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Research examining models of memory has focused on differences in the shapes of ROC
curves across tasks and has used these differences to argue for and against the existence
of multiple memory processes. ROC functions are usually obtained from confidence
judgments, but the reaction times associated with these judgments are rarely considered.
The RTCON2 diffusion model for confidence judgments has previously been applied to data
from an item recognition paradigm. It provided an alternative explanation for the shape of
the z-ROC function based on how subjects set their response boundaries and these settings
are also constrained by reaction times. In our experiments, we apply the RTCON2 model to
data from associative recognition tasks to further test the model’s ability to accommodate
non-linear z-ROC functions. The model is able to fit and explain a variety of z-ROC shapes
as well as individual differences in these shapes while simultaneously fitting reaction time
distributions. The model is able to distinguish between differences in the information
feeding into a decision process and differences in how subjects make responses (i.e., set
decision boundaries and confidence criteria). However, the model is unable to fit data from
a subset of subjects in these tasks and this has implications for models of memory.

� 2015 Elsevier Inc. All rights reserved.
Introduction

Associative memory is memory for combinations of
items (i.e., do you remember whether these items were
presented together or separately during the study list).
Compared to simple item recognition memory (i.e., do
you remember an item or not) associative recognition
shows greater declines with age (e.g., Bastin & Van der
Linden, 2006; Craik, Luo, & Sakuta, 2010; Naveh-
Benjamin, 2000, 2012; Ratcliff, Thapar, & McKoon, 2011),
is less susceptible to decay and interference (Hockley,
1992), has different patterns of false alarm rates
(Hockley, 1994; Malmberg & Xu, 2007), has a different
time course (Gronlund & Ratcliff, 1989), and shows
different word frequency effects (Clark, 1992), among
other differences.

In this paper, we apply the RTCON2 model to an
associative recognition task for which subjects used a
six-point scale to rate the confidence with which they
believed a pair of test items had or had not appeared
together earlier in the experiment. This is the more com-
mon method of collecting confidence responses, especially
in memory research, although some researchers have had
subjects make a two-choice response followed by a
confidence rating (Baranski & Petrusic, 1998; Merkle &
Van Zandt, 2006; Pleskac & Busemeyer, 2010; Van Zandt,
2000; Van Zandt & Maldonado-Molina, 2004; Vickers,
1979; Vickers & Lee, 1998, 2000). In the model, evidence
is accumulated toward a set of decision thresholds and
the relative heights of these thresholds explains both the
location and shape of subjects’ reaction time distributions
and also the shape of their z-ROC functions. This means
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Fig. 1. The standard Signal Detection model with one normal distribution
each for the intact and rearranged items respectively, four response
regions created by three confidence criteria, the z-ROC obtained from the
two distributions, and the equation relating the z-transformed hit and
false alarm rates.
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that z-ROC shape does not solely provide information
about memory representations as has been assumed to
date but also reflects individual differences in how subjects
use confidence response scales. Application of the RTCON2
model to associative recognition is especially interesting
because this type of memory task often produces z-ROC
functions with different shapes than item recognition,
and these differences have previously been used to
motivate the development of various memory models
(Glanzer, Hilford, & Kim, 2004; Hilford, Glanzer, Kim, &
DeCarlo, 2002; Kelley & Wixted, 2001; Qin, Raye,
Johnson, & Mitchell, 2001; Slotnick & Dodson, 2005;
Slotnick, Klein, Dodson, & Shimamura, 2000; Wixted,
2007; Yonelinas, 1997, 1999) and in neuroscience research
(Eichenbaum, Yonelinas, & Ranganath, 2007; Henson,
Rugg, Shallice, & Dolan, 2000; Kim & Cabeza, 2007;
Kirwan, Wixted, & Squire, 2008; Moritz, Glascher,
Sommer, Buchel, & Braus, 2006; Rissman, Greely, &
Wagner, 2010; Stark & Squire, 2001; Wais, 2011;
Yonelinas, Hopfinger, Buonocore, Kroll, & Baynes, 2001).
However, these memory models typically focus only on
the kind of evidence being fed into a decision, ignore or
over-simplify the process of making a decision based on
that evidence, and may not produce the same estimates
of evidence that a full decision model would. In contrast,
our research attempts to model the process of making
confidence-judgments in an associative recognition para-
digm and investigate to what degree experimental findings
can be accounted for with a decision-making model.

In an associative recognition memory experiment, par-
ticipants study pairs of words and are then asked to distin-
guish between pairs of words that were previously studied
together (‘‘intact”) or studied separately (‘‘rearranged”). In
an item recognition memory experiment, participants
study individual items and are then asked to distinguish
between items that were previously studied (‘‘old”) and
items that were not previously studied (‘‘new”). Most of
the work investigating either type of recognition memory
has relied on Signal Detection theory (Banks, 1970;
Bernbach, 1967; Donaldson & Murdock, 1968; Egan,
1958; Grasha, 1970; Kintsch, 1967; Kintsch & Carlson,
1967; Lockhart & Murdock, 1970; Norman & Wickelgren,
1969; Ratcliff, McKoon, & Tindall, 1994; Ratcliff, Sheu, &
Gronlund, 1992; Yonelinas, 1994). In the signal detection
framework, it is assumed that each tested pair has some
value of associative strength that is normally distributed
for each category of tested items (for example, ‘‘intact” or
‘‘rearranged” word pairs). The intact/rearranged decision
can then be modeled by placing a single criterion on a
dimension representing the associative strength of the test
items. If the associative strength value for a test item is
above the criterion, then an ‘intact’ response is made;
otherwise, if the associative strength value is below the cri-
terion, then a ‘rearranged’ response is made. Bias toward
one of the response choices can be modeled by changes
in the placement of the decision criterion, and multiple
response options (such as confidence judgments) can be
modeled by including additional decision criteria.

In confidence judgment procedures, subjects rate their
confidence that an item is intact or rearranged using a
response scale with levels ranging from ‘very sure intact’
to ‘very sure rearranged’. To model these multiple
response options, additional decision criteria are used to
divide the memory strength dimension into multiple
response regions. Fig. 1 depicts two normal distributions,
one for intact items and one for rearranged items, and
three possible decision criteria. These decision criteria
partition the match dimension into four response regions
corresponding to four confidence categories: from left to
right, high confidence rearranged, low confidence rear-
ranged, low confidence intact, high confidence intact. As
the decision criterion moves from left to right, both the
hit and false alarm rates decrease.

These decision criteria can then be used to create recei-
ver operating characteristic (ROC) functions, which are
plots of the hit rate (‘‘intact” responses to intact word
pairs) against the false alarm rate (‘‘intact” responses to
rearranged word pairs). To create an ROC function from
the data, each criterion is treated as if it were the only cri-
terion and the hit and false alarm rates for that criterion
are calculated and plotted against each other as a single
point on the ROC curve. Hit and false alarm rates are calcu-
lated first for the rightmost criterion, representing the
highest confidence intact category, then for the two right-
most categories (adding together the number of responses
in those two categories), then for the three rightmost, and
so on.

These hit and false alarm rates are frequently converted
to z-scores, resulting in a function called a z-ROC. The
assumption of normal distributions of memory evidence
predicts linear z-ROC functions with a slope equal to
the ratio of the standard deviations of the ‘‘intact” and
‘‘rearranged” item distributions (Ratcliff et al., 1992). The
lower portion of Fig. 1 depicts the z-ROC function obtained



62 C. Voskuilen, R. Ratcliff / Journal of Memory and Language 86 (2016) 60–96
from the two distributions. However, linear z-ROC func-
tions are also consistent with other kinds of distributions
such as poisson, gamma, and even a combination of ramp
and rectangular distributions (Banks, 1970; Lockhart &
Murdock, 1970; Murdock, 1974). With different distribu-
tions of evidence, the slope of the z-ROC function is not
the ratio of the standard deviations of the distributions
as it is when the distributions are normal.

As predicted by SDT with normal distributions, most of
the z-ROC functions found in the memory literature on
item recognition have been approximately linear. How-
ever, a number of studies have demonstrated systemati-
cally non-linear z-ROC functions and these findings have
prompted theoretical elaborations of the standard single-
process signal-detection theory (DeCarlo, 2002;
Malmberg & Xu, 2006; Ratcliff et al., 1994; Ratcliff &
Starns, 2013; Rotello, Macmillan, & Reeder, 2004; Rotello,
Macmillan, & Van Tassel, 2000; Yonelinas, 1994, 1997;
Yonelinas, Dobbins, Szymanski, Dhaliwal, & King, 1996).
Several of these theories have focused on explaining the
slightly U-shaped z-ROC functions observed in some asso-
ciative recognition and source-memory experiments
(Glanzer et al., 2004; Hilford et al., 2002; Kelley &
Wixted, 2001; Qin et al., 2001; Slotnick & Dodson, 2005;
Slotnick et al., 2000; Wixted, 2007; Yonelinas, 1997, 1999).

There are a number of problems with this SDT approach
to memory modeling. First, this approach often ignores dif-
ferences between individuals. ROC analyses are frequently
conducted on data that has been averaged across subjects,
so any differences between subjects are ignored or rele-
gated to an Appendix A. As the present study will demon-
strate, there can be substantial differences in how subjects
utilize confidence response scales such that it is not appro-
priate to only analyze averaged data (Malmberg & Xu,
2006; Ratcliff et al., 1994). Second, the SDT approach
ignores the reaction time associated with each response.
Although there is a well-known relationship between the
speed and accuracy with which people make decisions
(Pachella, 1974; Wickelgren, 1977), most memory
researchers only collect and analyze accuracy data. In
order to provide a complete account of the confidence
decision process, it is important to consider both reaction
time and accuracy. Third, the SDT approach assumes that
the only source of variability in the decision process is
the variability in memory strength between items. This
assumption leads to inappropriate conclusions about the
z-ROC functions (Ratcliff & Starns, 2009, 2013; Starns,
Ratcliff, & McKoon, 2012). Fourth, elaborations of SDT often
include additional memory processes or additional sources
of information in order to accommodate non-linear z-ROC
functions (Arndt & Reder, 2002; DeCarlo, 2002, 2003;
Hilford et al., 2002; Kelley & Wixted, 2001; Rotello et al.,
2004; Yonelinas, 1994; Yonelinas & Parks, 2007). With
the inclusion of reaction time data and individual differ-
ences, the present study will demonstrate that these
additional processes are not always necessary to produce
non-linear z-ROC functions. All of these problems with
SDT can potentially be addressed by using the RTCON2
model. This model produces both accuracy and reaction
time predictions for individual subjects, it includes several
sources of variability related to the decision process, and it
has been able to fit a variety of item recognition z-ROC
functions without additional memory processes (Ratcliff
& Starns, 2009, 2013). The RTCON2 model is not a memory
model in the same way SDT is not a memorymodel. A com-
plete description of processing would have a memory
model provide the distributions of memory evidence used
in making the decision as in SDT. However, the model has
been able to explain various z-ROC shapes observed in
item recognition tasks, including non-linear functions.
The explanation for these shapes is based on how subjects
set their decision boundaries and is constrained by reac-
tion time data. As such, the explanation for these shapes
is based on the process of making a decision as opposed
to the type of information entering into the decision pro-
cess from memory. The goal of these experiments is to
determine whether the RTCON2 model can similarly
account for the non-linear z-ROC functions commonly
observed in associative recognition tasks.

The RTCON2 model has previously been applied to con-
fidence judgments in item recognition and motion discrim-
ination tasks and was shown to provide a better fit to the
data than several competing decision models (Ratcliff &
Starns, 2013). In the RTCON2 model, the evidence available
to the decision process on a single trial (i.e., the memory
strength for a particular item) is assumed to be a distribu-
tion across the evidence-strength dimension instead of a
single value (cf. Beck et al., 2008; Gomez, Ratcliff, &
Perea, 2008; Jazayeri & Movshon, 2006; Ratcliff, 1981;
Ratcliff & Starns, 2009). These item distributions have a
standard deviation of 1 and their mean location varies
from trial to trial (as in SDT). The bottom portion of
Fig. 2 illustrates how the distribution of evidence for a
single item is mapped to the decision process. As in SDT,
multiple confidence criteria are used to divide the match
dimension into multiple response regions corresponding
to different levels of confidence.

Each response region has its own accumulator and deci-
sion boundary, as shown in the top portion of Fig. 2, and
the diffusion processes race until one of the processes
reaches its decision boundary and the corresponding
response is made. Evidence for each confidence response
accumulates separately over time toward a decision
boundary. This is similar to other sequential sampling
models that assume that noisy evidence is accumulated
separately for each response alternative (as in the dual-
diffusion model, Ratcliff, Hasegawa, Hasegawa, Smith, &
Segraves, 2007; and the Leaky-Competing Accumulator
model, Usher & McClelland, 2001).

The mean position of the distribution of evidence (l) is
determined by the quality of information extracted from
the stimulus and determines the rate of accumulation (m)
for each accumulator. In an experiment, the value of l
would be different for stimulus conditions of differing
difficulty. For example, in an associative recognition exper-
iment, lwould represent the quality of the match between
a given word pair and memory. A pair of words that had
been presented together during the study period should
have a higher degree of match (i.e., a higher value of l)
than a pair of words that had been presented in different
pairs during the study period. The quality of information
from stimuli of the same type is allowed to vary across



Fig. 2. RTCON2. The distribution of evidence for an item on a given trial drives six mutually inhibitory accumulators (one for each confidence category). The
proportion of the distribution between the confidence criteria on the match dimension drives the drift rate for each confidence category. When one of the
accumulators reaches its decision boundary, the corresponding response is made. Each time one accumulator takes a step up of size x, the accumulators on
the opposite side take a x/(N/2) step down (where N is the number of accumulators) such that the amount of evidence stays constant (i.e., if an ‘intact’
accumulator is incremented, then the ‘rearranged’ accumulators are all decremented and the other ‘intact’ accumulators are unchanged).

