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Analysis of the Hockley and Murdock Decision Model
Scort D. GRONLUND AND ROGER RATCLIFF

Northwestern University

Hockley and Murdock (1987) proposed a decision model to predict accuracy and response
latency in recognition memory across a range of experimental paradigms. A decision is made
when the evidence from a memory comparison process plus extraneous noise exceeds a lower
or upper criterion. If neither criterion is exceeded, the distance between the criteria is reduced
and a new sample of noise is added to the original memory comparison value. This is repeated
until a criterion is exceeded. The model is shown to have two shortcomings: First, it produces
a reaction time distribution that is multimodal; empirical distributions are generally unimodal.
Second, application of the model to various speed-accuracy trade-off phenomena is found to
be inadequate: Either the assumptions made to account for speed-accuracy data are post hoc
or they are unable to mimic the data. An experiment that manipulates speed—accuracy trade-
offs demonstrates that the model cannot produce a trade-off of sufficient range. Alternative
conceptions of the model (the addition of a guessing process and a zero-drift random walk)
are unsuccessful. The diffusion model of Ratcliff (Psychological Review 85, 59-108 (1978); 88,
552-572 (1981)) provides an adequate account of these data and a more parsimonious
account of other speed—accuracy phenomena.  © 1991 Academic Press, Inc.

Hockley and Murdock (1987) proposed a decision model to predict accuracy and
response latency in recognition memory. The model was applied to four item
recognition paradigms, and mimicked results for accuracy, mean reaction time,
reaction time distributions, and various speed-accuracy trade-off phenomena.
However, upon closer examination, we discovered two problems: (a) a multimodal
reaction time distribution, and (b) an inadequate account of speed—accuracy trade-
off phenomena. We view the latter problem as especially significant because the
trade-off of speed for accuracy is a central phenomenon in all of the experimental
paradigms ¢xamined.

The Hockley-Murdock decision model begins with the output of a memory com-
parison process that represents the match between a test probe and memory. This
value of match is used in an iterative decision process. On each cycle of the decision
process, some amount of noise is added to the match value. If the sum is above an
upper criterion b, a positive response is made; if the sum is below a lower criterion
a, a negative response is made. This constitutes one decision cycle. If the sum is
between the two criteria, the distance between the two criteria (a and b) is reduced
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by a constant fraction CCR. Then the sum of a new sample of noise and the origing;
match value is compared to these criteria. This process continues on successive
cycles until one of the criteria is exceeded and a decision is made. A precursor of
the model was proposed by Cartwright and Festinger (1943). That model also haq
an area of no decision. The larger this area of no decision (analogous to the
distance between the criteria in the Hockley~Murdock model), the longer the
decision time.

The match (from the memory comparison process) of a test probe to information
in memory varies over test probes due to different degrees of match to memory,
These are summarized by two distributions that reflect the match values for positive
and negative items. In Hockiey and Murdock’s (1987) applications, the parameters
of these distributions are estimated from the data. In a complete description of this
match process, the distributions would be derived from a memory model linked to
the decision model. In fitting data, the negative distribution is assumed to have a
mean of 0.0 and a standard deviation of 1.0. The positive distribution has a mean
of u, and a standard deviation of ,.

To derive estimates of decision latency, the number of cycles until the match plus
noise exceeds a criterion must be converted to real-time. Hockley and Murdock
(1987) assume that the duration of each successive decision cycle increases
according to Eq. (1). This assumption produces decision latency distributions that
are positively skewed. By Eq. (1),

DecisionLatency = (k* + k + 2) BCT Y

where k denotes the number of cycles until a criterion is exceeded, and BCT is the
base cycle time (set to 17.5 ms by Hockley & Murdock, 1987). Overall response
latency is the decision latency plus the time required for other processes such as
encoding and response execution. Hockley and Murdock represent this time for
other processes by a single normal distribution. They refer to it as the TOS dis-
tribution (time for other stages) with mean Uros + for positive responses, pros_ for
negative responses, and standard deviation gros Set equal to 50 ms. Decision
latency is convolved with the appropriate TOS distribution to produce response
latency. Without the quadratic mapping of Eq. (1), the model produces strictly
symmetric reaction time distributions (unless the criteria convergence rate is close
to zero, then the model predicts geometric decision time distributions).

The purpose of this article is to demonstrate two fundamental problems with the
Hockley-Murdock model. The first problem involves the assumption of increasing
cycle durations (Eq. (1)). This assumption results in multimodal reaction time
distributions. The second problem concerns the model’s account of speed-accuracy
phenomena. Note that the model does not accumulate evidence as does a random
walk. As a consequence, it has trouble in accounting for the growth of partial infor-
mation over time (e.g., Meyer, Irwin, Osman, & Kounios, 1988; Ratcliff, 1988b;
Reed, 1973, 1976), and in trading speed for accuracy.
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PREDICTIONS FOR REACTION TIME DISTRIBUTIONS

In Eq. (1), the assumption of increasing cycle Qurations predicts increasing step
sizes between comparisons that finish on successive cycles. For example, the step
size between comparisons that finish on cycle k=1 and k=2 is on}y 70 ms
(140 — 70 ms, see Eq. 1), but the step size between cycles k=4 and k=5 is 175 ms
(560 — 385 ms). At longer reaction times (greater 'nurpbers of cycl.t'es)2 the variance
due to the standard deviation in the TOS distribution (50 ms) is msu~ﬁic.1ent‘ to
produce a smooth function over the intervals betwc?en .these. steps. A dlstnbutlor;
produced by the model is multimodal; an example is given in the left-hand pi;le
of Fig. 1. This particular distribution results from the paramet‘er values. Hoc be);
and Murdock (1987) used to fit data from the Sterqberg par‘adl.gm,.sct size 3 (bu
the multimodality is parameter-independent). A multimodal dxstr.lbutmn is con'fglrg);
to empirical reaction time distributions which are generally unimodal (Ratcli

6). .

