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Recognition memory z-transformed Receiver Operating Characteristic (zROC) functions have
a slope less than 1. One way to accommodate this finding is to assume that memory evidence
is more variable for studied (old) items than non-studied (new) items. This assumption has
been implemented in signal detection models, but this approach cannot accommodate the
time course of decision making. We tested the unequal-variance assumption by fitting the
diffusion model to accuracy and response time (RT) distributions from nine old/new recog-
nition data sets comprising previously-published data from 376 participants. The g param-
eter in the diffusion model measures between-trial variability in evidence based on
accuracy and the RT distributions for correct and error responses. In fits to nine data sets, g
estimates were higher for targets than lures in all cases, and fitting results rejected an
equal-variance version of the model in favor of an unequal-variance version. Parameter
recovery simulations showed that the variability differences were not produced by biased
estimation of the g parameter. Estimates of the other model parameters were largely consis-
tent between the equal- and unequal-variance versions of the model. Our results provide
independent support for the unequal-variance assumption without using zROC data.

� 2013 Elsevier Inc. All rights reserved.
Introduction

Recognition memory involves deciding whether or not a
given item was previously encountered in a particular con-
text, such as whether a particular word was in a study list.
In a standard recognition experiment, participants are
asked to respond ‘‘old’’ for words that they studied
(targets) and ‘‘new’’ for words that they did not (lures).
Theorists agree that recognition judgments can be influ-
enced by various types of information (e.g., Johnson,
Hashtroudi, & Lindsay, 1993), and a popular assumption
is that recognition decisions are based on a single overall
strength value derived by combining all of these types of
evidence (Ratcliff, 1978; Wixted, 2007). This univariate ap-
proach has been implemented in signal detection models
that are used to fit receiver-operating characteristic
(ROC) functions, which are plots that show the relative
change in correct versus incorrect responding over a num-
ber of levels of response bias (Egan, 1958). The points on an
ROC function are often converted to z-scores, yielding a
zROC function.

Recognition memory zROC functions have a slope less
than one, and this result has been replicated in dozens of
experiments (for reviews see Wixted, 2007; Yonelinas &
Parks, 2007). Researchers have accommodated this pattern
by assuming that evidence strength is more variable for
targets than for lures (Egan, 1958). Some have suggested
that this is an unjustified and ad hoc assumption (DeCarlo,
2002; Koen & Yonelinas, 2010), although many process
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models of recognition memory do produce unequal-vari-
ance distributions (Gillund & Shiffrin, 1984; Hintzman,
1986; McClelland & Chappell, 1998; Ratcliff, Sheu, &
Gronlund, 1992; Shiffrin & Steyvers, 1997). Moreover, the
unequal-variance assumption has been justified by noting
that some targets will be learned more effectively than oth-
ers, introducing an extra source of variability for these items
(e.g., Wixted, 2007). Although this seems like a compelling
argument for unequal variance, the learning-variability ac-
count remains controversial (e.g., Koen & Yonelinas, 2010).

Our goal was to test the unequal-variance assumption
using response time (RT) data. We achieved this by fitting
the diffusion model to accuracy and RT distributions from
recognition memory experiments (Ratcliff, 1978). This
model is capable of estimating between-trial variability
in memory evidence (as explained in detail shortly), and
we will take advantage of this property to test for unequal
variances without relying on ROC data. If the unequal-var-
iance assumption is valid, then diffusion model estimates
should indicate that memory evidence is more variable
for targets than for lures.

The diffusion model

The diffusion model has been successfully applied to
accuracy and RT data across a wide variety of two-choice
decision tasks (for reviews, see Ratcliff & McKoon, 2008;
Wagenmakers, 2009). The model assumes that evidence
is sampled from a stimulus over time, and the decision ma-
ker accumulates evidence from these samples until one of
Fig. 1. The diffusion model for two-choice responding (this Figure was first
distributions of drift rates across test trials for both targets (mean = vT) and lures
each trial is determined by the distance from the drift criterion to a value sampl
panel shows three examples of accumulation paths for a trial with the displayed d
with mean z and range sZ. Paths terminating on the top and bottom boundaries
the two response alternatives is sufficiently supported. As
shown in Fig. 1, this process is modeled by establishing
two response boundaries for each alternative response,
such as ‘‘old’’ versus ‘‘new’’ in a recognition task. The dis-
tance between the boundaries (a) represents response cau-
tion, with wide boundaries indicating that a great deal of
evidence must accumulate before a decision is made. The
evidence accumulation process begins at a starting point
z between these two boundaries and approaches one
boundary or the other with an average drift rate v. The
starting point represents response biases (for example,
moving it closer to the top boundary would produce a bias
toward ‘‘old’’ responses) and the drift rate represents the
strength of evidence from the stimulus. Drift rate varies
from moment to moment within a trial to reflect variabil-
ity in evidence samples, and the standard deviation (SD) of
this variation is treated as scaling parameter, s. Following
convention, we set s to .1 in all experimental conditions
(although it is actually only necessary to fix s in a single
condition; Donkin, Brown, & Healthcote, 2009). The accu-
mulation process continues until it reaches one of the
boundaries, at which point the corresponding response is
made. An additional non-decision time (Ter) is added to
the duration of the accumulation process to produce the
total time for the trial. Ter absorbs the time for processes
like constructing a memory probe for the test word and
pressing the response key after a decision has been made.

The model includes across-trial variability in all of the
major parameters, and this variability is critical for match-
ing empirical data (Ratcliff & McKoon, 2008; Ratcliff, Van
presented by Starns, Ratcliff and McKoon, 2012). The top panel shows
(mean = vL). The vertical line is the drift criterion (dc), and the drift rate on
ed from the drift distribution, as shown with the dashed line. The bottom
rift rate. The starting point of accumulation follows a uniform distribution
produce ‘‘old’’ and ‘‘new’’ responses, respectively.



Fig. 2. Effects of the g parameter on accuracy and RT distributions. Panel
1 shows how increasing g affects accuracy when other parameters are
held constant. Panel 2 shows predicted response time (RT) distributions
for correct responses (top) and errors (bottom) with either a low (.1) or
high (.2) value of the g parameter. The .1, .5, and .9 RT quantiles are
labeled on each plot. Accuracy was manipulated by varying the drift rate
over a range from 0 to .4. Values of the other parameters were a = .12,
z = .06, sZ = .02, Ter = 400 ms, sT = 150 ms, pO = .001.

1 See Ratcliff (1978, p. 95) for how to interpret the relationship between
within-trial and between-trial variability.
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Zandt, & McKoon, 1999). Starting point and non-decision
time have uniform distributions across trials with ranges
sZ and sT, respectively. Most importantly for our purposes,
drift rates also vary across trials; for example, some old
items are particularly well-learned and produce high posi-
tive drift rates, whereas other old items are poorly learned
and produce lower positive drift rates or even negative
drift rates. The Gaussian distributions in Fig. 1 show the
between-trial variation in drift, and the SD of these drift
distributions is estimated with the parameter g. The drift
criterion is a subject-controlled parameter representing
how strong memory evidence needs to be for the accumu-
lation process to move toward the top boundary. The drift
rate for each trial is determined by the distance between
the drift criterion and a value sampled from the drift distri-
bution, with negative drifts for values below the criterion
and positive drifts for values above it.