C. Voskuilen, R. Ratcliff / Journal of Memory and Language 86 (2016) 60–96 63
trials to reflect differences in the encoding and retrieval of
associative information across pairs of items. This
between-trial variability in l is assumed to be normally
distributed with standard deviation s. The average rate of
accumulation (m) for each response is determined by the
proportion of the within-trial distribution of evidence in
each of the response regions. This accumulation process
is subject to moment-to-moment variability such that pro-
cesses with the same accumulation rates will not always
terminate at the same time or with the same confidence
response.

Several aspects of this model affect the relationship
between the level of confidence and the evidence in favor
of a particular choice. Specifically, a particular confidence
judgment is determined by the decision boundaries of
the response accumulators and by the criteria that divide
the strength dimension into response regions as well as
by the amount of evidence in favor of a particular confi-
dence response. For example, a high confidence response
region may have a higher decision boundary such that
more evidence must be accumulated for that response to
be selected. The height of the decision boundary would
cause that particular response to be selected less often
and with a longer reaction time than if that response
region had a lower decision boundary, even for items that
have a high mean value of evidence. Thus in RTCON2 con-
fidence is not merely a function of accuracy.

The RTCON models are an extension of the diffusion
model (Audley & Pike, 1965; Ratcliff, 1978, 1988, 2006;
Ratcliff & McKoon, 2008), and were developed to accom-
modate both accuracy and reaction time distributions from
multi-choice confidence judgment tasks (Ratcliff & Starns,
2009, 2013). RTCON2 differs from the original RTCON
model in that it uses a slightly different decision process
(RTCON2 uses constant summed evidence whereas RTCON
uses an OU diffusion process) and allows accumulators to
go below zero (in fact, because it is a linear process, there
is no true zero point; a constant could be added to the base
evidence level and decision bounds and the behavior of the
model would be the same).

In the constant summed evidence algorithm, the incre-
ment to evidence (Dx) on each time step (Dt) is deter-
mined by its drift rate (v) and noise (Eq. (1)). On each
time step, one of the response accumulators is selected
randomly and increased (Eq. (1)) and some of the other
response accumulators are decreased such that the sum
of the total decrease is equal to the increase in the selected
accumulator (Eq. (2)).

Dxi ¼ asv iDt þ rgi

ffiffiffiffiffiffi
Dt

p
ð1Þ

Dxj ¼ � 1
N=2

� �
asv iDt þ rgi

ffiffiffiffiffiffi
Dt

p� �
¼ � 1

N=2

� �
Dxi for j – i

ð2Þ
There are several possible variants of this algorithm. For

example, all of the response accumulators could be
competing (i.e., an increase on one accumulator would
cause all of the other N accumulators to decrease) or only
some of the accumulators could be competing (i.e., if one
of the ‘intact’ accumulators was increased, only the
‘rearranged’ accumulators would decrease – the other
‘intact’ accumulators would be unchanged). For this appli-
cation, we used the variant of the model where an increase
in evidence in one of the ‘intact’ accumulators would cause
a decrease in evidence only in the ‘rearranged’ accumula-
tors (this is shown in Eq. (2)), but not the other ‘intact’
accumulators. This version of the constant-summed evi-
dence algorithm makes intuitive sense in that evidence
for one type of response (intact or rearranged) should not
compete with other confidence levels of that same
response. This version of the algorithm also provides
parameter values that are more consistent across different
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numbers of response options. The expressions for the
changes in evidence for each accumulator are given in
Eqs. (1) and (2). Eq. (1) describes the update in evidence
for the selected accumulator and Eq. (2) describes the cor-
responding change in activity for the non-selected accu-
mulators (note that, due to noise from the second terms
in the right-hand side of Eq. (1), Dxi could also be a nega-
tive value such that the other accumulators would all take
a proportional step up). If the selected accumulator was
one of the ‘intact’ accumulators, then Eq. (2) would be used
to adjust the ‘rearranged’ accumulators, but the other
intact accumulators would be unchanged (and vice versa,
if a ‘rearranged’ accumulator was selected). In these equa-
tions, as is a scaling parameter that adjusts drift rate (the
area under the distribution in the bottom of Fig. 2), r is
within-trial variability in the accumulation process, g is a
normally distributed random variable with mean 0 and
SD 1, and N is the total number of accumulators. The con-
stant summed evidence algorithm has been shown to pro-
vide a better fit to empirical data than a competing class of
models because it is better able to account for shifts in the
RT distributions across confidence responses (Ratcliff &
Starns, 2013).

Reaction time distributions are obtained by combining
the decision time (the time taken for one of the evidence
accumulators to reach a decision boundary) with a uni-
formly distributed non-decision component. The non-
decision component is assumed to have mean Ter and
range st, and it encompasses both encoding and response
output processes. Reaction time distributions are also
dependent on the height of the decision boundaries, which
vary from trial to trial over a uniform distribution with a
range of sb.

Although both RTCON2 and SDT use normal distribu-
tions of stimulus information, they produce considerably
different interpretations of z-ROC functions. In SDT, the
proportion of hit and false alarm rates can only be manip-
ulated through the placement of the decision criterion. In
RTCON2, the proportion of hit and false alarm responses
can be manipulated either by adjusting the height of the
decision boundaries or by adjusting the confidence criteria.
A shift in the heights of the decision boundaries will shift
the response time distributions and have an effect on the
leading edge of the RT distribution whereas a shift in the
confidence criteria will have a smaller effect on the leading
edge. Thus, the two ways of adjusting response proportions
in RTCON2 are identifiable based on reaction time distribu-
tions. Because the response proportions depend on both
the height of the decision boundaries and the placement
of the confidence criteria, RTCON2 is able to fit a wider
variety of z-ROC functions than standard SDT. In contrast
to SDT, which deals only with accuracy, RT distributions
provide additional severe constraints on RTCON2 because
the model not only has to account for z-ROC functions
but also RT distributions.

As mentioned previously, standard SDT with normal
distributions of evidence is unable to account for the
non-linear z-ROC functions observed in some associative
recognition experiments (Glanzer et al., 2004; Hilford
et al., 2002; Kelley & Wixted, 2001; Qin et al., 2001;
Slotnick & Dodson, 2005; Slotnick et al., 2000; Wixted,
2007; Yonelinas, 1997, 1999). This has prompted theorists
to add extra memory processes (Yonelinas, 1994;
Yonelinas & Parks, 2007) or extra sources of information
(DeCarlo, 2002, 2003; Hilford et al., 2002; Kelley &
Wixted, 2001) to standard SDT in order to account for
these findings. Because the RTCON2 model has different
ways of adjusting response proportions (but additional
constraints because of RT distributions), it can potentially
account for non-linear z-ROC functions through changes
in the decision-making process as opposed to changes in
the memory process. Moreover, because RTCON2 is fit to
both accuracy and RT data, applications of the model in
other paradigms have demonstrated a relationship
between the shape of the z-ROC function and the behavior
of response time distributions that had not previously been
observed.

Another important difference between SDT and
RTCON2 is that SDT contains only a single source of
variability. In SDT, the variability in the distribution of
memory strength is the only source of variability that
affects the decision. In RTCON2, however, there is
variability across trials in the quality of evidence from a
stimulus (the variability in the mean value of the evidence
distribution across trials), variability in the evidence
accumulation process, and variability in the decision
boundaries. These three sources of variability are identifi-
able and are needed to account for decision time, that is,
RT distributions for responses for the various confidence
categories (see Ratcliff & Starns, 2009, for some discussion
of parameter recovery and lack of parameter correlations
for RTCON). In standard SDT, the slope of the z-ROC func-
tion represents the ratio of the standard deviations of the
distributions of old and new stimulus evidence. But
because there are several sources of variability in the deci-
sion process, the slope of the z-ROC function is not a mea-
sure of the ratio of stimulus variability for the two choices
as in SDT.

RTCON2 is able to account for both accuracy and reac-
tion time values for confidence judgments, distinguishes
between several sources of variability in the decision pro-
cess, and provides an alternative explanation for the shape
of z-ROC functions. The aim of these experiments is to
investigate whether this model can account for data from
an associative recognition task.
Experiment 1

The first experiment was designed to collect a large
number of observations for a few subjects to provide
stringent tests of the RTCON2 model performance on an
associative recognition task. The aim is to determine
whether this one-process model can account for the type
of accuracy (and RT) data that has been assumed to
provide evidence for different memory processes
(DeCarlo, 2002, 2003; Healy, Light, & Chung, 2005; Kelley
& Wixted, 2001; Rotello et al., 2000; Yonelinas, 1994). In
this experiment, subjects studied lists of pairs of words
and then were presented with pairs of test words and
had to distinguish between intact and rearranged versions
of the study pairs.



C. Voskuilen, R. Ratcliff / Journal of Memory and Language 86 (2016) 60–96 65
Method

Subjects
Five Ohio State University undergraduate students par-

ticipated in 8 sessions and earned $10 for each completed
session.

Materials
The stimuli were drawn from a pool of 814 high-

frequency words, 859 low-frequency words, and 741
very-low-frequency words. Low-frequency words ranged
from 4 to 6 occurrences per million (M = 4.41), very-low-
frequency words ranged from 0 to 1 occurrence per million
(M = 0.365), and high-frequency words ranged from 78 to
10,595 occurrences per million (M = 323.22; Kučera &
Francis, 1967). Study lists were composed of 12
high-frequency words, 12 low-frequency words, and 4
very-low-frequency words selected randomly (without
replacement) from the word pools. These words were
randomly paired within frequency to create 14 word pairs
(6 high-frequency pairs, 6 low-frequency pairs, and 2 very-
low-frequency pairs). The two very-low-frequency word
pairs served as buffer items for the study list and were pre-
sented in the first and last positions of the study list, and
the remaining pairs were target items. All of the target
word pairs were presented twice within each list. The 12
target pairs were randomly assigned to the middle study
list positions with the restriction that there was at least
one intervening word pair between the two presentations
of each pair.

Test lists consisted of the two buffer word pairs (pre-
sented in the first and last positions of the test list) and
the 12 target pairs. Each pair was presented only once dur-
ing the test list and exactly half of the target pairs were
randomly rearranged within frequency (i.e., a low-
frequency word pair could only be rearranged with
another low-frequency word pair). Words also maintained
the same positions within pairs, such that a word pre-
sented as the first item in a pair during study would also
be the first item of a pair during test, regardless of what
word it was paired with. Thus each test list consisted of
6 rearranged pairs and 6 intact pairs. Intact pairs consisted
of words which had appeared together in the study list and
rearranged pairs consisted of words which appeared in dif-
ferent pairs in the study list.

Procedure
Each experimental session lasted approximately

50 min. The first two sessions for each subject consisted
of a response-key practice block, 3 study/test blocks, a
second response-key practice block, and 20 more study/
test blocks. The second response-key practice block was
dropped after the first two sessions, because subjects were
familiar with the response keys and no longer needed the
additional practice. Subjects responded using a PC key-
board on which the Z, X, C, comma, period, and slash keys
were labeled with the symbols ‘‘� � �”, ‘‘� �”, ‘‘�”, ‘‘+”,
‘‘+ +”, and ‘‘+ + +”. Subjects were instructed to place their
left-hand ring, middle, and index fingers on the ‘‘� � �”,
‘‘� �”, and ‘‘�” keys and their right-hand index, middle,
and ring fingers on the ‘‘+”, ‘‘+ +”, and ‘‘+ + +” keys.
During the response-key practice, each of the symbols
marked on the keyboard (e.g., ‘‘� �”) would appear on
the screen one at a time and the subjects were told to press
the designated key as quickly as possible. If a subject took
longer than 800 ms to respond to one of the symbols, a
‘‘TOO SLOW” message would appear on the screen for
1000 ms. Each practice block consisted of 10 repetitions
of each of the six response key options resulting in 60 trials
total in each block. The symbols appeared in random order
within the block with the restriction that repeated symbols
had to have at least one intervening symbol.

For the remainder of the experiment, subjects were told
that they would be presented with pairs of words during
the study portions of the experiment and their job was to
learn these pairs. During the study/test blocks, subjects ini-
tiated the start of each study list by pressing the spacebar.
Each word pair in the study list was displayed for 3000 ms
followed by 200 ms of blank screen. Immediately after the
final study-list word pair, a message appeared directing
subjects to press the space bar to begin the test list. During
the test-list, subjects were required to distinguish between
the word pairs that had not appeared during the study-list
(rearranged word pairs) and those that had (intact word
pairs). Each word pair remained on the screen until the
subject had made a response. Subjects were instructed to
use the different response-key options to indicate whether
a word pair had appeared in the study-list and their confi-
dence in their response. They were told to use one of the
‘‘�” keys to indicate that the word pair had not appeared
in the study-list, and to use one of the ‘‘+” keys to indicate
that it had. Subjects were instructed to use the different
levels of ‘‘+” and ‘‘�” to indicate their amount of confidence
in their response (e.g., if a subject felt very confident that a
word pair was intact they would use the ‘‘+ + +” key,
whereas if they felt only moderately confident they would
use the ‘‘+ +” key). Subjects were encouraged to respond
quickly and accurately and to try to spread their responses
among all six response-keys throughout the course of the
experiment. If a subject took less than 280 ms to respond
to one of the test items, a ‘‘TOO FAST” message would
appear on the screen for 1500 ms. Subjects were given
error feedback throughout all test blocks in the form of
the words ‘‘CORRECT” or ‘‘ERROR” displayed for 300 ms
after their response to each test item.

Model fitting

The RTCON2 model was fit to each individual subject’s
response proportion and reaction time quantiles (.1, .3,
.5, .7, .9) for each of the 6 confidence response for each of
the 4 conditions (rearranged high frequency, rearranged
low frequency, intact high frequency, and intact low fre-
quency word pairs). The RT quantiles divide the response
proportion data into six bins for each confidence category.
Initial parameter values were chosen that produced pre-
dictions similar to the empirical data, and then a simplex
function (Nelder & Mead, 1965) was used to adjust the
parameters of the model until the predictions matched
the data as closely as possible. The match between the
empirical data and the model predictions was quantified
by a chi-square (v2) statistic, which was minimized by



Table 1
Experiment 1 best fitting model parameters.

