrelation analysis. The omission run model
fits poorly because of the large number of omission runs of length 1, but the response
run model fits well because there are few frequency classes. Thus, an obvious strategy
accounts for the poor fits of the model.

Subjects 10, 14, and 16 had fewer response runs of length one than would be
expected from the model, leading to large y? values. There are two possible explanations
for this.* First some subjects may have been adopting the strategy of only beginning
a response run when reasonably sure of not stopping after one response (see Experiment
2 for further justification of this). Second the processing system is acting differently
for the first compared with later items in the response run. This is taken into account
in the initial probability vector of the model for correct responses and errors, Eq. (7),
and the omission to response transitions in the semi-Markov model, Eq. (12). In
Fig. 2 it can be seen that good fits could be obtained by ignoring runs of length 1 for
subjects 10, 14, and 16.

‘The two models appear to fit individual data quite well for trial 1 at 1.2 sec/digit
except when an easily identifiable strategy is employed. A suitable test for overall
goodness-of-fit of the response and omission run models is made by computing the
overall x* for the 16 subjects, excluding the above cases. If we assume that the runs
for different subjects are independent, then X2 — Z:il xi* is distributed chi-square
with m degrees-of-freedom, where m is the sum of the degrees of freedom for the y,?
statistic of each subject. The value of X2 for response runs is 23.6 with 21 degrees-of-
freedom (« A 0.30) and X2 for omission runs is 27.6 with 23 degrees.- of freedom
(« &~ 0.25). Both these values are acceptable so with the above exceptions we can con-
cludethat the response and omission run models fit well over the whole group of subjects.

At slower rates of presentation, the y? test cannot be applied in many cases because
of the small number of runs leading to no degrees-of-freedom. ‘

These goodness-of-fit results are encouraging but any model should provide further
evidence of its usefulness such as stable parameter trends. F ig. 3 shows changes in p
and p with practice over the 5 trials for 16 subjects at 1.2 sec/digit. Also included are
error bars that represent the square root of the variance estimate for each parameter
value. It can be seen that these curves are regular to within the standard deviation
estimates and a simple binomial test shows that p and p increase with practice. These
show that stable trends for each individual are extracted from the data by the response
and omission run models.

Although no individual subject was tested at different rates of presentation in
Experiment 1, a parametric one-way analysis of variance can be performed on the
data in Table 1 (separate analyses for p and p values) to test if p and p change with

* It was felt necessary to provide a discussion of these individual deviations bécause most
occurred consistently with practice. For example, value of x? (2 df) for response run fits for
subject 16 over the five trials at 1.2 sec/digit are 7.67, 6.00, 9.33, 7.82, 4.28, and in each case the
large x? value arises from a small number of runs of length 1.
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Fi16. 3. Variation of parameters p and p with practice for the 16 subjects tested at 1.2 sec/digit
in Experiment 1.

rate of presentation. The variances of the individual parameters are not constant so
strictly speaking the ANOVA should not be used; however, the ANOVA is a robust
test and should at least indicate trends. The computed F values are F(p) = 17.18
and F(p) = 2.30 and F, (;(2,47) = 3.20. Because the F values lie well away from 3.20,
it 1s reasonable to conclude that p increases as rate of presentation decreases and p is
constant with rate of presentation.

Model for Correct and Error Responses

Before developing tests of this model and applying them to Experiment 1, two
further analyses of error performance are discussed.

Because the task was repeated 20 times over the same series of 60 sums (see the
Method section), it is possible to examine the performance of each subject on every
digit combination in the series. Several kinds of idiosyncracies occur, for example a
particular addition may be incorrect (7 4 6 = 15), a subject may fail at a certain
addition (8 + 5 = ?). In Experiment 1 only 159, of total errors at 1.2 sec/digit
could be identified this way (59, and 7%, at 1.6 and 2.0 sec/digit, repectively); there-
fore, to a good approximation this kind of error can be ignored in the following analyses.
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Earlier it was argued that the processing system acts differently for the first compared
with later items in the response run. The pattern of errors initiating response runs
supports this argument. For example, very few response runs begin with a response
adding error (type 4). Therefore, errors beginning runs are not used in calculating
parameters s and ¢ but are used in calculating .