Nearly all previous applications of the diffusion model
have used a fixedg parameter across all stimulus types, even
for recognition memory experiments (Criss, 2010; Ratcliff,
Thapar, & McKoon, 2004, 2010; Starns, Ratcliff, & McKoon,
2012). In other words, previous RT modeling efforts assume
that memory evidence is equally variable for targets and
lures. Fixing the g parameter is partially motivated by the
fact that this parameter has high estimation variability (Rat-
cliff & Tuerlinckx, 2002). Starns, Ratcliff, and McKoon (2012)
fit the diffusion model to zROC data from a two-choice task
with a bias manipulation, and a model with higher g values
for targets than for lures out-performed an equal-variance
version of the model. However, the main failure of the
equal-variance version was that it could not accommodate
the zROC slopes. Our goal here is to determine if the un-
equal-variance assumption is supported independently of
zROC data. Accordingly, we focused on two-choice experi-
ments without bias manipulations, meaning that g esti-
mates were based solely on accuracy and the RT
distributions for correct and error responses.

Evidence variability and RT distributions

Fig. 2 demonstrates the impact of evidence variability on
accuracy and RT predictions. The first panel shows that
increasing drift variability (g) decreases accuracy if all of
the other parameters are held constant. This effect is intui-
tive: adding noise to memory evidence should degrade per-
formance. However, the effect of g on accuracy does not
actually help to estimate unique values of the parameter
in fits, because the other parameter values are not held con-
stant (i.e., they are simultaneously being optimized to fit the
data). Specifically, any condition with a free g value in fits of
the model will also have a free parameter for the average
drift rate (v), and this parameter can be adjusted to match
the accuracy level regardless of the g value. For example, if
g is increased, v can also be increased to cancel out the drop
in accuracy. Fortunately, different combinations of g and v
produce different RT distributions even when they produce
the same accuracy value, and this is why unique values of g
can potentially be recovered from fits.

The second panel of Fig. 2 shows how different values of
g affect RT distributions at a given accuracy level. The solid
lines show predictions with a low value of g (.10) and the
dashed lines show a higher value of g (.20).1 Predictions are
shown over a range of average drift rates (v) from 0 to .4,
which represents evidence for target items ranging from
no memory to very strong memory. RT predictions are
shown for both correct responses (processes that terminate
on the ‘‘studied’’ boundary) and errors (processes that termi-
nate on the ‘‘not studied’’ boundary). The three groups of
lines on each plot are the .1, .5, and .9 quantiles of the pre-
dicted RT distributions; that is, the points in time at which
10%, 50%, or 90% of the responses have already been made.
The .1 quantile shows the leading edge of the distribution;
that is, the point at which the fastest responses are begin-
ning to be made. The .5 quantile shows the central tendency
of the RT distribution, and the .9 quantile shows the tail of
the distribution. For correct responses, increasing evidence
variability decreases RTs. The variability effect is small for
the leading edge of the distribution, slightly larger for the
median, and larger still for the tail. For error responses, the
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effect of evidence variability depends on the overall accu-
racy level: higher g values produce faster error responses
when accuracy is low and slower error responses when
accuracy is high. In general, higher g values produce faster
correct responses relative to errors, but this pattern can only
be clearly seen for high accuracy values (Ratcliff & McKoon,
2008).

Fig. 2 illustrates several important points. First, the fig-
ure illustrates that the model should be able to correctly
recover g values from RT distributions, but estimation of
this parameter could be quite noisy given its subtle effects
on the data and the inherent variability in empirical RT dis-
tributions (especially for low-probability responses such as
errors in high-accuracy conditions). Thus, many observa-
tions are needed to validly assess the unequal-variance
assumption. Second, one might be tempted to conclude
that RT distributions support an equal-variance model, gi-
ven that many data sets have been successfully fit with a
single g parameter for targets and lures. However, Fig. 2 re-
veals that the misses resulting from imposing an equal-
variance model on unequal-variance data would be subtle
and could easily go unnoticed. The largest differences are
for the tails of the distributions (.9 quantiles), but these
are usually highly variable in empirical data (Ratcliff &
McKoon, 2008). Moreover, the figure shows an exaggerated
difference in g values, with g doubling from the
low-variance to the high-variance predictions. When an
equal-variance model is fit to data with a higher g for targets
than lures, the single g value estimated by the model can
compromise between the two item types. For example, if
the target g was .2 and the lure g was .1, then the equal-
variance model could estimate g to be .15. Moreover, the
other model parameters could partially compensate for the
misses produced by misspecifying g. So the actual misses
might be considerably smaller than those shown in Fig. 2.

To explore differences in g values, we considered 15
separate experiments that have been previously published
with the equal-variance version of the diffusion model. We
re-fit the data from each participant using free g parame-
ters for targets and lures. If the unequal-variance assump-
tion is valid, then the fits should show higher g values for
targets than for lures. We also assessed the consistency in
parameter estimates between the equal- and unequal-var-
iance versions of the model. If recognition memory truly
reflects an unequal-variance process, then we must ensure
that the general conclusions of past studies using an equal-
variance model are valid.

Recovery simulations

Given that the g parameter is estimated based on subtle
aspects of the data, we performed parameter recovery sim-
ulations to ensure that our data sets were appropriate for
estimating evidence variability (Ratcliff & Tuerlinckx,
2002). These simulations are reported after the fits to
empirical data. For each participant in each data set, we
repeatedly generated new data by simulating the diffusion
process with the participant’s best fitting equal-variance
parameters. We fit all of the simulated data sets using a
model that had free g parameters for targets and lures,
and we evaluated the deviation between the fitted g values
and the g values used to generate the data. Critically, this
analysis can reveal any potential estimation biases that
produce apparent differences in g values between targets
and lures even for data that were actually generated from
an equal-variance model.

We also performed model recovery simulations to
determine whether the data provided stronger support
for an equal- or unequal-variance model (Wagenmakers,
Ratcliff, Gomez, & Iverson, 2004). In these simulations, data
sets were generated from both models, and we evaluated
the proportion of data sets that supported the unequal-
variance model according to both the Akaike Information
Criterion (AIC; Akaike, 1973) and the Bayesian Information
Criterion (BIC; Schwarz, 1978). The results should show
that the unequal-variance model is preferred more often
for the data sets generated from the unequal-variance
model than for the data sets generated from the equal-var-
iance model. If target evidence is truly more variable than
lure evidence, then the AIC and BIC results for the empiri-
cal data should be similar to the data sets simulated from
the unequal-variance model.

Method

Data sets
Table 1 provides information about all of the data sets

that we consider. When a study had multiple experiments
with the same design, we combined participants from all of
the experiments into a single data set. The data sets are
quite disparate, ranging from experiments with only two
conditions and a little over 100 observations for each par-
ticipant to experiments with 18 conditions and over 1000
observations from each participant.

Fitting methods
Fits to empirical data. We used the v2 fitting method de-

scribed by Ratcliff and Tuerlinckx (2002) because it pro-
duces accurate parameter recovery and is robust to
outliers in the data. Parameters were optimized using the
SIMPLEX routine (Nelder & Mead, 1965). Appendix A lists
the free parameters for each fit. Here, we simply describe
the principles that we followed in assigning parameters
to conditions. For all of the fits, a separate drift rate (v)
parameter was fit for each level of any variable that could
impact memory evidence, including item type, strength,
and word frequency (see Table 1). When strong and weak
targets appeared on separate tests, we allowed the drift
rate for lures to vary between the two strength conditions
(Criss, 2010; Starns, Ratcliff, & White, 2012). This includes
all experiments in Table 1 for which ‘‘list strength’’ is listed
as a variable. When strong and weak targets were mixed
into the same test list, the model included only a single
lure drift rate. This includes all of the experiments for
which the ‘‘item type’’ variable has the levels ‘‘strong tar-
get,’’ ‘‘weak target,’’ and ‘‘lure.’’ We fit separate boundary
(a) and starting point (z) parameters for any conditions
that varied across test lists (e.g., speed-emphasis versus
accuracy-emphasis tests), but we fit a single boundary
and starting point for any conditions that were mixed into
a single test list (e.g., high and low frequency words). The
range of starting point variability (sZ) was fixed across all



Table 1
Data sets used in the fits.