MuOrrcli: Cslz;hitgiZ)n) to this problem is to make the base cycle timf: (BCT) variable
rather than constant. The right-hand panel of Fig. 1 shows the dlSt'I'lbl‘ltIOI:l for t'hﬁ
Sternberg paradigm, set size 3, with BCT dra.wn from a normal dlstrlbu.txol}l .w1t.
mean 17.5 (as befqre) and a standard deviation of 2. Note that the varlab} ity 1s1
added, then the quadratic mapping of Egq. (1) takes plaf:c. The mu!tlmoda
appearance is eliminated because the variance 'for the comparisons that finish on a
given cycle increases as the number of cycles increases; rather than all k-= 1 COén’I—‘
parisons taking 70 ms, they would vary around a mean of 70 ms. Making B

0.025
0.025

density

0.010
T
0.010

n

0
0.0

1 i i

o] 500 1500 0 500 1500

milliseconds milliseconds

Fic. 1. Hit reaction time distribution for the Sternberg paradigm, set size 3, with cons]t:nt ang
variable BCT. In the left-hand panel, parameter values were exactly those used by chS: ;y atrll1
Murdock (1987): CCR=0.1, a= -2, b=6.7, 4,=4.69, ¢,=1, pros, =399, and BCT? 17.5. n(:)rrm:l
right-hand panel, the same parameter values were used except that BCT was drawn from a
distribution with mean 17.5 and standard deviation 2.
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variable does not significantly change other predictions of the model. For the
distribution with BCT = 17.5 ms, accuracy was 96.7%, mean latency for hits wag
624 ms, mean latency for misses was 1008 ms; with BCT =5(17.5, 2.0), accuracy
was 96.7%, mean latency for hits was 624 ms, and mean latency for misses wag
1012 ms.

The overall shape of the reaction time distribution is also largely unchanged by
making BCT =#(17.5, 2.0). To examine the shape of the reaction time distribution,
a method described by Ratcliff and Murdock (1976) was used (see also Hohle,
1965). Reaction time distributions can be summarized by a distribution that is the
convolution of a normal and an exponential distribution. The convolution distriby-
tion is described by three parameters: u and ¢ of the normal, and < of the exponen-
tial. The u parameter is an estimate of the leading edge of the distribution; ¢
provides an estimate of the spread of the tail (see Ratcliff, 1979, for relevant discus-
sion). For BCT =17.5, y, o, and 7 from the convolution model were 422, 50, and
202 ms, respectively. With BCT =(17.5, 2.0), u, 0, and 1, were 415, 40, and 212 ms,
respectively.

Hazard Functions

Another way of viewing the reaction time distribution is the hazard function
(Luce, 1986). A hazard function gives the probability of an event occurring at time
t given that the event failed to occur prior to time . Figure 2 gives the hazard func-
tions for the distributions in Fig. 1. With BCT = 17.5, the hazard function has large
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Fi6. 2. Hazard functions from the Hockley-Murdock model. In the left-hand panel is the hazard
function for the Sternberg paradigm, set size 3, with constant BCT. The corresponding hazard function
with BCT =7 (17.5, 2.0) is Function 1 in the right-hand panel. Also in the right-hand panel are hazard
functions for CCR=.05 (Function2), p,=3.5 (Function 3), and u,=5.5 (Function4). (The other
parameters were unchanged from those Hockley and Murdock used to fit the Sternberg data, except
BCT =y (175, 2.0)).
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fluctuations (left-hand panel), and these fluctuations are not occurring only in the
extreme tail of the distribution (1120 ms is the point by which 95% of the responses
have terminated). However, making BCT =#(17.5, 2.0). smogths tt}e hazard
function (right-hand panel, Function 1). The hazard function with variable BCT
decreases gradually once an early peak is reached. . . . ‘

Luce (1986) reported that the shapes of hazard functhns vary with the intensity
of the stimulus (in psychophysical experiments). For stimuli very near threshold,
the hazard function rises to an asymptote. For above-threshold stimuli, thc hflzard
function rises to a peak and declines to an above-zero. asymp?ote. At high inten-
sities, Luce (1986) reported that the hazard function rises rapidly to a peak, and
falls off sharply.

Hazard functions from memory tasks are similar to the latter two shapes. For.the
Sternberg paradigm, Ratcliff (1988a) found that the hazard f\_mctlons rose rapidly
to a peak and then declined to an above-zero level in the tail. In addition, some
hazard functions were estimated from Ratcliff and Murdock (1_976_). In the left-hand
panel of Fig. 3 are the hazard functions for hits and correct rejections from a study-
test paradigm (their Fig. 9, input positions 9-16, output positions 9-16, p. 200): In
the right-hand panel of Fig. 3 are the hazard functions from a study-test paradigm
with words studied once or twice. The functions are for hits for the once-prescntefi
words and correct rejections (Fig. 13 from Ratcliff & Murdock, 1976; output posi-
tions 1-8, p. 204). In these two examples, as in Ratcliff (19_883), tl.le hazard function
rises to a peak, and remains above zero in the tail of the distribution. (These hagard
functions include about 90% of the responses; beyond that, these hazard functions
became unstable.) ‘

The Hockley-Murdock model can produce a variety of hazard function shapes.
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FiG. 3. Hazard functions for hits and correct rejections from Ratclifl and Murdock‘(1976.). The left-
hand panel is for a study-test paradigm; the right-hand panel is for the once-presented items in a study—
test paradigm with once- and twice-presented items.
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We varied the match strength (4, and CCR). (Changing the criteria starting posi-
tions (b and a) produced hazard functions that were shaped like those produced by
changing y, and CCR.) The match strength would likely vary as a function of the
intensity of the stimulus (perhaps achieved by varying study-time in a memory
task). By a decrease in the match strength relative to Fig. 2 Function 1 (repre-
senting stimuli near-threshold), the hazard function (Function 3, Fig. 2) rises to
an above-zero asymptote (95% of the processes have terminated by 1400 ms). By
increasing the match strength (representing increased intensity of the stimulus), the
hazard function (Function 4) rises to a peak and falls off sharply (the 95% point
is at 870 ms). These are consistent with what Luce (1986) reported from the
psychophysical literature. If the criteria convergence rate (CCR) is decreased
(relative to Function 1), the hazard function (Function 2) rises to an early peak and
falls to an above-zero asymptote (the 95% point is 1980 ms).

It appears that the Hockley-Murdock model can predict a range of hazard
functions similar to those observed in the psychophysical literature (and the few
examples found in the memory literature). However, it remains to be seen if the
shape of the reaction time distribution that corresponds to the hazard function for
a given set of parameters, is consistent with observed reaction time distributions,
For Functions 2 and 3 in the right-hand panel of Fig. 2, decreasing u, and CCR
each produce a slowing of reaction time and a skewing of the reaction time dis-
tribution. The convolution model fits to the reaction time distributions generated
from these parameters give t equal to 420 and 330 ms for Functions 2 and 3, respec-
tively. In the recognition memory experiments of Ratcliff and Murdock (1976),
exceeded 300 ms just 8 times in 92 convolution fits (6 of these for error reaction
time distributions).