Subject Ter st as r sb v2

1 389 358 0.021 0.13 1.47 196
2 363 178 0.047 0.11 0.90 256
3 292 162 0.067 0.12 1.04 250
4 476 383 0.040 0.15 0.71 294
5 535 357 0.049 0.17 1.39 273

b1 b2 b3 b4 b5 b6

1 1.81 1.57 1.76 1.32 1.17 1.42
2 2.30 2.03 2.46 2.19 1.76 1.37
3 1.68 1.71 2.48 2.40 1.65 1.52
4 2.80 2.91 2.72 2.10 2.36 2.01
5 3.00 2.49 2.27 2.67 2.27 2.26

c1 c2 c3 c4 c5

1 �0.81 0.00 0.87 2.04 3.23
2 �1.20 �0.04 0.76 1.46 2.51
3 �0.84 0.08 0.95 1.96 2.81
4 �0.69 0.00 1.15 1.73 2.18
5 �0.90 �0.25 0.85 1.93 3.00

lrH lrL liH liL srH srL siH siL

1 0.00 0.87 0.42 2.49 0.61 0.63 0.65 0.53
2 0.00 �0.07 1.18 1.71 0.31 0.52 0.57 0.48
3 0.00 �0.15 1.82 2.14 0.40 0.41 0.63 0.61
4 0.00 �0.44 1.29 1.73 0.53 0.69 0.66 0.61
5 0.00 0.68 1.28 1.82 0.57 0.74 0.86 0.63

Ter is the mean nondecision time, st is the range in nondecision time, r is
the SD in within trial variability, as is the scaling factor that multiplies
drift rate, sb is the range in variability in the decision boundaries, b1–b6
are the decision boundaries, c1–c5 are the confidence criteria, the l values
are the mean values of the drift rate distributions for each experimental
condition, and the s values are the between-trial variability values for
each experimental condition (r represents rearranged items, i represents
intact items, H represents high-frequency items, and L represents low
frequency items).
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the simplex function (see Ratcliff & Tuerlinckx, 2002 for
more detail). Because there are no exact solutions for this
model, simulations are used to generate predicted values
from the model. To simulate the process of accumulation
given by Eqs. (1) and (2), we used the simple Euler’s
method with 1-ms steps (cf. Brown, Ratcliff, & Smith,
2006; Usher & McClelland, 2001). For each millisecond
step, one accumulator was chosen randomly, and the evi-
dence in it was incremented or decremented according to
Eq. (1) and opposite accumulators were incremented or
decremented according to Eq. (2) (e.g., if the selected accu-
mulator was for one of the ‘intact’ responses, then the evi-
dence in the ‘rearranged’ accumulators would be adjusted
according to Eq. (2) and the other ‘intact’ accumulators
would be unchanged). For each condition, 20,000 simula-
tions of the decision process were used to generate the
response proportions and RT quantiles for each confidence
category. Note that we use the term ‘model predictions’ to
refer to data generated by the model for a specific set of
parameter values. These predictions are thus the data pre-
dicted by the model structure and a given parameter set, as
opposed to predictions about some future data based on
fits of the current data.

There are six RT bins for each confidence response,
which gives 36 degrees of freedom for the 6-choice task.
But these response proportions have to add to 1, which
reduces the degrees of freedom to 35 for each condition.
With four conditions, this gives a total of 140 degrees of
freedom in the data. For this experiment there are 23 free
parameters in RTCON2. Of these, 12 are used to represent
the memory strength feeding into the decision (3 mean
drift values – one is fixed to zero, 4 between-trial variabil-
ity in the mean of the drift distribution, and 5 confidence
criteria) and the remaining 11 parameters are used to
model the decision process (6 decision boundaries, non-
decision time, variability in non-decision time, the scaling
parameter on drift, variability in the decision boundaries,
and within-trial noise in the diffusion process). These 11
additional parameters are what enable the model to pro-
duce response times as well as accuracy. Note that an
accuracy-only SDT model with the same representation
of memory strength would require 12 parameters (the
same ones for RTCON2) for data with only 20 degrees of
freedom. Additionally, although RTCON2 has a fairly large
number of parameters, a change in any one of the param-
eter values will affect predictions across multiple condi-
tions or response categories such that it is not possible to
remedy misfits in a single condition by simply adjusting
a single parameter.

Results and discussion

There are two main results of this experiment. First, the
model fits both the proportion of responses and the RT
quantiles for each confidence category. Second, because
the model fits the proportions of responses, it also fits
the ROC and z-ROC functions for all but one subject reason-
ably well.

Data from this experiment consisted of response pro-
portions and reaction-time quantiles for each subject from
each condition and each confidence response. There were
four conditions in this experiment: rearranged high fre-
quency, rearranged low frequency, intact high frequency,
and intact low frequency word pairs. Reaction time laten-
cies less than 300 ms or greater than 4000 ms were
excluded from these analyses (less than 0.3% of all data).

We analyzed response rates across all levels of confi-
dence for word frequency effects. There was a higher hit-
rate for LF word pairs (M = 0.81, SD = 0.07) than HF word
pairs (M = 0.66, SD = 0.10) and this difference was signifi-
cant (t(4) = �9.3, p < .05). There was also a higher false-
alarm rate for LF word pairs (M = 0.34, SD = 0.22) than HF
word pairs (M = 0.25, SD = 0.14) but this difference was
not significant (t(4) = �2.3, p > .05).

The model was fit to data from individual subjects and
the best-fitting model parameters are shown in Table 1. For
each subject, these parameter values were used to gener-
ate predicted reaction time quantiles and response propor-
tions for each condition. These predicted values can then
be compared with the empirical data using a v2 test to
quantitatively assess the model fit. The mean v2 value for
this experiment was 254 with a SD of 36. This mean is
1.5 times the critical v2 value (168.6) which indicates a
mismatch between the model’s predictions and the data.
However, the size of this mismatch is comparable to those
obtained in other experiments with diffusion models.
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Ratcliff, Thapar, Gomez, and McKoon (2004) demonstrated
that a miss as large as .1 in the proportion of responses
between quantiles could produce v2 values 2–3 times the
critical value. Similarly, Ratcliff and Starns (2009) demon-
strated that 10 ms perturbations of the quantile reaction
times could produce large increases in v2 values. The sig-
nificance of the v2 values is also, at least partially, a power
issue. In order to fit RCON2, we need good RT quantile esti-
mates and so need to collect a sizeable amount of data
from each subject. For this experiment, we collected an
average of 550 responses per condition from each subject.
With this many responses, even small differences between
the empirical data and the model predictions will be
Fig. 3. Experiment 1: Quantile reaction times for each condition for each subjec
Rearranged to 6: Sure Intact). The numbers 1–5 depict the RT quantiles from the
RTCON2. In conditions where subjects made between 4 and 10 responses the
Conditions where subjects made fewer than 5 responses are omitted from the figu
low-frequency word pairs so there are no behavioral data plotted for that condi
significant. For comparison, if we had observed these same
response proportions and quantile RTs from about 358
responses per condition (65% of the actual 550) then the
same v2 test yields a mean value of 153.29 (4 out of 5 sub-
jects have values less than the critical value) and the model
would be considered to be a reasonably good match to the
data. Additionally, the original RTCON model produces an
average v2 value of 331 when fit to these data. This
demonstrates that this new version of the RTCON model
is indeed an improvement over the original version in that
it provides a closer fit to the data. The original RTCON
model primarily had difficulty producing the bowed RT
quantiles that were observed in this experiment.
t. Confidence responses are plotted along the x-axis (ranging from 1: Sure
behavioral data and the corresponding lines depict the predictions from

median RT is plotted as an ‘M’ and the other quantiles are not included.
re (e.g., subject 2 made fewer than 5 ‘Sure Rearranged’ responses to intact
tion).
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In addition to the quantitative comparison, the model
predictions for each condition can also be compared with
the empirical data to qualitatively assess the model fit.
Quantile reaction-times for each subject for each of the
four experimental conditions are shown in Fig. 3. In each
of these plots, the six confidence responses are plotted
across the x-axis (the ‘‘sure rearranged” category is labeled
1 and the ‘‘sure intact” category is labeled 6) and each line
represents a quantile (with the lowest line depicting the .1
quantile, followed by .3, .5, .7 and .9). The numbers plotted
in these figures represent the empirical data and the lines
represent the predicted data from the model’s best fitting
parameters. From these plots, it is apparent that there is
Fig. 4. Experiment 1: Empirical response proportions plotted against predic
experimental conditions for each subject) with a reference line with an intercep
consistency in the quantile response patterns of individual
subjects across experimental conditions as well as wide
differences between subjects in the quantile response pat-
terns. For example, subjects 2 and 3 exhibit bowed reaction
time quantiles where the high confidence responses are
made more quickly than the low confidence responses.
This is a response pattern that has been observed in previ-
ous confidence response paradigms (Murdock, 1974;
Murdock & Dufty, 1972; Ratcliff & Murdock, 1976), but
for which the original RTCONmodel was unable to account
(see Ratcliff & Starns, 2013 for a discussion of why models
with a decay term, such as RTCON, have difficulty captur-
ing changes in the leading edge of RT distributions across
ted response proportions (for the six confidence conditions and four
t of 0 and a slope of 1.
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response options). The fits to these data show that RTCON2
is able to capture this behavior of RT distributions.

RTCON2 was also able to capture the proportion of
responses in each condition and confidence category. In
Fig. 4, the empirical response proportions for each subject
are plotted against the predicted response proportions for
that subject (with a reference line with an intercept of 0
and a slope of 1). We can see that the model matches the
data reasonably well for all subjects. ROC and z-ROC func-
tions from both the model predictions and the empirical
Fig. 5. Experiment 1: ROC and z-ROC functions for each subject and each cond
dashed lines are the predictions from RTCON2. The black lines are the functions
where subjects made fewer than 10 responses are omitted from the figure.
data for each subject are plotted in Fig. 5. The solid lines
depict the empirical data, the dashed lines are the predic-
tions from the model, the black lines are for HF word pairs
and the gray lines are for LF word pairs. If the model is suc-
cessful at capturing the response patterns of the subjects,
then the dashed lines should match the solid lines. The
linearity of each of the individual z-ROC curves was tested
using maximum likelihood estimation (Ogilvie &
Creelman, 1968) and subjects 3, 4, and 5 were all found
to have z-ROC curves that are significantly different from
ition. The solid lines are the functions from the behavioral data and the
for HF words and the gray lines are the functions for LF words. Conditions



Table 2
Linearity analysis of behavioral z-ROC curves – Experiment 1.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average

LF 4.85 4.65 26.18⁄ 56.84⁄ 17.86⁄ 30.15⁄

HF 2.30 5.61 10.39⁄ 75.00⁄ 18.59⁄ 20.17⁄

df = 3, critical value = 7.815.
⁄ v2 is significant at the p < .05 level.

Fig. 6. Experiment 1: ROC and z-ROC functions for data averaged across subjects. The gray lines are the low-frequency condition and the black lines are the
high-frequency condition.
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linear (v2 values are reported in Table 2). Subjects 1 and 2
have z-ROC functions that are not significantly different
from linear, subject 3 has inverted U-shaped z-ROC func-
tions, and subjects 4 and 5 have U-shaped z-ROC functions.
The model’s predicted ROC and z-ROC functions are rela-
tively close to the empirical functions and exhibit the same
linear and nonlinear patterns found in the empirical data
for the first three subjects, but the model predicts linear
z-ROC functions for subjects 4 and 5. These misfits can
occur for several reasons, which will be discussed in
greater detail following Experiment 3. In short, mis-
matches between the empirical data and model predic-
tions occur for subjects and conditions with low numbers
of observations or certain patterns of response proportions
which are difficult for RTCON2 to handle. Specifically, sub-
ject 2 made very few high-confidence errors in any condi-
tion (fewer than 1.8%) and the model had difficulty
producing such extreme response proportions so that a
small difference between predicted and observed propor-
tions leads to a miss in the predictions for the extreme
points on the z-ROC. Similarly, subject 4 also made very
few high-confidence errors. While such misses were
numerically small (for example, the model predicted that
subject 4 would make high confidence errors about 9.3%
of the time instead of 2.2%), such small misses are exagger-
ated in the z-transformed ROC function. More crucially, as
will be discussed following Experiment 3, certain patterns
of data give rise to u-shaped z-ROC functions that are dif-
ficult for RTCON2 to produce.
Additionally, as noted earlier, in much of the research
investigating memory models it is common practice to
examine only group data. For illustrative purposes, Fig. 6
shows the ROC and z-ROC functions for this experiment
averaged across subjects. The linearity of the averaged z-
ROC curve was also tested using the maximum likelihood
estimation method (see the last column of Table 2). While
the v2 values indicate that the averaged z-ROC function is
still significantly different from linear, we can see that the
variety present in the individual z-ROC shapes is largely
obscured by averaging.

In RTCON2, the shape of the z-ROC function is primarily
dependent on the relative heights of the individual deci-
sion boundaries, provided the proportion of responses in
each confidence category is not tiny (e.g., less than 1%).
Simulations of the original RTCON model demonstrated
that inverted u-shaped decision boundaries can yield
inverted u-shaped z-ROC functions (Ratcliff & Starns,
2009) and fits of RTCON2 to item recognition also demon-
strated this relationship (Ratcliff & Starns, 2013). In this
experiment we see that the relative shape of the decision
boundaries across categories corresponds to the shape of
the z-ROC curves for some of the subjects. The setting of
these decision boundaries is assumed to be entirely under
the control of the subject, although it can be affected by
instructions (Ratcliff & Starns, 2009), and so reflects an
individual decision-making preference. Moreover, the
relative shape of the decision boundaries is primarily
constrained by the reaction time data. If a subject’s



C. Voskuilen, R. Ratcliff / Journal of Memory and Language 86 (2016) 60–96 71
boundary for a given confidence response is set higher than
the other boundaries, those responses will be slower (and
the proportion of responses will be lower than if the
boundary was set lower). This relationship is illustrated
in Fig. 7, where the shape of the decision boundaries
matches the shape of both the reaction time quantile
Fig. 7. Experiment 1: Comparison of RT quantile shapes (from Intact – LF conditio
each subject. Plotting conventions are the same as for Figs. 3 and 5.
functions for most of the subjects. The relationship
between the shape of the z-ROC function and the decision
boundaries is apparent for some subjects (e.g., subject 3)
but not for others.

