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In perceptual decision-making, advance knowledge biases people toward choice alternatives that are more likely to be correct and more
likely to be profitable. Accumulation-to-bound models provide two possible explanations for these effects: prior knowledge about the
relative attractiveness of the alternatives at hand changes either the starting point of the decision process, or the rate of evidence
accumulation. Here, we used model-based functional MRI to investigate whether these effects are similar for different types of prior
knowledge, and whether there is a common neural substrate underlying bias in simple perceptual choices. We used two versions of the
random-dot motion paradigm in which we manipulated bias by: (1) changing the prior likelihood of occurrence for two alternatives
(“prior probability”) and (2) assigning a larger reward to one of two alternatives (“potential payoff”). Human subjects performed the task
inside and outside a 3T MRI scanner. For each manipulation, bias was quantified by fitting the drift diffusion model to the behavioral
data. Individual measurements of bias were then used in the imaging analyses to identify regions involved in biasing choice behavior.
Behavioral results showed that subjects tended to make more and faster choices toward the alternative that was most probable or had the
largest payoff. This effect was primarily due to a change in the starting point of the accumulation process. Imaging results showed that, at
cue level, regions of the frontoparietal network are involved in changing the starting points in both manipulations, suggesting a common
mechanism underlying the biasing effects of prior knowledge.

Introduction
Perceptual decisions can be influenced by advance knowledge
about the alternatives at hand. How the brain makes these biased
decisions is a central issue in neuroscience (Glimcher, 2003; Lau-
wereyns, 2010). Formal models have been used to describe and
predict bias in perceptual two-alternative forced-choice tasks
(Ratcliff, 1985; Carpenter and Williams, 1995; Gold and Shadlen,
2002; Ratcliff and McKoon, 2008; Lauwereyns, 2010). Such models
generally conceptualize the decision process as the accumulation
of sensory information over time toward a decision threshold
(Fig. 1A; for review, see Bogacz, 2007; Gold and Shadlen, 2007;
Ratcliff and McKoon, 2008; Wagenmakers, 2009). Two possible
mechanisms for bias have been proposed: (1) prior knowledge
leads to shifts in the starting point of the evidence accumulation
process (Edwards, 1965; Laming, 1968; Link and Heath, 1975;
Ratcliff, 1985; Voss et al., 2004; Bogacz et al., 2006; Diederich and
Busemeyer, 2006; Wagenmakers et al., 2008b) or (2) prior knowl-
edge affects the rate with which sensory evidence is accumulated

over time (Ashby, 1983; Ratcliff, 1985; Diederich and Busemeyer,
2006; Fig. 2B). Both scenarios result in faster and more choices
toward the alternative that is a priori more likely or more profit-
able, and previous studies have suggested that knowledge about a
choice alternative’s probability of occurrence or potential payoff
can invoke either scenario (Gold and Shadlen, 2002; Simen et al.,
2006). Furthermore, for both types of prior knowledge, imaging
studies have shown that regions of the frontoparietal and fronto-
striatal circuits play a role in biasing choice behavior (Boettiger et
al., 2007; Serences, 2008; Summerfield and Koechlin, 2008; Bas-
ten et al., 2010; Fleming et al., 2010a,b; Forstmann et al., 2010;
Philiastides et al., 2010; Preuschhof et al., 2010; Scheibe et al.,
2010; Summerfield and Koechlin, 2010). However, only a small
subset of these studies quantified bias by using a model-based
approach (Basten et al., 2010; Forstmann et al., 2010; Summer-
field and Koechlin, 2010). Furthermore, to our knowledge, no
studies used manipulations of both prior probability and poten-
tial payoff to test there is a common neural substrate underlying
these different types of bias in perceptual decision making.

In this study, we first investigated whether the two types of
prior knowledge have a similar effect on either the starting point
or the rate of evidence accumulation of the decision process.
Second, we studied whether there is a common neural substrate
that gives rise to changes in these parameters. We used two
versions of the random-dot motion paradigm where we in-
duced bias by (1) changing the likelihood that one of the
alternatives is correct (prior probability) and (2) assigning a
larger reward to one of the alternatives (potential payoff; Fig.
3). Bias was quantified by fitting the drift-diffusion model
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(DDM) to response time (RT) and accu-
racy data. We then used individual dif-
ferences in the model parameters to
identify a common network of brain
regions involved in biasing perceptual
decisions.