In sum, the result of making BCT variable is to add another parameter and
another source of noise to the model, with no gain other than the elimination of the
multimodality in the reaction time distribution and the fluctuations in the hazard

" function. Although the model can account for distribution shape as summarized by
the convolution model, it does so only because of the quadratic mapping in Eq. (1).
The model can produce a variety of hazard function shapes, but perhaps not when
reaction time distribution shape is simultaneously considered.

SPEED-ACCURACY PREDICTIONS

Speed-accuracy trade-off phenomena can be grouped into two classes of
dependent measures. Procedures in which subjects are required to respond
according to experimenter-controlled deadlines or response signals (time-controlled
processing, Ratcliff, 1978) produce a measure of the growth of accuracy as a
function of time. In contrast, procedures in which subjects are allowed to respond
in their own time allow manipulation of trade-offs in the amount of information
required for a response through payoffs or instructions (information-controlled
processing, Ratcliff, 1978). These two classes of procedures are examined below and
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an experiment is presented that manipulates speed-accuracy trade-off by way of
instructions. The Hockley-Murdock model is unable to produce a trade-off
between speed and accuracy of sufficient range to fit data from this experiment. This
is because the decision model begins with a match value of maximum accuracy (to
which noise is added). For this reason, the modifications to the model that Hockley
and Murdock (1987) claim affect speed and accuracy (starting positions of the
criteria and convergence rate) change latency and accuracy independently of one

another.

Time-Controlled Processing

Two of the techniques that have been used to investigate the accuracy of respon-
ses as a function of time are the speed—accuracy decomposition technique of Meyer
etal. (1988) and the response signal method of Reed (1973, 1976). The speed-
accuracy decomposition technique mixes regular trials in which subjects respond
normally in their own time, with signal trials in which subjects must respond at
or before a signal presented at one of several experimenter-determined lags.. In
analyzing data from this procedure, Meyer et al. (1988) assumed that signal trials
are a probability mixture of fast-finishing regular responses and guesses. They then
used a decomposition technique based on a mixture model (e.g., Ollmat} &
Billington, 1972) that allows the estimation of guessing accuracy (partial information)
by factoring out the contribution of the fast-finishing regular responses on .the
signal trials. In general, results showed that the accuracy of guesses initially rises
quickly, then either rises slowly or asymptotes. Kounios, Osman, and Meyer (1987)
found this in a sentence verification task, Meyer efal. (1988) in a double-word
lexical decision task, and Ratcliff (1988b) in a study-test recognition task.

Hockley and Murdock (1987) account for this result in the following way: At any
given time, the model is in one of three possible states: the input (match val}le plus
noise) to the decision system is above the upper criterion, below the lower criterion,
or between the two criteria (a nonterminated process). A regular response can be
made if one of the criteria has been surpassed before the signal is presented. For the
case where the value is between the criteria, Hockley and Murdock (1987)
examined two possible mechanisms for making decisions for nonterminated
processes. One was random guessing. This was not tenable because the data of
Kounios et al. (1987), Meyer et al. (1988), and Ratcliff (1988b) all indicate that -the
accuracy of guesses increases as a function of retrieval time. A second mechanism
was that a response was made based on a single criterion (placed somewhere
between the two criteria when the signal is presented). However, H_ockley and
Murdock (1987) found that this assumption produced estimates of guessing
accuracy that were far superior to those obtained by Kounios etal. (1987),
Meyer et al. (1988), and Ratcliff (1988b).

Because neither of these mechanisms was tenable, Hockley and Murdock (1987)
proposed that decisions for nonterminated processes are based on a prot?ablhty
mixture of random guesses and decisions based on a single criterion, w1.th .the
probability of a random guess decreasing and the probability of a single criterion
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response increasing as the criteria converge (as retrieval time increases). This
assumption produces accuracy for partial information that increases as a function
of retrieval time. However, the problem with this assumption is that it allows the
model to fit any pattern of accuracy of partial information (even patterns not seen
in the data) by mixing varying amounts of relatively high-accuracy responses, based
on a single criterion, with low-accuracy random guesses. Thus, Hockley and
Murdock’s (1987) proposed account of the speed-accuracy decomposition data
cannot be falsified by any pattern of data, so long as guessing accuracy is between
zero and the accuracy of regular processes.

Another time-controlled processing paradigm is the response signal procedure
(Reed, 1976). In this procedure, every trial is a signal trial and the subject can
respond only at the signal (not before the signal as in the speed-accuracy decom-
position task). Hockley and Murdock (1987) use the same assumptions to account
for performance in this task as in the speed-accuracy decomposition task. That is,
decisions are based on fast-finishing regular responses and a probability mixture of
random guesses and single criterion responses (for nonterminated processes).
Table I gives d’ accuracy as a function of cycle time for a response signal function
generated from parameter values used by Hockley and - Murdock (1987) (parameter
values given in the table). Accuracy increases as a function of increasing decision
time for two reasons: (a) more and more of the decision processes terminate nor-
mally by exceeding a criterion; (b) according to the probability mixture assump-
tion, more and more of the decisions involving nonterminated processes are based
on a single criterion rather than a random guess. The probability mixture assump-
tion provides a reasonable approximation to data.

For comparison, Table 1 also gives (for the same parameter values) the response
signal function that results if decisions for all nonterminated processes are based on
(a) a single criterion, or on (b) random guesses, rather than a probability mixture

TABLE 1

Three Assumptions about How Response Signal Functions
Can Be Generated by the Hockley~Murdock Model

Decision cycles (lag in ms)

35 70 140 245 385 560 770 1015

Non-terminated responses are a probability mixture of a single criterion and guesses
0.35 1.02 1.57 1.99 2.30 2.52 2.68 2.80

Non-terminated responses are based on a single criterion
1.98 2.09 229 244 2.56 2.73 2.68 273

Non-terminated responses are based on random guesses
0.28 0.69 1.20 1.73 2.14 2.49 2.60 273

Note. Entries in the table are d". The same parameter values were used as in Hockley and Murdock
(1987, Fig. 7, p. 347); they were CCR =0.1, a= —2.0, b= 6.0, Hs=13.5.
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of the two. If decisions for nonterminated processes are based only on a guessing
mechanism, a reasonable approximation to response signal data also results. Of
course, in the speed—accuracy decomposition task, this results in chance accuracy
for partial information, contrary to the data.

On the other hand, if decisions for nonterminated processes are based only on a
single criterion, accuracy for the first three lags is far §upgrior to da.ta. This
iltustrates the problem with the Hockley-Murdock model highlighted by time-con-
trolled tasks; the model has nothing analogous to partial informatior}. The initial
memory signal represents complete information about the p'robe and is unchanged
during the decision process (noise is added to the original signal). In contrast to a
random walk model, the Hockley—Murdock model does not accumulate 1nforma-
tion over time. The probability mixture assumption produces the appropnate
pattern of data, but in an ad hoc manner.

