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HIGHLIGHTS

e Dynamic noise impairs performance and shifts RT distributions on the time axis.

o We describe two diffusion process models for discrimination in dynamic noise.

e The integrated system model is based on a time-changed diffusion process.

e The release from inhibition model is based on known physiological processes.

e Both models gave good accounts of the RT distributions and accuracy from the task.
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The speed and accuracy of discrimination of featurally-defined stimuli such as letters, oriented bars,
and Gabor patches are reduced when they are embedded in dynamic visual noise, but, unlike other
discriminability manipulations, dynamic noise produces significant shifts of RT distributions on the time
axis. These shifts appear to be associated with a delay in the onset of evidence accumulation by a
decision process until a stable perceptual representation of the stimulus has formed. We consider two
models for this task, which assume that evidence accumulation and perceptual processes are dynamically
coupled. One is a time-changed diffusion model in which the drift and diffusion coefficient grow in
proportion to one another. The other is a release from inhibition model, in which the emerging perceptual
representation modulates an Ornstein-Uhlenbeck decay coefficient. Both models successfully reproduce
the families of RT distributions found in the dynamic noise task, including the shifts in the leading edge of
the distribution and the pattern of fast errors. We conclude that both models are plausible psychological
models for this task.
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1. Introduction theory first confronted the issue that has confronted every process
model since then, namely, the inherent variability of behavior: the

In contributing an article to honor William Estes as one of the fact that organisms, whether human or nonhuman, do not exhibit

creators of mathematical psychology, we begin by reflecting on
what it means to have done as Estes did, and created a discipline
where none was before. Estes made numerous deep and influen-
tial contributions during his long and distinguished career, but,
arguably, none had greater or more enduring significance for the
future of the discipline than his original seminal work in animal
learning, stimulus sampling theory (Estes, 1950, 1955a,b; Estes &
Burke, 1953). In creating stimulus sampling theory, Estes not only
constructed an elegant and powerful theory of learning, but also
showed by example just what it means to develop and test a pro-
cess model of a psychological phenomenon. Stimulus sampling
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the same behavior from trial to trial or from one presentation of
a stimulus to the next. Consequently, a process model for learning
must be expressed at the level of operators that show how choice
probabilities evolve from trial to trial. Such probabilistic variation
is not just a layering of a measurement error model on top of a de-
terministic process, but is integral to the theory itself.

Those of us who work with process models for psychological
phenomena belong to a tradition begun by Estes and are
profoundly indebted to him. From his example we understand that
the development of a process model is the discipline of expressing
a psychological explanation in quantitative terms and, in so doing,
of determining precisely what its empirical consequences might
be. It is also the discipline of testing a quantitatively expressed
explanation against empirical data. Like all applied mathematics,
it is the art of making complex problems tractable. In this, it is
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Fig. 1. Letter discrimination in dynamic noise. (a) Example stimulus. The upper panel shows a single frame in which 0.35 of the pixels have been inverted. The lower panel
shows an average over 10 frames. Because stimuli would have been integrated by early visual filters, the lower panel provides a better indication of the perceptual experience
of the task. (b) Quantile probability plots for five levels of discriminability presented under speed or accuracy instructions. The lines on the graph, bottom to top, are the 0.1,
0.3, 0.5, 0.7, and 0.9 quantiles of the RT distributions. The response probabilities on the x-axis are the probabilities of correct responses, p, and error responses, 1 — p. The
five distributions on the right in each panel are the distributions of correct responses; the five distributions on the left are the distributions of errors. The data are quantile

averages over participants. Note the different y-axis scaling for the two conditions.

the art of distinguishing the essential from the superfluous and
the simple from the simplistic. Anyone who does work of this kind
knows what the benefits of this undertaking can be. The attempt to
express a psychological principle in quantitative terms is usually,
in the first instance, a process of discovering that the things you
thought were precise are in fact not so. It is also a way of flushing
out unexamined assumptions and of exposing them to critical
scrutiny.

Estes began his long career during the ascendancy of behav-
iorism and finished it long after the cognitive revolution had
become the cognitive orthodoxy. The evolution of his research in-
terests over time reflected the change in the conceptual landscape,
from learning, which was the driving force for behaviorism, to per-
ception, memory, categorization, and decision-making. These are
topics that remain of central concern to mathematical psycholo-
gists today. A number of his later papers focused on the problem of
determining whether variables that affect performance in visual
recognition tasks do so by affecting perceptual or decision pro-
cesses (Bjork & Estes, 1973; Estes, 1972, 1975, 1982). Estes was
profoundly aware of the contribution made by decision processes,
which match incoming sensory information against task represen-
tations in immediate memory, to performance in simple cognitive
tasks. He was also aware of the hazards of theorizing about per-
ceptual and decision processes in isolation, arguing that a proper
understanding could only be gained by considering how they act
in concert. That question, although framed in somewhat different
terms, is the focus of this article.

1.1. Two-choice perceptual discrimination in dynamic noise

In a sequence of 12 experiments, Ratcliff and Smith (2010) in-
vestigated performance in a novel two-choice discrimination task
in which letter stimuli were degraded by embedding them in dy-
namic visual noise. In their task, a randomly-chosen proportion of
the pixels in the letter and the background were inverted in each
consecutive frame of the display. Like other manipulations of dis-
criminability, dynamic noise increased response time (RT) and re-
duced accuracy, but unlike other manipulations, it also produced
significant shifts of the RT distribution on the time axis. These were
manifested as changes in the distribution’s leading edge, as in-
dexed by its 0.10 quantile. Changes in the 0.10 quantile depend
only on the fastest 10% of responses in the distribution and are rel-
atively independent of changes in its variance or higher moments.
Ratcliff and Smith found that dynamic noise shifted the leading
edge of the distribution by more than 100 ms in the most difficult
as compared to the easiest condition.

Fig. 1 shows examples of the stimuli used by Ratcliff and Smith
(2010) in their Experiment 1, together with a quantile-probability
plot (Ratcliff & Tuerlinckx, 2002) of group data from an unpub-
lished experiment that used the same task. The details of the
method can be found in Appendix A. Participants performed the
task under speed and accuracy instructions in alternating blocks at
five levels of stimulus discriminability, formed by inverting 0.35,
0.40, 0.425, 0.45, 0.475 of the pixels in the display. (When 0.5 of
the pixels are inverted, the display becomes a homogeneous, ran-
dom field of black and white pixels that carries no stimulus infor-
mation.) In quantile probability plots, selected quantiles of the RT
distributions for correct responses and errors are plotted against
the choice probabilities, p; and 1 — p;, for each condition, i. Such
plots show how distribution shape, response accuracy, and the re-
lationship between mean RTs for correct responses and errors all
change as stimulus discriminability is varied. The distributions in
Fig. 1 have been summarized using their 0.1, 0.3, 0.5, 0.7, and 0.9
quantiles.

The unusual result in Fig. 1 is the systematic change in the lead-
ing edge of the distribution as a function of noise, which appears
as a bowing of the curve representing the 0.1 quantile (the bottom
curve in the plot) in both the speed and accuracy conditions. This is
unlike the results found in the vast majority of speeded two-choice
decision tasks. In most tasks, most of the changes in the distribu-
tions are in the upper quantiles; the leading edge is relatively un-
affected and the curve representing the 0.1 quantile is almost flat
(Ratcliff & Smith, 2004). Following Ratcliff and Smith (2010), we re-
fer to the bowing of the 0.1 quantile function in Fig. 1 as the leading
edge effect.

The leading edge effect in Ratcliff and Smith’s (2010) study
was found only with letter discrimination in dynamic noise. There
was no leading edge effect in a brightness discrimination task
with dynamic noise, in which participants were required to judge
whether the average proportion of light pixels in the display
was greater or less than 50%. There was no leading edge effect
in a letter discrimination task, in which letters were degraded
by a simultaneous structure mask composed of random letter
fragments in the same stroke font as the stimuli. There was a
smaller leading edge effect in the letter discrimination task when
the noise was static rather than dynamic.

Ratcliff and Smith (2010) attributed the leading edge effect to a
delay in the onset of information accumulation by a decision pro-
cess until a stable perceptual representation of the stimulus had
formed. The phenomenological basis for this interpretation is com-
pelling: When letters are viewed in dynamic noise, they appear
to emerge slowly out of the noise. The perceptual experience is
quite unlike that in the masking-by-structure discrimination task,
in which the stimuli seem to appear instantaneously.
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The data in Fig. 1 can be well fitted by a version of Ratcliff’s
(1978) diffusion model in which the non-decision time, or time for
other processes, T, varies systematically with the level of noise in
the display. Ratcliff's model assumes that RT can be additively de-
composed into a decision time, Tp, and a time for other processes,

RT =Tp + Ter. (1)

The decision time is the first passage time for a Wiener or Brown-
ian motion diffusion process through one of two absorbing bound-
aries that represent decision criteria. The absorbing boundaries
represent upper and lower limits of diffusion: once a boundary is
reached, diffusion ceases. Formally, if X(t) is a diffusion process
starting at zero, X (0) = 0, and a; and a, are absorbing boundaries,
with a; < 0 < a4, then we define the first passage times, T(a;)
and T (ay), as

T(ay) = min{t : X(t) > a;}

T(ay) = min{t : X(t) < ay}.

The decision time, Tp, in Eq. (1) is the first of these events to occur:
Tp = min{T (a1), T(az)}.

Either T (a;) or T (a) may be infinite, but T is finite with probabil-
ity one (Cox & Miller, 1965). That is, the process is guaranteed to
terminate in finite time. The boundaries are defined as absorbing
by the relations

PIX(t) = a1]T(ay) = t] =1
PIX(t) = a;|T(az) < t] = 1.

These equations state that once the process has reached an ab-
sorbing boundary its value does not change any further. Absorb-
ing boundaries are one of several kinds of possible boundary for
diffusion processes, which may be either accessible or inaccessi-
ble and absorbing, reflecting, or sticky. A discussion of the varieties
of boundary behavior may be found in Karlin and Taylor (1981,
pp. 226-242). A combination of absorbing and reflecting bound-
aries has been used in decision models with racing, parallel diffu-
sion processes (Ratcliff & Smith, 2004; Usher & McClelland, 2001)
and in models of simple RT (Diederich, 1995).

The information accumulation process in Ratcliff's model, again
denoted as X(t), can be described by a stochastic differential
equation,

dX(t) = £ dt + sdW(t). (2)

In this equation, £ is a (random) drift coefficient, s is the square
root of the diffusion coefficient, and W (t) is a standard Brown-
ian motion process. The square root of the diffusion coefficient is
also termed the infinitesimal standard deviation. A standard Brow-
nian motion process has zero drift, unit variance, independent in-
crements, covariance function cov[W(t), W(t)] = min(z, t), and
possesses a version which is almost surely continuous and is al-
most everywhere non-differentiable (Karlin & Taylor, 1981). In the
psychological model of Eq. (2), it describes a process in which
evidence is accumulated continuously in time and perturbed by
broad spectrum Gaussian noise, idealized as white noise. The drift
is assumed to be normally distributed, & ~ N (v, 1), with mean v
and standard deviation 7. The standard deviation n describes the
between-trial variability in stimulus quality, like the noise in signal
detection theory. In most applications of diffusion process models,
the model can be fitted with a single value of T, but Ratcliff and
Smith (2010) found that a separate value of T; was needed for each
condition to account for the data from the dynamic noise task. We
have used £ and s to denote the drift and infinitesimal standard
deviation in Eq. (1) to emphasize the link with Ratcliff's work, but
elsewhere in the article we denote them by v and o, respectively.