Data set Source N Obs. Con. Variables

1 Criss (2010) Ex. 1 14 983.7 4 Item type (target, lure); target proportion (30%, 70%)
2 Criss (2010) Ex. 2 16 1520.3 8 Item type (target, lure); list strength (strong, weak);

word frequency (high, low)
3 SRW (2012) Mixed and Pure-Within 98 208.9 4 Item type (target, lure); List strength (strong, weak)
4 SRW (2012) Weak Pure-Between 41 118.9 2 Item type (target, lure)
5 SRW (2012) Strong Pure-Between 43 118.1 2 Item type (target, lure)
6 RTM (2004) Young 39 1357.3 18 Item type (weak target, strong target, lure); word frequency

(high, low, very low); Speed versus accuracy emphasis
7 RTM (2004) Older 41 1766.8 18 (Same as above)
8 RTM (2010) Young 43 794.6 6 Item type (weak target, strong target, lure); word frequency (high, low)
9 RTM (2010) Older 41 795.0 6 (Same as above)

Notes: N = number of subjects; Obs. = average number of observations for each subject; Con. = number of conditions; SRW = Starns, Ratcliff, and White;
RTM = Ratcliff, Thapar, and McKoon. Some subjects reported in the original papers were removed due to chance performance, including five subjects in Data
Set 1, two from Data Set 8, and one from Data Set 9. An additional participant was removed from Data Set 9 because they had no errors for lure items in any
condition (making it impossible to define the RT distributions).
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conditions for every data set. The non-decision time mean
(Ter) and range (sT) were also fixed across conditions, ex-
cept for the speed- versus accuracy-emphasis blocks in
Data Sets 6 and 7.

We placed upper and lower limits on some of the param-
eter values in the SIMPLEX fitting routines. g values were
constrained to be between .02 and .4 to avoid failures in
the numerical integration routines used by the fitting pro-
gram. The proportion of estimates truncated as these
boundaries ranged from 0% to around 30% across data sets,
and we discuss this further in the results section. We set
an upper limit of .32 for the boundary width parameter
(a), and this affected .3% of the boundary estimates. The code
that implements the prediction equations also fails when
the range of starting point variability (sZ) is zero, so we set
a lower limit that was near zero for this parameter (.001).
Starting point variability was generally low (M = .022), and
11% of the estimates were truncated at the lower boundary.
Finally, the proportion of trials with RT contaminants could
not go below zero, and a large number of the estimates were
at this lower limit (53%). This reflects the fact that the
contaminant parameter was consistently very low
(mean = .0008 across all data sets). The contaminant param-
eter measures the proportion of trials with RT delays result-
ing from distraction (see Ratcliff & Tuerlinckx, 2002), and
the extremely low values indicate that this kind of contam-
ination had almost no influence on the data.

For our initial analyses, we fit each data set with two
model versions: an equal-variance version in which there
was a single g parameter across all conditions, and an
unequal-variance version in which there was one g
parameter for all target conditions and a separate g param-
eter for all lure conditions. We did not attempt to estimate
different g values for different types of targets and lures
(e.g., high and low frequency). We also report secondary
analyses that addressed how variability is affected by var-
ious independent variables. Given that g estimates rely on
very subtle aspects of the data (Fig. 2), the secondary anal-
yses were restricted to data sets with a high number of
observations per condition (Data Sets 1–2 and 6–9).

Data Set 1 included a bias manipulation with two lev-
els (tests were either 30% or 70% targets), so results from
this study could be used to form a 2-point ROC function.
Our goal was to estimate evidence variability from RT dis-
tributions independent of ROC data, so we performed sep-
arate fits to the 30% and 70% conditions. In each fit, only
the RT distributions constrained the estimation of differ-
ent g values. To get each participant’s overall g estimate
for targets and lures, we averaged the estimates from
the two fits. When we compared fit statistics between
the equal- and unequal-variance models for this data
set, we only considered fits to the 70% condition. This
was the conservative choice in terms of detecting vari-
ability differences, because the 70% fits showed a smaller
difference between the target and lure g values than the
30% fits.

Parameter recovery simulations. For the parameter
recovery simulations, we simulated data from an equal-
variance diffusion model and then fit this data with an
unequal-variance diffusion model. We generated data
from each participant’s best-fitting equal-variance param-
eter values, and the number of simulated trials was ad-
justed to match the actual number of observations from
each participant. Doing this for every participant in a data
set produced one simulated experiment. We generated 20
simulated experiments for each data set except for Data
Sets 1 and 2. For these, we generated 50 simulated exper-
iments because these data sets included a relatively low
number of participants. All told, the recovery simulations
involved 8420 fits. In addition to the parameter-recovery
simulations, we performed model-recovery simulations to
define how often AIC and BIC selected the unequal-vari-
ance model when data were generated from an equal-
versus an unequal-variance process. For data simulated
with unequal variance, we first fit each participant’s data
with a model in which the lure g was constrained to be .6
of the target g. We chose .6 because this was the approx-
imate lure/target ratio needed to fit the diffusion model
to joint RT and ROC data in Starns, Ratcliff, and McKoon
(2012). We generated one simulated data set using each
participant’s unequal-variance parameters and another
using the equal-variance parameters, and we fit both sim-
ulated data sets with both equal- and unequal-variance
versions of the diffusion model.



Table 2
Mean v2 values across all data sets.

Data set Model version

Equal variance Unequal variance

df v2 df v2

1 13 27.1 12 23.4
2 67 120.8 66 110.8
3 31 40.4 30 37.4
4 13 20.9 12 18.8
5 13 17.3 12 16.3
6 179 386.8 178 368.2
7 179 335.3 178 317.8
8 53 94.8 52 85.1
9 53 87.1 52 79.4

Note: The degrees of freedom (df) for each fit are the degrees of freedom in
the data minus the number of free parameters in the model.

Table 3
Eta (g) estimates across the different list conditions in Data Set 2.

List condition Item type

Target Lure

High-frequency weak .24 .15
Low-frequency weak .29 .15
High-frequency strong .27 .18
Low-frequency strong .26 .16

Note: Standard errors ranged from .021 to .032.
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Results

Variability results
Fig. 3 shows the difference between the target and lure

g values for each data set along with 95% confidence inter-
vals. The squares show the results from the equal-variance
parameter recovery simulations. For every data set, g val-
ues were higher for targets than lures, and the difference
was significant by a paired-samples t-test (i.e., none
the confidence intervals include zero). Moreover, none of
the confidence intervals overlap the simulation results,
so the empirical g values are not consistent with estimates
produced by fitting equal-variance data.

For the equal-variance simulations, the difference be-
tween the target and lure g estimates was very close to zero
in all but two of the data sets. Data Sets 6 and 7 showed sub-
stantial bias to estimate higher target than lure g values.
Interestingly, these are the only two data sets that had both
speed-emphasis and accuracy-emphasis conditions, sug-
gesting that this might be a factor in the estimation bias.
Notably, the actual difference between the target and lure
g values for these two data sets was clearly larger than
what one would expect based on the estimation bias alone.