Materials and Methods
Subjects. Twenty-three healthy subjects (14 fe-
male, mean age � 23.8, SD � 3.3) performed a
random-dots motion paradigm in a 3T scan-
ner. In addition, subjects also performed an
extra behavioral session outside the scanner
environment. Subjects were recruited through
the University of Amsterdam and had normal
or corrected-to-normal vision. The procedure
was approved by the ethical review board at the
University of Amsterdam and informed con-
sent was obtained from each subject. Three
subjects were excluded due to scanner artifacts
or because their performance was at chance
level. A total of 12 female and 8 male subjects
(mean age � 23.7, SD � 3.0) were included in
the final analyses. Eighteen subjects were right-
handed and 2 subjects were left-handed as confirmed by the Edinburgh
Inventory (Oldfield, 1971). According to self-report, no subject had a
history of neurological, major medical, or psychiatric disorder.

Stimuli. Subjects performed an RT version of a random-dot motion
direction-discrimination task. Bias was manipulated by a cue indicating a
higher probability of the direction of the motion stimulus or a higher
value associated with the motion stimulus (Fig. 3). Subjects were in-
structed to maintain fixation on a cross on the middle of the screen, pay
attention to the cue, and decide the direction of motion of a cloud of
randomly moving white dots on a black background. They were to indi-
cate their decision at any time during motion viewing with a left or right
button press. The motion stimuli were similar to those used previously
(Newsome and Paré, 1988; Britten et al., 1992; Gold and Shadlen, 2003;
Palmer et al., 2005; Ratcliff and McKoon, 2008; Mulder et al., 2010):
white dots, with a size of 3 � 3 pixels, moved within a circle with diameter
of 5° with a speed of 5°/s and a density of 16.7 dots/deg 2/s on a black
background. On the first three frames of the motion stimulus, the dots
were located in random positions. For each of these frames the dots were
repositioned after two subsequent frames (the dots in frame 1 were re-
positioned in frame 4, the dots in frame 2 were repositioned in frame 5,
etc.). For each dot, the new location was either random or in line with the
motion direction. The probability that a dot moved coherent with the
motion direction is defined as coherence. For example, at a coherence of
50%, each dot had a probability of 50% to participate in the motion-
stimulus, every third frame (see also Britten et al., 1992; Gold and
Shadlen, 2003; Palmer et al., 2005).

Visual stimuli were generated on a personal computer (Intel Core2
Quad 2.66 GHz processor, 3GB RAM, two graphical cards: NVIDIA
GeForce 8400 GS and a NVIDIA GeForce 9500 GT, running MS Win-
dows XP SP3) using custom software and the Psychophysics Toolbox
Version 3.0.8 (Brainard, 1997; Pelli, 1997) for Matlab (version 2007b,
MathWorks). For the session outside the scanner environment, the dots
were presented on a 51.3-cm-wide LCD screen at a viewing distance of 50
cm. In the scanner session, the dots were presented on a 61-cm-wide
projection screen using a projector with a resolution of 1920 � 1200
(GeForce 9500 GT graphical card) and adjusted to match the same di-
ameter (5°) as the session outside the scanner.

To match the difficulty level of the motion stimulus across subjects,
each subject performed a block of 200 trials of randomly interleaved
stimuli with different motion strengths (respectively, 0, 10, 20, 40, or
80% coherence, 40 trials each). We fitted the proportional-rate diffusion
model to the mean response times and accuracy data of this block using
a maximum likelihood procedure (Palmer et al., 2005). For each subject,
the motion strength at 80% accuracy was then interpolated from the

psychometric curve (predicted by the proportional-rate diffusion model;
Palmer et al., 2005) and used in the remaining experimental blocks. This
procedure was done before the experimental blocks for both the inside
and outside scanner session. Subjects did not differ in the 80% perfor-
mance levels or in the main parameters of the proportional-rate diffusion
model (decision threshold, sensitivity, or non-decision time; Palmer et
al., 2005) between the inside and outside scanner sessions (paired sam-
ples t tests: t(19) � 1.72, p � 0.1).