The additive decomposition in Eq. (1) is consistent with the
kind of discrete stages model proposed by Sternberg (1969), in

which the process of stimulus identification does not begin until
after the process of stimulus encoding is complete. If we make
such an interpretation, and if we identify the process of stimulus
identification with the accumulation of evidence by a diffusion
process or some other sequential-sampling process, then Ratcliff
and Smith’s (2010) results imply that the effect of dynamic
noise is to delay the onset of evidence accumulation: the noisier
the stimulus, the more evidence accumulation is delayed. This
is consistent with the phenomenology, but it begs the deeper
question of how the decision process knows when to “turn on.”
To express this in less homuncular terms, what is the trigger
signal or other mechanism that initiates the process of evidence
accumulation, and how is it linked to the process of perceptual
encoding?

1.2. Two models for discrimination in dynamic noise

Ratcliff and Smith (2010) proposed two general mechanisms
that could adaptively couple the onset of evidence accumulation
to the time course of stimulus encoding. One mechanism was
based on the integrated system model of Smith and Ratcliff (2009),
which is a form of stochastic continuous-flow system, like the
cascade model of McClelland (1979). In the integrated system
model, the onset of evidence accumulation is gradual rather than
abrupt. The decision process becomes active as soon as stimulus
information becomes available, but the rate of accumulation
increases as the stimulus representation develops. The rate of
evidence accumulation is controlled by a time-dependent diffusion
coefficient that sets the clock of the process: the larger the
diffusion coefficient, the more rapidly the process diffuses towards
the absorbing boundaries. The coupling of the encoding and
decision processes provided by the time-dependent diffusion
coefficient avoids the need for a mechanism that initiates evidence
accumulation based on an assessment of stimulus quality. The
accumulation process in the integrated system is described by the
stochastic differential equation

dX(t) = v(t)dt 4 o (£)dW (t). (3)

Here v(t) is a time-dependent drift and o (t) is a time-dependent
infinitesimal standard deviation. The time dependency in the
coefficients reflects the time course of perceptual encoding.
In tasks with brief stimulus exposures the encoded stimulus
information is identified with the contents of visual short-term
memory (VSTM). In fitting the model to data, we again assume
the additive decomposition of Eq. (1), but make a slightly different
interpretation of T,,. In Ratcliff's model, T, is an aggregate of the
times for perceptual encoding, response selection, and response
execution. In the model of Eq. (3), stimulus information becomes
available part way through the encoding process and begins to
drive the decision process. The component of encoding that begins
when the decision process becomes active and ends when the drift
and diffusion coefficients have reached their maximum value is
excluded from T,.

To obtain a well-behaved model, the drift and diffusion coef-
ficients are assumed to be proportional to one another: v(t)
o2 (t). Here “well-behaved” means a model that predicts distri-
butions of RT and orderings of correct responses and errors that
resemble those found in empirical data. The drift is assumed to
depend on the stimulus condition whereas the diffusion coeffi-
cient is the same for all conditions. In a neurally-inspired version
of the model, the drift depends on the difference between an ex-
citatory and an inhibitory process and the diffusion coefficient de-
pends on their sum (Smith, 2010; Smith & McKenzie, 2011). The
proportionality between the drift and diffusion coefficients is then
only approximate rather than exact, but suffices to yield a well-
behaved model. In either case, the rate of evidence accumulation
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depends on the diffusion coefficient. When no stimulus informa-
tion is present, v(t) and ¢(t) are both zero and no accumulation
takes places.

The second mechanism proposed by Ratcliff and Smith
(2010) was release from inhibition, which they conceptualized
as a stimulus-dependent modulation of decay in an Ornstein-
Uhlenbeck (OU) diffusion process (Busemeyer & Townsend, 1992,
1993; Smith, 1995, 2000; Usher & McClelland, 2001). The informa-
tion accumulation process in this model can be described by the
stochastic differential equation

dx(t) = [v(t) — AOX ()] dt + o dW(t). (4)

In this equation, v(t) and A(t) are, respectively, time-dependent
stimulus information and decay coefficients. Unlike Eq. (3), the dif-
fusion coefficient, o2, is constant. In Eq. (4), evidence accumulation
is controlled by A(t) rather than by the diffusion coefficient.

The release from inhibition mechanism relies on the properties
of the stationary distribution of the OU process. Unlike the
Wiener process in Egs. (2) and (3), the OU process possesses a
stationary distribution. For an OU process with constant stimulus
information, v(t) = v, and constant decay, A(t) = A, the mean
and variance of the process are

EIX(1)] = % [1-e] (5)

and

var[X(t)] = o [1—e2] (6)
2 '

respectively (Karlin & Taylor, 1981; Smith, 2000). Because the
process X (t) is Gaussian, its finite dimensional distributions are
completely characterized by its first two moments, together with
its covariance function. At large values of t, X(t) has a stationary
Gaussian distribution, N(v/A, o/«/ﬂ). If A is large, most the
probability mass will be concentrated in the vicinity of the starting
point, X(0) = 0. There is a non-negligible probability that the
process can reach an absorbing boundary and trigger a response,
but when A is large this probability will be small.

In Ratcliff and Smith’s (2010) proposed release from inhibition
model, at the beginning of the trial A(t) is large. Because
the diffusion coefficient is constant, the process accumulates
information, but on the majority of trials it stays near its starting
point. At a point at which the quality of the information provided
by the perceptual encoding process is sufficient, the inhibition is
released, and the decay coefficient changes from a large to a small
value. An OU process with small decay approximates a Wiener
process (Ratcliff & Smith, 2004). Consequently, once inhibition
is released, the accumulation process will satisfy a stochastic
differential equation like Eq. (2). With & = v and s = o, the mean
and variance of this process are

E[X(t)] = vt (7)
and
var[X ()] = ot. (8)

That is, once inhibition is released, the mean and variance of the
process increase linearly with time as occurs in Ratcliff’'s (1978)
model. The resulting model would be expected to behave similarly
to Ratcliff's model with a random starting point and a value of T,
that depends on the time at which release from inhibition occurs.

Ratcliff and Smith (2010) discussed these mechanisms only in
general qualitative terms. Our aim in this article is to describe
formal implementations of them and to report fits to experimental
data. To foreshadow our results, both models provide a good
quantitative account of performance in the dynamic noise task.
They accurately capture the leading edge effect and also the pattern

of fast errors in Fig. 1. Notably, they do so without the assumption
of between-trial variance in starting point. In the diffusion model
the starting point of the accumulation process, z, is assumed to be
uniformly distributed with range s, (Ratcliff, Van Zandt, & McKoon,
1999). Starting point variability allows the model to capture the
pattern of fast errors that is often found when discriminability
is high and speed is stressed (Luce, 1986). Our models are able
to capture this pattern without assuming trial-to-trial variation
in starting point. Before we describe fits of the models we first
characterize their qualitative properties to give the reader insight
into the way in which they are able to predict the patterns of
performance found in the data.

2. The integrated system model as a time-changed diffusion
process

The accumulation process in the integrated system model
can be viewed as a time-changed diffusion process, in which
the instantaneous rate of evidence accumulation depends on the
time-dependent diffusion coefficient, o%(t). Useful insights into
the properties of such processes can be obtained by consider-
ing the transformation that changes them into a standard Brown-
ian motion process. This transformation is the basis for numerical
integration equation methods for solving first-passage time prob-
lems for time-inhomogeneous diffusion processes developed by
Ricciardi and co-workers (Buonocore, Giorno, Nobile, & Ricciardi,
1990; Buonocore, Nobile, & Ricciardi, 1987) and described by Smith
(1995, 2000). Consideration of this transformation provides in-
sights into how a model differs qualitatively from the fixed drift,
constant absorbing barrier, model of Ratcliff (1978).

Under fairly general conditions on the drift and diffusion
coefficients, there exists a coordinate transformation of the
diffusion process X(t) of the form X(t) — X*(t*) such that the
process X*(t*) = B(t*) is a standard Brownian motion process. If
it exists, the coordinate transformation is of the form

X =0 (x,t) (9)
t = o (1), (10)

Here stars denote transformed coordinates; the original coordi-
nates are unstarred. The function ¥ that maps the old state coor-
dinate to the new state coordinate, x — x™*, is a function jointly
of the old state coordinate, x, and the old time coordinate, t. The
function @ that maps the old time coordinate to the new time co-
ordinate, t — t*, is a function of the old time coordinate only.
A constructive proof for the existence of this transformation was
given by Cherkasov (1957). It was put into a convenient form for
applications by Ricciardi (1976) and stated more succinctly by
Ricciardi and Sato (1983). The details may be found in Appendix B.

For a time-inhomogeneous Wiener process with drift v(t) and
constant diffusion coefficient, o2, which satisfies the stochastic
differential equation

dX(t) = v(t)dt + o dW(t), (11)
the transformation is of the form (Smith, 2000, p. 446):

X' = 1 [x —/ v(s) ds] (12)
o

t* =t. (13)

In this example, the transformation of the time coordinate is
the identity; only the state coordinate changes. These equations
state that the first passage time of the process X(t) through the
constant absorbing boundaries a; and a, is the same as that of
a standard Brownian motion process through the time-varying
absorbing boundaries a* (t*) = ¥(ay, t) and a(t*) = ¥ (ay, t). In
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Fig. 2. Coordinate transformation for a time-changed diffusion process. The panel on the left shows the transformation of the time coordinate; the panel on the right
shows the transformation of the absorbing boundaries for a process starting at X (0) = 0. The process terminates when it first crosses one of the transformed boundaries,
a; = ¥ (ay, t) and ay = ¥ (ay, t). The first passage times of the transformed process through the time-dependent boundaries are the same as those of the original process
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Fig. 3. Coordinate transformation for the release from inhibition model. The dashed lines shown the transformation for a fast-release process; the continuous lines show the
transformation for a slow-release process. The transformation of the state coordinate has been plotted against the transformed time coordinate, t*, to facilitate comparison.

the special case where v(t) = v (constant), the first passage time
distributions are the same as those of a standard Brownian motion
through the linear boundaries (a; — vt)/o and (a; — vt)/o. We
have followed Ricciardi and Sato (1983) and written Eq. (12) and
similar equations without a lower bound of integration because
the lower bound contributes only an inessential constant to the
transformation (Eq. (B.3)). An implied lower bound of zero was
used to generate Figs. 2 and 3.

For the accumulation process in the integrated system model
in Eq. (3), both the drift and diffusion coefficient depend on time.
When the drift is proportional to the diffusion coefficient, o2 (t) =
o?v(t), as assumed in the model, it is shown in Appendix B that
the transformation that maps the process to a standard Brownian
motion process is

Xt = 1 |:x —/ v(s) ds:| (14)
o

t*:f v(s) ds. (15)
0

Here s is the variable of integration; it is not the infinitesimal
standard deviation of Eq. (2).