In ROC studies, target and lure variability estimates are
usually compared in terms of a ratio as opposed to a difference.
The ratios (lure g/target g) from each data set ranged from
about .4 to .7 with a mean of .54 across studies. These values
are farther below zero than the typical ratios seen when fitting
a signal-detection model to ROC data (Glanzer, Kim, Hilford, &
Adams, 1999; Ratcliff et al., 1992; Wixted, 2007). However, the
ratio is consistently more extreme in RT models, because these
models separately estimate other sources of variability (vari-
ability in accumulation and variability in decision criteria) that
affect ROC estimates of variability in memory evidence (Rat-
cliff & Starns, 2009, 2013). Starns, Ratcliff, and McKoon
(2012) found that ratios of around .6 were needed to fit ROC
data with the diffusion model. Therefore, the variability results
based on RT distributions alone are similar to the variability
assumptions needed to fit ROC data.

Fitting results
We also compared the equal- and unequal-variance

versions of the model in terms of fit. Table 2 shows the
Fig. 3. Results from fits to empirical data (Data) and data sets simulated
from an equal-variance model (EV Sim.). Error bars shows 95% confidence
intervals on the difference between target and lure g values.
mean v2 values for each data set along with the associated
degrees of freedom (df) for the fit (i.e., the df in the data
minus the number of free parameters in the model). If
the model had no systematic deviations from the data,
then the mean v2 values would be approximately equal
to the degrees of freedom. The actual v2 values were high-
er than this standard, sometimes substantially so. This is
very common for RT models, because subtle systematic
deviations between predictions and data can dramatically
inflate the v2 value, especially for data sets with a high
number of observations and many experimental condi-
tions (this is demonstrated in Ratcliff, Thapar, Gomez, &
McKoon, 2004, p. 285 and in Ratcliff & Starns, 2009, pp.
74–75). The original papers for each data set include plots
to visually display the model fit, and they all reported a
close match between theory and data (Criss, 2010; Ratcliff
et al., 2004, 2010; Starns, Ratcliff, & White, 2012). Other
decision tasks also show a pattern in which v2 values are
substantially higher than expectations for an ‘‘ideal’’ model
but visual fits are good, including lexical decision (e.g.,
Ratcliff et al., 2004), numerousity discrimination (e.g.,
Starns & Ratcliff, 2012), and brightness discrimination
(e.g., Ratcliff, Thapar, & McKoon, 2003). Moreover, because
the boundary RTs used to bin response frequencies are
based on the empirical quantiles instead of being fixed be-
fore the data were observed, the resulting v2 values do not
necessarily conform to standard distributional assump-
tions (Speckman & Rouder, 2004).2 Therefore, we conclude
that both versions of the model fit well by RT-model
2 Using the empirical quantiles to define RT bins is popular because this
ensures that the model is required to fit the critical distributional
information from each condition. The deviation between using fixed RT
cutoffs and quantile-based RT cutoffs is almost always extremely small
(e.g., Fific, Little, & Nosofsky, 2010, p. 324).



Fig. 4. Proportion of participants for which AIC and BIC selected the unequal-variance model over the equal-variance model. Results are shown for fits to
simulated equal-variance data (‘‘EV Sim.’’), simulated unequal-variance data (‘‘UV Sim.’’), and empirical data. The high-constraint data sets had a large
number of observations per participants (Data Sets 1–2 and 6–9) and the low-constraint data sets had fewer observations (Data Sets 3–5). The error bars are
95% high-density intervals on the posterior distribution for the proportion parameter assuming an uninformative prior distribution (i.e., a uniform
distribution between 0 and 1). AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; N = total number of participants.
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standards. Of course, the fit is better for the more flexible
unequal-variance version of the model. The critical issue is
whether this difference is large enough to reject the equal-
variance model.

To compare the equal- and unequal-variance models, we
assessed which model was selected by AIC and BIC for each
participant. These measures include a fit component and a
complexity penalty based on the number of free parameters
used by the model. The difference in fit between two models
is equal to the difference in their G2 values, which we
approximated using the difference in v2 (the two metrics
are nearly identical for large data sets). The complexity pen-
alty for AIC is the number of free parameters multiplied by 2,
and the penalty for BIC is the the number of parameters mul-
tiplied by the natural logarithm of the sample size, ln(N). The
equal- and unequal-variance models differ by a single
parameter, so the unequal-variance model is preferred by
AIC if allowing different g parameters for targets and lures
lowers the v2 value by more than 2, and by BIC if the fit im-
proves by more than ln(N).

Fig. 4 shows the proportion of participants whose data
support the unequal-variance version of the model based
on AIC and BIC. Results are shown for simulated equal-var-
iance data, simulated unequal-variance data, and the
empirical data. Results are segregated into high-constraint
data sets (with many observations per participant) and
low-constraint data sets (with fewer observations). Not
surprisingly, there were more results favoring the un-
equal-variance model in the unequal-variance simulations
than in the equal-variance simulations. This difference is
greater for the high-constraint data sets than the low con-
straint data sets; that is, the data better differentiate the
alternative models when there are more observations.
Notably, the proportion of simulated unequal-variance
data sets that correctly supported the unequal-variance
model was sometimes quite low, especially for the low-
constraint data sets and for the BIC metric with its more
severe complexity penalty. Critically, these results demon-
strate that fit metrics like AIC and BIC cannot be assumed
to always produce the correct conclusion: sometimes the
vast majority of fits support the equal-variance model even
when every data set was generated with unequal variance
(for another case in which BIC consistently selects the
wrong model, see Dube, Starns, Rotello, & Ratcliff, 2012).
Wagenmakers et al. (2004) used recovery simulations to
build distributions of fit differences for data generated by
each of two alternative models, and these distributions
show that the optimal criterion for selecting a winning
model can deviate substantially from the criterion corre-
sponding to the complexity penalty used by either AIC or
BIC. For our data, the especially poor recovery performance
for the low-constraint data sets again highlights that
unequal variance has a relatively subtle signature in the
RT distributions, so a large number of observations are
required to achieve enough power to consistently support
the unequal-variance model.

Most importantly, the empirical results are much more
consistent with the unequal-variance simulations than
the equal-variance simulations. Certainly, the unequal-
variance version of the model was preferred for a much
higher proportion of participants than one would expect
if the data truly reflected an equal-variance process. There-
fore, the fit statistics agree with the traditional analyses on
g estimates in supporting the unequal-variance model.
Recovery of g values
Fig. 5 shows histograms of the difference between the g

value used to generate a simulated data set and the g



Fig. 5. Deviation between the g values used to generate simulated data and the g values recovered in fits. Results for targets and lures from each data set
(DS) are displayed. The vertical lines mark the average deviation across the simulated data sets, so a vertical line at zero indicates no estimation bias. See the
text for an explanation of the spike just below zero for Data Sets 3–5. The y-axis is frequency.

3 Across all data sets, less than 3% of the g estimates were truncated at
the minimum value of .02.
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values produced in fits to these data. Of course, a difference
of zero indicates accurate recovery; thus, distributions that
are centered on zero indicate no estimation bias. As
expected, most data sets supported accurate recovery,
but with considerable variation in estimates. The high var-
iability is expected given the subtle impact that changes in
g have on the model predictions (Fig. 2). The variability is
particularly pronounced in data sets with low numbers of
observations from each participant.