To test the model for correct and error responses we must determine if the process
can be represented by a first order Markov chain. As was mentioned earlier, if the
response run model is adequate and if there are few errors, then the transition correct
to correct response (1 to 1) has constant probability and only first-order effects. This
property of the 1 to 1 transition provides a basis for tests of the other transitions. The
small number of errors in any subject’s response protocol is a major problem in
providing reasonable tests for first order dependence in the transitions 1 to X (error),
X to 1, and X to X for individual subjects. However, this lack of data can be overcome
by combining data for all subjects for each condition of pacing and practice. This
grouping is probably reasonable because two of the following tests are based on the
geometric distribution and the sum of geometric distributions with similar parameters
is very nearly geometric. Therefore, the following results should not be treated as
strict hypothesis tests.

Consider runs of responses starting with a correct response, preceded by an omission
and containing an error. If there were constant probability of an error occurring at
any position in a response run, then the distribution of response run length up to an
error would be geometric

Pr (k correct followed by an error) = r*1q. (14)

If the parameter ¢ increased with position in the response run (e.g., a “fatigue” effect)
then the value of 7 calculated from Eq. (14) would be larger than the average value
of r calculated for the group and if ¢ decreased (e.g., “confusion” effect) then the
computed value of  would be smaller. Thus, the comparison of values of r and y?
goodness-of-fit test to Eq. (14) are suitable tests for the transition 1 to X.

Similar tests are made to see if an error affects only the next response and not
performance later in the response string. The distribution of correct response run
length following an error (not beginning a run) and up to an omission or error is again
geometric with parameter 7:

Pr(k correct preceded by an error and followed by an (15)

omission or error) = sr¥=1 (1 — 7).

If an error had disruptive effects after the next response then the value of r obtained
from Eq. (15) would be smaller than the group value of r and a high value of x* would
be expected. :
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Values of the transition probablilities are calculated using

3 N( to 1) _ N(1 to X)
"= NitwD+NItoX)+N1t0)’ I~ N({tol)+N(ItoX)+ N(to0)

3 N(X to 1) L N(X to X)
ST NEt]) FNXto X)+NXt0)’ ~ NXtol)+ N(XtoX)+ NXto0)
(16)

where N(A4 to B) is the number of transitions from state A to state B. A z-statistic
may be used to compare r with 7, and 7, (the values of 7 calculated from Eq. (14)
and (15), respectively) and this is calculated from

_ X; — Xy and v — 2, N; + %N,
x(1 — x)(1/Ny + 1/N,) ' N,+N, °’

where x; is the value of the parameter 7 and N; is the total number of transitions, i.e.,
the bottom line of the expressions in Eq. (17).
Table 2 contains these comparisons together with group parameters for p, 7, g, s,

Z
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t, u (simply the proportion of response runs beginning with an error) and values of y?
for the fits of Egs. (14) and (15). Figure 4 shows histograms and theoretical fits for
Egs. (14) and (15). The values of y? together with the nonsignificant z-statistics for
7, rg and 7, r; comparisons indicate that there are only first-order effects.

An obvious psychological hypothesis for error responses is that they occur randomly
in a response run with constant probability ¢. An alternative hypothesis is that if
mistakes were made in perceiving stimuli, then more pairs of error responses than
chance would be expected and # would be greater than gq. Comparlsons in Table 2
show ¢ is approximately the same as g.

Subject 10 accounted for one-third of the error responses of the 1.2 sec/digit group
at trial 5, and a significant proportion of earlier trials. It is instructive to tabulate the
values of the parameters 7, ¢, s, t and u for this subject over the 5 trials and these are
shown in Table 3. .