The transformation of the state coordinate is the same as
that for the time-inhomogeneous Wiener process with constant
diffusion coefficient in Eq. (11), but the time coordinate now
changes. Specifically, the new time coordinate is the integral of
the drift with respect to the old time coordinate. The larger the
drift, the larger the value of the new time coordinate and the
more rapidly the clock of the process will run. The proportionality

between the drift and diffusion coefficient in Eq. (3) means that
the clock of the process, which determines how rapidly it diffuses
towards the absorbing boundaries, will depend on the stimulus.
This introduces an additional source of stimulus dependency into
the temporal properties of the model, independent of that arising
from the stimulus dependency in drift.

Fig. 2 shows the effects of the transformation in Eqs. (14) and
(15) when the drift grows smoothly to an asymptote. The parame-
ters of the function v(t) used to generate this figure were similar to
those used to fit the data in Fig. 1, as described subsequently. Fig. 2
shows the resulting transformation of the absorbing boundaries
and time coordinate under conditions in which stimulus informa-
tion becomes available rapidly or slowly. The asymptotic stimulus
discriminability, v(co), was the same in both conditions. The pro-
cess was assumed to start at zero, X(0) = 0, and to have posi-
tive drift, so responses made at the upper boundary were correct;
responses made at the lower boundary were errors. The specific
mechanism that controlled the rate at which stimulus information
became available was based on the integrated system model and
is described subsequently.

Fig. 2 shows that the absorbing boundaries of the transformed
process are asymptotically linear with slopes that depend on
processing rate: the more rapidly stimulus information becomes
available the steeper the slope. Functionally, this means that the
process will terminate more rapidly when stimulus information
becomes available more rapidly. The transformed time coordinate
is also asymptotically linear with a slope that depends on
discriminability. The effect of the transformation is to map the non-
zero-drift process, X(t), to a zero-drift process, B(t*), with t* < t.
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This means that a process with time-varying drift is equivalent—in
the sense of having the same first passage statistics—to a process
with a constant diffusion coefficient evaluated at some earlier time.
In other words, the process with time-varying diffusion coefficient
is slowed relative to a process with constant diffusion coefficient,
with the extent of the slowing depending on the rate at which
stimulus information becomes available. The left hand panel in
Fig. 2 shows that the function & (t) that characterizes the clock of
the time-inhomogeneous process approximates a shifted straight
line, with larger shifts for lower discriminability stimuli. This
property is the basis of the model’s ability to predict the leading-
edge effect in Fig. 1.

3. The release from inhibition model

Fig. 3 shows the transformation that maps the release from
inhibition model to a standard Wiener process. In Appendix B it
is shown that this transformation is

x* % {xexp |:/ A(s)ds] —/ v(s) exp [/Sk(z)dz] ds} (16)
t* = / exp [2 /Sk(z)dz} ds. (17)
0

This transformation generalizes the well-known result (Cox &
Miller, 1965, p. 229), that a standard OU process, with drift —Ax
and unit variance, can be realized from the Wiener process by
an exponential expansion of the time variable and an exponential
contraction of the state variable. For an OU process with constant
decay A, the transformation of the time axis is of the form, @ (t) =
[exp(21t) — 1] /(2A) where the process is assumed to start at time
t = 0 (Ricciardi, 1976, p. 195; Smith, 2000, p. 447). The release
from inhibition model has an initial pre-release segment with large
A followed by a post-release segment with zero or near-zero A.
The transformation in Eq. (17) is then approximately of the form
t* = kt, where the constant k is an increasing function of the time
at which inhibition is released.

The coordinate transformations shown in Fig. 3 are for slow
(continuous lines) and fast (dashed lines) release from inhibition
processes, respectively. The implementation of the release from
inhibition process is described subsequently (Eqs. (20)-(22)).
The parameters of the fast process were chosen so that the
release was virtually instantaneous. Under these conditions, the
resulting process approximates a constant drift Wiener process.
The transformation of the time axis approximates the identity,
t* ~ t (i.e, k ~ 1), and the transformed boundaries are aj ~
(ay —vt)/o and ai =~ (a, — vt)/o.

The continuous lines in the figure are for a slow process, in
which the release from inhibition took around 100 ms to complete.
The transformation of the time axis is again approximately linear,
with k > 1.0. The transformed boundaries on the right of the
figure have an initial exponential segment that represents the
pre-release phase followed by a linear segment that represents
the post-release phase. The exponential expansion of the initial
segment of the boundaries is a reflection of the fact that the OU
process is obtained from the Wiener process by an exponential
contraction of the state variable. Consequently, the probability that
an OU process will pass through a given level, x, is equal to the
probability that the Wiener process will pass through some other
level, x*, which is exponentially further away.

Because of the comparatively large difference in the transfor-
mation of the time coordinate for slow and fast processes, for ease
of interpretation the transformed boundaries in Fig. 3 have been
plotted against the transformed time coordinate, t*, rather than
the original time coordinate, t. The shallower slopes of the linear
segments of the transformed boundaries for the slow process is a
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Fig. 4. Simulated sample paths for the release from inhibition model and the
Wiener diffusion model. The function A(t) in the upper panel shows the time course
of inhibition for the progressive release model of Eq. (22). (The amplitude of this
function is not shown to scale.) The dashed horizontal lines a; and a, represent
decision criteria. The simulated sample paths are for a process with drift parameter
p = 0.5 and infinitesimal standard deviation (s in Eq. (2) and o in Eq. (4)) of 0.1.
The parameters of A(t) were A(0) = 50.0, v = 5.0, and 8 = 0.016 (Eqs. (20) and
(21), and Table 2).

reflection of the slower rate at which it terminates. During the ini-
tial OU segment of the slow process, in which the boundaries are
curvilinear, the correct response boundary is comparatively fur-
ther away from the starting point than is the corresponding bound-
ary for the fast process. This means the process is more likely to
terminate at the incorrect response boundary and produce an er-
ror than is the fast process. As a result, the process can generate
fast errors like those in Fig. 1.

To provide further insight into the properties of the model, the
upper panel of Fig. 4 shows 25 simulated sample paths for the
release from inhibition model of Eq. (4). For comparison purposes,
the lower panel shows 25 simulated paths for the Wiener diffusion
model of Eq. (2). The function A(t) in the upper panel shows the
time course of inhibition (Eq. (22)). The time course is typical of
what we have obtained from fits to data, but the amplitude is not
shown to scale. For the parameters of A(t) in Fig. 4, the release
from inhibition begins around 50 ms after stimulus onset and is
largely completed 100 ms later. In fitting the data in Fig. 1 we
used a starting value of inhibition of A(0) = 15.0, but for the
simulations in Fig. 4 we used a larger value of A(0) = 50.0 in
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order to emphasize the difference between the pre-release and
post-release phases of the inhibition process. It is evident from
a comparison of the two panels that the effect of inhibition is
to slow responding. None of the processes in the upper panel
terminate until after inhibition is fully released at around t =
150 ms, whereas a significant proportion of the processes in
the lower panel terminate in the first 100 ms. At a distribution
level, this slowing manifests itself as a shift in the leading
edge.

4. Fitting the integrated system model

4.1. Assumptions of the model

The integrated system model (Sewell & Smith, 2012; Smith,
Ellis, Sewell, & Wolfgang, 2010; Smith & Ratcliff, 2009) combines
a time-inhomogeneous diffusion decision process with a process
model of drift (Appendix C). The drift model seeks to characterize
the combined effects of perception, memory, and attention
on performance in speeded two-choice tasks. The model was
developed to account for the effects of spatial attention in near-
threshold visual tasks with briefly presented stimuli and, to
that end, it assumes that stimuli are encoded perceptually by
spatiotemporal visual filters (Watson, 1986). Stimuli that are
relevant to the current task are transferred to visual short-term
memory (VSTM) under the control of spatial attention. The VSTM
representation of the stimulus forms the basis for the perceptual
decision. In tasks that use noisy, response-terminated stimuli, like
the dynamic noise task, we assume that the decision process is
driven by a stable representation of the stimulus that is extracted
from the dynamically changing perceptual input. We identify this
stable representation with the VSTM trace in the model.

The process of VSTM trace formation in the integrated sys-
tem model is described computationally by a shunting differ-
ential equation (Eq. (C.4)). Equations of this kind have been
proposed as neurocomputational models of short-term memory
by Grossberg (1980, 1988) and as cognitive models by Loftus and
colleagues (Busey & Loftus, 1994; Loftus & Ruthruff, 1994). In the
integrated system model, the time-varying VSTM trace, v(t), de-
termines both the drift and the diffusion coefficient of the accu-
mulation process in Eq. (3). Some of the features of the integrated
system model are arguably not required for the dynamic noise task,
in which stimuli were always presented at a known location in the
center of the display. However, we chose to fit the model in much
the same form as described by Smith and Ratcliff (2009), to facili-
tate comparison with their work.

Apart from the dynamic noise task, we know of at least one
other situation in which a leading edge has been found, and
that is when very low contrast stimuli are presented directly
on a uniform field. In Smith and Ratcliff's (2009) article, they
compared performance in two superficially similar attentional
cuing paradigms, in which the task was to discriminate the
orientations of briefly presented, low contrast, Gabor patches
presented at either cued or uncued locations. In one study,
reported by Smith, Ratcliff, and Wolfgang (2004), the stimuli were
presented on top of suprathreshold (15%) contrast luminance disks,
or pedestals, whose purpose was to localize stimuli perceptually in
the display. In the other study, reported by Gould, Wolfgang, and
Smith (2007), stimuli were presented directly against a uniform
field and were localized by surrounding them with four arms of
a high contrast fiducial cross. Despite the similarities in these two
tasks, the fiducial cross task produced a marked leading edge effect,
but the pedestal task did not. The 0.1 quantile functions in the
pedestal task were relatively flat, like those found in the majority
of other tasks we have studied. One of our aims in this article was to
investigate whether Smith and Ratcliff's model for the leading edge

effect in the fiducial cross task could also account for the effect in
the dynamic noise task.

To fit the integrated system model to data, parameters of four
different subprocesses must be specified: the sensory response
function; the attention and VSTM processes; the decision process,
and the remaining, nondecision processes. A total of 14 parameters
are needed to fit the data in Fig. 1, three of which can be specified a
priori, leaving a total of 11 parameters that must be estimated from
the data. These subprocesses and their associated parameters are
described below.

4.2. Sensory response function

The model assumes that stimuli are encoded perceptually
by visual filters, possibly in cortical area V1. The time course
of perceptual encoding is characterized by a sensory response
function, wu(t) (Eq. (C.1)). As is common in visual psychophysics,
the sensory response function is modeled as a series of cascaded
exponential stages (Busey & Loftus, 1994; Smith, 1995; Sperling
& Weichselgartner, 1995; Watson, 1986). Following Smith and
Ratcliff (2009), we set the number of cascaded stages ton = 3, and
estimated the stage rate, B,,, from the data. The fit of the model
is relatively insensitive to the value of n because it mainly affects
the time at which w(t) begins to provide sensory information and
this time can be absorbed into the value of Te;. The subscript on the
rate refers to the time course of sensory onset. When brief stimulus
exposures are used, a second, offset rate must also be estimated
(Eq.(C.1)), whose value varies depending on whether or not stimuli
are backwardly masked. When stimuli are response-terminated, as
here, an offset rate is not required.