Data Sets 3, 4, and 5 all have a high number of devia-
tions just below zero. This occurred because these data
sets had relatively few observations, resulting in a large
number of g estimates at the maximum value (which
we set at .4). Specifically, the proportion of g estimates
truncated at the maximum for Data Sets 3, 4 and 5 was
.12, .33, and .29, respectively. In the recovery simulations,
the simulated data were generated with the maximum
possible g value, and any miss in the recovered value
was necessarily on the negative side. The bump right be-
low zero indicates that the model usually got close to the
correct g value, but it could only miss low. This artifact
led to a slight under-estimation of both the target and
lure g values, most noticeably in Data Set 5. As such,
the results from Data Sets 3–5 should be viewed with
caution. However, these low-constraint data sets sup-
ported the same conclusion about evidence variability as
the data sets with more observations per participant,
and the high-constraint data sets had a much lower pro-
portion of g estimates truncated at the maximum value.
Specifically, the proportion of truncated estimates for
Data Sets 1, 2, 6, 7, 8, and 9 was 0, .03, 0, .01, .08, and
.06, respectively. The histograms for these data sets did
not show a spike just below zero. Notably, the need to
impose a maximum g value makes it more difficult to
support the unequal-variance model; that is, if the lure
g estimate is near the maximum value, then the target
estimate cannot be much higher. Nevertheless, the low-
constraint data sets still supported the unequal-variance
model just like the high-constraint data sets.3

Data Sets 6 and 7 are the ones with a bias to estimate
higher target than lure g values, and the target histo-
grams for these data sets are clearly shifted to the right.
The lure values either show no bias toward over estima-
tion (Data Set 6), or a much smaller bias (Data Set 7).
Again, this bias was not large enough to account for the
difference in target and lure g observed in the fits to
the empirical data.



Fig. 6. Comparison between parameter values from the equal-variance (EV) and unequal-variance (UV) fits of the diffusion model. The scatterplots show
data from each of the 376 participants. Below each scatterplot is a histogram of the differences between the two model versions with a reference line at
zero.
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Parameter comparisons
Fig. 6 shows scatterplots relating parameter estimates

in the equal- and unequal-variance versions of the model
(each point is a participant) as well as histograms of the
difference between the two. The scatterplots show that
parameter values are largely consistent in the two
versions of the model, with slight systematic deviations
for a few of the parameters. The boundary width and
non-decision time estimates were extremely consistent
in the two model versions. Compared to the equal-vari-
ance results, target drift rates tended to be farther above
zero in the unequal-variance version of the model, and
lure drift rates were closer to zero. This is a natural con-
sequence of the effect of adding variability on predicted
performance levels. Increasing g produces lower levels
of performance, which can be canceled out by moving
the average drift rate farther from zero (and vice versa).
The unequal-variance version of the model has higher g
values for targets and lower g values for lures compared
to the equal-variance version, which explains the slight
shift in average drift rates.

The starting point parameter also shows a small sys-
temic deviation between the two model versions, such that
the starting point is slightly closer to the ‘‘new’’ boundary
in the unequal-variance fits. This difference is expected gi-
ven the changes in average drift rates. That is, both the



Table 4
Eta (g) estimates by word frequency and strength from Data Sets 6–9.

Frequency Item type

Strong target Weak target Lure

Data Set 6
High .19 .20 .11
Low .17 .21 .11
Very low .37 .20 .11

Data Set 7
High .24 .22 .16
Low .25 .22 .14
Very low .35 .24 .12

Data Set 8
High .30 .29 .18
Low .25 .27 .16

Data Set 9
High .31 .30 .21
Low .28 .29 .19

Note: Standard errors range from .010 to .017.
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target and lure drift rates are slightly shifted away from the
bottom boundary and towards the top boundary in the un-
equal-variance model. With no change in starting point,
this shift would produce more ‘‘old’’ responses for the un-
equal-variance model. The slight shift in starting point to-
wards the bottom boundary cancels out this bias, bringing
predictions back in line with the data.

Fig. 6 demonstrates that general conclusions made based
on equal-variance fits of the diffusion model are unlikely to
change when unequal variances are allowed. Diffusion mod-
el research almost always concerns whether a particular
independent variable or individual-difference factor affects
drift rate, boundary separation, non-decision time, or some
combination of these parameters (Ratcliff & McKoon, 2008;
Wagenmakers, 2009). Such conclusions will not change
based on variability assumptions; for example, a manipula-
tion that affects boundaries in the unequal-variance model
will not appear to affect drift rate in the equal variance ver-
sion. However, conclusions that depend on the level of bias
in drift rates and/or starting point could be affected by mod-
el choice; that is, if data that truly reflect unequal-variances
are fit with an equal-variance model, then the drift rates will
appear to be slightly biased toward the bottom boundary
(across all item types) and the starting point will appear to
be slightly biased toward the top boundary.

Effects of variables
We chose five data sets (2 and 6–9) to evaluate the ef-

fects of dependent variables on g estimates. These were
the data sets that had many observations per participant
and manipulated an independent variable other than item
type. We re-ran fits for these data sets with free g param-
eters for every condition. The mean g values from each
condition are reported in Tables 3 and 4.

Data Set 2 allowed us to evaluate the effects of high and
low taxonomic word frequency and repeated learning trials
for target items, with targets studied once on weak lists and
targets studied five times on strong lists. The design had
separate study/test cycles for each frequency � strength
combination, so in the re-analysis of this data set we fit
each condition separately. Therefore, there were only two
conditions in each individual fit (targets and lures), and
the fit for each condition used the same parameters re-
ported for Data Sets 4 and 5 in Appendix A. Table 3 reports
the average g values for targets and lures for each type of
list, and we submitted these data to a 2 (frequency) � 2
(strength) � 2 (item type) ANOVA. Consistent with our ini-
tial analyses, g values were higher for targets (.26) than for
lures (.16), F(1,15) = 67.00, p < .001, MSE = .005. None of
the other effects reached significance (lowest p value = .22).

Data Sets 8 and 9 also varied word frequency and
strength, with weak targets studied once and strong
targets studied twice. Unlike Data Set 2, weak and strong
targets were mixed into the same test list with a single pool
of lure items, so we used a single item-type variable with the
levels strong target, weak target, and lure (instead of enter-
ing strength and item type as separate factors). For Data Set
8, there was a significant effect of item type, F(2,84) = 40.86,
p < .001, MSE = .008. As shown in Table 4, this effect emerged
because lure g estimates (.17) were lower than those for tar-
gets, with almost no difference between weak (.27) and
strong (.28) targets. The effect of word frequency also
reached significance, F(1,42) = 8.25, p = .006, MSE = .007,
although the actual difference between high-frequency
(.25) and low-frequency (.23) words was extremely small.
There was no interaction between item type and word fre-
quency, F(2,84) = 1.69, ns, MSE = .003.

Data Set 9 also showed an effect of item type,
F(2,80) = 52.54, p < .001, MSE = .004, with lower g values
for lures (.20) than either strong targets (.28) or weak tar-
gets (.29). There was a very small difference between
high-frequency (.26) and low-frequency (.25) words, but
it did reach statistical significance, F(1,40) = 5.33, p < .05,
MSE = .003. There was no interaction between frequency
and item type, F(2,80) = 0.76, ns, MSE = .002.

Data Sets 6 and 7 also had target strength and word
frequency manipulations, but these experiments added
a class of very-low frequency words. Weak targets were
studied once, and strong targets were studied three times.
Both strength classes appeared on the same test with a
common set of lures, so we again used an item-type var-
iable with the levels strong target, weak target, and lure.
As can be seen in Table 4, the results for high and low fre-
quency words were quite similar to Data Sets 8 and 9: g
values were higher for targets than for lures, but very
similar for strong and weak targets and for high and low
frequency. For the very-low frequency words, the g values
for lures and weak targets were near those for the other
frequency classes, but the strong targets had much higher
g values than the other conditions. This one stand-
out condition produced a significant interaction
between item type and frequency in both data sets,
F(4, 152) = 53.31, p < .001, MSE = .003 for Data Set 6, and
F(4, 160) = 20.05, p < .001, MSE = .003 for Data Set 7. The
effects of item type and frequency were significant for
both datasets, but the means suggest that both effects
were driven by the one extreme cell for very-low fre-
quency targets studied multiple times. To explore this,
we analyzed these datasets with the very-low frequency
condition excluded. For Data Set 6, these analyses
showed an effect of item type, F(2, 76) = 32.58, p < .001,
MSE = .005, with lures (.11) substantially less variable
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than targets studied once (.18) or three times (.20). Again,
evidence variability was consistent across the different
target strengths. Neither the frequency effect nor the
interaction approached significance (lowest p = .174).
Data Set 7 showed the same pattern, with lures (.15) less
variable than weak (.24) or strong (.22) targets,
F(2, 80) = 52.68, p < .001, MSE = .004. There was no effect
of frequency and no interaction (lowest p = .367).