Manipulations of bias by prior probability and potential payoff. Prior
information was given in the form of a cue. The cue was either an arrow
pointing to the left or to the right, or a square with the size of the arrow
without arrow-points for the unbiased condition. For the probability
manipulation, a percentage sign “%” was printed at the middle of the cue
(Fig. 3). For the payoff manipulation this was a euro sign “€.” One block
consisted of 40 bias trials and 40 neutral trials (with 20 leftward and 20
rightward directed trials each). In the prior probability blocks, 32 (16
leftward cues and 16 rightward cues) of 40 bias trials were valid i.e., the
direction indicated by the cue was consistent with the direction of the
stimulus (80% valid), and 8 (4 leftward cues and 4 rightward cues) of 40
bias trials where invalid, i.e., cue and stimulus direction were inconsistent
(20% invalid). Subjects received 5 points for each correct response in
both biased and neutral trials. No points were given for an incorrect
response.

In the potential payoff blocks, 20 (10 leftward cues and 10 rightward
cues) of 40 bias trials were valid, i.e., cue and stimulus direction were
consistent, and a large reward was received for a correct response (8
points, valid). In 20 (10 leftward cues and 10 rightward cues) of 40 trials,
the cue and stimulus direction were inconsistent and subjects received 2
points for a correct response (2 points, invalid). No points were given for
an incorrect response. Eight extra “null” trials were randomly added to
each block in the scanner-session to improve estimation of the evoked
response in the MR signal. In these null trials, blank cues (no prior
information) were followed by a stimulus and feedback was given by
either printing the word “correct” or “incorrect” on the screen (no
points). Subjects were paid a fixed amount for both the behavior and
scanner sessions. Before the experiment, subjects were told that they
could earn up to 10 extra euros if performance was perfect.

Paradigm timing. In the scanner-session, subjects performed 2 blocks
of each version of the random-dots motion task. Each trial started at the
beginning of a volume acquisition. Trial timing was optimized for fMRI
analyses. A fixation cross was presented with a randomly chosen duration
of either 100, 350, 800, or 1200 ms. Next, the cue was presented for 1000
ms followed by a fixation cross with a randomly chosen duration of 3400,
4000, 4500, or 5000 ms. The motion stimulus was then presented during

Figure 1. Schematic representation of the drift-diffusion model. The model assumes that dichotomous decisions are based on
the accumulation of noisy evidence over time that starts at the starting point and ends at a decision threshold. As the process is
noisy, there is variability in the time to reach the threshold leading to variable RTs and possibly incorrect choices. Drift rate
represents the average amount of evidence accumulated per time unit. Non-decision time is the time for processes other than the
decision process, such as stimulus encoding and motor responses.
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which subjects could choose the direction by pressing the left or right
button. The stimulus remained on the screen for a total duration of 1500
ms. Following the stimulus, feedback was presented for 500 ms, showing
the number of points earned by the subject. Responses faster than 100 ms
were considered premature and followed by the words “too fast” on the
screen. When subjects failed to respond within the 1500 ms stimulus
duration they received a feedback showing the word “miss.” This was
followed by the fixation cross during a short filler time to fix the total trial
time to 8 or 10 s. For the session outside the scanner environment jitter
times were fixed at 100 ms. Here, subjects performed 4 blocks of each
version of the task. For both the inside and outside scanner sessions,
block-order was interleaved and counterbalanced across subjects.

Behavioral analyses. Descriptive results of the behavioral data were
obtained using PASWStatistics (version 18.0, SPSS Inc.). For each ma-
nipulation (prior probability and potential payoff), trials with left and

rightward stimuli were collapsed and classified
as correct and incorrect valid, invalid and neu-
tral trials. The mean accuracy and median RT
were then computed for each subject sepa-
rately. Moreover, mean accuracy and median
RTs were computed separately for sessions in-
side and outside the scanner, resulting in 4
conditions (inside and outside scanner � prior
and payoff manipulation). To investigate
whether both manipulations had similar ef-
fects on performance, we tested for overall dif-
ferences between the two manipulations using
a 2 � 3 repeated-measures ANOVA with con-
dition (prior and payoff) and trial-type as fac-
tors. Since we expected a specific linear pattern
for RTs and accuracy across trial-type (valid,

neutral, and invalid trials; Fig. 2), a 1 � 3 repeated-measures ANOVA for
each condition separately was performed.