The amplitude of the sensory response is assumed to be a non-
linear function of the stimulus contrast or intensity. Unlike most
applications of diffusion models, in which separate drift parame-
ters are estimated for each stimulus condition, the integrated sys-
tem model assumes the drifts in all conditions can be described
by a single Naka-Rushton function (Eq. (C.3)). The Naka-Rushton
function is a sigmoid function, which has an expansive nonlinearity
at low contrasts and a compressive nonlinearity at high contrasts.
Such functions have been shown to provide good models of both
the visual contrast response of cortical neurons (Boynton, 2005;
Heeger, 1991; Kaplan, Lee, & Shapley, 1990) and of psychophysical
contrast sensitivity (Foley, 1994; Foley & Schwarz, 1998). Functions
of this form arise theoretically from so-called divisive inhibition
models of contrast sensitivity, in which visual mechanisms tuned
to a particular spatial frequency and orientation are inhibited by
mechanisms with different tunings at the same or surrounding lo-
cations (Foley, 1994; Reynolds & Heeger, 2009). They are obtained
naturally from shunting equations like the one in the integrated
system model (Smith et al., 2010).

To fit the datain Fig. 1, we assumed the amplitude of the sensory
response, I, was a Naka-Rushton function of stimulus contrast

(Eq. (C.3)),

I= 47 (18)
Alz + Iin '
where A; = 1 — 2m,  is the proportion of pixels inverted in

the letter and the background, and [j, is a divisive inhibition term
that determines the horizontal position of the function on the log-
contrast axis. The quantity 1— 2 is the Michelson contrast, A,/ X,
where A; is the luminance difference between the letter and the
background and X is the luminance sum (De Valois & De Valois,
1990, p. 6). In the dynamic noise task, the average luminance of
the letter is proportional to 1 — 7; the average luminance of the
background is proportional to 7, so the resulting contrast is

ﬂ_ A1—m)—m

=" —1-2m.
21 (1—7T)+7T
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In tasks in which low-contrast stimuli are presented under con-
ditions of spatial uncertainty, the exponent in Eq. (18) often takes
values other than 2. We found we did not need this extra generality
to account for the data in Fig. 1 and have constrained the exponent
accordingly. To fit the model to data, we therefore needed to esti-
mate two parameters of the sensory response function: the stage
rate, Bon, and the divisive inhibition term, [i,.

4.3. Attention and the VSTM trace

In the second stage of the model, the stimulus information
in the sensory response function is encoded in a durable form
in VSTM. The strength of the VSTM trace determines the drift
of the diffusion process. Three additional parameters are needed
to specify the dynamics of VSTM trace formation: an asymptotic
VSTM amplitude, 6; a rate parameter, y, and a stimulus saliency
parameter, Ip. The VSTM amplitude parameter determines the
scaling between trace strength and drift; the rate parameter
determines the overall rate at which the VSTM trace is formed,
and the saliency parameter characterizes the relationship between
stimulus contrast and the rate of trace formation.

The rate of VSTM trace formation is assumed to be jointly a
function of attention gain and the perceptual saliency of the stimu-
lus. Attention gain describes the proportion of the participant’s re-
sources that is allocated to a particular location in the visual field
at a given time during an experimental trial. In spatial cuing tasks,
gain varies depending on whether the stimulus is presented at a
cued or an uncued location. In tasks in which attention is reallo-
cated during a trial, gain will also vary with time (Sewell & Smith,
2012). In the dynamic noise task, gain can be treated as a constant.

The effects of saliency are needed to account for the differences
in the leading edges of the RT distributions of Smith et al.
(2004), in which low contrast stimuli were presented on top
of suprathreshold contrast luminance pedestals, and those of
Gould et al. (2007), in which stimuli were presented against a
uniform field. Smith and Ratcliff (2009) attributed the differences
in performance in these tasks to differences in the perceptual
saliency of the stimuli. They used an energy-based summation
function to describe saliency that reflected the physical properties
of their stimuli. Its theoretical substance was that the combined
effects of stimulus saliency and attention can be characterized
by a function that has both contrast-dependent and contrast-
independent components and which increases roughly linearly
with contrast. For the dynamic noise task, we found we could
characterize this relationship using a function of the form, y =
ve(I + Ip), where I is the transduced stimulus contrast, yg is
the attention gain, and Iy is a constant. With these assumptions,
three attention/VSTM parameters are required to fit the model
to data: the attention gain, the saliency parameter, Iy, and the
VSTM amplitude, 6. The combination of gain, saliency, and the
Naka-Rushton inhibition parameter, I;;,, predict the magnitude of
the leading edge effect.

4.4. The decision process

To fit the dynamic noise data we assumed a symmetric decision
process, in which drift rates for the two stimuli and the criteria
for the two responses were equal in magnitude and opposite in
sign. We assumed one criterion for the speed condition, a;, and
another for the accuracy condition, a,. We also assumed, like other
applications of diffusion models (Ratcliff & Smith, 2004), that drift
rates were normally distributed with standard deviation, 7. In
the integrated system model, n describes the distribution of the
asymptotic VSTM trace strengths, v(co).

As a time-changed Wiener process, the decision process in
Eq. (3) is unable to predict the fast errors in Fig. 1. Like the

Wiener process in Ratcliff's (1978) diffusion model, the model
predicts equal mean RTs for correct responses and errors in the
absence of other sources of variability. When there is variability
in drift rates it can predict slow errors, but it cannot predict
fast errors. Following the work of Laming (1968), fast errors are
often attributed to variability in the starting point of the diffusion
process. Laming argued that participants’ uncertainty about the
precise time of stimulus onset leads them to sample noise from
the prestimulus field. When the stimulus is presented, the decision
process begins to accumulate evidence from a random starting
point that depends on the sample of prestimulus noise. Trials
on which the prestimulus noise drives the process towards the
incorrect response boundary are more likely to terminate rapidly
and with an error. Ratcliff et al. (1999) showed that the addition
of starting point variability to Ratcliff's (1978) diffusion model
allowed it to predict fast errors, as Laming proposed. When the
model has both drift variability and starting point variability, it can
predict fast errors and slow errors, and the crossover pattern found
in some data sets, in which errors are faster than correct responses
in some conditions and slower in others (Ratcliff & Smith, 2004).

Rather than attributing the fast errors in Fig. 1 to starting point
variability, we used the model of Smith and Ratcliff (2009), which
was also motivated by Laming’s (1968) theoretical ideas. In the
evidence accumulation model of Eq. (3), the diffusion coefficient,
o2 (t), depends on the encoded stimulus information and increases
progressively over time. To model performance in the Gould et al.
(2007) study, Smith and Ratcliff assumed an additional source of
constant diffusive noise, independent of the noise in the stimulus
representation. This noise is like the noise from the prestimulus
field proposed by Laming, but is assumed to persist throughout the
trial. The evidence accumulation function for this extended model
can be written

dX(t) = v(t) dt + ov(t) dW;(£) + o2 AW (0). (19)

Because of the additive properties of Brownian motion processes,
the model can be viewed as a process with a single coactive
source of noise, W(t), with infinitesimal standard deviation

\/o?v(t) + oF. Following the conventions used in Ratcliff's work,

we set o7 = 0.1 and estimate o, from the data.

4.5. Nondecisional processes

To complete the model, we make the same assumptions as are
made in Ratcliff's work (e.g., Ratcliff & Smith, 2004), that RT is
the sum of decision and nondecision times, as stated in Eq. (1).
The nondecision time is assumed to be uniformly distributed with
mean T, and range s;. Because nondecisional processes contribute
only a small part of the overall variance of RT, the particular form
assumed for the distribution of Te; has a minimal effect on the
shapes of the predicted RT distributions.

4.6. Fitting and estimation

We obtained first passage time and first passage probability
statistics for the model using the integral equation methods
proposed by Buonocore et al. (1990), Gutiérrez Jaimez, Roman
Roman, and Torres Ruiz (1995), and described by Smith (2000).
The code for the model was implemented in C, called from Matlab,
as described by Smith and Ratcliff (2009). To fit the model, we
minimized the likelihood ratio statistic, G2,

0 12 P
GP=2) n ) pjlog=~,

on the quantile-averaged group data in Fig. 1, using the 0.1, 0.3, 0.5,
0.7, and 0.9 quantiles to group the data into bins. In this equation,
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Fig. 5. Fit of the integrated system model. The data and fitted values are shown as
a quantile probability plot. The symbols are the experimental data; the continuous
curves are the fitted values.

the outer summation over i runs over the five discriminability
levels in the speed and accuracy conditions in Fig. 1. The inner
summation over j extends over the 12 bins formed by each pair of
joint distributions of correct responses and errors. (There were five
quantiles per distribution, resulting in six bins per distribution, or
12 bins in total, with 11 degrees of freedom, for each distribution
pair.) In this equation, p; is the proportion of probability mass
falling in the jth bin in the ith condition, and 7 is the proportion
of mass predicted by the model. (It is not, as we have used it
elsewhere, the proportion of inverted pixels in the display.) The
number n; is the number of observations in each condition of
the experiment. As multinomial sampling assumptions are not
satisfied for G> computed on quantile-averaged data, we follow
Ratcliff and Smith (2004) and set n; (arbitrarily) to 100 to obtain
a convenient scale for fitting. We do not interpret the resulting
fit statistic as a chi-square, but simply treat it as a comparative
measure of fit. To fit the model we minimized G iteratively using
the Matlab implementation of the Nelder and Mead (1965) simplex
algorithm. We chose to fit the model to binned data rather than by
maximum likelihood both for reasons of computational efficiency
and because Ratcliff and Tuerlinckx (2002) showed that fits to

Table 1
Parameters of the integrated system model.

Parameter Symbol Value

Sensory response function
Onset rate Bon 26.68
Number of stages n 32
Naka-Rushton inhibition Iin 0.064
Naka-Rushton exponent p 22

Attention/VSTM
Attention gain Ve 19.93
VSTM amplitude scaling 6 1.226
Saliency constant Iy 0.509

Decision process
Boundary separation (speed) 2ag 0.083
Boundary separation (accuracy) 2a, 0.136
Drift variability n 0.171
Diffusion coefficient (square root) o4 0.100*
Stimulus independent diffusion 03 0.013

Nondecision processes
Mean nondecision time Ter 0.301
Nondecision time range St 0.134

Note. Time-based parameters are in units of seconds; state-based parameters are in
units of infinitesimal standard deviations per second.
¢ denotes a fixed parameter.

binned data are less susceptible to the effects of contaminants and
outliers in the data than is maximum likelihood.

The fit of the integrated system model is shown in Fig. 5. The
best-fitting model, with 11 free parameters, yielded G*(99) =
15.59. The estimated model parameters are shown in Table 1.
When we used the more complex saliency function assumed by
Smith and Ratcliff (2009), the fit was only slightly better, G?(99) =
14.57. As shown in Fig. 5, the model does a good job of account-
ing for the main features of the empirical data. The only system-
atic discrepancies in fit are that it slightly underpredicts the 0.9
quantiles at the lowest levels of stimulus discriminability. Criti-
cally, the model predicts a leading-edge effect that closely matches
that found in the data in both the speed and accuracy conditions.
The predicted 0.1 quantile functions exhibit the same bowed shape
as those in the data. The assumption that asymptotic drift rate is a
Naka-Rushton function of stimulus contrast predicts response ac-
curacy in both the speed and the accuracy condition. This repre-
sents an appreciable gain in model parsimony; instead of assuming
separate drift rates for each of the five discriminability conditions
the model captures the differences in accuracy between conditions
with only two parameters: the Naka-Rushton inhibition parame-
ter, [in, and the VSTM amplitude scaling parameter, 6.