Information-Controlled Processing

In a second method used to study the trade-off of speed and accuracy, termed
information-controlled processing, accuracy and reaction time are manipulated by
payoffs or instructions. In the Hockley—Murdock modle, speed and accuracy are
governed by the initial positions of the criteria, and their rate of convergence. The
model assumes that the initial positions and the convergence rate can both be
manipulated by differential payoffs or instructions to subjects. I‘{ockley. .and
Murdock (1987) claim that the greater the distance between the starting positions
and the slower their convergence, the slower but more accurate will be the response.
The closer together the criteria start and the faster their convergence, the fast‘ef but
less accurate the response. These two factors affect the ordering of the conditional
mean reaction times.

The ordering of conditional mean reaction times has been used to test among
various choice reaction time models (see Townsend & Ashby, 1983, for a review).
The Hockley-Murdock model, with differential placement of the criFeria, together
with pros, and pros_ being unconstrained, can predict any orderlng. Howe\'/er,
reaction time ordering is not diagnostic for recognition as it is for choice reaction
time. Ratcliff and Murdock (1976) found that in recognition, the order of condi-
tional mean reaction times changes as a function of the output position of the test
stimulus, the list length, etc. The pattern of variation is sufficiently complex that
none of the candidate models can provide a reasonable account for it. However,
this is a limitation not so much of theory as of the current state of empirical
knowledge. The number of potentially relevant factors is large, and their effects are
not well understood.

The factors of the placement of the criteria and their convergence rate have
similar effects; they affect latency more so than accuracy. the. reason is tl:nat
accuracy is primarily a function of the distance between the positive and pegatlve
item match distributions (which is unchanged by instructions to subjects or

‘payoffs), while the number of cycles until a criterion is exceeded (the latency) is

based on the initial criteria placements and their convergence rate.
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'The model’s account of information-controlled processing has two prob}
First, the rgodel predicts that hit rate and correct rejection rate are oftenpin .
re!ate.d. This .is not sensible if the point of increasing the distance betweversely
criterton starting positions is to increase overall accuracy. Second, the modeletn o
off speed for accuracy over too narrow a range and too severely ,withi th rades
These problems will be dealt with in turn. Pl range.

‘In .the.Ht.)ckley—Murdock model, the distance between the initial positions of
criteria 1s increased to reflect increasing emphasis on accuracy. This d‘(: the
b§tween the initial positions of the criteria can be changed in oﬂe of tw vy
El‘the.r ea‘ch' criterion starting position is incremented by the same amount OOWaYS.
cnterloq is mcrerpented more than the other. The hit rate and correct re'ect,io ate
covary if th.e. criterion starting positions are changed symmetrically J(ie r'1f e
starting positions of a and b change in equal steps or by steps that diffe; tlJ e
more than apoqt +15%); but hit and correct rejection rate are inversel rely tHO
‘wl.le.n the criterion starting positions change asymmetrically (for exam l):: ifal ;d
Initial position of a is changed from —2 to —2.5, but the initial os't'p 'of b .

changed from 4 to 5.5). ’ position ol b s
.The reason {he model produces inversely related hit and correct rejection rat
with asymmetrlq changes has to do with the point toward which the two crit:;l iy
would converge if neither criterion were exceeded (call this z). If the initial positior::

negative positive

g3

match strength

_

e Th:ll]::::::{:): (;).f tu'l; stl'lift of the convergence point as a function of the initial positions of the
. - 1stribution represents the match of negative items: i istributi
b s, the right-hand distrib
represents the match of positive items. The poi i : . erge if no
. . point toward which the two criteria woul i
repres: ' i 1 ould converge if no
ponse is made is z, where zg is the convergence point for as and bg (initial criterion positions for

Spe n. ) z
> A nverge:
ed inst ructions), and is the conve: gence point for ax and bA (lﬂltla] criterion positions for accur acy

FiG. 4.
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of the criteria are changed symmetrically (i.e., incremented or decremented equally),
the point to which the two criteria converge is unchanged. However, if the initial
positions are changed asymmetrically, the point to which the two criteria would
converge is shifted in the direction of the criterion whose initial position was
changed more. Figure 4 illustrates the shift in the convergence point (z) for criteria
starting positions that reflect speed and accuracy instructions.

This shift in z is toward the positive criterion (from zg to z, as a result of a larger
change in the initial position of b when going from speed to accuracy instructions).
The positive criterion is farther away from a given match value than the negative
criterion at every cycle (relative to the criterion placements at as and bs). If the test
probe is one for which a positive response is correct, b, is less likely to be exceeded
and the probability of a hit is decreased. If the test probe is one for which a
negative response is correct, the probability of a correct rejection is increased
because a, is relatively more likely to be exceeded. The opposite is true if the point
that the two criteria would converge to shifts in the direction of the negative
criterion.

In contrast to accuracy, the latencies for hits and correct rejections are never
inversely related as a function of criterion starting position. As the distance between
the initial positions of the criteria is increased, latency is slowed because it takes
more cycles to exceed a criterion. If the criterion starting positions are changed
asymmetrically, so that the positive criterion is increased more than the negative is
decreased (as illustrated in Fig. 4), the hit latency is slowed (more than the correct
rejection latency) because the positive criterion is further away at every cycle and
less likely to be exceeded. However, even though the hit latency is slowed, the hit
rate decreases. Similarly, if the point the two criteria would converge to shifts
toward the negative criterion, the correct rejection latency is slowed (more than the
hit latency), but the correct rejection rate decreases.

An example follows that illustrates what happens to the hit and correct rejection
rates and latencies as a function of asymmetric and symmetric changes in the initial
criterion positions. This information will be summarized by a speed—accuracy trade-
off function (d’ as a function of latency). Its shape demonstrates that the Hockley-
Murdock model trades off speed and accuracy independently of each other. When
the model produces the largest increase in accuracy, latency changes only slightly;
when the model produces the largest slowing of latency, accuracy changes only
slightly.