In summary, the effect analyses suggest that repeated pre-
sentation on the study list had little or no effect on evidence
variability, and high versus low word frequency had a modest
effect at best (although evidence variability increased dra-
matically for very-low-frequency words with strong learn-
ing). The study-repetition results are consistent with prior
ROC research, which shows that slopes are generally unaf-
fected by the repetition of studied items (e.g., Glanzer et al.,
1999; Ratcliff et al., 1992), although Heathcote (2003) did re-
port slightly higher slopes for repeated than non-repeated
targets. In contrast, the word frequency results do not match
the ROC literature. The ROC results suggest the following pat-
tern: low-frequency targets have higher variance than high-
frequency targets, low-frequency lures have higher variance
than high-frequency lures, and the difference in variability is
larger for targets than for lures (e.g., Glanzer et al., 1999). The
RT-based estimates show no hint of this pattern.

The word frequency results suggest that RT and ROC re-
sults might not always agree on the specific effects of inde-
pendent variables, although they are consistent in showing
that evidence is more variable for targets than lures. One
possibility is that the RT-based estimates are less sensitive
to changes in variability than the ROC estimates, making it
harder to detect differences across conditions. Another
possibility is that the ROC estimates are influenced by arti-
facts that are specific to the confidence-rating procedures
used to define different points on the function. We return
to this issue in the General discussion.

Free drift rates for speed- and accuracy-emphasis
Starns, Ratcliff, and McKoon (2012) and Rae, Heathcote,

Donkin, and Brown (submitted for publication) reported
evidence that drift rates were farther from zero when sub-
jects were asked to emphasize accuracy than when they
were asked to emphasize speed. Data Sets 6 and 7 included
a speed-accuracy manipulation, and the fits reported above
held drift rate constant across those conditions. To ensure
that this parameter constraint did not influence our con-
clusions about evidence variability, we refit those data
with separate drift rate parameters for speed and accuracy
emphasis. Critically, the g estimates from these fits showed
the same pattern as the original fits; that is, g estimates
were higher for targets than for lures. For Data Set 6, the
average g values were .26 for targets and .12 for lures,
t(38) = 12.54, p < .001. For Data Set 7, the average g values
were .25 for targets and .13 for lures, t(40) = 12.15, p < .001.
Thus, both the free-drift and fixed-drift models strongly
supported the unequal-variance assumption.

To evaluate differences in drift rate across the speed-
accuracy conditions, we submitted the combined data from
Data Sets 6 and 7 to a 2 (strength) � 3 (word frequency) � 2
(age) � 2 (speed versus accuracy instructions) ANOVA on
drift rate (v) estimates for target items. Results showed no
main effect of speed (.22) versus accuracy (.22) instructions,
F(1,78) = 0.80, ns, MSE = .019. Drift rates were higher for
strong targets (.33) than for weak targets (.11),
F(1,78) = 297.89, p < .001, MSE = .041. Drift rates also in-
creased from high (.10) to low (.24) to very-low (.31) word
frequency, F(2,156) = 196.11, p < .001, MSE = .018. Drift
rates were quite similar for young (.23) and older (.21) par-
ticipants, F(1,78) = 1.11, ns. The three-way interaction of
instructions, strength, and frequency was significant,
F(2,156) = 6.51, p < .01, MSE = .013. This emerged because
the effect of instruction was very small (less than .01) for
all of the conditions except strong targets with very-low
word frequency. The latter condition had a drift rate of .49
with speed instructions and .41 with accuracy instructions,
opposite the pattern seen in earlier experiments (Rae et al.,
submitted for publication; Starns, Ratcliff, & McKoon, 2012).

We similarly analyzed the drift rates for lures with a 3
(word frequency) � 2 (age) � 2 (speed versus accuracy
instructions) ANOVA. Negative numbers that are farther
below zero represent better performance (i.e., stronger evi-
dence for a ‘‘new’’ response). Like the target drift rates, the
lure drift rates were quite similar with speed instructions
(�.20) and accuracy instructions (�.21), F(1,78) = 2.14, ns,
MSE = .07. Performance increased from high (�.17) to low
(�.21) to very low (�.23) frequency words, F(2,156)
= 70.49, p < .001, MSE = .002. Performance was very similar
for young participants (�.21) and older participants
(�.20), F(1,78) = 0.26, ns. There was a significant interaction
between age and instruction, which arose because drift
rates for older participants were slightly worse with accu-
racy (�.19) versus speed (�.20) instructions, whereas drift
rates for young participants were slightly better for accuracy
(�.23) versus speed (�.19), F(1,78) = 7.96, p < .01,
MSE = .007. However, the instruction effect was small even
for the young participants, and the young participants did
not show an instruction effect on target drift rates.
Therefore, the results provided little evidence that drift rates
were different for speed and accuracy.

AIC and BIC statistics also did not provide strong support
for a model with free drift rates for speed versus accuracy
instructions versus a model with fixed drift rates. AIC
preferred the free-drift model over the fixed-drift model
for 77% of the young participants (Data Set 6) but only
51% of the older participants (Data Set 7). With BIC’s more
severe complexity penalty, the free drift model was pre-
ferred for only 5% of the young participants and none of
the older participants. Thus, the current results are not con-
sistent with the recognition results in Starns, Ratcliff, and
McKoon (2012), where drift rates were substantially higher
with accuracy-emphasis than with speed-emphasis and the
free-drift model was clearly preferred. However, the partic-
ipants in Starns et al. were put under intense time pressure
in the speed-emphasis blocks, and this might be the basis of
the different results. Again, the key point for our purposes is
that the fits strongly support the unequal-variance assump-
tion in both the free-drift and fixed-drift models.

Discussion

We tested whether the unequal-variance account of
zROC slopes could successfully predict the pattern of
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variability estimates returned by the diffusion model. By
estimating variability solely on the basis of accuracy and
RT data, we found clear evidence that memory strength is
more variable for targets than for lures. This result was con-
sistent across nine data sets using a variety of experimental
designs. Parameter recovery simulations demonstrated that
g parameters were usually recovered accurately, but there
was considerable variability in the estimates and a few data
sets showed estimation biases. Most importantly, the fits to
simulated equal-variance data did not resemble the empir-
ical results. For each data set the observed difference be-
tween the target and lure g estimates was much larger
than expected if the data truly came from an equal-variance
process. Moreover, the proportion of participants for which
AIC and BIC favored the unequal-variance model was very
similar in the empirical data and in the model-recovery sim-
ulations with unequal-variance data, whereas the equal-
variance recovery simulations were far out of range of the
empirical results. Therefore, the unequal-variance assump-
tion is now supported by fits to ROC data (e.g., Ratcliff et al.,
1992), combined ROC and RT data (Ratcliff & Starns, 2009,
2013; Starns, Ratcliff, & McKoon, 2012), and RT data in the
absence of ROC data.