The value of the 2-statistic was not significant for the comparison between ¢ and ¢
as for the group. The values of r and ¢ increase from the first trial and their behaviour
is relatively smooth, 7 as expected from the response run model results and g by
choice of strategy. The subject stated after the first or second trial that he was going
to make as many responses as possible, correct or error and so make more correct
responses than otherwise. This indicates that subjects may have some control over
error performance. The parameter s increases with practice but more erratically than
r or g because of the small number of transitions from the error state. This suggests
that with practice the subject can learn not to permit an error to interrupt performance.

Therefore from this and the group data, the Markov model (Eq. (7)) adequately
represents response run performance. A full description of asymptotic performance
of any subject requires 5 parameters, 7, g, 5, %, and p. For purposes of comparison
between subjects or investigation of overall performance, the number of parameters
can be reduced to two namely p and p.

5. EXPERIMENT 2

A second experiment was performed to study changes in model parameters with
change in pacing rate for individual subjects. It seemed reasonable to ask subjects to
give an account of what operations were used (Reitman, 1970) so that these reports
could be used along with experimental results to deduce psychological processes
involved in the task.

Method

Six subjects were chosen from those who participated in Experiment 1 in order that
practice effects be minimized. The subjects were tested at four pacing rates beginning
with 0.8 sec/digit and increasing by 0.4 sec/digit at each subsequent trial.
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To avoid the pair-adding strategy the following verbal instructions were presented:

Most subjects at the fastest presentation rate just add successive pairs of digits, e.g.,

2 7 4 6 39
9 10 12 ---

This strategy enables them to get by without any memory component and memory recall is
what I am trying to study in this experiment. So that you don’t use this strategy, I want you to
concentrate on getting as long runs of responses as possible and when interruption occurs, to
try and get back on the track as soon as possible:

Following this a practice trial of 241 digits at 0.8 sec/digit was presented followed
by the four experimental trials of 241 digits. The series was the same as used in
Experiment 1 and was presented through 8 Sound headphones from a Ferrograph
tape recorder. After each trial subjects were asked for introspective reports.

Results

There is a design problem in this experiment in that any changes in p and p could
be attributed to practice. The subjects in this experiment took part in Experiment 1
and these results (Fig. 3) can be used to give estimates of the size of practice effects.
A linear regression line can be fitted to the practice data for each subject’s performance
in Experiment 1. This line can be expected to be an upper limit on the increase in the
parameter with practice because the subjects are highly practiced and their performance
should be approaching asymptote.

Subject
I
L0t
p

20

N W
(@]

05¢

0812 1620 0812 16 20 0812 16 20
Pacing Rate (sec/digit)

F16. 5. Variation of parameters p and p with rate of presentation for six subjects in Ex-
periment 2.
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For the parameter p, the difference in parameter values between adjacent pacing
rates (e.g., p1.5Po.s) IS significantly greater than the slope of the regression line at a 59,
level except for 3 comparisons out of 15. These results suggest that even for individual
subjects the hypothesis that p increases with decrease in pacing rate can be accepted.

For the parameter p slopes and estimates of standard deviations in slopes of linear
regressions for practice from Experiment 1 and pacing rate from Experiment 2 were
calculated and there was no significant difference in these slopes. Results at 0.8 sec/digit