In the Hockley and Murdock model (1987, Fig. 3, p. 345), the initial positions of
a and b were varied from a= —1.5, b=25, to a= =20, b=40, to a= —2.5,
b=>5.5, to model speed-accuracy trade-off (asymmetric changes). Figure 5 gives the
proportion correct (top panel) and the latency (bottom panel) for hits and correct
rejections, for the parameter values used by Hockley and Murdock (1987). Though
cotrect rejection rate does increase when the criteria start farther apart (as indicated

" by Hockley & Murdock, 1987), hit rate decreases. This is because the b criterion

was changed in greater steps and shifted the point of convergence out with it. Also,
because the distance to the positive criterion is greater when b’s initial position is
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FiG. 5. Hit and correct rejection proportion (top panel) and latencies (bottom panel) for parameter
values used by Hockley and Murdock (1987, F ig. 3, p. 345). If initial positions of a and & are changed
asymmetrically, hit and correct rejection rate are inversely related.

increased in greater steps, the hit latency is slowed more than the correct rejection
latency.

Hit rate and correct rejection rate covary when speed—accuracy instructions are
modeled with symmetric criteria change. Figure 6 gives the same information as
Fig. 5, with the same parameter values, except that the initial positions of the
criteria are changed symmetrically (from a=b=0.5 to a= —2.5, b=3.5 in steps of
size 1.0). Hit and correct rejection rates both increase as the initial distance between
the criteria is increased. However, it is important to note that the largest increase
in accuracy is accompanied by little slowing of latency. Conversely, accuracy
changes little over the range that latency changes significantly. Thus, speed and
accuracy are relatively independent of one another over most of the range.
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Information of the kind shown in Fig. 6 can be summadzed to produog a speed.—
accuracy trade-off function. In Fig. 7, d’ accuracy is plotted as a funct}on of l;:t
reaction time for various criterion starting positions. The leftmost. pqlnt of the
speed—accuracy function is obtained from the upper gnd lower criteria startgllg
already converged to a common point. Succe‘ssgv‘e points on a funct:op are the
result of increasing the distance between the mmgl positions of thg criteria (an
increased stress on accuracy). The initial rapid rise in d' is accompapled by.almost
no increase in latency (see Function 4). When even more caut}qn is exercnsecllt'by
further increasing the distance between the criterloq starting positions, thedn;.su u;(g1
slowing of latency is accompanied by little increase in accuracy. In the model, spe
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FiG. 7. ) Speed-accuracy trade-off function modeled by changing the initial positions of the criteria
Accuracy in terms of d’ is plotted as a function of hit reaction time (ms). The shape of the speed-.
accuracy function was explored by manipulating CCR and ¢,: CCR=00 or 0.05, ¢,=001 or 0.5
(denote s5). Also included is the speed-accuracy trade-off function for the data from Fig. 6.

and accuracy do not really trade-off so much as they change independently over
separate ranges.

Other combinations of parameter values were tried to determine if the model
could be made to produce a more gradual trade-off of speed for accuracy. Figure 7
summarizes the effects of CCR and o, on the slope of the speed-accuracy trade-off
function. The initial positions of the criteria were changed in equal amounts from
a and b=05, to a= —1.5, b=2.5. The noise variance was set to 1.0, o, to 1.0,
Hros+ t0 420, o1os to 50, and BCT to 17.5.

The most gradual trade-off was found when the criteria were stationary
(CCR=0.0) and the variability of the memory signal was essentially zero
(6,=0.01) (Function0). Neither of these conditions could be applied to data.
Stationary criteria produce very slow latencies and reaction time distributions that
are too skewed. No variability in the match of test items to memory is unrealistic
because it implies that all items have equivalent strength and are equally
memorable. When CCR was 0.5 (Function1), the speed-accuracy function
asymptotes more rapidly, and if o, is increased (to 0.5, Function 2), the range of
accuracy changes is much reduced. (Increased variability in the memory signal
reflects an increased probability that noise variance could push the memory signal
beyond the wrong criterion, thereby lowering accuracy.)

These two parameters (CCR and o) are responsible for the shape of the trade-off
of speed and accuracy. Other parameters of the model can only shift the whole
speed-accuracy function horizontally (uros) or vertically (g,). Fits to data require
non-zero values of both CCR and g, (for example, Functions 3 and 4). Therefore,
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the model must produce these sharply bending speed-accuracy trade-off functions
for sets of parameter values that produce fits to data for a single speed-accuracy
condition.

A more gradually sloped function could be produced if responses were instead a
probability mixture of random guesses and regularly-terminated responses.
However, this alternative model has problems accounting for time-controlled data
(as was described above). It also predicts that the minimum reaction time remains
constant as accuracy is emphasized (because the guessing component is responsible
for the minimum ). We shall see that data from the speed—accuracy experiment show
that the minimum reaction time increases as accuracy is emphasized, contrary to
this alternative.

To evaluate the ability of the model to fit data from speed—-accuracy manipula-
tions, an experiment was conducted. In the experiment, three levels of speed-
accuracy trade-off were manipulated using differential instructions in a regular reac-
tion time procedure. Subjects studied 16 words and were tested on those 16 words
plus 16 unstudied words. They made a positive response t6 a word from the study
phase and a negative response to an unstudied word. There were three instruction
conditions: conditions that stressed speed, accuracy, or a balance between the two.

METHOD

Subjects

Twenty-six Northwestern University undergraduates participated in exchange for
course credit. Subjects were run in groups of size 1 to 4.

Design and Procedure

Presentation of stimuli, timing, and response collection were under micro-
computer control. Words were presented on a terminal screen, and keypress
responses were made on the keyboard.

The experiment used a study-test recognition memory procedure. On each study
trial, 16 words were presented for study at a 1-s rate. The recognition test phase
followed immediately and consisted of 16 studied words plus 16 unstudied words
tested in random order. Subjects were required to press “/” to indicate that the test
word was from the study phase, and “Z” to indicate that the test word was not
previously studied.

The trade-off of speed for accuracy was manipulated through instructions. There
were 27 trials in the experiment, nine of each instruction type. These were blocked
and tested in one of six possible counterbalanced orders. For speed instructions,
subjects were told to keep their response time under 500 ms and were given reaction
time feedback on their terminal for 1s. For normal instructions, they were told to
keep their response times between 500 to 700 ms. They received reaction time feed-
back for 1s on every trial and “ERROR” for 1s after each error. For accuracy
instructions, subjects were told to be as accurate as possible. For each error,
“ERROR” appeared on the screen for 2's; no reaction time feedback was given.
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The experiment began with a practice phase. Subjects were told to keep their
response times between 500 to 700 ms on the first practice trial. The next two
blocks of practice trials were accuracy trials, then two blocks of speed trials, and
finally two blocks of normal trials. Then the experiment proper commenced.

For each subject, the words were drawn at random without replacement from a
pool of 1650 words selected from the Kucera and Francis (1967) word norms. The
words were all two syllables, four to eight letters in length, and varied in frequency
from a count of 6 per million to 472 per million.