Fig.5 also shows that the addition of a second source of diffusive
variability allows the model to accurately predict the fast errors in
the speed condition in Fig. 5, represented by the bowing downward
to the left of the 0.1 and higher quantiles. The amount of additional
variability needed to predict fast errors is small: Table 1 shows that
the estimated value of o5 is only one tenth the magnitude of o;.
Nevertheless, it is crucial to the performance of the model. When
o5 is set to zero, the fit appreciably worsens, G?(100) = 33.4. This
is worse than the fit in Fig. 5 by a factor of two.

5. Fitting the release from inhibition model

5.1. The time course of perceptual encoding

The two key assumptions of the release from inhibition model
are: (a) dynamic noise delays the process of forming a repre-
sentation of the information in the stimulus, and (b) the process
of evidence accumulation is controlled by a time-dependent OU
decay coefficient that is time-locked to the developing representa-
tion. Instead of assuming the VSTM-based drift model of the inte-
grated system model, we sought to implement these assumptions
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in the simplest possible way, to allow us to evaluate the perfor-
mance of the release from inhibition mechanism unencumbered by
assumptions about perceptual encoding. To this end, we assumed
the time course of sensory encoding was described by an incom-
plete gamma function (Abramowitz & Stegun, 1964, p. 260),

. _ 1 ‘ oa—1,—5
u(t,a)_@/; s“"e™ ds. (20)

Our choice of notation here serves to emphasize the link with the
sensory encoding function in the integrated system model (Eq.
(C.1)). We assumed the stimulus-dependent component of the drift
in Eq. (4) was of the form

v(t) = 0Iu(t/p; ), (21)

where [ is the transduced contrast of Eq. (18), 8 is a dispersion pa-
rameter, and 6 is a parameter that maps stimulus information to
drift amplitude (cf. Eq. (C.4)). For integral «, the normalizing con-
stant, I"(«), in Eq. (20) reduces to the factorial function, (o — 1)!,
and the function then has the same form as the (o — 1)-stage, cu-
mulative gamma probability distribution. When Eq. (20) is viewed
as a deterministic function rather than a probability distribution, it
describes the output of a linear filter composed of « — 1 cascaded
exponential stages (cf. Eq. (C.2)). The incomplete gamma function
generalizes the linear filter model to allow the number of “stages”
to be non-integral. We chose this more general representation to
allow us to smoothly parametrize the model for ease of estima-
tion. In so doing, we are using Eq. (20) simply to describe the time
at which stimulus information becomes available to the decision
process; we are not assuming that the number of processing stages
changes as a function of external noise.

Fig. 6 shows examples of the function in Eq. (21) for different
values of «, which represent different levels of noise in the
stimulus, obtained by fitting the release from inhibition model
to our data. The differences in the amplitudes of these functions
reflects differences in the transduced contrast, I; the differences
in the time at which stimulus information becomes available is
reflected by differences in «. As the release from inhibition model
was not based on an a priori theory of sensory encoding, we treated
the time of release as a free parameter of the model, giving five free
o parameters. The other free parameters of the encoding process
were the Naka-Rushton inhibition, [;,, the drift amplitude scale, 6,
and the incomplete gamma dispersion, 8, giving a total of eight
free parameters to specify the sensory response. As previously, we
fixed the Naka-Rushton exponent to p = 2.

5.2. Time course of the release from inhibition

We considered two versions of the release from inhibition pro-
cess: a progressive release model, in which inhibition decreases
progressively as stimulus information becomes available, and an
all-on-none model, in which inhibition is released when the stim-
ulus encoding function reaches some threshold. The progressive
release model is in the spirit of continuous flow models like the
cascade model of McClelland (1979); the all-or-none model is in
the spirit of discrete-stages models like the additive factors model
of Sternberg (1969).

To implement the progressive release model, we assumed that
the decay function in Eq. (4) was modulated by the encoded
stimulus information,

At) = ho[1 — pu(t/B; )], (22)

where A is the initial inhibition, which we set to an arbitrary, large
value, Ag = 15.0. The function A(t) decreases smoothly from X, to
zero at a rate that is time-locked to the sensory encoding process.
The effect of increasing « is to delay the time at which stimulus
information becomes available, as shown in Fig. 6. Eq. (22) states
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Fig. 6. Time course of perceptual encoding estimated from the release from
inhibition model. (a) Drift functions, v(t), as a function of time. (b) Drift amplitude, I,
as a function of contrast. (c) Release from inhibition time, «, as a function of contrast.

(a) that the release from inhibition is delayed by a corresponding
amount, and (b) that the rate at which inhibition is released de-
pends on the rate at which encoded stimulus information becomes
available, which is controlled by the dispersion parameter, .
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We implemented the all-or-none model in a very simple way,
by assuming that inhibition was released once the encoded stimu-
lus information reached 50% of its maximum,

ro u(t/Bia) <05
“t):{oo /6 = 05, (23)

The release from inhibition mechanism defined in this way uses a
relative threshold; the large variation in the amplitudes of the es-
timated encoding functions in Fig. 6 suggests it would have been
difficult to specify a well-behaved model that used an absolute
threshold. The choice of a 50% threshold was arbitrary; very simi-
lar results would have been obtained with other choices. We also
considered a stochastic version of an absolute threshold model,
in which the time of release from inhibition was controlled by a
single-barrier diffusion process, which follows a Wald distribution
(Luce, 1986, p. 509). This model performed comparatively poorly,
so we have not reported it. With these assumptions both versions
of the release from inhibition model were fully specified by the pa-
rameters of the sensory response function, together with the fixed
Ao parameter.

5.3. Decision and nondecision processes

The assumptions we made about the decision and nondecision
processes were identical to those we made about the integrated
system model. Specifically, we assumed that decisions were made
by a two-barrier diffusion process, described by Eq. (4). We
assumed one criterion for speed and one criterion for accuracy and
a single value of the drift standard deviation, n. We also assumed
a single value for the mean nondecision time, T.;, and for the
nondecision time range, s;.

5.4. Fitting and estimation

We obtained first passage time statistics for this process
by approximating it as finite-state Markov chain, as described
by Diederich and Busemeyer (2003) and as implemented by
Smith and Ratcliff (2009). In this approach, a continuous-time,
continuous-state process is approximated by a discrete-time,
discrete-state birth-death process. We approximated the process
on a time scale of h = 0.0025 s using a state vector of {+iA},i =
0,1,2,...,A = o +/h, which is the natural scaling for a diffusion
process. We then defined a time-dependent transition matrix that
specified the probability of an increment or a decrement of size A
at each step, conditional on the current state of the process and
the inhibition function A(t), using the well-known relationship
between the coefficients of a continuous time diffusion process
and the transition probabilities of the approximating Markov
chain (Bhattacharya & Waymire, 1990, Ch. V.5), together with
appropriate boundary conditions. To approximate a diffusion
process without starting point variability, we defined the initial
state of the process as a Kronecker delta function, which defines
the distribution of a process all of whose mass is concentrated
at the state X(0) at time t = 0. We then obtained the first
passage time distributions for the approximating process by
matrix multiplication. Potentially, we could have used integral
equation methods for the progressive release from inhibition
model, but not for the all-or-none model, as these methods
require smoothness of the underlying functions (specifically, two
continuous derivatives, Smith, 2000). We therefore chose to use a
Markov-chain approximation for both models.

Fig. 7 shows a quantile-probability plot of the fitted progressive
release model; Table 2 shows the estimated model parameters.
Fig. 6b shows the estimated drift amplitudes, I, as a function of
contrast and Fig. 6¢ shows the estimated « parameters, which
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Fig. 7. Fit of the release from inhibition model.

determine the time of release from inhibition. The drift amplitudes
are fairly linear in contrast; the release times are a decreasing,
negatively accelerating function of contrast. Of the two versions
of the model, the best-fitting was the progressive release model.
For this model, G*(97) = 17.18; for the all-or-none model,
G?(97) = 28.05, which is more than 60% worse. The quality of the
fit of the progressive release model was similar to the integrated
system model, although it required three more free parameters.
Potentially, the parsimony of the model could be improved by
seeking a simpler functional characterization of the release time
parameters in Fig. 6¢, but we have not attempted to do this. Overall,
then, the progressive release from inhibition model provides a
comparably good account of the leading edge effect and fast error
data to that of integrated system model, but does so using different
assumptions about the processes that couple sensory encoding and
decision-making.

6. Generalizing to other dynamic noise tasks
Ratcliff and Smith (2010) attributed the leading edge effect to

the time needed to form a perceptual representation of the features
of a noisy stimulus. Although they showed the effect occurs in
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Table 2
Parameters of the release from inhibition model.

Parameter Symbol Value

Drift function
Naka-Rushton inhibition [in 0.049

Naka-Rushton exponent 0 2¢
Drift amplitude scaling 6 0.829
Incomplete gamma dispersion B 0.016
Incomplete gamma location o 7.71
Incomplete gamma location o 6.39
Incomplete gamma location o3 4.82
Incomplete gamma location oy 3.46
Incomplete gamma location as 241
Decision process
Boundary separation (speed) 2ag 0.073
Boundary separation (accuracy) 2a, 0.114
Drift variability n 0.128
Diffusion coefficient (square root) o 0.100*
Prerelease inhibition Ao 15.0°
Nondecision processes
Mean nondecision time Ter 0.353
Nondecision time range St 0.139

Note. Time-based parameters are in units of seconds; state-based parameters are in
units of infinitesimal standard deviations per second.
2 denotes a fixed parameter.

letter discrimination, they did not investigate whether it occurs in
other tasks in which stimulus features are presented in dynamic
noise. Letter discrimination is a relatively complex task because
the stimuli are comprised of multiple features. To perform it,
people must form representations of the stimulus configuration as
a whole, not just the individual features. To test the generality of
Ratcliff and Smith’s conclusions, we investigated discrimination in
dynamic noise in two simpler feature processing tasks. The stimuli
for these tasks are shown in Fig. 8; details of the methods can be
found in Appendix A.

In the first task, participants discriminated the orientation
of three white parallel bars, presented vertically or horizontally
on a black background. Discriminability was varied by randomly
inverting some proportion of the pixels in the bars and the
background in each 16.7 ms frame of the display. On half of
the trials, the proportion of inverted pixels was less than 50%,
creating the appearance of noisy light bars on a dark background,
as shown in the example in Fig. 8a. On these trials, 0.35, 0.43,
0.46, or 0.475 of the pixels were inverted in each frame. (Like
the letter discrimination task, when 50% the pixels are inverted
the display becomes a homogeneous field of noise that carries no
discriminative information.) On the remaining half of the trials, the
proportion of inverted pixels was more than 50%. On these trials,
0.65, 0.57, 0.54, or 0.525 of the pixels were inverted, creating the
appearance of dark bars on a light background. We included both
kinds of trials in order to increase stimulus uncertainty, which
Ratcliff and Smith (2010) found increased the magnitude of the
leading edge effect. For the purposes of analysis, we averaged the
data from trials with dark and light and vertical and horizontal bars
within each contrast level after verifying there were no systematic
differences in performance on the various trial types. The data,
shown in the top half of Fig. 8, are quantile-averaged over 20
participants.