TABLE 4

Results for the Individual Model for Experiment 2

Pacing
rate (sec/ No. of
Subject  digit) p v, 9 Xo® df P v, Xo® df runs
1(8) 08 0423 0059 072 1 108 010 342 4 41
1 12 0630 0042 040 2 175 015 019 2 48
1 1.6 0754 0033 017 2 203 020 — 0 42
1 20 0857 0024 113 1 213 028 — 0 28
212) 08 0514 0057 1769 1 103 010 217 4 37
2 12 0678 0044 549 2 135 013 010 2 37
2 1.6 0760 0035 041 1 155 016 013 1 38
2 20 089 002 — 0 166 023 — 0 22
3(9) 08 0520 0058 439 1 110 011 595 4 35
3 12 059 0043 - 553 2 243 021 630 2 52
3 16 0813 0029 123 1 268 032 — 0 35
3 20 0864 0024 070 1 240 035 — 0 27
4(7) 08 0643 0041 1456 2 295 026 053 1 49
4 12 0910 002 — O 466 08 — 0 17
. 5(5) 08 0314 0053 121 1 294 022 89 1 66
50 08 0314 0053 121 1 224 020 114 2 45
5 12 0625 0038 358 3 443 044 — 0 59
5 16 0838 0026 — 0 433 08 — 0 27
6 08 0292 0054 162 1 156 014 050 3 51
6 - 12 0485 0044 293 1 248 019 419 1 67
6 1.6 0725 0035 010 1 216 024 — 0 34
6 20 0879 0024 — 0 221 036 — 0 20

% 9, and v, are the square root of the asymptotic variance for p and p.

® The number in parentheses refers to the subject’s identification in Experiment 1. Subject 6
was a pilot subject at 0.8 sec/digit and the results were not presented.

¢ Adjusted omission run data, see Fig. 7.
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TABLE 5

Results of Correct and Error Response Model for Experiment 2

0.8 sec/digit 1.2 sec/digit 1.6 sec/digit 2.0 sec/digit

Param- No. of Param- No.of Param- No.of Param- No. of

Sub- Parameter eter  transi- eter  transi- eter  transi- eter transi-

ject name value  tions value  tions value  tions value tions
3 r 0.345 55 0.509 108 0.621 140 0.695 164
3 q 0.254 55 0.176 108 0.221 140 0.177 164
3 s 0.176 17 0.280 - 25 0.528 36 0.794 34
3 t 0.176 17 0.160 25 0.139 36 0.118 34
3 u 0.086 35 0.173 52 0.057 35 0.111 27
3 - 0.662 0.191 1.088 ] 0.804
1 r 0.301 55 0.522 115 0.700 160 0.738 172
1 q 0.164 55 0.130 115 0.106 160 0.128 172
2 r 0.500 72 0.655 110 0.776 165 0.890 210
2 q 0.028 72 0.027 110 0.018 165 0.024 210
4 r 0.608 125 0.913 195 0.996 239 1.000 239
4 q 0.088 125 0.015 195 0 239 0 239
5 r 0.301 103 0.619 155 0.845 207 0.987 236
5 q 0.019 103 0.026 155 0 207 - 0.008 236
6 r 0.219 64 0.460 124 0.695 151 0.809 183
6 q 0.078 64 0.040 124 0.073 151 0.060 183

Number of 1 2 1 1

response-adding

errors initiating a
response run
for the group.

Group values of u  0.020 279 0.056 266 0.038 209 0.064 125

were not included in this analysis because p is significantly smaller which is probably
due to a significant proportion of omission runs consisting of two recoveries. This
analysis is somewhat weaker than that for p but indicates that p is approximately
constant for changes in pacing rate for individual subjects. Table 4 shows results
for the response and omission run models together with goodness-of-fit estimates,
Fig. 5 shows changes in p and p with pacing rate for individual subjects and Figs. 6
and 7 show histograms for response and omission runs, respectively, together with
fitted values.

As in Experiment 1, one subject (subject 3) made enough error responses to allow
the Markov model for correct and error responses to be applied. These results are
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presented in Table 5 together with values of 7 and ¢ for the other 5 subjects, values
of u for the group and z-scores for the comparison between ¢ and ¢ for subject 3.

For subject 3, ¢ is approximately the same as ¢ at all pacing rates and for the group
u is about the same as in Experiment 1. For individual subjects g is sometimes constant
at all pacing rates and sometimes decreases as pacing rate increases. As in Experiment 1,
few response-adding errors start response runs.