RESULTS AND DISCUSSION

Six subjects were eliminated for responding at or below chance in the speed con-
dition. Figure 8 gives hit and correct rejection rates as a function of latency. Hit rate
and correct rejection rate both increased as accuracy was stressed. The convolution
model was fitted to the grouped reaction time distributions (Ratcliff, 1979) for each
of the instruction conditions. (Ratcliff (1979) showed that this ensured that the
grouped distribution retained the shape of the individual subjects’ reaction time dis-
tributions for such recognition memory procedures.) Table 2 gives the convolution
parameter summary for hits and correct rejections. The tail (z) and the leading edge
(1) of the hit (and the correct rejection) reaction time distributions increased as
accuracy was emphasized. In other words, as accuracy is emphasized, the fastest

(minimum) responses get slower (u increases) and the slower processes get slower
(7 increases).

Application of the Hockley—~Murdock Model

The Hockley-Murdock model was fitted to the hit and correct rejection rates and
their latencies. (Distribution shape was not fit explicitly because it was of secondary
interest.) Parameters p,, fros,, and ppos. were estimated to fit the normal
instruction data and were held constant across the other instruction conditions (o,
was set equal to 1.0 as it was in many of the fits of Hockley & Murdock, 1987).
Only b, a, and CCR were allowed to vary as a function of the instructions. The
following parameter values were estimated using the SIMPLEX parameter search
algorithm (Nelder & Mead, 1965): p,=2.02, pros. =433 ms, and Hros—. =463 ms.
(The SIMPLEX algorithm minimizes the sum of squared differences until the
differences among the sums of squared differences, for all the parameter sets that
define the simplex, are less than some criterion, which we set to .00000001.) For the
normal instruction condition, b=3.29, a= —1.46, and CCR = 0.094. The top panel
of Fig. 8 gives the fits to the data.

The values of b, @, and CCR for the speed and accuracy conditions should be
evaluated relative to those for the normal instruction condition. According to the
model, when accuracy is stressed the value of CCR should decrease and/or the
initial distance between b and a should increase. An adequate fit was found for
either of these. When speed is stressed, the model should decrease the distance
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TABLE 2

Predictions from the Hockley and Murdock Model
and the Diffusion Model (Ratcliff, 1978, 1981)

Hit CR
Instructions u o T B 4 T
Data
Speed 408 47 109 430 55 117
Normal 465 34 129 500 48 134
Accuracy 500 25 166 541 33 182
Hockley—Murdock
Speed 464 50 0 497 51 0
Normal 429 39 157 460 40 160
Accuracy” 407 32 244 437 30 254
Accuracy® 439 43 216 469 43 228
Multiple-Diffusion
Speed 435 10 70 476 26 70
Normal 451 20 108 525 37 120
Accuracy 467 26 143 556 44 160
Single-Diffusion
Speed 440 15 94 411 6 63
Normal 456 21 149 432 12 124
Accuracy 474 26 196 450 18 171

“b=3.12, a= —1.19, CCR =0.028.
®5=13.96, a= —2.02, CCR =0.094.

between a and b and/or increase CCR. However, the model was unable to change
accuracy sufficiently in this way and was unable to provide an adequate fit to the
data.

For the accuracy instructions, the parameter values that best approximated the
data were b=3.12, a= —1.19, and CCR = 0.028. When only b and a were allowed
to vary (with CCR=0.094 as for the normal instruction data), an almost
equivalent fit was found for 5=3.96 and a= —2.02. For the former fit, the smaller
CCR slowed reaction time; for the latter fit this was accomplished by starting the
criteria further apart (relative to the normal condition). Increasing the distance
between the initial positions of the criteria is preferable to reducing the value of
CCR because the resulting reaction time distribution is not as highly skewed (see
Table 2, T =244 vs. 216). )

For the speed instructions, the data were best approximated if b=a
(both=0.81); CCR s irrelevant since the criteria start converged. To try to get
accuracy to change over the range required by this experiment, the initial positions
of the criteria must be brought together. This property of the model is illustrated
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in Fig. 7 where it was shown that the majority of the increase in accuracy occurs
when the initial positions of the criteria go from starting already converged (all
processes finish on cycle 1) to where the criteria start slightly separated. The 0.06
increase in hit rate and 0.1 increase in correct rejection rate are the maximum that
the model can produce given the value of u, estimated to fit these data (the amount
of increase would be little different no matter what the value of u,). The model does
not cover the range of the data, and the range that is achieved requires reducing
the Hockley-Murdock model to a single-criterion model.

The model with a single criterion (the initial positions of the two criteria are
equal) is arguably not an allowable member of the family of possible Hockley and
Murdock (1987) models; there is only one criterion and no convergence. When the
initial positions of the criteria are close together or equal, almost all processes finish
on the first cycle. The resulting reaction time distribution is normal (see Table 2,
=00, 0 = 01os = 50.0) because Eq. (1) does not come into play. This is contrary
to the data. Furthermore, if equal criterion starting positions are allowed, a
response with high accuracy results when primarily non-decision aspects (i.e., only
Jitos) contribute to the latency (this is evident in Table 1, for the 35-ms accuracy
level for responses based on a single criterion).

The Hockley and Murdock (1987) model does an unsatisfactory job accounting
for the data of the speed—accuracy experiment. It cannot change accuracy over the
range required by the experiment. To even come close to changing the accuracy this
much, the dual-criteria model must revert to a single-criterion model. Of secondary
interest, the mode! does predict © to increase as accuracy is emphasized, but the
increase is more extreme than the data (from Table 2, hit =0, 157, 216). Contrary
to the data, the model does not predict p to increase as accuracy is emphasized (hit
1 =464, 429, 439). However, distribution shape was not fit explicitly, only accuracy
and latency.

Because of the difficulties in accounting for the speed—accuracy experiment, the
problems of the multimodal reaction time distributions and hazard functions, and
the ad hoc probability mixture assumption used in time-controlled processing tasks,
alternative formulations of the Hockley-Murdock model will be considered. These
include the addition of a guessing process to the regular Hockley-Murdock model,
and modification of the model to a zero-drift random walk decision process.
Because neither of these attempts is successful, an alternative framework will also
be considered in an attempt to fit the data of the speed—accuracy experiment, the
diffusion model of Ratcliff (1978, 1981).