This experiment demonstrates that RTCON2 can fit both
RT and accuracy data from an associative recognition
n), z-ROC functions, and the relative heights of the decision boundaries for
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experiment with confidence responses. The RTCON2model
distinguishes between different sources of variability, can
fit individual differences in how people use confidence
response scales, and provides an alternative explanation
for the shape of ROC and z-ROC functions that is linked
to reaction time and decision-related processes rather than
changes in the nature of information from memory.

RTCON2 is able to fit both response proportions and
reaction time distributions from a confidence judgment
paradigm, and does so without a 1:1 mapping between
accuracy and confidence. Additionally, the model is able
to account for individual differences in how subjects use
the confidence scale and as a result can produce a variety
of ROC and z-ROC shapes. This explanation for various
ROC and z-ROC shapes is entirely based on the decision-
making process and individual differences in how people
make confidence judgments. Therefore, some of the behav-
ioral evidence that has been the primary support for addi-
tional memory processes may be alternatively explained
through the addition of an explicit model of the decision-
making process. These findings demonstrate the impor-
tance of focusing not only on what kind of information is
used in a decision, but also on how the decision-making
process handles that information and makes a decision.
Experiment 2

The RTCON2 model distinguishes between the repre-
sentation of information frommemory and how that infor-
mation is used to make a decision. As such, it is important
to demonstrate the validity of the representation of infor-
mation in RTCON2. To this end, the second experiment
was designed to compare the RTCON2 model with the
standard two-choice diffusion model (Ratcliff, 1978;
Ratcliff & McKoon, 2008). If these models explain individ-
ual differences in decision-making in the same way, then
their parameter values should be consistent when fit to
the same data. Additionally, the two-choice diffusion mod-
el’s ability to explain decision making behavior over a wide
range of tasks is well-established so comparison of the two
models can lend validity to the RTCON2 model. This exper-
iment allows us to compare 6-choice and two-choice data
using the RTCON2 model and then compare the RTCON2
and the diffusion model for the two-choice data. The
parameters from the diffusion and RTCON2 models should
be consistent when fit to the two-choice data, and the
RTCON2 model should be able to fit both 6-choice and
two-choice data with select parameters held constant
across the number of response options.

Since most decision models focus on two-choice tasks
(Busemeyer & Townsend, 1992; Laming, 1968; Link,
1975; Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff &
Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1999;
Usher & McClelland, 2001; Wagenmakers, 2009), these
models are well-established and provide a benchmark for
model performance. Because RTCON2 can be seen as an
extension of the diffusion model, the models are quite sim-
ilar. Just like RTCON2, the diffusion model has parameters
that describe the non-decision process (non-decision time
and variability in non-decision time, st), drift rate parame-
ters that describe the quality of evidence entering the deci-
sion process (mean m and between-trial variability g), and
starting point (z) and boundary (a) parameters that control
the amount of evidence needed to make a decision (as well
as any bias toward a particular response). However, there
are a few differences between the models which make
their comparison worthwhile. First, the models represent
the accumulation rate differently. In the diffusion model,
the rate of evidence accumulation is represented as a dis-
crete value that varies between items. In RTCON2, the rate
of evidence accumulation for each response is determined
by the area between the confidence criteria under a normal
distribution with SD of 1 whose mean value (l) varies
between items. The area of this distribution in each
response region is then scaled by a parameter (as) to pro-
duce an accumulation rate for each confidence response.
Second, unlike the diffusion model, RTCON2 has no closed
form solution and so must be fit by simulation methods.

In this task, subjects will alternate between using a 6-
choice confidence response scale, and a two-choice
response scale (corresponding to a simple intact/rear-
ranged decision).

Method

Subjects
Four Ohio State University undergraduate students par-

ticipated in 7 sessions and earned $10 for each completed
session.

Materials
The stimuli were drawn from the same high-frequency,

low-frequency, and very-low-frequency word pools
described in the first experiment. Study lists were com-
posed of 12 high-frequency words, 12 low-frequency
words, and 4 very-low-frequency words selected randomly
(without replacement) from the word pools. These words
were randomly paired within frequency to create 14 word
pairs (6 high-frequency pairs, 6 low-frequency pairs, and 2
very-low-frequency pairs). As in the first experiment, the 2
very-low-frequency word pairs served as buffer items for
the study list and were presented in the first and last posi-
tion within each list. All of the target word pairs were pre-
sented twice within each study list and were assigned to
study-list positions randomly with the restriction that
repeated pairs had at least one intervening word pair.

As in experiment one, test lists consisted of the two buf-
fer word pairs (which were again presented in the first and
last positions of the test list) and the 12 target pairs. Each
pair was presented only once during the test list and
exactly half of the target pairs were randomly rearranged
within frequency and number of presentations. Thus each
test list consisted of 2 buffer word pairs, 6 rearranged word
pairs and 6 intact word pairs. Intact pairs consisted of
words which had appeared together in the study list and
rearranged pairs consisted of words which appeared in dif-
ferent pairs in the study list.

Procedure
Each experimental session lasted approximately

50 min. The first two sessions for each subject consisted
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of a response-key practice block, 3 study/test blocks, a sec-
ond response-key practice block, and 20 more study/test
blocks. The second response-key practice block was
dropped after the first two sessions, because subjects were
familiar with the response keys and no longer needed the
additional practice. During the first three study/test blocks,
subjects alternated between using 6 or 2 response-keys
between each list (one 6-choice list, then one two-choice
list, then another 6-choice list). During the last twenty
study/test blocks, subjects alternated between blocks of
lists (three two-choice lists, then seven 6-choice lists, then
three two-choice lists, then seven 6-choice lists). Subjects
responded using a PC keyboard on which the Z, X, C,
comma, period, and slash keys were labeled with the sym-
bols ‘‘� � �”, ‘‘� �”, ‘‘�”, ‘‘+”, ‘‘+ +”, and ‘‘+ + +”. Subjects
were instructed to place their left-hand ring, middle, and
index fingers on the ‘‘� � �”, ‘‘� �”, and ‘‘�” keys and their
right-hand index, middle, and ring fingers on the ‘‘+”, ‘‘+ +”,
and ‘‘+ + +” keys.

During the response-key practice, each of the symbols
marked on the keyboard (e.g., ‘‘� �”) would appear on
the screen one at a time and the subjects were told to press
the designated key as quickly as possible. If a subject took
longer than 800 ms to respond to one of the symbols, a
‘‘TOO SLOW” message would appear on the screen for
1000 ms. Each practice block consisted of 10 repetitions
of each of the six response key options resulting in 60 trials
total in each block. The symbols appeared in random order
within the block with the restriction that repeated symbols
had to have at least one intervening symbol.

For the remainder of the experiment, subjects were told
that they would be presented with pairs of words during
the study portions of the experiment and their job was to
learn these pairs. Additionally, subjects were informed at
the beginning of each study-list and each test-list how
many different response-keys were to be used for that
study/test block (e.g., ‘Please use all 6 confidence cate-
gories for the next study list’). During the study/test blocks,
subjects initiated the start of each study list by pressing the
spacebar. Each word pair in the study list was displayed for
3000 ms followed by 200 ms of blank screen. Immediately
after the final study-list word pair, a message appeared
directing subjects to press the space bar to begin the test
list. During the test-list, subjects were required to distin-
guish between the word pairs that had not appeared dur-
ing the study-list (rearranged word pairs) and those that
had (intact word pairs). Each word pair remained on the
screen until the subject had made a response.

On the 6-choice study/test blocks subjects were
instructed to use all 6 response-keys to indicate whether
a pair was intact or rearranged and their confidence in
their response. They were told to use one of the ‘‘�” keys
to indicate that the word pair had not appeared in the
study-list, and to use one of the ‘‘+” keys to indicate that
it had. Subjects were instructed to use the different levels
of ‘‘+” and ‘‘�” to indicate their amount of confidence in
their response (e.g., if a subject felt very confident that a
word pair was intact they would use the ‘‘+ + +” key,
whereas if they felt only moderately confident they would
use the ‘‘+ +” key). On the two-choice study/test blocks,
subjects were instructed to use only the two most extreme
response-keys (‘‘+ + +” and ‘‘� � �”) to indicate only
whether a pair was intact or rearranged. Subjects were
encouraged to respond quickly and accurately and to try
to spread their responses among all six response-keys
throughout the course of the experiment. If a subject took
less than 280 ms to respond to one of the test items, a
‘‘TOO FAST” message would appear on the screen for
1500 ms. Subjects were given error feedback throughout
all test blocks in the form of the words ‘‘CORRECT” or
‘‘ERROR” displayed for 300 ms after their response to each
test item.

Model fitting

The two-choice and 6-choice versions of the RTCON2
model are fit using the same procedure described for the
first experiment. To facilitate comparison between
RTCON2 and the diffusion model, within-trial variability
in the decision process (r) was fixed to 0.1. All other
RTCON2 parameters were allowed to vary freely when fit-
ting the 6-choice data, and then select parameters were
fixed when fitting the two-choice data. For the two-
choice data, the mean value of the drift rate distributions,
the between-trial variability in these mean values, and
the between-trial variability in the height of the decision
boundaries were fixed to the values estimated from the
6-choice data. As in the first experiment, there are 35
degrees of freedom per condition in the 6-choice task. In
the two-choice task, there are also six RT bins for each
response key, which gives 12 degrees of freedom, but these
12 proportions have to add to 1, which reduces the degrees
of freedom to 11 per condition. With four conditions, this
gives a total of 140 degrees of freedom in the 6-choice task
and 44 degrees of freedom in the two-choice task. For
these fits there were 23 free parameters in RTCON2 for
the 6-choice data and 6 free parameters for the two-
choice data, and 13 free parameters for the diffusion
model.

Results and discussion

Data for this experiment consisted of response propor-
tions and reaction-time quantiles for each subject from
each condition and for each response category. Reaction
time latencies less than 300 ms or greater than 4000 ms
were excluded from this analysis (less than 0.1% of all
data).

This experiment was designed to compare the perfor-
mance of RTCON2 with the diffusion model. There are
three main results of this experiment. First, all of the mod-
els fit both the proportions of responses in each confidence
category and their RT quantiles well for the appropriate
tasks. Second, as in the previous experiment, the RTCON2
model also fits the empirical ROC and z-ROC functions
for the 6-choice task. Third, there is consistency in the
model parameters across the diffusion model and RTCON2,
and the RTCON2model is able to fit data from 6-choice and
two-choice task with appropriate parameters fixed across
tasks.

For data collapsed over the 6-choice and two-choice
tasks, there was a higher hit-rate for LF word pairs



Table 4
Experiment 2, 2-choice RTCON2 model parameters.

Subject Ter st as b1 b2 c1 v2

1 456 295 0.01 2.10 1.51 0.61 84
2 405 233 0.02 3.07 2.46 0.84 45
3 410 108 0.01 1.72 1.49 1.10 57
4 266 60 0.02 2.88 2.42 1.14 35

Ter is the mean nondecision time, st is the range in nondecision time, as is
the scaling factor that multiplies drift rate, b1–b2 are the decision
boundaries, and c1 is the decision criteria.

Table 5
Experiment 2 diffusion model parameters.

Subject Ter st a z sz v2

1 536 350 0.13 0.05 0.09 62
2 500 280 0.20 0.09 0.16 39
3 463 170 0.11 0.05 0.09 42
4 305 10 0.17 0.08 0.08 30

mrH mrL miH miL grH grL giH giL

1 �0.21 �0.28 0.20 0.09 0.29 0.36 0.27 0.31
2 �0.32 �0.39 0.24 0.23 0.32 0.36 0.14 0.22
3 �0.02 �0.18 0.10 0.15 0.23 0.17 0.01 0.16
4 �0.23 �0.38 0.26 0.37 0.14 0.15 0.01 0.15

Ter is the mean nondecision time, st is the range in nondecision time, a is
the boundary separation, z is the starting point of the accumulation
process, sz is the range in variability in the starting point, the m values are
the mean drift rate values for each experimental condition, and the g
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(M = 0.88, SD = 0.08) than HF word pairs (M = 0.79,
SD = 0.13) and this difference was significant (t(3) = �3.5,
p < .05). There was again a higher false-alarm rate for LF
word pairs (M = 0.24, SD = 0.19) than HF word pairs
(M = 0.21, SD = 0.16) but this difference was not significant
(t(4) = �1.9, p > .05).

The diffusion model and two versions of the RTCON2
model (one for 6-choice decisions and one for two-choice
decisions) were fit to the data from individual subjects.
The RTCON2 model was fit to the 6-choice data and both
the diffusion model and RTCON2 model were fit to the
two-choice data. The RTCON2 and diffusion models were
both able to fit both the quantile reaction-times and
response proportions for each condition and response-
key. The best-fitting parameters for each model are shown
in Tables 3–5. Table 3 contains the parameters for the
6-choice version of RTCON2, Table 4 contains the parame-
ters from the two-choice version of RTCON2, and Table 5
contains the parameters from the diffusion model.

For the 6-choice version of the RTCON2 model, the
mean v2 value for this experiment was 151 with a SD of
45. This mean is less than the critical value for v2 with
140 degrees of freedom and a = 0.05 (168.6) indicating that
the model provides an adequate fit to the data. For compar-
ison, the original RTCON model produces an average v2

value of 211 when fit to this data. For the two-choice ver-
sion of the RTCON2 model, the mean v2 value was 55 with
a SD of 21. For the standard two-choice diffusion model,
Table 3
Experiment 2 6-choice RTCON2 model parameters.