In the second task, participants discriminated the orientation of
vertical or horizontal Gabor patches (Gaussian vignetted sinusoidal
gratings). Gabor patches differ from bars in that they are band-
limited in their spatial frequency composition, whereas bars are
broadband (see Graham, 1989, for a discussion). Band-limited
stimuli are useful if one wishes to target visual mechanisms
tuned to a single spatial scale; broadband stimuli target multiple
mechanisms tuned to different scales. We ran experiments using
both band-limited and broadband stimuli in order to establish
whether the leading edge effect would occur with feature stimuli
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Fig. 8. Discrimination of (a) oriented bars and (b) Gabor patches in dynamic noise.
The figure shows example stimuli and fits of the integrated system model to the
quantile averaged group data. For each task, the stimuli are (top to bottom): a noise-
free vertical stimulus, a noisy single frame, and a 10-frame average.

of different kinds. As shown in Fig. 8a, the stimuli were constructed
by sinsoidally modulating the luminance of the display around its
mean value to produce a Gabor patch with a peak contrast of 20%.
(Peak contrast is defined as the maximum depth of the luminance
modulation divided by the luminance of the background.) Stimulus
discriminability was varied by replacing 0.35, 0.50, 0.65, or 0.80
pixels in the display with uniformly-distributed grayscale noise
pixels. The noise had a mean equal to the mean luminance of
the display and a range of £50%. For the purposes of analysis,
we averaged the data from trials with vertical and horizontal
stimuli within each discriminability level after verifying there were
no systematic differences in performance on the two trial types.
The data, quantile-averaged across 20 participants, are shown in
Fig. 8b.

As Fig. 8 shows, there were leading edge effects in both tasks
and fast errors for high discriminability stimuli, replicating the
findings from the letter discrimination task. For the bars task,
there was a 62 ms difference in the 0.1 quantiles for the highest
and lowest noise conditions for correct responses and a 105 ms
difference for errors. For the Gabor patch task, there was a 68
ms difference in the 0.1 quantiles for correct responses and a 79
ms difference for errors. The finding of a leading edge effect in
these tasks is consistent with Ratcliff and Smith’s (2010) claim
that the onset of the decision process is delayed until a stable
perceptual representation of the stimulus is formed, which is
slowed by dynamic noise. The occurrence of a leading edge effect
in these simpler feature processing tasks shows that it does not
depend upon higher-order configural properties of the stimuli,
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Table 3
Model parameters for discriminating bars and Gabor patches in noise.
Parameter Symbol Model
Integrated system model Release from inhibition model
Bars Gabors Bars Gabors

Stimulus encoding
Onset rate Bon 18.69 33.03 - -
Number of stages n 32 32 - -
Naka-Rushton inhibition Iin 0.019 <0.001 0.041 <0.001
Naka-Rushton exponent p 22 3.14 22 2.89
Incomplete gamma dispersion B - - 0.158 0.164
Incomplete gamma location o - - 11.73 8.40
Incomplete gamma location oy - - 11.53 8.83
Incomplete gamma location o3 - - 9.02 7.58
Incomplete gamma location oy - - 6.81 5.06

Attention/VSTM
Attention gain Ve 20.89 12.77 - -
Drift amplitude scaling 0 0.625 0.634 0.335 0.426
Saliency constant Ip 0.449 0.627 - -

Decision process
Boundary separation 2a 0.143 0.155 0.106 0.117
Drift variability n 0.157 0.140 0.011 0.076
Diffusion coefficient (square root) o1 0.100* 0.100* 0.100* 0.100*
Stimulus independent diffusion 0y 0.019 0.010 - -
Prerelease inhibition? Ao - - 15.0 15.0

Nondecision processes
Mean nondecision time Ter 0.208 0.267 0.227 0.271
Nondecision time range St 0.184 0.116 0.158 0.147

2 denotes a fixed parameter.

such as feature conjunctions. The finding of an effect with both
bars and Gabor patches shows it is not a function of the broadband
nature of the stimuli and, in particular, that it does not depend
on information carried by high spatial frequencies, which encode
information about perceptual edges. This is consistent with the
occurrence of a leading edge effect in letter discrimination, which
is mediated by visual filters with an intermediate tuning of around
three cycles per letter and is relatively unaffected by the presence
of high spatial frequency information (Solomon & Pelli, 1994).

To assess the generality of our modeling results we fitted the
integrated system model and the release from inhibition model
to the group RT distributions and choice probabilities for both
tasks. The fits of the integrated system model are shown in Fig. 8.
Estimated parameters for both models are shown in Table 3. As
in the previous fits, we assumed that drift was a Naka-Rushton
function of stimulus intensity. For the Gabor patch stimuli, we
assumed that the effective stimulus intensity was proportional
to the fraction of unoccluded pixels in the display and set the
transduced stimulus intensity, I, in Eq. (C.3) to

[ =-mep)
[(1—m)cpl? + I
where cp = 0.20 is the peak contrast of the Gabor patch and 7 is
the fraction of noise pixels. We considered other, more complex,
representations of stimulus transduction, based on the stimulus
signal-to-noise ratio, which depends on the space-averaged RMS
(root mean square) contrast of the stimulus, but found they
performed more poorly than the simpler model of Eq. (24). We
found we needed larger values of the Naka-Rushton exponent, p,
to characterize drift than the value of p = 2 assumed for the
letter discrimination task (Eq. (18)). This is consistent with some
previous fits of the integrated system model to data obtained with
Gabor patch stimuli (e.g., Sewell & Smith, 2012; Smith & Ratcliff,
2009). For the bars experiment, stimulus transduction was well
described by Eq. (18), with an exponent of 2.
We found that the integrated system model and the release
from inhibition model both gave good accounts of the data from
the bars and the Gabor patch tasks and that they nicely captured

(24)

the leading edge effects and the fast errors in both data sets. Like
the letter discrimination task, the models were able to capture
the fast errors without the assumption of trial-to-trial variation
in starting point. For the bars task, the integrated system model
yielded G*(34) = 6.60 and the release from inhibition model
yielded G*(33) = 6.75. The fits of the release from inhibition
model have fewer degrees of freedom because we treated the
release times as free parameters (four in total), as we did for the
letter discrimination task. For the Gabor patch task, the integrated
system model yielded G?(33) = 6.83; the release from inhibition
model yielded G?(32) = 5.06. These latter fits have fewer degrees
of freedom because the exponent in Eq. (24) was treated as a free
parameter.

A comparison of the estimated parameters in Tables 1-3 shows
there are differences in the magnitudes of the estimated parame-
ters between experiments, particularly for the integrated system
model rates, Bon, ¥g, and the asymptotic VSTM trace strength, 6,
which characterizes the maximum amplitude of drift. The cascaded
structure of the integrated system model means that in some data
sets these parameters can be traded off to yield similar fits. This
is particularly so in experimental designs with only a single treat-
ment factor, like the bars and Gabor patches experiments. Estima-
tion will typically be better in designs like the one in the letter
discrimination task, in which a stimulus manipulation is crossed
with another experimental factor, like speed versus accuracy in-
structions.

7. The overconstrained estimation view

Compared to the standard diffusion model of Eq. (2), the
integrated system model and the release from inhibition model
make relatively complex assumptions about the time course of
processing within a trial. We were motivated to consider such
complex models because the standard diffusion model is unable
to account for data like those in Fig. 1. An alternative view
was proposed by Donkin, Brown, and Heathcote (2009), who
argued that poor fits like those reported by Ratcliff and Smith
(2010) may be a byproduct of overconstraining the parameters of
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Fig. 9. Fit of the unconstrained time-homogeneous diffusion model. Drift and
diffusion coefficients were permitted to vary freely across stimulus conditions.

the model rather than any fundamental limitation of the model
itself. In particular, Donkin et al. questioned the usual practice
of constraining diffusion coefficients to be equal across stimulus
conditions.

Because parameters of models like the diffusion model are only
identified to the level of a ratio, at least one parameter needs to be
fixed arbitrarily to provide a scale in which other parameters can
be estimated. Typically, following the example of signal detection
theory, the value of the diffusion coefficient (s? or o2) is fixed. Most
applications of diffusion models make the further assumption that
the diffusion coefficient is the same in every stimulus condition,
but, as Donkin et al. (2009) argued, this is more than is needed to
make the model identifiable. They advocated fixing the diffusion
coefficient in one condition only and estimating the values in
the other conditions from the data. Comparison of more and less
restricted versions of the model can then provide a test of the
empirical hypothesis that the diffusion coefficient is invariant
across conditions.

As an example of this approach, Donkin et al. (2009) refitted
one of the conditions from the Gould et al. (2007) study, in which
a large leading edge effect was found, using a time-homogeneous
diffusion model (Eqgs. (1) and (2)) with between-trial variability

Table 4
Parameters of the unconstrained time-homogeneous diffusion model.

Parameter Symbol Value

Stimulus encoding
Mean drift rate V1 0.027
Mean drift rate vy 0.101
Mean drift rate V3 0.231
Mean drift rate Vs 0.385
Mean drift rate Vs 0.635
Diffusion coefficient (square root) S1 0.100°
Diffusion coefficient (square root) Sy 0.105
Diffusion coefficient (square root) S3 0.111
Diffusion coefficient (square root) S4 0.123
Diffusion coefficient (square root) S5 0.147
Drift variability n 0.077

Decision process
Boundary separation (speed) 2a; 0.080
Boundary separation (accuracy) 2a, 0.130
Starting point variability S, 0.008

Nondecision processes
Mean nondecision time Ter 0.472
Nondecision time range St 0.008

Note. Time-based parameters are in units of seconds; state-based parameters are in
units of infinitesimal standard deviations per second.
2 denotes a fixed parameter.

in drift and starting point, and allowed the diffusion coefficient
to vary freely in four of the five stimulus conditions. They found
that by relaxing the constraint on the diffusion coefficient they
could substantially improve the fit — although there were still
some systematic discrepancies in the predicted 0.1 quantiles. They
also considered an unconstrained version of the linear ballistic
accumulator (Brown & Heathcote, 2008) and showed that the
fit of this model was also significantly improved. Indeed, the
unconstrained form of the ballistic accumulator model provided a
better fit than did the unconstrained diffusion model.

In the light of Donkin et al.’s (2009) results, we asked whether
the dynamic noise data could be explained by systematic variation
in the diffusion coefficient across conditions. This hypothesis is
plausible because, as noted previously, the diffusion coefficient
sets the clock of the process. Processes with smaller diffusion
coefficients accumulate evidence more slowly, dilating their time
scale. This increases the spread of the RT distribution and shifts its
leading edge. Unlike the integrated system model or the release
from inhibition model, the variable diffusion coefficient model is
not a process model; it is simply an alternative, less restrictive,
set of constraints on the estimation procedure. One of the benefits
of relaxing the assumed constraints on the parameters is that
systematic patterns of variation in empirical parameter estimates
may stimulate new theoretical developments. Accordingly, we
refitted the dynamic noise data with the time-homogeneous
diffusion model of Egs. (1) and (2), with variation in drift and
starting point, and allowed the diffusion coefficient to vary
freely in four of the five discriminability conditions. We used
the computational routines described by Tuerlinckx (2004) to
obtain first passage time distributions and associated response
probabilities for the model. The resulting model fit is shown in
Fig. 9; the estimated parameters are shown in Table 4.