ALTERNATIVE MODELS

Hockley-Murdock Plus Guessing. A version of the Hockley-Murdock model
was tried in which guessing is incorporated under speed instructions (akin to the
fast-guess models of Ollman, 1966, and Yellott, 1967, 1971). This was done because
the decision model was unable to account for the range of the speed-accuracy
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trade-off through criterion positioning and changes in the convergence rate alone.
The same parameter values were used as in the fit to the normal instruction data;
however, if the match of the test probe plus noise did not exceed either criterion on
cycle 1, there was a 20% chance that a guess would be made. On cycle 2, there was
a 40 % chance of a guess if the match plus new noise sample did not exceed either

- converging criterion. If a criterion had not been exceeded by cycle 5, a guess would
be made 100% of the time. This modification of the model provides a good
approximation to the mean latency and accuracy data. It does so without requiring
that the criteria start already converged, thereby avoiding the problems inherent in
that fit to the data.

However, there is a problem with this guessing model. Responding on the basis
of exceeding a criterion would always be preferable to making a guess because it
would result in much higher accuracy. Because subjects are free to change the initial
positions of the criteria, subjects should start the criteria close together to optimize
performance. This would make the frequency of a guess rare and would not
produce a sufficient decline in accuracy for the speed condition. This restates a
fundamental problem with the decision model; the model begins processing at
essentially full accuracy and uses criterion positioning and convergence rate
primarily to change latency, not accuracy. Therefore, a modification of the model
was sought which would (a) accumulate accuracy over time and (b) involve a more
direct linking of latency to accuracy. As this is a property of sequential sampling

models, a zero-drift random walk version of the Hockley-Murdock model was
examined.

Zero-Drift Random Walk. 1In this model, the criteria are stationary, and the
noise (added on each cycle to the match strength) is accumulated. The starting
point of the walk is determined by the match of the test probe. A strong match of
a test item to memory will bias the process to begin close to the upper criterion and
to terminate at the upper criterion. A weak match will bias the process to begin
close to the lower criterion and terminate at that criterion. The problem with this
model is that as the distance between the criteria is increased (reflecting increased
stress on accuracy), latency slows but accuracy drops toward chance. If the criteria
are far apart, the bias in the starting point of the walk is outweighed by the great
distance to either criteria. The decision outcome is entirely determined by the noise
in the walk and not the biased starting point. Consequently, the probability of
termination at each criterion approaches 50 %. This model predicts the opposite of
the speed-accuracy trade-off effect obtained in data.

Because of the problems with the original version of the Hockley and Murdock
(1987) decision model, and the lack of success with two variations, we now contrast
this model with sequential sampling models. Potential candidates among sequential
sampling models include the runs model of Audley (1960) and Laming (1968), the
relative judgement theory of Link and Heath (1975), the counter model of Pike-
(1973), the simple random walk model of Stone (1960), and the accumulator model
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of Vickers (1970). We will consider only one member of this class, the diffusion
model of Ratcliff (1978, 1981) (it is representative, and it is the only one that has
been applied to recognition memory procedures).

THE DIFFUSION MODEL

In the diffusion model, items are stored separately. At retrieval, a test probe is
compared with each item in memory and evidence is accumulated in parallel for
each comparison. The comparison process is modeled by the continuous version of
a random walk called the diffusion process. Goodness-of-match determines the drift
rate in the diffusion process, i.e., the rate of accumulation of evidence. This drift rate
has variance s°>. The goodness-of-match of a test probe to a memory item is
assumed to vary over items; it can be summarized by a normal distribution with
variance a2 (set equal to 0.187), with mean u for old items, and mean v for new
items. Evidence accumulates continuously beginning from a starting point z toward
a decision at one of two decision boundaries (at a and 0). The more extreme the
goodness-of-match, the-more rapid the drift to a boundary. A positive decision is
made if the diffusion process for one comparison reaches the positive boundary,
while a negative decision is made when all the diffusion processes have reached the
negative boundary. Response latency is based on the resulting decision latency plus
a factor Ty that represents the time for non-decision aspects of the task (similar
to TOS in Hockley & Murdock, 1987).

Because the diffusion model accumulates evidence over time, it can more
naturally deal with partial information in time-controlled processing than can tl}e
Hockley-Murdock model. To model the Meyer et al (1988) paradigm, Ratcliff
(1988b) assumed that responses on signal trials were based on fast-finishing regular
responses that had exceeded one of the decision boundaries, or guesses based ona
single criterion if a boundary had not been exceeded. For the response signal
paradigm, Ratcliff (1978) assumed that the decision boundaries were moved far
from the starting point and all responses were based on a single criterion. However,
Ratcliff (1988b) showed that response signal data could also be predicted from a
mixture of regularly terminated responses using decision boundaries plus guesses
initiated by the signal based on a single criterion.

To account for speed-accuracy trade-off data, the diffusion model assumes that
there are three criteria that can be adjusted by the subject. The first two are the
distance from the upper boundary to the starting point (a—z) and the distance
from the starting point to the lower boundary (z — 0). If accuracy is stressed, these
distances are increased. The third criterion is the zero point between the match (u)
and nonmatch (v) distributions (Ratcliff, 1985). If subjects are penalized for false
positives over false negatives (for example), they could shift the zero point so that
there exists a bias to interpret evidence as being negative. However, as long as the
difference between u and v is held constant, d’ remains constant. Speed-accuracy
manipulations are assumed to vary primarily the distances from the starting point
to the decision boundaries.

480/35/3-5
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The diffusion model was fitted to the hit and correct rejection rates and latencies
from the speed-accuracy experiment. The parameters u, v, s, and Tgr, were
estimated, but were fixed across conditions; a (the positive boundary) and z (the
starting point) were allowed to vary with instructions. [t was not necessary to vary
the zero point between u and v for the fits achieved. (This contrasts with Ratcliff,
1985, where the relative probability of a yes or no response varied and was
modelled by changes in the zero point.) The SIMPLEX (Nelder & Mead, 1963)
algorithm was used to find a set of parameters that closely approximated the hit
and correct rejection rates and mean latencies. The resulting parameter values were
u=0.276, v=—0493, s=0.112, and Tgr=400ms. The value of z gradually
increased as accuracy was emphasized, reflecting increasing caution through move-
ment away from the negative boundary (speed z = 0.020, normal z = 0.033, accuracy
z=10.042). In addition, the distance from z to a gradually increased as accuracy was
emphasized (speed @ —z=0.052, normal a—z=0.067, accuracy a —z = 0.079). The
middle panel of Fig. 8 gives the fit to the data.