Subject Ter st as r sb v2

1 436 280 0.03 0.1 0.48 109
2 392 263 0.04 0.1 0.47 129
3 373 137 0.03 0.1 1.02 214
4 278 252 0.03 0.1 0.86 152

b1 b2 b3 b4 b5 b6

1 1.80 1.87 1.78 1.41 1.33 1.41
2 1.59 2.15 5.52 3.21 1.92 1.45
3 2.32 1.50 1.42 1.21 1.31 1.62
4 1.85 2.16 2.64 2.53 2.34 1.66

c1 c2 c3 c4 c5

1 �1.31 0.00 0.85 1.77 2.89
2 �0.48 0.00 1.19 1.29 2.18
3 �0.89 �0.12 0.92 1.90 2.48
4 �0.82 0.09 0.87 1.59 2.64

lrH lrL liH liL srH srL siH siL

1 0.00 �0.06 1.92 2.24 0.85 0.87 1.10 0.96
2 0.00 �0.17 2.01 2.31 0.53 0.81 1.18 0.98
3 0.00 �0.13 1.78 2.00 0.66 1.07 1.00 1.03
4 0.00 �0.49 2.33 2.97 0.59 0.67 0.92 1.03

Ter is the mean nondecision time, st is the range in nondecision time, r is
the SD in within trial variability, as is the scaling factor that multiplies
drift rate, sb is the range in variability in the decision boundaries, b1–b6
are the decision boundaries, c1–c5 are the confidence criteria, the l values
are the mean values of the drift rate distributions for each experimental
condition, and the s values are the between-trial variability values for
each experimental condition (r represents rearranged items, i represents
intact items, H represents high-frequency items, and L represents low
frequency items).

values are the between-trial variability values for each experimental
condition (r represents rearranged items, i represents intact items, H
represents high-frequency items, and L represents low-frequency items).
the mean v2 value was 43 with a SD of 13. These means
are both less than the critical value for v2 with 44 degrees
of freedom and a = 0.05 (60.5) indicating that both models
provide an adequate fit to the data.

For each subject, their parameter values were used to
generate predicted reaction time quantiles and response
proportions for each model. These predicted values can
then be compared with the empirical data to qualitatively
assess the fit of the various models. For the 6-choice task,
quantile reaction-times for each subject for each of the
four experimental conditions (rearranged high frequency,
rearranged low frequency, intact high frequency, and
intact low frequency word pairs) are shown in Fig. 8 along
with predicted values from the 6-choice version of
RTCON2. As in the previous experiment, the 6 response
keys are plotted on the x-axis and each line represents a
reaction time quantile. The numbers plotted in the figures
represent the subject data and the lines represent pre-
dicted data. As before, there is considerable consistency
in the shapes of the subjects’ RT quantiles across condi-
tions and considerable differences across subjects, and
RTCON2 is successful at capturing these effects. Note that
there is considerably less 6-choice data for this experiment
compared to the first (since subjects in this experiment
were alternating between using a 6-choice response scale
and a two-choice response scale), so there are more condi-
tions where subjects made fewer than 10 responses over
the course of all of the sessions.



Fig. 8. Experiment 2: Quantile reaction times from the 6-choice task for each condition for each subject. Confidence responses are plotted along the x-axis
(ranging from 1: Sure Rearranged to 6: Sure Intact). The numbers 1–5 depict the RT quantiles from the behavioral data and the corresponding lines depict
the predictions from RTCON2. In conditions where subjects made between 4 and 10 responses the median RT is plotted as an ‘M’ and the other quantiles are
not included. Conditions where subjects made fewer than 5 responses are omitted from the figure (e.g., subject 4 made fewer than 5 ‘Intact’ responses of
any confidence level to rearranged low-frequency word pairs so there are no behavioral data plotted for those conditions).
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Despite these small numbers of observations, RTCON2
was still able to capture the proportion of responses in
each condition and confidence category. In Fig. 9, the
empirical response proportions for each subject are plotted
against the model’s predicted response proportions for that
subject (with a reference line with an intercept of 0 and a
slope of 1). We can see that the model matches the data
quite well for all subjects. ROC and z-ROC functions from
both the model predictions and the empirical data for each
subject are plotted in Fig. 10. The solid lines depict the
empirical data, the dashed lines are the predictions from
the model, the gray lines are the LF word pairs, and the
black lines are the HF word pairs. If the model is successful
at capturing the response patterns of the subjects, then the
dashed lines should match the solid lines. The model’s pre-
dicted ROC and z-ROC functions are close to the empirical
functions and generally exhibit the same linear and nonlin-
ear patterns found in the empirical data, although there are
slightly larger mismatches for subjects with extremely low
numbers of observations in some conditions (such as
subject 4, who made very few errors across all of the
sessions).

The linearity of the subjects’ z-ROC curves was tested
using maximum likelihood estimation (Ogilvie &
Creelman, 1968) and two subjects had z-ROC curves that
were significantly different from linear: the low-
frequency condition for subject 3 and both conditions for
subject 4 (v2 values are reported in Table 6).

For the two-choice task, Fig. 11 compares the predicted
RT values from the two-choice version of RTCON2 and the
diffusion model with the individual subjects’ data. Data in
each row are from a single subject and data in each column
are from a single experimental condition (rearranged high
frequency, rearranged low frequency, intact high fre-
quency, and intact low frequency word pairs) with the 2
response keys on the x-axis (1 representing ‘rearranged’



Fig. 9. Experiment 2: Empirical response proportions from the 6-choice task plotted against predicted response proportions (for the six confidence
conditions and four experimental conditions for each subject) with a reference line with an intercept of 0 and a slope of 1.
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and 2 representing ‘intact’). The numbers plotted in the fig-
ures represent the subject data, the solid lines represent
predicted data generated from RTCON2, and the dashed
lines represent predicted data generated from the diffusion
model. The predicted data from both models fit the empir-
ical RT data relatively well. Both models are also able to
capture the proportion of responses in each condition
and response category. In Fig. 12, the empirical response
proportions for each subject are plotted against the
RTCON2 model’s predicted response proportions (the dots)
and against the diffusion model’s predicted response pro-
portions (the x’s) with a reference line with an intercept
of 0 and a slope of 1. Although both models match the data
reasonably well, the diffusion model’s predictions provide
a slightly better match to the empirical data.

Parameters from the 6-choice version of RTCON2 were
fixed for fits of the two-choice version of RTCON2, and
parameters from the two-choice version of RTCON2 were
compared with corresponding diffusion model parameters.
Not all of the model parameters are directly comparable
given that the models have different numbers of confi-
dence criteria and decision boundaries. However, parame-
ters that represent the quality of evidence from the stimuli
(such as drift rate) and parameters that reflect individual
differences in decision making (such as decision bound-
aries) should be consistent across all the models and tasks.
A comparison of drift rate values and boundary heights
across models is shown in Fig. 13. In the figure on the left,
drift rate values from the diffusion model are plotted
against the mean of the drift distributions from the
RTCON2 model (based on fits of the 6-choice data) along
with a linear regression line. The RTCON2 model fixes the
mean of one of the drift distributions to zero, and allows
the other drift distributions and confidence criteria to vary
(see Table 3). The diffusion model allows all of the drift val-
ues to vary. For comparison purposes, for this figure the
drift values from the RTCON2 model have been adjusted
to match the diffusion model (mean drift values were
shifted such that the middle confidence criterion was at
zero) and multiplied by the scaling parameter. The two
models produced very similar estimates of drift rate. This
demonstrates that the RTCON2 model is able to produce
estimates of the quality of evidence used in a decision that
are comparable to the estimates produced by the more
established standard diffusion model. In the figures in
the middle and on the right of Fig. 13, the decision bound-
aries from the two-choice RTCON2 model are plotted
against the boundaries from the 6-choice RTCON2 model
and the diffusion model. For the 6-choice model, the
heights of the ‘intact’ and ‘rearranged’ response options
were averaged over confidence level to produce two values
to compare to the parameters estimated from the two-
choice task. For the diffusion model, the total distance
between the two decision boundaries (a) was split into



Fig. 10. Experiment 2: ROC and z-ROC functions from the 6-choice task for each subject and each condition. The solid lines are the functions from the
behavioral data and the dashed lines are the predictions from RTCON2. The black lines are the functions for HF words and the gray lines are the functions for
LF words. Conditions where subjects made fewer than 10 responses are omitted from the figure.

Table 6
Linearity analysis of behavioral zROC curves – Experiment 2.

Subject 1 Subject 2 Subject 3 Subject 4

HF 2.99 1.68 5.76 10.08⁄

LF 3.84 0.47 17.89⁄ 21.80⁄

df = 3, critical value = 7.815.
⁄ v2 is significant at the p < .05 level.
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the distance from the starting point (z) to produce two val-
ues (z and a–z) to compare to the parameters estimated
from the two-choice task. For both figures, a linear regres-
sion line is included for reference. Overall, the models
produce similar estimates of decision boundary heights.
This demonstrates both that the RTCON2 model is able to
produce estimates of response caution that are comparable



Fig. 11. Experiment 2: Quantile reaction times from the two-choice task for each condition for each subject. The numbers 1–5 depict the RT quantiles from
the behavioral data, the solid lines depict the predictions from RTCON2, and the dashed lines depict the predictions from the diffusion model. In conditions
where subjects made fewer than 10 responses the median RT is plotted as an ‘M’ and the other quantiles are not included.
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to estimates produced by the diffusion model and that
individual differences in response caution appear consis-
tent across response options.

This experiment provided another demonstration of
RTCON2’s ability to fit a variety of z-ROC functions as well
as bowed reaction time quantiles. Additionally, this exper-
iment demonstrated consistency in model parameters
within subjects and across tasks. The RTCON2 model was
able to fit data from both a 6-choice task and a two-
choice task with a reasonable subset of the parameters
held constant across tasks. We also observed considerable
correspondence between the drift rates across models. This
indicates that, regardless of task differences (which likely
affect other parameters such as those related to making a
decision), the quality of evidence extracted from the stim-
ulus can be held constant across task conditions.
Experiment 3

The third experiment was designed to collect a moder-
ate number of observations from a larger group of subjects
with the goal of providing more examples of non-linear
z-ROC shapes to be fit by the model. As in the previous
experiments, subjects in this experiment studied lists of
pairs of words and then were presented with pairs of test
words and had to distinguish between intact and rear-
ranged versions of the study pairs. For this experiment,
the study lists were slightly longer and each item was pre-
sented for a shorter duration in order to collect more
observations from each session.

Method

Subjects
34 Ohio State University undergraduate students par-

ticipated in 2 sessions each and earned research credit
for an introductory Psychology course for each completed
session.

Materials
The stimuli were drawn from the same high-frequency,

low-frequency, and very-low-frequency word pools



Fig. 12. Experiment 2: Empirical response proportions from the two-choice task plotted against predicted response proportions from the RTCON2 model
(the triangles) and the diffusion model (the dots) for each subject (for the two responses and four experimental conditions) with a reference line with an
intercept of 0 and a slope of 1.

Fig. 13. Experiment 2: Comparison of drift rates and decision bounds across the models along with best-fitting linear regression lines. In the figure on the
left, drift rate values have been shifted and adjusted to account for differences in how the models parameterize drift rates. In the middle figure, for the 6-
choice RTCON2 model the heights of the ‘intact’ and ‘rearranged’ response options were averaged over confidence level. In the figure on the right, for the
diffusion model the total distance between the two decision boundaries (a) was split into the distance from the starting point (z) to produce two values (z
and a–z). Original values for all parameters are available in Tables 3–5.
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described in the first experiment. Study lists were com-
posed of 20 high-frequency words, 20 low-frequency
words, and 4 very-low-frequency words selected randomly
(without replacement) from the word pools. These words
were randomly paired within frequency to create 22 word
pairs (10 high-frequency pairs, 10 low-frequency pairs, and
2 very-low-frequency pairs). As in the first experiment, the
2 very-low-frequency word pairs served as buffer items for
the study list and were presented in the first and last
position within each list. All of the target word pairs were
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presented twice within each study list and were assigned
to study-list positions randomly with the restriction that
repeated pairs had at least one intervening word pair.

As in Experiment 1, test lists consisted of the two buffer
word pairs (which were again presented in the first and
last positions of the test list) and the 20 target pairs. Each
pair was presented only once during the test list and
exactly half of the target pairs were randomly rearranged
within frequency and number of presentations. Thus each
test list consisted of 2 buffer word pairs, 10 rearranged
word pairs and 10 intact word pairs. Intact pairs consisted
of words which had appeared together in the study list
and rearranged pairs consisted of words which appeared
in different pairs in the study list.

Procedure
Each experimental session lasted approximately

50 min. Each session consisted of a response-key practice
block, one practice study/test block, and 16 more study/
test blocks. Subjects responded using a PC keyboard on
which the Z, X, C, comma, period, and slash keys were
labeled with the symbols ‘‘� � �”, ‘‘� �”, ‘‘�”, ‘‘+”, ‘‘+ +”,
and ‘‘+ + +”. Subjects were instructed to place their left-
hand ring, middle, and index fingers on the ‘‘� � �”, ‘‘�
�”, and ‘‘�” keys and their right-hand index, middle, and
ring fingers on the ‘‘+”, ‘‘+ +”, and ‘‘+ + +” keys.

During the response-key practice, each of the symbols
marked on the keyboard (e.g., ‘‘� �”) would appear on
the screen one at a time and the subjects were told to press
the designated key as quickly as possible. If a subject took
longer than 800 ms to respond to one of the symbols, a
‘‘TOO SLOW” message would appear on the screen for
1000 ms. The practice block consisted of 10 repetitions of
each of the six response key options resulting in 60 trials
total. The symbols appeared in random order within the
block with the restriction that repeated symbols had to
have at least one intervening symbol.