In agreement with the results of Donkin et al. (2009), allow-
ing the diffusion coefficient to vary across conditions substantially
improved model fit. The fit statistic for the unconstrained model
was G%(96) = 30.37, compared to G*(100) = 63.16 for the con-
strained model, with all diffusion coefficients equal. The quantile
probability plot of the data shows that the unconstrained model
successfully captures important features of the data, particularly
the tail quantiles for low discriminability stimuli in the accuracy
condition. It slightly underpredicts the magnitude of the leading
effect in the accuracy condition, but the approximation is reason-
able, and is markedly better than the constrained model. However,
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it fails to capture the leading edge effect in the speed condition,
exhibiting systematic misses in the 0.1 quantiles for error distribu-
tions. It also underpredicts accuracy at the highest levels of stim-
ulus discriminability in the speed condition. Quantitatively, the fit
of unconstrained model is almost 2-2.5 times worse than either of
our process models.

We also considered the fits of the constrained and uncon-
strained models to the bars and Gabor patch data in Fig. 8. For the
unconstrained model, we allowed the diffusion coefficient to vary
freely in the three highest discriminability condition. The picture
that emerged was much the same as the one emerging from the
letter discrimination data. For both tasks the unconstrained model
performed appreciably better than the constrained model, but still
failed to capture some aspects of the data. The fit statistics for the
constrained model were G*(35) = 21.93 and G*(35) = 15.01 for
the bars task and the Gabor patches task, respectively. The corre-
sponding fit statistics for the unconstrained model were G?(32) =
9.29 and G%(35) = 5.95. The differences among the fit statistics
for the unconstrained model, the integrated system model, and the
release from inhibition model are not as pronounced as they were
for the letter discrimination task. This is unsurprising, as the design
of the bars and Gabor patches tasks did not cross discriminability
and instructions, and so provided fewer constraints on model fit.
The fit to the bars data was around 40% worse than the best of the
two process models; the fit to the Gabor patch data was compa-
rably good. Like the fit of the model to the letter discrimination
task, freeing the diffusion coefficient allowed the model to capture
the upper quantiles of the RT distributions well, but it underpre-
dicted the leading edge effect. This was true for both the bars task,
in which the fit is poorer than either of the process models, and the
Gabor patches task, in which the fit is comparably good.

Overall, we conclude that a time-homogeneous model with
stimulus intensity dependent diffusion coefficients does not pro-
vide an adequate model for discrimination in dynamic noise. Not
only do our process models provide a better quantitative character-
ization of the data, they also provide a theoretically principled ac-
count of the psychological processes that underlie the leading-edge
effect. The unconstrained diffusion model, in contrast, produces
improvements in fit simply by an increase in the number of free
parameters. Potentially, intensity-dependent variation in the dif-
fusion coefficient could be motivated theoretically by arguing that
the underlying neural processes are Poisson or Poisson-like in na-
ture, as suggested by Smith (2010) and Smith and McKenzie (2011).
However, the estimated drift and diffusion coefficients in Table 4
do not follow a simple Poisson law with equal means and vari-
ances. The estimated drift coefficients in Table 4 change by a factor
of more than 20 across conditions while the estimated diffusion
coefficients (the squares of the s; parameters) only change by fac-
tor of two. To be plausible, a neural interpretation of the stimulus-
dependency in the diffusion coefficient would need to explain why
the estimated parameters in Table 4 do not scale in the expected
way. It might be possible to do this by assuming that the underly-
ing processes are mixed Poisson processes, composed by randomly
sampling Poisson processes with different intensity parameters on
different trials (Grandell, 1997), or by aggregating across neurons
that are differentially responsive to the signal. Such processes are
more variable than the simple Poisson process because of the addi-
tional variability contributed by the mixing process. Although this
idea has some a priori plausibility, we can foresee difficulties in
making it rigorous and convincing, so we have not attempted to
develop it in any formal way.

8. Discussion

In this article, we considered two process models for decision-
making in the dynamic noise task. Our larger theoretical concern

in investigating this task was to try to understand the relation-
ship between perceptual and decision processes in two-choice dis-
crimination. Diffusion models have been extremely successful in
accounting for performance in such tasks, but they do so by sub-
suming all of the processes prior to the decision process into a sin-
gle value of drift, which is most often treated as a free parameter.
Given the success of such models, our theoretical focus in this arti-
cle was to try to characterize the processes involved in the compu-
tation of drift, and to characterize how drift processes and decision
processes are coupled. The phenomenology of the dynamic noise
task provides compelling grounds for assuming that noise affects
the time course of perceptual processing. This makes the task an
ideal test-bed for investigating the coupling of perceptual and de-
cision processes.

Both of our models for the dynamic noise task are generaliza-
tions of the time-homogeneous Wiener diffusion model of Ratcliff
(1978), which has been successfully applied to many experimental
tasks (e.g. Ratcliff & Smith, 2004). Our focus has been on the shifts
in the RT distributions produced by noise, and the associated pat-
tern of fast errors in some conditions. Both of our models assume
that noise delays evidence accumulation by a decision process un-
til after a stable stimulus representation has formed. In charac-
terizing performance in this way—as comprising distinct stimulus
encoding and decision-making stages—we are implicitly rejecting
single-stage models, which assume that decisions are made simply
by summing successive, noisy stimulus states. Single-stage mod-
els have provided successful accounts of performance in expanded
judgment tasks, in which people are required to make decisions
about the statistical properties of a stream of discrete stimulus el-
ements (Smith & Vickers, 1989), but they do not predict shifts in
RT distributions with changes in stimulus discriminability, and so
do not appear to be appropriate models for the dynamic noise task.
The focus of our theoretical work has therefore been to try to char-
acterize how the onset of evidence accumulation could be adap-
tively coupled to the stimulus encoding process.

The first of our models was based on the integrated system
model of Smith and Ratcliff (2009). The key assumption of this
model is that the rate of evidence accumulation depends on a
time-dependent diffusion coefficient, whose temporal properties
depend on attention gain and on the perceptual saliency of the
stimulus. Reducing saliency, assumed to occur under conditions of
high noise, slows the growth of the stimulus representation and
is accompanied by a corresponding slowing of the growth of the
diffusion coefficient. The second model was a release from inhibi-
tion model. Release from inhibition is an important mechanism for
action selection by the basal ganglia, which have a central role in
decision-making (Berns & Sejnowski, 1996), so the proposed mech-
anism is a physiologically plausible one. The key assumption of the
release from inhibition model was that inhibition modulates the
decay coefficient in an OU diffusion model. We considered two ver-
sions of this model: a progressive release model and an all-or-none
model, in which inhibition is released when the emerging stimulus
representation reaches a threshold value.

Both the integrated system model and the progressive release
from inhibition model provided satisfactory accounts of the RT dis-
tributions and choice probabilities in the dynamic noise task. In
particular, the models accurately characterized the leading edge
effect in the RT distributions and the fast errors in the speed con-
dition. The integrated system model requires the assumption of an
additional source of stimulus-independent diffusive noise to pre-
dict fast errors; the release from inhibition model naturally pre-
dicts fasts errors because of the dynamics of the decision process.
The integrated system model is somewhat more parsimonious in
the number of free parameters it requires, but the parsimony of the
release from inhibition model could be improved by augmenting it
with a process model of the release times in Fig. 6c.
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We conclude that both models provide satisfactory accounts
of the dynamic noise data. Although we have not been able to
distinguish between these models empirically, we see the value
of our work is that it illuminates the relationship between the
evidence accumulation process of decision-making and the early
sensory and memory processes involved in the computation of the
evidence. We have shown, in particular, that the integrated system
model, which was developed to account for performance in a quite
different domain, also successfully predicts performance in the
dynamic noise task. In addition, we have shown that release from
inhibition, which is a known physiological process, leads to a well-
behaved decision model that successfully predicts performance at
the detailed level of choice probabilities and RT distributions.

One question on which our work is silent is why a leading edge
effect is found only in some dynamic noise tasks. Specifically, the
effect is found only in tasks in which features such as letters, bars,
or Gabor patches are presented in dynamic noise. It is increased
by changing the task to a letter versus digit discrimination that
maximizes featural uncertainty (Ratcliff & Smith, 2010), but it
is not found in a brightness discrimination task in which there
are no stimulus features to be encoded. Our hypothesis is that
the stimulus attributes used in these different judgments may
be carried by different cortical systems, with different temporal
integration properties. Specifically, the feature information used
in the letter discrimination task may be carried by a perceptually
sustained system, with a long temporal integration time, whereas
the information used in the brightness discrimination task may
be carried by a perceptually transient system, with a short
temporal integration time (Smith, 1995, 1998). According to this
hypothesis, dynamic noise produces no shift in the leading edge
of the RT distribution in brightness discrimination because the
perceptual system that encodes brightness is only able to integrate
information over a short time scale, so no improvement in the
fidelity of the stimulus representation is obtained by delaying the
decision process for longer.

Our general conclusion is that models like the ones we have in-
troduced here are likely to be required for any task in which the
process of formation a perceptual representation of the stimulus
is extended in time and varies as a function of stimulus discrim-
inability. The standard model of Eqs. (1) and (2) assumes that the
stimulus information encoded in the drift becomes available all
at once after a variable time delay. This is clearly an idealization,
but it is one that comes reasonably close to reality whenever per-
ception (as distinct from stimulus identification) is rapid. Most of
the tasks to which diffusion models have been successfully applied
have used suprathreshold stimuli, which are perceived rapidly, but
which take varying amounts of time to identify or to discriminate.
For such tasks, the additive decomposition of decision and non-
decision processes, combined with a constant drift diffusion model,
provides a good approximation to the dynamics of performance.
Two situations that we are aware of in which this model fails are
the external noise task, investigated here, and the task investigated
by Gould et al. (2007), in which very low contrast grating patches
were presented directly against a uniform field. Conceivably, un-
der conditions of very low contrast, noise in the visual system may
act in a similar way to external noise in the dynamic noise task, to
delay the formation of a perceptual representation of the stimulus
and to produce a leading-edge effect.

9. Coda

As mathematical psychologists working today we often tend to
take for granted the idea that psychological processes can be char-
acterized mathematically. We are comfortable that our program—
of developing psychological explanations for behavior, expressing
them in mathematical form, and then testing the resulting model

against empirical data—is a meaningful one. It is therefore easy to
forget that when William Estes and others created mathematical
psychology in the 1950s it was by no means obvious that any of this
was the case. The theory and practice of experimental psychology
in the 1950s had a distinctly anti-quantitative cast, and Estes’ pro-
gram was very far from behaviorist orthodoxy. The success of his
program was, first and foremost, a profound demonstration of the
value of a mathematical theory of behavior. It was a demonstration
that, as in other sciences, psychological phenomena are amenable
to, and can greatly benefit from, mathematical analysis. His legacy
to subsequent generations is no less than this and, accordingly, it
is difficult to overstate its importance.
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Appendix A. Experimental methods
A.1. Letter discrimination in dynamic noise

A.1.1. Stimuli

Participants were presented with one of two noise-degraded
capital letters and made a choice between the two. The letters
were 0.85° high and 0.6°-1.1° wide, presented in white on a black
64 x 64 pixel background subtending 3.0° x 3.0° of visual angle.
The letters were degraded by randomly inverting the contrast
polarity of a proportion of pixels in the letter and the background
in each 16.7 ms frame of the display. Letters were presented at
the center of the random array and remained present until the
response. Participants responded with the/key for the right-hand
letter choice and with the Z key for the left-hand letter choice. The
same two letters were used for a block of trials; these were then
replaced with another letter pair for the next block. Each pair of
letters was reused in a later block, but with the mapping of the
letters to the left and right hands reversed. The letter pairs were FQ,
PL, WK, TX, GR, and BN. To indicate the mapping between letters
and response keys, two letters corresponding to the two choices
were displayed on the left and right sides of the screen (left letter
for the Z and right letter for the/key) and remained on the screen
throughout the block of trials.