Fitting the drift diffusion model to the data. The DDM assumes that for
two-alternative forced choice decisions, sensory evidence in favor of one
of the alternatives begins to accumulate from a starting point z. When the
evidence accumulation process (quantified by drift rate v) reaches a
threshold value (a), a response is initiated. The full DDM consists of
seven parameters: three parameters for the decision process (decision
threshold a, mean starting point z; henceforth: “starting point,” and
mean drift rate v; henceforth: “drift rate,” a parameter for non-decision
processes (non-decision time Ter), and three parameters for across-trial
variability (variability in starting point sz, variability in non-decision
time st, and variability in stimulus quality �; Ratcliff, 1978; Ratcliff and
Tuerlinckx, 2002; Ratcliff and McKoon, 2008). Additionally, one param-

A B

Figure 2. Possible effects of bias on choice behavior. A, Effects of bias explained by the drift-diffusion model. When prior information is valid for the choice at hand, subjects will have faster and
more correct choices, whereas invalid information results in slower and less correct choices compared with choices where no information is provided (neutral). These effects can be explained by
changes in the starting point or the drift rate of the accumulation process. B, Expected effects of bias on RT and accuracy data for choices with valid, neutral and invalid cues. Note that bias effects
for each of these parameters will result in a different pattern of RTs for incorrect choices. For example, when a valid cue shifts the starting point toward the correct bound, there is a greater distance
for the accumulation process to hit the incorrect bound. In contrast, when the drift rate is biased by a valid cue, the rate toward the incorrect bound is increased, resulting in faster RTs for incorrect
choices.

Figure 3. Two versions of the random-dots motion task where choice bias was manipulated by providing information about the
likelihood of the direction of the stimulus (prior probability) (A) or the value associated with the direction of the stimulus (potential
payoff) (B).
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eter was used to account for “contaminant” responses—slow outlier re-
sponse times that do not come from the decision process of interest (e.g.,
responses influenced by lack of attention; Ratcliff and Tuerlinckx, 2002).

The DDM can capture the effects of bias either by changes in starting
point (�z) or by changes in drift rate (�v; Fig. 2; see Fig. 5A). Hence, the
starting-point and drift bias-parameters (�z, �v) were allowed to vary
across valid, neutral, and invalid choices with the restriction that for
neutral trials �z and �v equaled zero. In addition, for neutral trials we
assumed that starting point z equals half the decision threshold a. For
starting point we assume that it is biased by the cue toward the correct
bound (z � �z) on valid trials, and away from the correct bound (z � �z)
on invalid trials. Similarly, for drift rate we assumed that it is biased by the
cue toward the correct bound (v � �v) on valid trials and away from the
correct bound (v � �v) on invalid trials (see Fig. 5A).

We fitted the DDM to the data from each subject and each condition
separately (prior probability and potential payoff, both inside and out-
side the scanner environment). First, for each trial-type (valid, neutral
and invalid) RT data were divided by RT-bins defined by the 10th, 30th,
50th, 70th, and 90th quantiles of the RT-distribution for correct and
incorrect responses. RT-bins together with the proportion correct re-
sponses for each bin were entered in a Fortran routine that minimizes
a � 2 value using a Nelder-Mead SIMPLEX optimization algorithm
(Ratcliff and Tuerlinckx, 2002). Bias was quantified as the propor-
tional change in the mean starting-point (�z/z) and the mean drift
rate (�v/v). Nonparametric tests were used to assess whether the
medians of bias were significantly different from zero.

Imaging acquisition. Imaging data were acquired on a 3T Philips
scanner using a 32-channel head coil. For each subject, a T1 anatom-
ical scan was acquired [T1 turbo field echo, 220 coronal slices of 1
mm, with a resolution of 1 � 1 mm, field of field of view � 240 �
188 � 220 mm, flip angle � 8°, TR � 8.4 ms, TE � 3.9 ms]. For
functional imaging, 2D EPI scans were acquired in sagittal orientation
with forty-one 3 mm slices with in-plane resolution of 3 � 3 mm
[field of view � 192 � 64 � 64 mm, TR � 2000 ms, TE � 27.63 ms,
flip-angle � 90°, voxel size � 3 � 3 � 3 mm].