Introspective Reports

Introspective reports were obtained by asking subjects to say how i:hey went about
performing the task, then probing with-questions such as “What caused interruption ?”’
“Did you do any rehearsal ?”” These reports are summarized and listed below.

(a) At fast pacing rates (0.8 and 1.2 sec/digit for poorer performers) all subjects
stated that many interruptions were due to loss of the previous stimulus or due to
falling behind the stimulus sequence in responding.

(b) For the faster rates of presentation, all subjects said that if they noticed they
had made an error then the response run was interrupted.

(c) All subjects at fast pacing rates also reported they could not or would not
start a response run if the response was going to be slow, otherwise they would lapse
into the pair-adding strategy.

(d) At intermediate rates of presentation (1.6 sec/digit for poorer performers
and 1.2 and 1.6 sec/digit for better performers) loss of the previous stimulus in recall
was again said to be a major cause of interruption. However there was often time to
correct an error or recover from the disturbance and so maintain the response run.

(e) At 2.0 sec/digit, all subjects indicated that ‘“‘wandering attention” was a
major cause of interruption. "

(f) Subject 5 found that often if the next stimulus had arrived before he was
able to respond then he was able to hold enough information to miss that response
and get the next.

(g) All subjects reported, at slower rates of presentation, that immediately after
the response the previous stimulus was recalled and then rehearsed.

Now reports (c) and (f) will be examined together with results from the model and
these will enable us to investigate strategies or where the model breaks down (other
reports are considered in the next section). '

Report (c) suggests that the number of response runs of length 1 should be smaller
than that expected from the model at fast pacing rates and that there should be some
larger response latencies than at slower rates. From Fig. 6, it can be seen that all
subjects exhibit a smaller number of response runs of length 1 than predicted from
the model at faster pacing rates, with subjects 2 and 4 extreme examples. Also the
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omission run histograms show several large latencies at faster pacing rates ‘which
probably accounts in part for the smaller values of p at these rates of presentation.

As in Experiment 1 very few response-adding errors initiated response runs.
Subject 1 made a response-adding error that was surrounded by omissions. At the
end of the trial he confirmed that this was a response-adding error rather than a
random error coinciding with the response-adding result. This is consistent with
report (c). _

From report (f) we would expect a larger number of omission runs of length 1
than predicted by the model for subject 5 and this is observed. By reducing the number
of runs of length 1 and reapplying the model, a reasonable fit occurs (subject 5,
0.8 sec/digit, Fig. 7, crosses are adjusted fits).

If the interstimulus interval is smaller than the time required for a processing cycle
and if the probability of an interfering event is small then the response run model
would be expected to break down. The distribution of response run length versus
number of runs should show a small number of runs of short length increasing up to
a peak at length 3 or 4 (for example), then dropping to zero sharply. This is precisely
what the response run histogram for subject 4 at 0.8 sec/digit shows.

At slow rates of presentation, report (e) suggests that vigilance eflects may be
important (Broadbent, 1971, p. 23). The resulting omission runs may correspond to
gaps in performance, “‘blocks” reported by Bills (1931).

It seems that at fast rates of presentation the model may not represent the data
adequately. This is because subjects fall behind in processing or find it easier to
respond 1in pairs.

6. PsycHOLOGICAL PROCESSES

In this section an attempt is made to relate the model to some current theories in
memory and information processing.