For the remainder of the experiment, subjects were told
that they would be presented with pairs of words during
the study portions of the experiment and their job was to
learn these pairs. During the study/test blocks, subjects ini-
tiated the start of each study list by pressing the spacebar.
Each word pair in the study list was displayed for 2500 ms
followed by 200 ms of blank screen. Immediately after the
final study-list word pair, a message appeared directing
subjects to press the space bar to begin the test list. During
the test-list, subjects were required to distinguish between
the word pairs that had not appeared during the study-list
(rearranged word pairs) and those that had (intact word
pairs). Each word pair remained on the screen until the
subject had made a response. Subjects were instructed to
use the different response-key options to indicate whether
a word pair had appeared in the study-list and their confi-
dence in their response. They were told to use one of the
‘‘�” keys to indicate that the word pair had not appeared
in the study-list, and to use one of the ‘‘+” keys to indicate
that it had. Subjects were instructed to use the different
levels of ‘‘+” and ‘‘�” to indicate their amount of confidence
in their response (e.g., if a subject felt very confident that a
word pair was intact they would use the ‘‘+ + +” key,
whereas if they felt only moderately confident they would
use the ‘‘+ +” key). Subjects were encouraged to respond
quickly and accurately and to try to spread their responses
among all six response-keys throughout the course of the
experiment. If a subject took less than 280 ms to respond
to one of the test items, a ‘‘TOO FAST” message would
appear on the screen for 1500 ms. Subjects were given
error feedback throughout all test blocks in the form of
the words ‘‘CORRECT” or ‘‘ERROR” displayed for 300 ms
after their response to each test item.

Model fitting

The 6-choice version of the RTCON2model was fit using
the same procedure described for the first experiment. As
in the first experiment, there are 35 degrees of freedom
per condition in this task. With two conditions, this gives
a total of 70 degrees of freedom. For these fits there were
19 free parameters in RTCON2.

Results and discussion

This experiment was designed to elicit a larger variety
of z-ROC shapes and investigate the performance of the
RTCON2 model when fitting these data. To yield more
observations per condition for fitting the model, the high
and low frequency conditions were combined resulting in
two conditions: rearranged and intact word pairs. Prior
to collapsing across word-frequency we analyzed hit and
false alarm rates and the results were similar to those
observed in the first two experiments. There was a higher
hit-rate for LF word pairs (M = 0.74, SD = 0.10) than HF
word pairs (M = 0.66, SD = 0.12) and this difference was
significant (t(33) = �6.5, p < .05). There was again a higher
false-alarm rate for LF word pairs (M = 0.39, SD = 0.18) than
HF word pairs (M = 0.31, SD = 0.16) and this difference was
significant (t(33) = �5.9, p > .05). Although the change in
false-alarm rate was significant for this experiment, the
mean of the difference across subjects (M = �0.08) was
in-line with those observed in the first two experiments
(Experiment 1: M = �0.09; Experiment 2: M = �0.03).

Data for this experiment consisted of response propor-
tions and reaction-time quantiles for each subject from
each condition and for each response category. Reaction
time latencies less than 300 ms or greater than 4000 ms
were excluded from this analysis (less than 0.1% of all data).

The model was fit to data from individual subjects and
the best-fitting model parameters are shown in Table 7.
The mean v2 value for this experiment was 91.3 with a
SD of 28.8. This is slightly larger than the critical v2 value
(90.5) indicating a mismatch between the model’s
predictions and the data. Half the subjects, however, had
v2 values less than the critical value.

The linearity of the subjects’ z-ROC curves was tested
using maximum likelihood estimation (Ogilvie &
Creelman, 1968). Out of 34 total subjects, 17 subjects had
a z-ROC curve that was significantly different from linear
(v2 values are reported in Table 8).

For each subject, these parameter values were used to
generate predicted reaction time quantiles and response
proportions for each condition. These predicted values
can then be compared with the empirical data to



Table 7
Experiment 3 best fitting model parameters.

Subject Ter st as r sb v2 c1 c2 c3 c4 c5

1 418 187 0.09 0.15 0.94 107 �0.48 �0.07 0.12 0.84 1.45
2 366 287 0.01 0.14 1.02 83 �0.76 �0.50 0.66 0.94 1.75
3 305 138 0.04 0.10 1.17 64 �0.56 0.14 0.89 1.08 1.69
4 323 213 0.001 0.09 0.88 99 �0.63 0.34 0.81 1.43 2.38
5 392 207 0.03 0.08 0.76 139 �0.32 0.20 0.77 1.38 2.02
6 409 247 0.003 0.09 0.75 75 �0.88 0.00 0.57 1.22 2.26
7 503 394 0.02 0.13 0.43 68 �0.68 �0.57 0.84 1.78 2.48
8 541 286 0.03 0.11 0.92 84 �0.68 �0.02 0.81 1.71 1.92
9 251 216 0.02 0.10 1.19 43 �0.83 0.15 0.44 0.64 2.72

10 369 315 0.03 0.12 1.01 74 �0.55 0.51 0.93 1.12 2.06
11 263 255 0.02 0.07 1.14 71 �0.98 �0.20 0.54 1.20 1.80
12 315 158 0.03 0.10 1.15 78 �0.87 0.35 0.82 1.15 1.63
13 361 194 0.05 0.07 0.80 50 �0.63 0.29 1.00 1.68 2.36
14 392 322 0.05 0.08 0.81 110 �0.50 0.17 0.66 1.16 1.69
15 441 294 0.01 0.06 0.90 81 �0.34 0.04 0.60 1.03 1.27
16 487 250 0.03 0.08 1.02 131 �0.57 �0.01 0.75 1.32 1.73
17 401 209 0.04 0.14 0.74 72 �0.59 0.74 1.28 2.09 2.22
18 567 325 0.04 0.11 0.42 120 �0.98 �0.07 0.92 1.36 2.11
19 252 178 0.01 0.08 1.19 121 �1.23 �1.08 0.40 1.19 1.59
20 455 218 0.06 0.13 1.03 85 �0.86 0.04 0.85 1.21 2.10
21 240 189 0.01 0.07 0.75 76 �0.84 �0.06 0.63 1.70 2.45
22 457 316 0.02 0.10 1.18 142 �0.50 0.49 1.17 1.27 1.87
23 417 252 0.02 0.12 1.40 96 �0.98 0.14 0.88 1.48 2.64
24 516 249 0.03 0.06 0.56 32 �0.80 �0.08 0.57 1.11 1.92
25 440 271 0.03 0.07 1.44 79 �1.17 �0.24 0.68 1.42 2.13
26 333 412 0.02 0.11 1.04 112 �0.57 0.39 1.21 1.34 1.78
27 487 190 0.03 0.07 1.00 114 �0.63 0.00 0.65 1.39 2.21
28 323 322 0.03 0.06 0.41 93 �0.60 0.03 0.61 1.37 2.12
29 422 266 0.02 0.12 0.91 102 �0.55 1.62 2.18 2.43 2.68
30 357 265 0.01 0.10 0.52 109 �0.67 �0.63 0.69 1.92 2.11
31 431 297 0.05 0.09 1.05 96 �0.58 0.34 0.94 1.39 2.27
32 310 158 0.04 0.16 0.05 150 �1.63 �0.51 �0.02 0.71 1.54
33 194 186 0.01 0.10 1.21 107 �1.01 0.00 0.77 1.39 1.97
34 378 229 0.08 0.09 0.82 39 �0.56 0.04 0.66 1.36 1.46

b1 b2 b3 b4 b5 b6 lr li sr si

1 1.55 2.22 2.52 2.87 1.86 1.47 0 0.99 0.48 0.67
2 2.16 1.60 2.08 2.23 1.56 1.90 0 1.60 0.47 0.81
3 2.00 1.56 2.97 4.56 1.64 1.50 0 1.61 0.35 0.97
4 2.66 1.56 2.18 1.96 1.23 1.45 0 1.09 0.48 0.54
5 2.74 1.60 1.74 2.01 1.60 1.21 0 1.04 0.81 0.93
6 2.20 1.73 2.29 1.15 1.07 4.24 0 3.31 0.39 0.63
7 2.31 1.74 2.35 2.02 1.67 1.59 0 1.31 0.92 0.69
8 2.62 2.12 1.91 1.92 1.43 1.79 0 0.97 0.54 0.90
9 3.88 1.42 1.66 1.57 1.30 1.94 0 0.30 0.69 0.80

10 2.89 1.63 2.42 1.57 1.72 1.86 0 1.05 0.97 0.86
11 1.75 1.41 1.43 1.28 1.31 1.65 0 0.91 0.35 0.60
12 1.62 1.37 1.20 1.37 1.23 1.26 0 0.84 0.74 0.73
13 1.39 2.65 2.75 2.09 1.96 1.44 0 2.06 0.52 0.87
14 2.80 2.20 1.89 2.18 1.82 1.95 0 0.67 0.58 0.72
15 1.90 1.85 2.08 1.48 1.48 1.62 0 0.94 0.81 0.62
16 2.01 2.11 2.44 2.06 1.97 1.49 0 0.94 0.34 0.77
17 3.05 1.93 2.41 2.93 1.77 1.58 0 2.30 0.80 1.06
18 2.45 2.29 2.31 1.65 1.44 1.63 0 1.40 0.70 1.08
19 2.65 2.05 1.86 1.70 1.54 2.01 0 0.56 0.53 0.57
20 1.93 1.79 2.27 2.08 1.82 1.76 0 1.40 0.33 0.40
21 2.90 2.18 0.99 1.31 1.98 1.90 0 1.31 1.12 0.97
22 2.17 1.84 2.01 1.53 1.46 1.51 0 1.30 0.48 0.92
23 1.57 1.95 2.79 1.89 1.78 0.94 0 0.66 0.67 0.68
24 2.37 1.91 1.96 1.87 1.49 1.82 0 1.12 0.74 1.10
25 2.84 2.19 2.02 1.74 1.79 1.95 0 1.12 0.92 0.89
26 1.75 1.81 1.80 1.69 1.70 1.62 0 1.38 0.61 0.80
27 3.25 2.42 1.70 1.61 1.92 1.36 0 1.19 0.64 0.83
28 2.63 1.94 1.31 1.76 1.68 2.04 0 1.04 0.67 1.07
29 3.01 2.07 2.99 2.34 1.69 1.73 0 1.45 0.47 0.72
30 2.66 2.21 2.11 1.96 1.61 1.86 0 1.22 0.66 0.35
31 2.49 2.99 2.23 2.36 2.72 1.41 0 1.36 0.63 1.02

(continued on next page)
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Table 7 (continued)

b1 b2 b3 b4 b5 b6 lr li sr si

32 2.71 2.11 2.15 2.20 2.12 2.33 0 0.61 0.71 0.66
33 2.20 1.66 2.08 1.75 1.47 2.05 0 2.78 0.79 0.47
34 1.67 1.93 3.06 2.29 3.71 1.44 0 1.22 0.27 0.65

Ter is the mean nondecision time, st is the range in nondecision time, r is the SD in within trial variability, as is the scaling factor that multiplies drift rate, sb
is the range in variability in the decision boundaries, b1–b6 are the decision boundaries, c1–c5 are the confidence criteria, the l values are the mean values of
the drift rate distributions for each experimental condition, and the s values are the between-trial variability values for each experimental condition (r
represents rearranged items, i represents intact items).

Table 8
Linearity analysis of behavioral zROC curves – Experiment 3.

Subject v2 Subject v2

1 23.85⁄ 18 6.52
2 11.48⁄ 19 5.02
3 3.36 20 4.68
4 1.15 21 15.94⁄

5 29.33⁄ 22 1.46
6 2.69 23 5.27
7 3.98 24 11.38⁄

8 29.31⁄ 25 20.88⁄

9 3.86 26 18.45⁄

10 24.01⁄ 27 11.34⁄

11 3.58 28 35.10⁄

12 6.54 29 24.67⁄

13 20.81⁄ 30 11.19⁄

14 29.50⁄ 31 14.57⁄

15 7.56 32 2.95
16 7.63 33 2.98
17 10.45⁄ 34 3.43

df = 3, critical value = 7.815.
* v2 is significant at the p < .05 level.
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qualitatively assess the fit of the variousmodels. Themodel
was able to produce the various RT and response proportion
patterns quite well for most of the subjects, however there
were slight but systematic misses for most of the subjects
with u-shaped z-ROC functions. Fits for select subjects are
shown in Figs. 14 and 15 and fits for the remaining individ-
ual subjects are in Appendix A. The subjects in Fig. 14 were
chosen to illustrate the model’s ability to capture a variety
of ROC and z-ROC shapes and patterns of response propor-
tions. The subjects in Fig. 15 were chosen to illustrate the
model’s slight misfits to u-shaped z-ROC functions.

The first two rows in Figs. 14 and 15 plot the RT quan-
tiles for each confidence response with the 6 response keys
plotted on the x-axis (the ‘‘sure rearranged” category is
labeled 1 and the ‘‘sure intact” category is labeled 6) and
the RT quantiles plotted vertically with each line repre-
senting a reaction time quantile. The numbers plotted rep-
resent the empirical data and the lines represent predicted
data from the model. Note that there is considerably less
data for this experiment compared to the first (since sub-
jects only completed 2 sessions), so there are more condi-
tions where subjects made fewer than 10 responses over
the course of all of the sessions. The third and fourth row
in each figure plot the empirical and predicted z-ROC and
ROC curves for each subject. The solid lines depict the
empirical data and the dashed lines depict the model pre-
dictions. The fifth row plots the decision boundaries for
each confidence response and the sixth row plots the
response proportions (both empirical data and model
predictions) for each confidence response and condition.
The solid lines depict the empirical data, the dashed lines
depict the model predictions, the black lines depict
responses for ‘intact’ pairs and the gray lines depict
responses for ‘rearranged’ pairs.

The model predictions match the data quite closely for
the subjects in Fig. 14 (there is a significant difference
between the model predictions and the data only for sub-
ject 18). The model predicted ROC curves match the data
closely, even for subjects whose performance is near ceil-
ing (e.g., subject 13) or floor (e.g., subject 12). The model
is also able to reproduce the response proportions from
subjects who spread their responses fairly evenly across
the confidence categories (e.g., subjects 7 and 18) as well
as those who used some confidence responses much more
often than others (e.g., subjects 3 and 13). The model is
able to produce both linear z-ROC functions (e.g., subjects
7 and 18) and non-linear z-ROC functions (e.g., subject 13).

The model predictions also match the data quite closely
for the subjects in Fig. 15, despite the small misfits of the z-
ROC functions for most of the subjects (there is a signifi-
cant difference between the model predictions and the
data for subjects 14 and 28, but not the others in this fig-
ure). All of the subjects in this figure have z-ROC functions
that are significantly non-linear. Although there is not a
significant difference between the model predictions and
the data for most of these subjects, the model fails to pro-
duce the non-linearity in the z-ROC function for most of
these subjects (the z-ROC predicted by the model for sub-
ject 21 is slightly non-linear).