fMRI analyses. fMRI analyses were performed using FEAT (FMRI Ex-
pert Analysis Tool) Version 5.98, part of FSL (version 4.1, FMRIB’s Soft-
ware Library, www.fmrib.ox.ac.uk/fsl). The first three volumes were
discarded due to possible scanner-drift effects. The remaining images
were then realigned to compensate for small head movements (Jenkin-
son et al., 2002). Data were spatially smoothed using a 5 mm FWHM
Gaussian kernel. The data were temporally filtered using a high-pass filter
with a cutoff frequency of 1/100 Hz to correct for baseline drifts in the
signal. Finally, the functional data were prewhitened using FSL (FMRIB’s
Software Library, www.fmrib.ox.ac.uk/ fsl; Woolrich et al., 2001). All
functional datasets were individually registered into 3D space using the
subjects’ individual high-resolution anatomical images acquired at the
beginning of each scanning session. The individual 3D reference dataset
was used to normalize the functional data into MNI space by linear
scaling (affine transformations; Jenkinson and Smith, 2001). The statis-
tical evaluation was performed using the general linear model. The de-
sign matrix was convolved using a double gamma hemodynamic
response function and its temporal derivative.

Note that at the cue level there is no distinction between valid and
invalid trials: only when a stimulus is presented can a trial be identified as
valid or invalid. As such, for the cue regressors, we collapsed the valid and
invalid trials in a single bias regressor assuming that the information
provided by the cue will bias the system independent of the following
stimulus. Accordingly, stimuli were divided into valid and invalid regres-
sors. Furthermore, cues were divided by direction (left or right) to test for
possible effects of the direction of the motion stimulus. That is, in addi-
tion to a sufficient duration of the jitter times between cue and stimuli
onsets (see Paradigm timing), we controlled for a possible effect of stim-
ulus direction at cue level by testing for differences between left and right
neutral cues. Since no direction was provided in these cues, a possible
directional stimulus effect would result in significant signal chance for
left versus right (or vice versa) contrast images. No such effect was found,
suggesting that jitter times were sufficient to separate cue from stimulus-
related BOLD responses.

In sum, first level analyses were conducted for individual blocks of
each subject using a GLM with 13 regressors: 5 cue regressors (left and
right for bias and neutral cues, and one extra regressor for null cues), 5
stimulus regressors (valid, invalid, neutral, incorrect/miss, and null tri-
als), and 3 feedback regressors (correct, incorrect/miss, and null).

For each subject we created bias versus neutral cue contrast images that
were entered in the higher-level analyses. Higher-level analyses were per-
formed using FLAME1 � 2 (FMRIB’s Local Analysis of Mixed Effects;
Beckmann et al., 2003; Woolrich et al., 2004). To test for specific changes
in BOLD response due to individual differences in bias, we used the bias
terms that resulted from the DDM analyses as covariates in the fMRI
analyses. A vector of the proportional change in starting point (�z/z) for
all subjects was de-meaned and entered in covariate analyses in the GLM
for each manipulation separately. Bias versus neutral cue contrast images
were entered as the dependent variable. Additionally, we added the indi-
vidual proportional changes in drift rate (�v/v) as a nuisance regressor.
Results are reported at a cluster corrected threshold of z � 2.6 ( p � 0.05,
using Gaussian random field theory), or at a more lenient uncorrected
threshold of z � 2.6, with a cluster extent of k � 20 for the exploratory
analyses. To investigate whether there are common bias-sensitive regions
for both conditions, we ran a conjunction analyses across the statistical
images of the above described covariate analyses (Nichols et al., 2005).
Results are reported at an uncorrected threshold of z � 2.3, with a cluster
extent of k � 5.

Results
We investigated whether two types of prior knowledge have a
similar effect on either the starting point or the rate of evidence
accumulation of the decision process. We further investigated
whether there is a common neural substrate that gives rise to
these effects. Two versions of the random-dot motion paradigm
were used. In these versions we manipulated bias by changing the
prior probability or the potential payoff for one of the alterna-
tives. Subjects performed the task inside and outside a 3T MRI
scanner.