Processes Involved in Response Runs

Two experiments were performed by Corballis and Sampson (1962) in an attempt
to identify processes involved in the PSAT. The paced pure addition task (PPAT)
involved addition with no immediate memory recall, whereas the paced memory task
(PMT) involved memory recall with no addition. Both were presented visually. The
PPAT had pairs of digits mounted on the same slide, the subject being required to
call out the sum. PMT presentation was the same as for the PSAT except that the
subject was required to call out the nth stimulus after the n + Ist had passed. Results
showed that the PM'T exhibited similar trends to the PSAT but the PPAT showed
no decrement in performance even at 1 sec/digit (group obtaining 959, correct).
Thus, we can eliminate encoding, response output and addition stages as major
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sources of performance decrement in the PSAT because these stages are present in
the PPAT, which shows no decrement. Also, response time measurements (Ratcliff,
1974) have shown that time to perform these operations is almost independent of
interstimulus interval, which provides further evidence that these stages are not
important in producing performance decrement. The PMT results show that recall
from immediate memory plays an important role in accounting for performance
decrement. This paced memory task is similar in many respects to the tasks mentioned
in the introduction (e.g., Mackworth & Mackworth, 1959; Kay, 1953;Pollack & Johnson,
1963) and so features in common between the PMT and PSAT are also shared by
these tasks. '

Individual subjects were shown to have adding difficulties with certain digit com-
binations but there were no major group or individual trends. Groen and Parkman
(1972) analyzed response times for one-digit additions and found that adults’ response
latencies can be explained: by a- médet tha¥.assumes a memory look-up process with
homogeneous retrieval times, apart from ‘occasionally reverting to a counting process.
"Thus, the addition stage does not constitute a performance limiting factor dependent
on the particular digit combination required to be added.

Interruption in processing is an important factor in prerformance on the PSAT
and failure to recall the previous stimulus item, prior to the addition stage, is likely a
major source of this interruption. At the rates of presentation used in this experiment
and with the short recall period, interference would be expected to be the major
source of interruption (Atkinson & Shiffrin, 1971). Two obvious sources of interference
in the PSAT are input and output interference. Welford (1968) discusses the experi-
ments of Kay (1953), which are similar in many ways to the PMT (Corballis & Sampson
1963). The conclusion reached is that if acquisition of a new item coincides with
recall of an item then there are severe interference effects even to the extend that
retrieval of one item can clear the “memory store.” Introspective reports (a) and (d)
in the last section support this hypothesis that interruption is due to recall failure.
It is also likely that the addition stage produces interference in stored information.
This can be seen by identifying the addition stage with distracting activity in the
Brown-Peterson paradigm (Peterson & Peterson, 1959).

Thus interference effects from addition, response and stimulus presentation appear
to be major sources of interruption in the PSAT except when the presentation rate is
fast and the subject falls behind in processing. Response time measurements (Ratcliff,
1974) show that the processing cycle is about 1 sec long and if the pacing rate is faster
than this, the subject falls behind in responding until he ends the run. The size of the
interference effects can be derived from p, the response run model parameter, except
at these fast rates of presentation.

Figure 8 illustrates the sequence of operations and items in immediate memory
when the subject is engaged in a response run. Earlier, it was noted that two types of
error were easily recognized and classified, namely, type 3 corresponding to incorrect
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Fic. 8. Sequence of events and items in short-term memory when the subject is engaged
in a response run. R, response; S, stimulus; @, addition stage; X, rehearsal of the underlined
preceding item.

retrieval a and type 4 corresponding to incorrect retrieval b in Fig. 8. The remaining
errors were not easily classified. There are two forms of deviation from correct respon-
ses, omissions and errors, and there seems to be some correspondence between these
two, and item and order information, respectively. (For further discussion of item
and order information see Murdock, 1974.) For example, omissions may be due to
loss of item information and errors (especially type 3 and 4) appear to be due to loss
of order information, with items on either side of the target being used in the addition.
However, a simple strength theory (Norman & Wickelgren, 1969) is also capable of
accounting for errors and gmissions. Interference would be expected to reduce the
strength of items in immediate memory and if the second strongest was to be retrieved
(R,_1 , the last response would be the strongest, Fig. 8), then errors would occur when
the strength of one of the other items was ranked second in strength. The most likely
candidates are S,_; and R,_; (Fig. 8) leading to the observed error pattern. Omissions
would occur when the strength of the second strongest item was below a retrieval
criterion.