The experiments were run by a real-time Linux system on
Pentium 4 class computers. Stimuli were presented on Dell
Ultrascan 0780 CRT monitors with 17 in. (43.18 cm) viewing areas.
Participants viewed the stimuli at a distance of 57 cm; at this
distance, 1 cm on the screen subtended 1° of visual angle.

A.1.2. Participants

Twenty undergraduate students from the Ohio State University
each participated in two experimental sessions. In each session,
they performed 12 blocks, each of 100 experimental trials, with
speed and accuracy instructions alternating in consecutive blocks.

A.1.3. Procedure

Each trial began with a fixation point in the center of the
screen, displayed for 500 ms, then the target letter was displayed
in dynamic noise. The onset of the noise and the onset of the
stimulus coincided. Participants were instructed to press the | key
on the keyboard if the right-hand letter was presented and the Z
key if the left-hand letter was presented. There were five levels
of discriminability produced by inverting 0.35, 0.40, 0.425, 0.45,
0.475 of the pixels in each consecutive frame of the display. In
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speed blocks, participants were instructed to respond as quickly
as possible; in accuracy blocks they were instructed to make as
few errors as possible. In speed blocks, responses longer than
800 ms were followed by a “TOO SLOW” message; in accuracy
blocks, an “ERROR” message was given for error responses. After
slow responses in the speed condition and error responses in
the accuracy condition, a 300 ms time penalty was given before
proceeding to the next trial.

A.1.4. Data screening

Responses faster than 300 ms and slower than 3000 ms were
excluded from the analysis. There were 2026 such responses, or
4% of trials. Correct responses to left-hand letter stimuli were
pooled with correct responses to right-hand stimuli for each level
of discriminability. Error responses were combined in a similar
way. Quantile RTs were computed from the pooled RTs for correct
responses and errors and averaged over participants to obtain the
data in Fig. 1.

A.2. Bars in dynamic noise

Participants were presented with three, parallel, vertical or
horizontal white bars on a black background and discriminated
their orientations via a keypress response. The bars were 40 pixels
long and 4 pixels wide and had an inter-center spacing of 14 pixels.
Viewed from 57 cm, the length, width, and spacing of the bars
subtended 2.0°,0.2° wide and 0.7° of visual angle, respectively. The
stimuli were degraded by randomly inverting the contrast polarity
of some proportion of the pixels in the bars and background in each
16.7 ms frame of the display. On half of the trials, the proportion
of inverted pixels was less than 50%, producing the appearance
of light bars on a dark background. On the other half of the trials
the proportion of inverted pixels was greater than 50%, producing
the appearance of dark bars on a light background. On light bar
trials, the proportion of inverted pixels was 0.35, 0.43, 0.46, or
0.475; on dark bar trials, it was 0.65, 0.57, 0.54, or 0.525. Because
stimuli in which the proportions of inverted pixels are 7 and
1 — 7 have the same contrast, this resulted in four discriminability
conditions in which stimuli had the same contrast magnitude but
opposite contrast polarity. We pooled across contrast polarity and
bar orientation in the data analysis. All other details of apparatus,
participants, procedure, and data screening were the same as in the
letter discrimination task, except that participants completed only
one experimental session and trials were not blocked according to
speed and accuracy instructions.

A.3. Gabor patches in dynamic noise

Participants were presented with circularly-symmetrical, sine-
phase, Gabor patches with horizontal or vertical sinusoidal carriers
and discriminated the carrier orientation via a keypress response.
The mathematical form of the stimuli was as given by (Graham,
1989, p. 53). The sinusoidal carrier had a period of 8 pixels;
the Gaussian envelope had a space constant (full width at half
height) of 20 pixels. Viewed from 57 cm, the spatial frequency
of the sinusoid was 2.5 cycles/deg and the width of the Gaussian
envelope was 1.0°. The peak contrast of the stimuli was 0.20. The
stimuli were degraded by replacing 0.35, 0.50, 0.65, or 0.80 of the
pixels in the display with uniformly-distributed grayscale noise
pixels. The noise had a mean equal to the mean luminance of
the display and a range of +50%. The location and the contrast
of the noise pixels was chosen randomly in each consecutive
16.7 ms frame of the display. We pooled across orientations within
discriminability levels in the data analysis. All other details of
apparatus, participants, procedure, and data screening were the
same as for the bars task.

Appendix B. Transformation of a diffusion to a standard
Brownian motion process

Theorem (Ricciardi & Sato, 1983; see also Smith, 2000, p. 442). Let
X(t) be a diffusion process with drift u(x, t) and diffusion coefficient
o2 (x, t) satisfying the stochastic differential equation

dX(t) = p(x, t)dt + o (x, t) dW(t).

Let o (x,t) = (3/0x)0%(x, t) and o (x,t) = (9/dt)a>(x, t) be
the first partial derivatives of the diffusion coefficient with respect to
its state and time coordinates, respectively. If there exists a pair of
functions, c{(t) and c,(t), such that

(B.1)

o (x0)
pux, t) = T
o(x t) * ()0 (y, t) + o (v, t)
+ 7 [q(r) +f Loyt 62)

then there exists a coordinate transformation, X (t) — X*(t*) of the
form

x*=W(x,t)
t* = @(t),

(B.3)
(B.4)

such that X*(t*) = B(t*) is a standard Brownian motion. If it exists,
this transformation is of the form

t X
x* = U(x, t) =exp [—%f cz(s)ds}/ a(c}l/yt)

_ %/ ¢1(5) exp [—; /Scz(z)dz] ds (B5)
t"=@(t) = f exp [— /s cz(z)dz] ds, (B.6)

where ty is the starting time of the process.

For the special case in which the drift may depend on time and
state, and the diffusion coefficient may depend on time, but is in-
dependent of state, the condition in Eq. (B.2) takes the simpler form

o(t)

B X o? ()
n(x, t) = Tcl(f) + 5 |:C2(f) + o2(0) i| .

(B.7)

B.1. The integrated system model

For the integrated system model of Eq. (3), the drift is v(t)
and the infinitesimal standard deviation is o /v (t). The unknown
functions c¢q(t) and c,(t) in the coordinate transformation
therefore satisfy the relationship

© aA/v(t) o + X o+ V' (t)
= C — | C .
Y 2 W@ ()
Equating coefficients on the left and right yields
2/v(t)
() =
o
v'(t)
t) = — .
. () ()

Evaluating the exponentiated integral terms in Egs. (B.5) and (B.6)
yields

t
exp [—;f C2(s) ds] =/ v(t)
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and

t
exp [—/ c(s) ds] =v(t).

We substitute these values in Egs. (B.5) and (B.6) to obtain

x 1 [t
X'=— - —/ v(s) ds (B.8)
o o
t
t* :/ v(s) ds. (B.9)
to

This is the transformation in Eqs. (14) and (15) and shown in Fig. 2,
for initial condition tg = 0.

B.2. The release from inhibition model

The drift and infinitesimal standard deviation of the release
from inhibition model are w(x, t) = v(t) — A(t)xand o (x, t) = o,
respectively. The unknown functions in the transformation to the
Wiener process therefore satisfy Eq. (B.7) in the form

c(t)x
2 9

v(t) — A(x = %a ) +

because the term 0% (t) vanishes. Equating coefficients yields
2v(t)

ci(t) =
Co(t) = —2A(t).

Evaluating the exponentiated integral terms in Eqs. (B.5) and (B.6)
yields

t t
exp |:—; / c(s) ds} = exp [[ A(S) ds}

and

exp [_ /[62(5) ds] = exp [Z/IA(S) ds] .

We substitute these values into Egs. (B.5) and (B.6) to obtain the
transformation

t t s
X = l {xexp [/ A(s) ds] —/ v(s) exp [/ A(2) dz]} (B.10)
o
= /texp [2 /Sk(z) dz:| ds.

This is the transformation in Eqs. (16) and (17) and shown in Fig. 3.

*

-
*

(B.11)

Appendix C. The integrated system model

The integrated system model is defined by a set of equations
that characterize the time course of each of its subprocesses. These
equations describe the amplitude and duration of the sensory
response function, w(t), the growth of the VSTM trace, v(t), the
attention gain function, y (t), and the accumulation of evidence by
the decision process, X (t).

The sensory response to a stimulus of duration d is of the form

u(t) = I'(t; fon, M1 — I'(t — d; Borr, M1, (C1)

where I'(t; B, n) is the output of a linear filter composed of n
identical exponential stages,

n—1 i
rapm=1-—ey" ®y

. (€2)
i

The quantities B,, and B, are time constants that determine
the onset (rise) and offset (decay) time of the filter response.
For response-terminated stimuli like those used by Ratcliff and
Smith (2010), there is no stimulus offset term and . (t) reduces to
Eq. (C.2) with 8 = Bon.

The amplitude of the sensory response is a function of the con-
trast of the stimulus, which we write for convenience as a Michel-
son contrast, A;/ X}, where A is the luminance difference between
the stimulus and the background and X is the luminance sum. In
tasks with near-threshold stimuli, the amplitude of the contrast re-
sponse, denoted I, is a Naka-Rushton function of the form

o yzy A
(A/Z)P+10s A7 +1n

In this equation, the exponent p characterizes the nonlinearity of
contrast transduction in the early visual system and Iy 5 is a so-
called semi-saturation constant that specifies the value of contrast
at which the function attains 50% of its maximum value of 1.0. In
the expression on the right, the sum X, has been absorbed into a
general divisive inhibition term, [, by writing I;;, = (Ip5 X})”. As
described in the text, we characterize the stimulus information us-
ing a value of contrast equal to 1 — 277, where 7 is the proportion
of inverted pixels in the letter and the background. We found that
our data were well fitted by a model with p = 2 (contrast energy
scaling). This is consistent with the results of physiological studies
of visual contrast sensitivity (Boynton, 2005).

VSTM trace formation is described by an excitatory-inhibitory
shunting equation

(C3)

dv

PR {Tu@®O —v©)]— A= Du®ve)}. (C4)
The excitatory and inhibitory coefficients in this equation, I and
1 — I respectively, represent a form of balanced center-surround
interaction.

The constant 6 determines the scaling of VSTM trace strength;
the function y, is a rate function that determines the rate at which
stimulus information is transferred to VSTM. As described in the
text, the rate is assumed to depend jointly on attention gain and
stimulus saliency. The solution to Eq. (C.4) is

v(t) =061 {1 — exp |:—y/ w(s) ds“ . (C5)
0

This equation states that the VSTM trace grows to an asymptote
that is proportional to the (transduced) stimulus intensity, I,
where the constant of proportionality is the VSTM trace scaling
parameter, 6. The drift of the diffusion process, X(t), in Eq. (3) is
assumed to be equal to the VSTM trace strength, v(t).
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