Although the RT data support the general notion that
targets are more variable than lures, RT and zROC data
might not always lead to the same conclusions regarding
the effects of specific independent variables. We found that
the RT-based estimates showed the same pattern as zROC
estimates for a strength manipulation (number of learning
trials), but the RT-based estimates showed little or no hint
of the word frequency effects that are observed for zROC
functions (e.g., Glanzer et al., 1999). As mentioned, the
RT-based estimates might simply be less sensitive to
changes in variability. However, another possibility is that
the effect of word frequency on zROC slopes does not actu-
ally reflect changes in the underlying memory evidence
distributions. Many non-mnemonic factors can influence
zROC slope, such as the position of decision boundaries
in an RT model (Ratcliff & Starns, 2009; Van Zandt, 2000),
variability in decision criteria (Benjamin, Diaz, & Wee,
2009; Mueller & Weidemann, 2008), and changes in the
position of the confidence criteria across the different
levels of a variable (Starns, Pazzaglia, Rotello, Hautus, &
Macmillan, 2013, Fig. 1). Admittedly, mixing high- and
low-frequency words into the same test makes it less likely
that decision processes will differ across conditions, and a
number of results show that participants are generally
reluctant to make trial-by-trial changes in decision
processes (e.g., Stretch & Wixted, 1998). However, trial-
by-trial shifts have been observed under some conditions
(e.g., Singer & Wixted, 2006, Experiments 3 and 4), and
word frequency might be a relatively ‘‘natural’’ signal for
a change in decision standards (i.e., when a rare word
comes up on the test, participants naturally expect that
they should have a strong memory of seeing the word if
it was studied). Therefore, researchers should remain open
to the possibility that decision processes play some role in
the word-frequency effect on zROC slope.
Other tests of the unequal variance assumption

Researchers have also attempted to test the unequal-
variance assumption by directly calculating the variability
of memory-strength ratings on scales that have many lev-
els (e.g., 20 or 100 different rating options; Mickes, Wixted,
& Wais, 2007; also see Criss, 2009, and Starns, White, &
Ratcliff, 2012). As expected, studies of this sort show that
ratings are more variable for targets than for lures.
Although the conclusion that higher variability in the rat-
ings is produced by higher variability in the underlying
evidence is only valid under certain processing assump-
tions (Rouder, Pratte, & Morey, 2010), the results at least
match the most straight-forward prediction of the un-
equal-variance account (Wixted & Mickes, 2010).

Recent modeling developments permit the separate
estimation of ‘‘nuisance’’ variability (such as participant
and item effects) and other sources of variation that might
be more central to the memory system (such as fluctua-
tions in attention; Pratte, Rouder, & Morey, 2010). These
advancements employ hierarchical Bayesian modeling to
directly estimate participant- and item-based variation.
Model fits suggest that both participants and items
contribute substantial variability to performance, but the
results still favor an unequal-variance version of the
continuous model when these sources of variation are re-
moved (Pratte et al., 2010).

Koen and Yonelinas (2010) recently attempted a direct
test of the idea that variability in learning produces an un-
equal-variance model. They compared a pure condition in
which all words were studied for 2.5 s to a mixed condition
in which half of the words were studied for 1 s and the other
half for 4 s. Results showed no evidence of a difference in
zROC slope between the two groups, making it appear that
slopes are not influenced by learning variability. Jang, Mic-
kes, and Wixted (2012) and Starns, Rotello, and Ratcliff
(2012) both challenged this conclusion. These commentar-
ies demonstrated that mixing the performance levels from
Koen and Yonelinas’ 1 s and 4 s conditions produces slope
effects so small that they could never be detected in a psy-
chology experiment. Thus, the results have no bearing on
the role of variability in explaining zROC slopes.

In general, we agree with Koen and Yonelinas (2010)
that researchers should try to find direct ways to manipu-
late evidence variability, but high levels of baseline
variability are a substantial barrier to achieving this goal.
That is, even within a single strength condition, different
target items can span a range from so weak that they are
practically indistinguishable from a non-presented item
to so strong that participants can attribute them to the list
with complete certainty. Increasing this level of variability
with a manipulation of learning effectiveness is not trivial.
Researchers must also be aware that performance actually
reflects variability from a number of sources. For example,
within-trial variability in evidence accumulation and
variability in decision criteria influence recognition deci-
sions regardless of the level of learning strength (Ratcliff
& Starns, 2009, 2013).
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Distributional assumptions

Ratcliff (2013) demonstrated that accuracy and RT
predictions from the diffusion model remain largely con-
sistent over a wide range of distributional assumptions.
The same is true for ROC data, as recently demonstrated
by Rouder et al. (2010) and less-recently demonstrated
by Banks (1970) and Lockhart and Murdock (1970). This
is an important point for our purposes, because variance
estimates critically depend on distributional assump-
tions. For example, the low-density tail in a highly
skewed distribution could have a huge impact on vari-
ance but might have little discernible signature in the
data (only a small proportion of trials will be influenced
by the tail). Our variability estimates assume Gaussian
evidence distributions, and they could vary widely if
other distributional forms were substituted (although
not all potential distribution shapes will be consistent
with the data, of course). Given that distributional
assumptions are so critical, what general conclusions
can be drawn from the current results (and indeed from
the entire ROC literature)?

First, and most critically, our results show that the
distributional assumptions that work for ROC data also
work for RT distributions. Both forms of data are well
accommodated by unequal-variance Gaussian distribu-
tions, and the unequal-variance model is clearly superior
to the equal-variance model for both. This convergence
lends more credibility to these distributional assump-
tions than could be gleaned from either form of data in
isolation. Second, our results – along with the ROC liter-
ature – show that the difference between the target and
lure evidence distributions is not just a matter of loca-
tion. That is, the target distribution is not just the lure
distribution shifted up to a higher average evidence va-
lue – something else about the distribution also changes.
As mentioned, one successful way to model this addi-
tional factor is to assume that both the mean and vari-
ability of memory evidence differs between targets and
lures. It is possible that a successful model could be
developed in which the location and shape of the evi-
dence distribution differs between targets and lures,
but the variability remains the same (see Rouder et al.,
2010). Of course, it might also be the case that the loca-
tion, shape, and variability all change. Regardless, a
change only in terms of location is ruled out by the data,
and this is the case for both ROC functions and RT data
(and again, the same distributional assumptions are suc-
cessful for both).

Some theorists have proposed that target evidence is
more variable than lure evidence because target trials
come from a mixture of separate latent categories with dif-
ferent average strength values, such as attended versus
unattended items (e.g., DeCarlo, 2002). Mixing distinct
classes of target items and increasing the variability of sin-
gle target distribution have very similar effects on RT dis-
tributions. Thus, our results do not specify exactly how
variance increases for targets, and a mixing mechanism re-
mains a viable alternative.
Dual process

One alternative to the unequal-variance approach as-
sumes that a subset of decisions are based on a threshold
recollection process that either succeeds or fails in recover-
ing contextual information, whereas other decisions are
based on a continuous feeling of familiarity that is
higher on average for more recently encountered items
(Yonelinas, 1994; Yonelinas & Parks, 2007). This dual-
process approach assumes that a given decision is made
based on either recollection or familiarity, as opposed to
all types of information being combined for every decision
as proposed by the univariate view (Ratcliff, 1978, pp.
62–63; Wixted, 2007). Mixing the different processes
across test trials produces a zROC slope below one without
assuming unequal variance in evidence values.

The unequal-variance and dual-process signal detection
models can produce very similar ROC functions (Wixted,
2007; Yonelinas & Parks, 2007). Thus, it is important to
consider whether the RT patterns that support the un-
equal-variance model could also be explained in terms of
a threshold recollection process. Currently, we have no
way to definitely answer this question, because the dual
process account has not been extended to RT distributions.
This development is an important future goal for dual pro-
cess theorists.