Earlier, it was noted that an error often immediately precedes an omission run.
Introspective reports (b) and (d) support this and the parameter s in the Markov model
(Eq. (7)) describes the probability of recovery from an error. It seems that some
error-checking process (Montague, 1972, p. 231) occurs with normal serial addition
processing. At slow rates of presentation, it is possible to recover from an interruption
resulting from an error without omission, but at fast rates an omission run usually
results. The recovery either takes the form of a correction to the present response or a
correct response to the next stimulus occasionally after an “um”, a flinch, or some
other sign.

This section shows that processes involved in response run performance are capable
of being explained by current theory in memory research.
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Processes Involved in Omission Runs

The model developed to account for recovery adequately represents omission run
data and gives a measure of recovery rate. Empirical results show that recovery
proceeds at the same speed at all except the faster pacing rates and the mean length
of an omission run is independent of the preceding response run. It is reasonable to
conclude therefore that processes involved in recovery from interruption are indepen-
dent of rate of presentation and previous performance in the trial (at asymptote).
The model, however, cannot deal with fast recovery which occurs at intermediate
and faster pacing rates when the subjects falls behind in processing and deliberately
misses a response in order to continue processing (see introspective report (f)). In
these cases, the model helps isolate this strategy. Also, at fast pacing rates there are
often relatively long omission runs. In these cases, the subject may be slow in producing
a result and so does not respond but starts the recovery process again. As before the
model helps identify this process.

The processes involved in recovery from interruption may be expected to be rather
complicated. The omission run model is based on the rather strong assumptions of
serial, exponentially distributed processes but is capable of being mimicked by other
classes of model (Townsend, 1972). Therefore, this model may not be too powerful in
helping specify mechanisms, but it does model recovery processes which are rarely
considered in modern cognitive psychology.

Primacy Effect

In the PSAT the delay period from presentation of one item to the next is brief
and the interfering activity (the input, output, and addition processes) has short
duration. Thus, we might expect proactive inhibition to build up over the experimental
session and because the retention period is brief it is reasonable that recovery takes place
quickly in the intertrial interval. A strength theory would deal with this by supposing
that there is a change in d’ and B as the trial progresses leading to poorer perfor-
mance. Thus, the primacy effect can be accounted for in terms of proactive inhibition.

7. SUMMARY

In this paper, a model has been developed for the PSAT that has both a clear
psychological interpretation and allows many of the psychological processes underlying
performance to be specified.

Initially, a steady state of performance and a primacy effect were distinguished.
The primacy effect showed characteristics that enabled it to be attributed to proactive
inhibition building up as the trial proceeded. A model was developed to account for
individual performance at asymptote. This was composed of three submodels, a model
concerning performance in a response run which groups all responses together, a
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model that differentiates between correct and error responses (with the response run
model as a limiting case) and a model for recovery from interruption dealing with
omission runs. The latter two models generalize to a semi-Markov model.

The main performance limiting factors, as indicated by the models, are interruption,
while the subject is performing in a response run and recovery from such an interrup-
tion. It is argued that interruptions are mainly due to interference and recovery
involves complex processes which take place at a rate independent of rate of presenta-
tion. Errors are shown to be mainly due to incorrect memory retrieval.

APPENDIX A

Because average group performance has often been used as a dependent variable
(Sampson, 1960; Corballis & Sampson, 1963; Gronwall, 1972), it is worthwhile
developing the group model further. In this appendix both asymptotic variance
estimates and goodness-of-fit measures are derived for the group model results from
Experiment 1.

Asymptotic Variance Estimates

Asymptotic variance estimates are given by diagonal elements of the covariance

matrix,
C =171,
where the information matrix
_ * 1(6)
I= _E( aeiaej)

® = (6, ,..., 0;) are the unknown parameters (in this case a, 7, and ¢) and [(8) is the
natural logarithm of the joint probability density function.