Based on the dynamics of the decision process accounted by
the DDM, we expect specific effects for RT and accuracy data
when choices are biased (Fig. 2). Furthermore, the pattern of RTs
for incorrect choices across trials with invalid, neutral, and valid
cues will be qualitatively different for a starting-point or a drift-
rate effect (Fig. 2B). Below, we first report the descriptive behav-
ioral results for both bias manipulations inside and outside the
scanner environment. Next, we report quantitative measures of
bias obtained from the DDM. Finally, we report results of the
model-based fMRI analyses where we used the quantitative bias-
effects to identify brain regions that are sensitive to cue-induced
bias.

Descriptive results
Effects of bias
To investigate the effects of bias-manipulation we entered the
individual accuracy (proportion correct) and median RTs for
correct and incorrect choices in a 1�3 repeated-measures
ANOVA for each manipulation (prior probability and potential
payoff) and each session (outside and inside the scanner environ-
ment) separately. Results are shown in Figure 4.

Outside scanner
For the session outside the scanner, there was a main effect of
bias on accuracy (F(1,19) � 5.01, p � 0.05) and RTs for correct
choices (F(1,19) � 10.23, p � 0.001) for both the prior proba-
bility and potential payoff manipulations. No significant ef-
fects were found on RTs for incorrect choices (F(1,19) � 1.21,
p � 0.31). Linear trends across trail-type (invalid, neutral,
valid) were significant for RTs for correct choices and accuracy
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(respectively, F(1,19) � 15.38, p � 0.001 and F(1,19) � 5.62, p �
0.05) but not for RTs for incorrect choices (F(1,19) � 1.61, p �
0.22). No difference was found for RT and accuracy between
the prior probability and potential payoff manipulation (all F
values �1.39, all p values �0.26).

Inside scanner
For the session inside the scanner, we found a significant effect of
bias for the prior probability manipulation on accuracy and cor-
rect RTs (F(1,19) � 6.17, p � 0.005). Linear trends across trial-type
were significant for accuracy, correct and incorrect RTs (F(1,19) �
5.12, p � 0.05). For the manipulation with potential payoff, the
effect of bias and the linear trend across trial-type were at trend
level for correct RTs (F(1,19) � 2.61, p � 0.09). No significant bias
effect was found on accuracy and incorrect RTs (F(1,19) � 1.39,
p � 0.26). We also did not find a difference for RT between the
prior probability and potential payoff manipulation (F(1,19) �
0.41, p � 0.53). For accuracy, the difference between the two
manipulations reached trend level (F(1,19) � 3.245, p � 0.088)
with overall more correct choices for the potential payoff
manipulation.

In sum, descriptive results show that for most conditions,
subjects were biased toward the most likely and most rewarding
alternative resulting in more correct and faster choices for trials
where the cue was valid compared with invalid cues. Further-
more, the pattern of RTs for incorrect choices in all four condi-
tions suggests that these bias effects can be explained best by a
change in starting-point of the evidence accumulation, as shown
in Figure 2. To further quantify this effect we fitted the drift-
diffusion model to the RT and accuracy data.

Quantification of bias using the DDM
To quantify the effects of bias in the dynamics of the decision
process, we fitted the DDM to the data for each condition sepa-
rately (prior probability and potential payoff, inside and outside
the scanner environment). Both bias parameters �z for starting-
point and �v for drift rate were allowed to vary across the differ-
ent trial-types (see Materials and Methods; Fig. 5A). Bias was
calculated as the proportional change in starting point (�z/z) and
the proportional change in drift rate (�v/v). For both bias ma-
nipulations we found a significant increase in starting point
across subjects in the session outside the scanner (median [25 th

75 th quartiles] value of (�z/z) for prior probability � 0.07 [�0.01
0.213], and for potential payoff � 0.153 [0.040 0.280], Wilcoxon

Signed Rank test for H0: median value of proportional bias � 0,
p � 0.05). For the scanner session we found significant effects for
both manipulations as well (median [25 th 75 th quartiles] value of
(�z/z) for prior probability � 0.178 [0.880 0.318], and for poten-
tial payoff � 0.117 [0.005 0.305], p � 0.01). No significant effects
were found for the proportional change in drift rate. These results
suggest that in this experiment, choice bias is mainly driven by
adjusting the starting point of the accumulation process rather
than changing the rate of accumulation itself (Fig. 5B).