There are several aspects of these u-shaped z-ROC func-
tions that are difficult for the model to capture. First, the
model has difficulty producing u-shaped z-ROC functions
for subjects whose RT quantiles are not u-shaped across
the confidence responses. For example, subject 24 has a
u-shaped z-ROC function but relatively fast high-
confidence responses. The model is able to account for
the shape of the RT distributions, but misses the slight
non-linearity of the z-ROC function. In contrast, subject
21 has both u-shaped RT quantiles and a u-shaped z-ROC
function and the model is able to produce a non-linear
z-ROC function for this subject. This was also an issue in
Experiment 1, where subjects 4 and 5 had u-shaped
z-ROC functions but relatively flat RT quantiles. Second,
the transformation of the ROC to the z-ROC causes small
misses at the ends of the ROC function to be amplified.
As shown in Fig. 15, the misses in ROC space that lead to
changes in linearity in z-ROC space are relatively small.
In fact, for these five subjects the average absolute differ-
ence between the response proportions predicted by the
model and the empirical response proportions ranged from
2% to 3% (with maximum absolute differences ranging



Fig. 14. Experiment 3: Data and model fits. The first two rows plot the RT quantiles for each confidence response with the 6 response keys plotted on the x-
axis (the ‘‘sure rearranged” category is labeled 1 and the ‘‘sure intact” category is labeled 6) and the RT quantiles plotted vertically with each line
representing a reaction time quantile. The numbers plotted represent the empirical data and the lines represent predicted data from the model. In
conditions where subjects made between 4 and 10 responses the median RT is plotted as an ‘M’ and the other quantiles are not included. Conditions where
subjects made fewer than 5 responses are omitted from the figure. In conditions where the model predicted between 5 and 10 responses only the median
RT is plotted and the other quantiles are not included. Conditions where the model predicted fewer than 5 responses are omitted from the figure. The third
and fourth row in each figure plot the empirical and predicted z-ROC and ROC curves for each subject. The solid lines depict the empirical data and the
dashed lines depict the model predictions. The fifth row plots the decision boundaries for each confidence response and the sixth row plots the response
proportions (both empirical data and model predictions) for each confidence response and condition. The solid lines depict the empirical data, the dashed
lines depict the model predictions, the black lines depict responses for ‘intact’ pairs and the gray lines depict responses for ‘rearranged’ pairs.
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Fig. 15. Experiment 3: Data and model fits. Same plotting conventions as Fig. 14.
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from 3% to 7%). Moreover, the model is quite constrained in
its ability to accommodate the entire pattern of response
proportions and RT quantiles. For example, the model
over-predicted by 7% the number of high-confidence ‘in-
tact’ responses to rearranged word pairs made by subject
8. In order to reduce the number of false alarms for this
response, the decision bound for this response could be
raised, but this would also reduce the number of correct
responses for this response option (since other responses
would be more likely to be chosen over that response)
and change the RT for this response. Similarly, the right-
most confidence criteria could be moved further to the
right to reduce the number of false alarms, but this would
also reduce the number of hits and change the proportion
of responses made in the neighboring medium-confidence
response region. Overall, the model is quite constrained in
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its ability to fit response patterns since small changes in
confidence criteria and decision boundaries affect the over-
all patterns of both the response times and response pro-
portions across all of the conditions. Third, the model has
difficulty producing patterns of response proportions that
have very low discriminability between intact and rear-
ranged items for the medium and low confidence
responses but higher discriminability for high confidence
responses. For example, note that the solid black and gray
lines (empirical response proportions) for subject 14 in the
bottom row of Fig. 15 nearly overlie each other for the mid-
dle four confidence responses and then separate for the
high confidence responses. This indicates that this sub-
ject’s performance was close to chance when he or she
was responding using the middle four confidence
responses (as demonstrated by the fact that there is little
separation between the black and gray curves for those
responses) and only performed better than chance for the
highest confidence responses. While the model is able to
capture this general pattern, the model produces values
that are less extreme than the pattern observed in the data
(i.e., the model predictions for the middle confidence
responses are slightly more accurate than the data and
the predictions for the highest confidence responses are
slightly less accurate than the data). A similar pattern is
observed with subject 8, especially for the ‘‘intact”
response options. This pattern can be difficult for the
model to account for given the representation of evidence
in RTCON2. Memory strength is represented by a normal
distribution on each trial, and the area under the curve of
that distribution in each response region drives the accu-
mulation for that response. To produce a comparable num-
ber of correct and incorrect responses for a particular
confidence response, there must be similar evidence in
that response region for both ‘intact’ and ‘rearranged’ stim-
uli (i.e., the drift distributions for ‘intact’ and ‘rearranged’
items will need to overlap in that region). On the other
hand, to produce different numbers of correct and incor-
rect responses for a particular confidence response, there
must be more evidence (i.e., larger area under the curve)
in that response region for one condition over the other.

The model can handle low discriminability in the med-
ium and low confidence responseswhen the overall pattern
of responses is consistent with the representation of evi-
dence in RTCON2. For example, subject 21 had low discrim-
inability for the medium and low confidence responses and
higher discriminability for high confidence responses and a
smaller proportion of high confidence responses overall.
The model is able to handle this pattern of responses
because it is consistent with having overlapping drift distri-
butions such that there will be less difference between the
two distributions around the middle of the response region
(where they overlap) and a greater difference in the tails of
the distributions (in the higher confidence regions). This
representation will also tend to produce more low and
medium confidence responses and relatively fewer high
confidence responses, as is the case for subject 21. In con-
trast, the model has difficulty producing response patterns
like those of subject 14, who made a relatively large num-
ber of correct high confidence responses but was at chance
at the other confidence levels. It is also worth noting that
the cumulative nature of the ROC and z-ROC functions
obscures most of this information about response pattern.
For subjects like 14, the model predictions are missing as
much on the middle confidence regions as the extremes,
but the ROC functionsmake it appear that themodel is only
missing the tails since the misses in the middle confidence
regions compensate for the misses in the high confidence
regions when using cumulative values.

Previous application of the original RTCON model
demonstrated that the slope of subjects’ z-ROC functions
showed sequential effects (i.e., the slope of the z-ROC
changed as a function of the prior response; Ratcliff &
Starns, 2009). In that study, subjects were biased in favor
of repeating a particular response (i.e., if they made an
‘old’ response on the previous trial, they were more likely
to make another ‘old’ response on the current trial). In this
experiment we observed sequential effects of confidence
level. Subjects were more likely to make a high confidence
response if their previous response was a high confidence
response and similarly for medium and low confidence
responses. In Fig. 16A, response proportions for each confi-
dence response (1–6) and each condition (intact and rear-
ranged) are plotted separately as a function of a previous
response. The solid lines show the response proportions
for each condition and response option sorted based on
the response from the immediately preceding trial and
the dashed lines show the response proportions sorted
based on response from a trial ten trials before the current
trial. That is, the upper left plot shows the proportion of
‘sure rearranged’ responses made to rearranged pairs as a
function of the previous response (solid line) and as a func-
tion of the response ten trials previous (dashed line), the
upper right plot shows the proportion of ‘sure intact’
responses made to rearranged pairs, and so on. From these
plots we can see that subjects were likely to respond with
the same level of confidence on subsequent trials. For
example, in the upper left plot we see that subjects made
more ‘sure rearranged’ responses to rearranged stimuli if
they had previously made a high confidence response
(i.e., a 1 or a 6 in this figure) than if they had previously
made a medium or low confidence response (i.e., a 2–5).
Similarly, in the second plot in the top row we see that
subjects made more ‘medium-confident rearranged’
responses to rearranged stimuli if they had previously
made a medium confidence response (i.e., a 2 or a 5) than
if they had previously made a low or high confidence
response. Similar results were observed across all confi-
dence response options and conditions and for both lags
(i.e., the immediately preceding trial or one ten trials
before the current trial). This was an unexpected result.
Although Ratcliff and Starns (2009) observed a bias in favor
of repeating a particular response, that bias was based on
the category of the response (e.g., intact vs. rearranged),
not the confidence level of the response. We discuss two
possible explanations for this type of behavior.

First, it is possible that, rather than distributing their
responses across the entire confidence scale, subjects were
switching around which pair of intact/rearranged
responses they were using (i.e., essentially making two-
choice decisions and mapping those responses onto a par-
ticular pair of response keys). Subjects were told to try to



Fig. 16. Experiment 3: Sequential effects. (A) Response proportions as a function of previous responses. Response proportions for each confidence response
(1–6) and each condition (intact and rearranged) are plotted separately as a function of a previous response. The solid lines show the response proportions
for each condition and response option sorted based on the response from the immediately preceding trial and the dashed lines show the response
proportions sorted based on response from a trial ten trials before the current trial. So the upper left plot shows the proportion of ‘sure rearranged’
responses made to rearranged pairs as a function of the previous response (solid line) and as a function of the response ten trials previous (dashed line), the
upper right plot shows the proportion of ‘sure intact’ responses made to rearranged pairs, and so on. (B) z-ROC and ROC functions for averaged data as a
function of previous responses. Data were collapsed across previous ‘intact’ and ‘rearranged’ responses to produce three conditions based just on the
confidence level of the immediately preceding response (1: high, 2: medium, and 3: low).
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use all of the confidence levels over the course of the
experiment to discourage them from using just two
responses (i.e., using just one confidence level throughout
the whole experiment), so this type of behavior may have
been a strategic way of following those instructions.

Second, it is possible that subjects were using the confi-
dence levels based on general changes in attention or moti-
vation. For example, subjects may have been more
attentive or motivated during some blocks (and would
likely perform better on those blocks in terms of accuracy)
and then made their confidence responses based on how
they felt they were performing during those periods of time
(as opposed to making confidence responses solely based
on their perceived memory strength for each word pair).
If this were the case, we would also expect to see differ-
ences in performance based on previous confidence levels.
To examine this, we generated ROC and z-ROC functions as
a function of previous responses averaged over all the sub-
jects. Fig. 16B shows average ROC and z-ROC functions
sorted according to the previous response (here collapsed
across ‘intact’ and ‘rearranged’ responses to produce three
conditions based just on the confidence level of the imme-
diately preceding response). Accuracy was indeed higher
on trials made following a high confidence response, and
the z-ROC functions were more u-shaped following a low
or medium confidence response. Standard memory and
decision-making models do not produce these types of
effects (without including additional assumptions) and so
the data produced by subjects using these types of strate-
gies are challenging for standard models.

This experiment demonstrated the ability of RTCON2 to
fit a wide variety of ROC and z-ROC shapes in an associative
recognition task while simultaneously fitting RT distribu-
tions. By collecting data from a larger group of subjects
we were able to demonstrate when RTCON2 is able to pro-
duce various z-ROC functions and when it has difficulty.
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The model is able to reproduce the z-ROC shapes when the
shape of the RT quantiles across confidence levels matches
the shape of the z-ROC, when there are sufficient numbers
of observations in the extreme confidence categories, and
when the response patterns across confidence levels are
consistent with the model’s continuous representation of
evidence. The model has difficulty producing non-linear
z-ROC shapes when these conditions are not met, which
tends to be the case when u-shaped z-ROC shapes occur.
However, the misfits in these cases were quite small. The
average absolute deviation between themodel and the data
ranged from 2% to 3% for the subjects in Fig. 15, and the v2

values for the model fits were non-significant for three of
these five subjects. It is possible that a different representa-
tion of memory information would enable the model to fit
these u-shaped functions, but such a representation should
not hinder the model’s ability to fit the other patterns of
data as well. We also identified some possible strategies
(based on sequential effects) that subjects may use when
responding with confidence scales and these effects should
be considered when modeling and interpreting this type of
data. Note that these effects were not observed in Experi-
ments 1 and 2 which used paid subjects who were more
practiced at the task.
General discussion

These experiments were designed to test the ability of
the RTCON2 model to fit both the properties of confidence
responses and reaction times in an associative recognition
paradigm. This would be a substantial advance over signal-
detection based models that address only choice propor-
tions and could provide an alternative account for the z-
ROC patterns that have been observed in this paradigm.
While the model was able to account for most of the
response patterns and reaction times in these experiments,
the model was not able to account for some of the non-
linear z-ROC shapes which are of particular interest to
memory modelers. However, although the model was not
able to produce the u-shaped z-ROC functions, the
response proportions predicted by the model did not
always significantly differ from the empirical response
proportions (based on v2) and the differences between
the model predictions and the data were quite small.

Previous research has demonstrated an alternative
explanation for the shapes of the ROC and z-ROC functions
that is based on how subjects set their decision boundaries
(Ratcliff & Starns, 2013). In the RTCON2 model, if the
response proportions for the different confidence
responses are not close to zero (see appendix of Ratcliff &
Starns, 2013), there is a relationship between the shape
of the z-ROC function, the RT quantiles, and the decision
boundaries. Intuitively, the height of the decision bound-
ary affects the amount of evidence required to make a
response and therefore affects reaction times. But the
relative heights of the decision boundaries also affect the
response proportions for the different confidence
responses. If one of the confidence categories has a lower
decision boundary than the others, the accumulator for
that response will be able to reach its boundary more
quickly and that response will be chosen a higher propor-
tion of the time. These changes in the response proportions
for different confidence responses directly affect the shape
of the z-ROC function. The experiments in this paper
demonstrate a relationship between the shape of the z-
transformed receiver operating characteristic and the
behavior of response time distributions for subjects with
linear z-ROC functions and inverted u-shaped z-ROC func-
tions, and this relationship is explained by the behavior of
the decision boundaries in the RTCON2 model.