If we make the simplifying assumptions that the number of correct responses is
distributed binomially with parameter p; , and the proportion correct at any position
is independent of what happened before (this approximation will only break down
seriously for omission runs at faster rates of presentation), then the joint probability

density function
N

= " pvi (1 — p,)r—v
fﬁ(yl 7.'--’ yN) ;E[l [(yz) pz (1 Pz) {I
where 7 is the number of subjects in the group, y; is the number of correct responses
at position 7, and N is the length of the response string.

Thus,

(©) = %, In (5 ) + 3 Dt pu ot (n =39 11— p)
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After some manipulation the information matrix can be written as

[ 2t;
N ne ©
_igl pi(1 — p3)
2¢,
£\ ——
s an ()¢
o | =1 pz(l —Pz)
[ 2t
N ne *
_Z'l Pl — p2)

N

)

i=1

N

)

i=1

t —it—i t
an () 5 —
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o) ] [ )
Z‘l Pl —p2) = bl — 1))
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an ()¢ | n
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8)

The variance estimates were calculated by numerically inverting the information
matrix Eq. (18), using the estimated values of a, 7, and c.

TABLE A

Group Model Results, Variance Estimates, and Goodness-of-Fit Measures for Experiment 1

Pacing rate®

(sec/digit) Trial a o4 T or ¢ g, W
1.2 1 0.820 0.341 2.5 1.0 0.481 0.008 311.0
1.2 2 0.411 0.056 10.4 2.6 0.550 0.008 341.6
1.2 3 0.365 0.042 16.2 3.6 0.588 0.009 288.3
1.2 4 0272 0.031 34.2 8.2 0.643 . 0.011 284.7-
1.2 - 5 0.261 0.029 36.1 8.9 0.656 - 0.011 266.2
1.6 1 0.213 0.037 29.8 9.8 0.644 0.010 273.1
1.6 2 0.166 0.024 67.6 28.9 0.717 = 0.020 275.7
1.6 3 0.127 0.023 51.0 233 0.787 0.013 259.1
1.6 4 0.152 0.018 70.9 26.5 0.810 0.017 214.4
1.6 5 0.125 0.044 140.1 117.5 0.818 0.051 266.8
2.0 1 0.201 0.029 22.5 6.7 0.763 0.008 258.3
2.0 2 0.166 0.015 50.5 13.6 0.822 0.011 212.9
2.0 3 0.099 0.016 59.2 27.3 0.871 0.012 232.3
2.0 4 0.086 0.018 94.3 57.9 0.892 0.020 248.9
2.0 5 0.046 0.016 100.0 103.3 0.931 0.019 211.8

Note. The preliminary trials at 1.6 sec/digit gave the following proportion correct 0.633,
0.636, 0.596 for the three groups, respectively.
@ A different group was used for each pacing rate.
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Goodness of Fit
Equation (1) leads to p; = de~*/* 4 ¢. Then

72 — (ysln — P
pi(1 —Bp)m
is distributed y,% Therefore, W = Y10y Z2 is distributed x5 with (240-1)-3 degrees-
of-freedom. The 19, confidence limits on 35 are 182.9 and 294.7.

Results

Table A contains values of the group parameters, variance estimates and goodness-
of fit statistics W for Experiment 1. The goodness-of-fit estimates show that the fits
are reasonable so that group hypotheses may be tested using the group parameters
and asymptotic variance estimates. Increases in ¢ are found to be smooth to within
two standard deviations indicating that the steady state shows stable practice and
pacing effects. Although standard deviations for 7 are large, results do show that a
high level of performance can be maintained for longer periods with practice.

Figure A shows fits of Eq. (1) to two sets of data and indicates graphically the
primacy effect and asymptotic performance.

.. — dat
Test 2 1.2 sec/digit ate
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Fic. A. Typical fits of exponential to group proportion correct.
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