However, based on the general theoretical assumptions
of the dual process approach, we can speculate that a
threshold recollection process might have a different RT
signature than unequal variance. A central assumption in
the dual process approach holds that recollection is a
slower process than familiarity (McElree, Dolan, & Jacoby,
1999; Yonelinas, 2002). As shown in Fig. 2, increasing g
produces faster correct responses, which seems inconsis-
tent with an increased role for the slower recollection pro-
cess. Moreover, increasing the variability of memory
evidence affects both correct and error responses, with
higher variability producing faster errors in low-perfor-
mance conditions and producing slower errors in high-per-
formance conditions (see Fig. 2). Threshold recollection is
assumed to always lead to a correct response, so this pro-
cess might not make the same predictions for error RTs as
unequal variance. Thus, the two processes might be more
discriminable in terms of RT distributions than in terms
of ROC functions. More rigorous investigation of these is-
sues must await an explicit model for the time course of
recollection and familiarity.

Some previous reports have used RT data to test the dual
process framework, although the RT data were not directly
modeled. For example, RT data have been used to evaluate
the dual process explanation for the Remember/Know task,
in which ‘‘remember’’ responses are assumed to be based on
the threshold recollection process and ‘‘know’’ responses are
assumed to be based on familiarity. Results show that
‘‘remember’’ responses are made more quickly than ‘‘know’’
responses, which seems more consistent with the idea that
‘‘remember’’ responses reflect the high end of a strength
continuum than the idea that ‘‘remember’’ responses are
driven by the slower recollection process (Dewhurst &
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Conway, 1994; Dewhurst, Holmes, Brandt, & Dean, 2006).
An alternative interpretation is that ‘‘know’’ responses are
slower because participants wait to see if recollection will
succeed before they make a response based on familiarity
alone, although Dewhurst et al. (2006) showed that the RT
pattern held even when remember/know judgments were
deferred until after old/new decisions were made for all of
the test items. More compellingly, ‘‘remember’’ false alarms
are made more quickly than ‘‘know’’ hits (Wixted & Stretch,
2004). This result cannot be explained in terms of
recollection succeeding while participants are deliberately
delaying a familiarity-based response, because recollection
should not occur for lures. Finally, the RT difference between
‘‘remember’’ and ‘‘know’’ responses is dramatically
attenuated when responses are matched for the overall level
of confidence that an item was studied (Rotello & Zeng,
2008), which is consistent with the idea that the RT
difference is driven by differences in continuous strength
values.

While we are considering whether or not a threshold
recollection model could explain RT distributions, we
should also note that some results challenge the claim that
threshold recollection is the process that produces zROC
slopes less than one (e.g., Glanzer et al., 1999; Starns &
Ratcliff, 2008; Wixted, 2007). To highlight just a couple,
results demonstrate that zROC slopes remain well below
1 even when participants make the majority of their
responses in less than 600 ms (Starns, Ratcliff, & McKoon,
2012). This finding is inconsistent with the claim that
slopes are driven by a slow recollection process. Also,
neural data show that the retrieval of context-specific
details occurs even for items that participants do not claim
to recollect, which suggests that recollection is a graded
process (Johnson, McDuff, Rugg, & Norman, 2009; White
& Poldrack, 2013).
RT-based ROCs

A few researchers have used RT as a proxy for
confidence to construct ROC functions (e.g., Norman &
Wickelgren, 1969; Thomas & Myers, 1972). This analysis
is based on the proposal that decision time is a function
of the distance between the response criterion and the
evidence value for the test item, with fast ‘‘old’’ responses
for strength values far above the criterion, slow ‘‘old’’
responses for strength values just above the criterion,
slow ‘‘new’’ responses for strength values just below the
criterion, and fast ‘‘new’’ responses for strength values
far below the criterion. For example, Norman and
Wickelgren plotted functions from a short-term memory
task in which participants had to recognize digit pairs
from lists of four pairs with a 3 s retention interval. The
RT-based zROC functions had a pronounced inverted-u
shape, whereas the confidence-based functions were
more linear. This suggests that RT might not be a good
substitute for confidence, which is understandable given
that RTs are influenced by many factors other than be-
tween-trial differences in memory strength, including
within-trial variation in evidence accumulation and vari-
ation in decision boundaries (e.g., Ratcliff & Starns, 2009).
To our knowledge, no one has addressed whether
RT-based zROC functions for long-term recognition have
a slope less than 1.
Conclusion

Our results demonstrate that the unequal-variance ac-
count is not just an ad hoc way to fit ROC data (DeCarlo,
2002). Instead, the account successfully predicted the pat-
tern of variability estimates produced by fitting the diffu-
sion model to accuracy and RT data. Thus, our results
validate the unequal-variance assumption with data that
are completely independent of ROC functions.
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Appendix

This appendix lists all of the free parameter values in
fits of the unequal-variance diffusion model. The equal-
variance fits were identical, except that the g parameters
for targets and lures were constrained to be equal. For each
parameter within each data set, the conditions over which
the parameter value could vary are listed below the
parameter label. If no conditions are listed, then the
parameter had the same value across all conditions.

Parameter labels and descriptions

� a – boundary width
� z – starting point
� sZ – range in starting point variation
� v – average drift rate
� g – across-trial standard deviation in drift rate
� Ter – average non-decision time
� sT – range in non-decision time variation
� pO – proportion of trials with RT contaminants (see Rat-

cliff & Tuerlinckx, 2002)

Notes on Each Dataset
Data set 1. Parameters listed were used to fit the 30%-

targets and 70%-targets conditions separately.
Data Set 2. Word frequency and strength (number of

study presentations) were manipulated between lists,
and item type (target, lure) was manipulated within lists.
HF = high frequency; LF = low frequency.

Data Set 3. Strength (number of study presentations)
was manipulated between lists, and item type (target, lure)
was manipulated within lists.

Data Sets 4 and 5. Item type (target, lure) was manipu-
lated within lists.

Data Sets 6 and 7. Speed versus accuracy emphasis was
manipulated between lists, and all other variables were
manipulated within lists. HF = high frequency; LF = low
frequency; VF = very low frequency.

Data Sets 8 and 9. All variables were manipulated within
lists. HF = high frequency; LF = low frequency.
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Parameters for Data Set 1
a
 z
 sZ
 v
 g
 Ter
 sT
 pO
Target
 Target

Lure
 Lure
Parameters for Data Set 2
a
 z
 sZ
 v
 g
 Ter
 sT
 pO
Speed
 Speed
 HF weak
 Target
 Speed

Accuracy
 Accuracy
 Target
 Lure
 Accuracy
HF strong target

HF lure

LF weak

Target

LF strong target

LF lure

VF weak target

VF strong target

VF lure
Parameters for Data Set 3
a
 z
 sZ
 v
 g
 Ter
 sT
 pO
Weak test
 Weak test
 Weak target
 Target

Strong test
 Strong test
 Strong target
 Lure
Weak lure

Strong lure
Parameters for Data Sets 4 and 5
a
 z
 sZ
 v
 g
 Ter
 sT
 pO
Target
 Target

Lure
 Lure
Parameters for Data Sets 6 and 7
a
 z
 sZ
 v
 g
 Ter
 sT
 pO
HF weak
 HF weak
 HF weak
 Target

HF strong
 HF strong
 target
 Lure

LF weak
 LF weak
 HF strong target

LF strong
 LF strong
 LF weak target
LF strong target

HF weak lure

HF strong lure

LF weak lure

LF strong lure
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Parameters for Data Sets 8 and 9
a
 z
 sZ
 v
 g
 Ter
 sT
 pO
HF weak
 Target

Target
 Lure

HF strong target

HF lure

LF weak target

LF strong target

LF lure
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