The model had difficulty, however, producing most of
the u-shaped z-ROC functions observed in these experi-
ments. Specifically, the model had trouble producing these
z-ROC shapes when the shapes of the RT quantiles were
not consistent with the shapes of the z-ROC functions, or
when there was a low number of high-confidence
responses. In the model, evidence is represented as a nor-
mal distribution (with an SD of 1) on some memory
strength dimension and the position of this normal distri-
bution varies across trials (according to another normal
distribution with mean l and SD s). This representation
of evidence restricts the possible response patterns that
the model can produce. For example, in order to produce
chance performance for some response option, the evi-
dence distributions for ‘intact’ and ‘rearranged’ items must
have similar area in that response region. However, such a
restriction affects the area of these evidence distributions
in all of the other response regions since they are all deter-
mined by the location of the normal distribution of evi-
dence. Thus the model has difficulty producing, for
example, extreme changes in performance for neighboring
response options. Although the placement of the confi-
dence criteria and decision boundaries will also affect
response patterns (by adjusting the area of the response
region and adjusting the amount of evidence required to
make a particular response), these parameters are con-
strained by the response time data as well as the response
proportions and so are unable to take on extreme values to
produce any possible pattern of responses (e.g., a very low
decision boundary would lead to chance performance, but
would also result in faster RTs and an increase in the num-
ber of responses predicted for that particular confidence
response). This representation of evidence was used
because it has previously provided a good fit to data
(Ratcliff & Starns, 2013). However, as discussed in Ratcliff
and Starns (2013), the distribution of memory strength
across trials does not need to be a normal distribution
and could instead take the form of some distribution pre-
dicted by a memory model. In recent years, much of the
research attempting to distinguish between models of
memory has been focused on slight differences in the
shape of these z-ROC functions. Such variation in the
shapes of the z-ROC has been used to make claims about
the number of processes involved in a memory decision,
the nature of the evidence involved in the decision, and
specific characteristics of the decision process.

In the associative memory literature, non-linear z-ROC
functions are a violation of the normal distributions of evi-
dence usually assumed in SDT, and have prompted theo-
rists to elaborate upon the basic theory. One such
elaboration is the dual-process signal detection (DPSD)
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model (Yonelinas, 1994; Yonelinas & Parks, 2007), which
assumes that recognition consists of an equal-variance
signal-detection process referred to as ‘‘familiarity” plus a
discrete threshold process referred to as ‘‘recollection”.
According to this model, some recognition decisions are
based on a vague sense of familiarity while others are
based on recollection of a qualitative detail of the learning
event (e.g., ‘‘this word was followed by ‘house’ in the study
list”). When responding is based entirely on familiarity, the
DPSD model predicts asymmetrical curvilinear ROC func-
tions and linear z-ROC functions with a slope equal to
one. When responding is based on recollection for some
proportion of the word pairs, the model predicts linear
ROC functions and slightly non-linear (i.e., slightly
U-shaped) z-ROC functions with slopes less than one.

In an associative recognition paradigm, the familiarity of
the individual words should not help discriminate between
intact and rearranged pairs since all of the words were seen
during the previous study period. Therefore, according to
the DPSD model, performance in an associative paradigm
should be based primarily on the ‘‘recollection” process
and should result in linear ROC and non-linear z-ROC func-
tions. This prediction has been supported by linear associa-
tive recognition ROC functions reported by Yonelinas
(1997) and replicated by Rotello et al. (2000) as well as lin-
ear source memory ROC functions reported by Yonelinas
(1999). However, Kelley and Wixted (2001) and Verde
and Rotello (2004) reported curvilinear associative recogni-
tion ROC functions and Healy et al. (2005) reviewed 13
associative recognition studies and found that a curvilinear
ROC function provided a better fit to the data than a linear
ROC function. There were a number of task differences that
may have produced these discrepancies in the shapes of the
ROC functions. In the experiments reported by Yonelinas
(1997) and Rotello et al. (2000) that produced linear asso-
ciative recognition ROC functions, subjects were making
both item and associative recognition judgments for the
same lists. When these tasks are mixed, subjects may rely
on different response strategies than they would in a pure
associative recognition task. Rotello et al. (2000) also
demonstrated that an additional guessing process could
influence the linearity of the ROC and z-ROC functions.

In our experiments we did not observe systematically
linear ROC functions. Although some of the subjects in
Experiment 3 did have relatively linear ROC functions (e.g.,
subjects 5 and 29), the majority of the subjects across all
three experiments had curvedROC functions (althoughnote
that ROC functions will necessarily become more linear as
performance goes to chance). Some of our subjects did have
slightly U-shaped z-ROC functions, but other subjects had
linear z-ROC functions or inverted U-shaped z-ROC func-
tions, which are at odds with the predictions of DPSD.

However, even when curvilinear ROC functions are
found in associative recognition and source memory stud-
ies, these were not as curvilinear as would be predicted by
an unequal-variance signal-detection model (Hilford et al.,
2002; Kelley & Wixted, 2001). In order to explain these
effects, Hilford et al. (2002) assumed that on some propor-
tion of trials, the information necessary for the memory
decision, either associative or source, was not available.
Hilford et al. (2002) proposed that subjects failed to encode
the information for some proportion of items during the
study phase. Similarly, DeCarlo (2002, 2003) demonstrated
that nonlinear z-ROC functions can be produced if the
memory strength distributions are mixtures of two differ-
ent distributions, such as a distribution from items that
were encoded during study and a distribution from items
that were not encoded during study.

All of the approaches described above use the shape of
the ROC and z-ROC functions to draw conclusions about
the nature of memory evidence. In DeCarlo (2002, 2003),
Hilford et al. (2002) and Kelley and Wixted (2001), evi-
dence comes from a mixture of qualitatively similar pro-
cesses. In Yonelinas’ (1994) model, evidence comes from
two qualitatively different processes. Support for these
models has come from observations of the shape of ROC
and z-ROC functions sources across tasks and conditions.
For example, Kelley and Wixted (2001) found that ROCs
in an associative recognition experiment were more curvi-
linear for strong (i.e., studied more often) word pairs than
weak pairs. This change in ROC shape across conditions
was consistent with a mixture model that included contin-
uously distributed item and associative information (as
opposed to a high-threshold model or a signal-detection
type model with a single source of evidence). However,
changes in ROC shape can also be produced by RTCON2
with just changes in the mean of the drift distribution
(see Appendix of Ratcliff & Starns, 2013).

Additionally, these accuracy-only memory models were
designed solely to account for accuracy and completely
ignore the amount of time required to make a particular
memory decision. Using a model like RTCON2 allows us to
investigate howmany of the observed patterns of responses
could be explained through the addition of amodel formak-
ing confidence judgments. Explicitly modeling both the
information feeding into a decision and the decision-
making process allows us to distinguish between effects
on z-ROC shapes that are a result of how subjects set confi-
dence criteria and decision boundaries (aspects of the
decision-making process), and effects that are a result of
changes in the information being provided from memory.
This model can handle some of the observed response pat-
terns, but is unable to account for the subset of subjects
who exhibited u-shaped z-ROC functions. However, the
misfits for these subjects are quite small – there is an aver-
age difference of 2–3% between the model predictions and
the data for these subjects. It remains to be seen if adjusting
the memory information feeding into the decision (e.g.,
combining the memory strength predictions of a memory
model with the decision-making process of RTCON2) will
enable the model to handle these patterns. Such an
approach could also be informative for models of memory
based on the additional constraint provided by RTs. This
type of combined modeling approach would allow
researchers to take advantage of the ability of RTCON2 to
distinguish between the information feeding into a confi-
dence response and individual differences in how the confi-
dence response scale is used. However, the adjusted model
would still need to be able to handle all of the patterns
observed in these experiments that RTCON2 was able to
fit. So far, none of the existing memory models can handle
the full observed pattern of RTs and response proportions
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across confidence levels and none of them, to our knowl-
edge, would predict the diversity of z-ROC shapes observed
in these experiments. Without assuming more than a rela-
tively simple single distribution of memory strength,
RTCON2 was able to produce a variety of ROC and z-ROC
shapes. Thus the specific ROC and z-ROC shapes cannot be
used solely to infer the nature of evidence from memory
but are also indicative of differences in how different sub-
jects choose to set decision boundaries when using confi-
dence response scales.

In many memory experiments, data from individual
subjects are averaged together and conclusions are made
based on these averaged data. Differences between individ-
ual subjects are, at best, presented only to illustrate that
most of the subjects exhibit the same general pattern of
results as the average. These experiments demonstrate
the importance of considering individual differences when
reporting ROC and z-ROC experiments. Subjects in these
experiments exhibited a wide variety of z-ROC functions
with some subjects having linear z-ROCs and other subjects
having nonlinear z-ROCs. These experiments, as well as
work by Ratcliff et al. (1994) and Ratcliff and Starns
(2013), demonstrate dramatic individual differences in
the shapes of the z-ROC functions that appear to be rela-
tively stable across tasks (although these effects are some-
what susceptible to specific response instructions; Ratcliff
& Starns, 2009). Other models, such as the dual-process
signal-detection account (Yonelinas, 1997), would have dif-
ficulty explaining these consistent individual differences,
except possibly as a result of individual differences in
response or encoding strategies, and are unable to explain
the inverted u-shaped z-ROCs exhibited by some subjects.

This research also demonstrates the advantages of the
new version of the RTCON model compared to the original.
This version of the model was able to fit the bowed reac-
tion time quantiles that the other model was unable to
handle. While practice and specific instructions can elimi-
nate these bowed effects (Ratcliff & Starns, 2009), this pat-
tern of reaction time behavior is relatively common in
confidence response paradigms (Murdock, 1974;
Murdock & Dufty, 1972; Norman & Wickelgren, 1969;
Ratcliff & Murdock, 1976) and a model designed to account
for data from these paradigms should be capable of han-
dling this pattern. As shown, RTCON2 was able to produce
the necessary bowed RT quantiles which were slower for
low confidence responses than high confidence responses
(as well as the other observed RT quantile patterns). The
ability of the model to handle these shifts in RT distribu-
tions is crucial given the relationship between these shifts
and the shape of the z-ROC function.

The RTCON2 model also provides a better fit to two-
choice data then the original RTCON model (Starns et al.,
2012), as demonstrated in the second experiment. In order
to be considered a viable model of multi-choice data,
RTCON2 should be able accommodate two-choice data as
well as 6-choice. In the second experiment, subjects alter-
nated between using a 6-choice response scale and a two-
choice response scale. The data from both tasks was then
fit with the RTCON2 model, and the two-choice data was
also fit with the standard diffusion model. The RTCON2
model was able to fit data from a two-choice task nearly as
well as the diffusion model (Ratcliff, 1978; Ratcliff &
McKoon, 2008), and was able to do so with some of the
parameters constrained across the 6-choice and two-
choice tasks (i.e., some of the same parameters were used
to fit the RTCON2 model to data from both the two-choice
and 6-choice tasks).

Although RTCON2 has a relatively large number of
parameters, there are considerably more degrees of free-
dom in the data than in the model because of the need to
fit RT distributions. Additionally, because of the structure
of the model, a change in any one parameter value will
affect predictions across multiple conditions or response
categories. This means that it is not possible to remedy
misfits in a single condition by simply adjusting single
parameters. The model is also not overly flexible. While
it was able to fit most of the patterns of individual differ-
ences found in these two experiments, it was not able to
fit a set of artificial data created by combining some sub-
jects’ accuracy data with other subjects’ reaction time data.
In this analysis, we rearranged subjects’ data into artificial
data sets consisting of one subject’s response proportions
and a different subject’s reaction time quantiles from
Experiment 1. When the model was fit to these artificial
data sets, the resulting mean v2 value was 445 (more than
twice as large as the observed mean value in the first
experiment). The misfits were largest for data sets that
consisted of data from subjects with different z-ROC func-
tion shapes. For example, when trying to fit a data set con-
sisting of subject 3’s bowed reaction times (see Fig. 3) and
subject 5’s accuracy (see Fig. 5), the model’s best fitting
parameter values yielded a v2 of 1029 (compared with
v2 values of 250 and 273 for subjects 3 and 5 respectively).

This research demonstrates the strengths of RTCON2 as
a model of multi-choice confidence judgments as well as
areas for future development. The model is able to fit a
wide range of reaction time and response proportion
behaviors and is able to do so without assuming any addi-
tional memory processes. However, the model slightly
misses some of the observed u-shaped z-ROC functions
for associative recognition such that it may be necessary
to adjust the information feeding into the model to account
for these patterns. RTCON2 performs as well as the stan-
dard diffusion model when applied to two-choice data,
and provides parameter estimates that are consistent
across models and response paradigms. With the addition
of reaction time and decision-related processing, RTCON2
is able to distinguish between the information feeding into
a decision and aspects of the decision-making process, and
in some cases is able to provide an alternative interpreta-
tion of z-ROC functions that is based on individual differ-
ences in the decision-making process.
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Appendix A

See Figs. A1–A5.



Fig. A1. Experiment 3: Data and model fits. The first two rows plot the RT quantiles for each confidence response with the 6 response keys plotted on the x-
axis (the ‘‘sure rearranged” category is labeled 1 and the ‘‘sure intact” category is labeled 6) and the RT quantiles plotted vertically with each line
representing a reaction time quantile. The numbers plotted represent the empirical data and the lines represent predicted data from the model. In
conditions where subjects made between 4 and 10 responses the median RT is plotted as an ‘M’ and the other quantiles are not included. Conditions where
subjects made fewer than 5 responses are omitted from the figure. In conditions where the model predicted between 5 and 10 responses only the median
RT is plotted and the other quantiles are not included. Conditions where the model predicted fewer than 5 responses are omitted from the figure. The third
and fourth row in each figure plot the empirical and predicted z-ROC and ROC curves for each subject. The solid lines depict the empirical data and the
dashed lines depict the model predictions. The fifth row plots the decision boundaries for each confidence response and the sixth row plots the response
proportions (both empirical data and model predictions) for each confidence response and condition. The solid lines depict the empirical data, the dashed
lines depict the model predictions, the black lines depict responses for ‘intact’ pairs and the gray lines depict responses for ‘rearranged’ pairs.
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Fig. A2. Experiment 3: Data and model fits. Same plotting conventions as Fig. A1.
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Fig. A3. Experiment 3: Data and model fits. Same plotting conventions as Fig. A1.
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Fig. A4. Experiment 3: Data and model fits. Same plotting conventions as Fig. A1.
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Fig. A5. Experiment 3: Data and model fits. Same plotting conventions as Fig. A1.
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