The model is able to predict the increase in hit rate and the increase in correct
rejection rate as accuracy is emphasized, with only @ and z changing. It should be
noted that the diffusion model is capable of changing accuracy over an even wider
range than indicated here. This might be necessary if speed versus accuracy was
manipulated through explicit payoffs. Of secondary interest, the shapes of the reac-
tion time distributions produced by the diffusion model are more in line with the
data than those of the Hockley-Murdock model (see Table 2). In contrast to the
Hockley-Murdock model, the diffusion model does predict u to increase as
accuracy is stressed, as well as predicting an increase in t (sec Table 2).

One aim of the Hockley-Murdock model was to provide a decision process that
would be consistent with a number of memory models whose output for recognition
is a single value of match between the test item and memory. The memory models
include those with distributed representations such as the linear association model
of Anderson (Anderson, Silverstein, Ritz, & Jones, 1977), CHARM (Eich, 1982),
Murdock’s (1982, 1983) TODAM model, and Pike’s (1984) matrix model, and
models with a localized representation such as the SAM model of Gillund and
Shiffrin (1984) and the MINERVA 2 model of Hintzman (1984, 1986).

The diffusion model of Ratcliff (1978) cannot be linked to a distributed memory
model (such as TODAM, Murdock, 1982). The diffusion model requires the
separate representation of each item in memory; the test probe contacts each
memory item in parallel and a diffusion comparison process is executed for each.
Distributed memory models do not possess separate representations of each item in
memory. However, Ratcliff (1981) presented a single-diffusion model that could be

linked to a distributed memory model. Other sequential sampling models could also
serve this purpose.

Single-Diffusion Model

In the multiple-diffusion model, a test probe is compared with each item in
memory and evidence is accumulated in parallel for each comparison. The decision

HOCKLEY AND MURDOCK DECISION MODEL 341

process is exhaustive for a negative response and termipating for a positive one..In
the single-diffusion model, the comparison process is driven by the matching
strength of a test probe to memory (e.g., the initial value used.b.y the Hock}ey—
Murdock model). The more extreme the goodness-of-match .(posm\.re or negative),
the more rapid the drift to the appropriate boundary. The single diffusion process
begins at z and terminates when the process exceeds one of the poundarles. A
positive response is made if the upper boundary is exceeded, a negative response is
made if the lower boundary is exceeded.

The single comparison diffusion model was fit to the data of tl}f: speed—accuracy
experiment. The parameters u, v, and Tgg Were estimated, but did not vary across
conditions; a and z did vary with instructions. In this version of t.he .moc.iel, u apd
v correspond to the means of the positive and negative strength d{strlbutnor_ls, with
variance n°>=0.18? (from Ratcliff, 1981). The variance of the drift was given by
s?=0.082 (from Ratcliff, 1981). The parameter values (estimated using SIMPLEX,
Nelder & Mead, 1965) were u=0.184, v= —.164, and Tgg =400 ms. The value of
z gradually increased as accuracy was emphasized (speed z =0.022, normal
z=0.038, accuracy z=0.050). In addition, the distance from z to a gradually
increased as accuracy was emphasized (speed a—z=0.042, normal a—z= 0.05?,
accuracy a —z = 0.064). The bottom panel of Fig. 8 gives the flt to the data. This
version of the diffusion model also predicts that both u and  increase as accuracy
is emphasized (see Table 2).

Either version of the diffusion model provides a superior fit to the data: of the
speed—accuracy experiment, with parameter values that char}ge in systematic ways
(ie., the distance from the starting point to the boundaries m'creases). Application
of the Hockley-Murdock model to time-controlled processing tas_ks revealed a
model that was too flexible. The probability mixture assumption for time-controlled
processing is able to fit almost any pattern of data, even some that do pot occur.
In contrast, the diffusion model is tightly constrained. For example, Ratcliff (19§§b)
fit the diffusion model to regular trial data in the speed—accuracy dccomp051tlon
task of Meyer et al. (1988), and was able to produce a close apprqximatlon to the
observed guessing accuracy with only one free parameter, the time of onset.of
guessing in response to the signal. The level of accuracy and shape of the guessing
accuracy function were _fixed by, the regular trial fits.

GENERAL DisCussION

We have reviewed several problems that raise questions about the gtilitx of
the Hockley and Murdock (1987) decision model. First of all, reaction time
distributions are multimodal and hazard functions show extreme ﬂuctuat}ons.
This is the result of the duration of each decision cycle becoming increasingly
longer according to Eq. (1) (and the variance of TOS not increasing as t‘he number
of cycles increase), an assumption necessary to produce skewed decision latency
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distributions. These problems can be remedied by making the base cycle time
(BCT) variable rather than constant, though this is an ad hoc fix.

The more important problems stem from the model’s application to time.
controlled and information-controlled processing tasks. The model begins with fu]]
information and uses noise to drive the decision process; consequently, partial
information in time-controlled processing must be derived from a probability
mixture of random guesses and single criterion responses. The model can produce
any pattern of data from chance to regular accuracy by varying the amount of each
of these processes in the mixture. Not only is this assumption too powerful, it is not
sensible. Subjects should not make random guesses when they could be more
accurate by (a) basing all nonterminated process decisions on a single criterion, or
(b) making a higher proportion of relatively high-accuracy regular responses by
starting with the criteria closer together.

Serious problems with the decision model also arise for applications to informa-
tion-controlled processing tasks. These problems are the most serious because they
result in mispredictions. First, the model is limited to modeling trade-offs through
symmetric changes in the initial positions of the criteria; otherwise hit and correct
rejection rate are inversely-related (contrary to data). Second, the model trades
speed and accuracy largely independently of one another. The range of the primary
change in accuracy is accompanied by little change in latency; the largest change
in latency is accompanied by little change in accuracy. Finally, the model was
unable to vary accuracy over a range sufficient to account for data, even if the
initial positions of the criteria were allowed to be equal (as was demonstrated by
the fit to the speed condition in the experiment). It was argued that a single-
criterion version of the model was not an allowable member of the class of possible
models of the Hockley and Murdock (1987) framework.

Two alternative versions of the model were examined: (a) adding guessing to the
original model; (b) modifying the decision process to be a zero-drift random walk.
Neither of these alternatives was successful. On the other hand, two versions of the
diffusion model (Ratcliff, 1978, 1981) provided reasonable accounts of the speed—
accuracy experiment and parsimonious explanations of time-controlled processing
tasks. Together, the single- and multiple-diffusion models offer a common
framework for the linking of a decision model to a memory model with a localized
or a distributed memory representation. Based on the problems with the original

version of the Hockley and Murdock (1987) decision model, and the lack of success’

of its two variations, it seems that a major revision of the Hockley and Murdock
(1987) model is required if the model is to compete with other candidate models.
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