Imaging results: a diffusion model analyses of bias
To identify regions that are involved in the neural mechanism
underlying bias in the decision process, we added a covariate with
the proportional increase in starting point for each subject to the
GLM of the whole-brain analyses (see Materials and Methods).
For the prior probability manipulation, we found BOLD re-
sponses that were related to changes in starting point in the right
superior frontal gyrus (SFG), right middle frontal gyrus (MFG),
left inferior frontal gyrus (IFG) and left intraparietal sulcus (IPS):
subjects with a larger proportional increase in starting point
showed higher BOLD signal in these frontoparietal regions. Fur-
thermore, medial frontal gyrus (medFG) and anterior cingulate
gyrus (ACG) were more active for subjects with larger starting
point effects as well (Fig. 6).

For the bias manipulation with potential payoff, no regions
were found that survived the cluster corrected threshold (z � 2.6,
p � 0.05). However, as behavioral studies of tasks with similar
bias manipulations have shown weaker effects for the payoff than
for the prior manipulation (Maddox and Bohil, 1998; Simen et
al., 2009; Leite and Ratcliff, 2011) we applied a more lenient
threshold (uncorrected z � 2.6, k � 20). According to this more
exploratory analysis the effect of variability in starting point was
evident in similar regions as found in the prior probability ma-
nipulation. In addition to regions of the frontoparietal circuit, for
the payoff manipulation we also found increased BOLD re-
sponses in orbitofrontal cortex (OFC), the hippocampus and oc-
cipital lobe (Fig. 7).

As both prior probability and potential payoff showed similar
brain regions that are sensitive to changes in starting point, we
performed a conjunction analyses across both bias manipula-
tions to identify regions that are sensitive to changes in starting
point, regardless of the type of prior information involved. Re-
sults show regions of the frontoparietal circuit that were sensitive

Figure 4. Effects of bias induced by prior probability and potential payoff in accuracy and RTs for correct and incorrect choices. Asterisks indicate a significant linear trend across trial-types. Error
bars represent 1 SE from the mean.
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to starting-point changes for both manip-
ulations, suggesting a common network
involved in the underlying mechanism of
bias in choice behavior (Fig. 8).

Discussion
We used model-based functional MRI to
investigate whether bias in choice behav-
ior is similar for different types of prior
knowledge. We used two versions of the
random-dots motion paradigm where
bias was manipulated by either (1) chang-
ing the prior likelihood of occurrence for
two alternatives (prior probability), and
(2) assigning a larger reward to one of two
alternatives (potential payoff). Subjects
performed the task in two sessions with
the first session being optimized to mea-
sure brain activity using functional MRI.
Bias was quantified by fitting the DDM
to the RT and accuracy data for each ma-
nipulation and session separately. These
measures were then used to identify brain
regions that are sensitive to bias-induced
changes in the dynamics of the decision
process.

For most sessions we found significant
linear trends for RT and accuracy across
trials with valid, neutral, and invalid cues:
subjects made faster and more correct
choices for trials with valid compared
with invalid cues. For the potential payoff
manipulation inside the scanner the linear
trend did not exceed the level of signifi-
cance. Nevertheless, fitting the DDM to
the data showed a similar proportional in-
crease in starting point for both manipu-
lations inside and outside the scanner environment, suggesting
that the bias manipulation was effective for both prior probability
and potential payoff conditions.

When comparing RT patterns for correct and incorrect
choices, the effects for incorrect choices on RT were opposite
compared with correct choices: in most but not all conditions,
subjects made slower incorrect choices for valid trials and faster
incorrect choices for invalid trials. This effect indicates that bias
in these manipulations is incorporated in the decision process by
a change of the starting point of the accumulation process (Fig.
2). When the starting point shifts toward the bound of the alter-
native that is represented by the cue, the distance to the other
alternative is larger resulting in slower RTs for trials with invalid
cues. Fitting the DDM to the data confirmed this effect: for both
manipulations the starting point effects were significant in each
session whereas no such effect was found for the effects of bias on
drift rate. Together, these results suggest a common mechanism
underlying bias by prior knowledge in choice behavior. Findings
are in line with earlier studies that used model-based approaches
to investigate bias in choice behavior (Laming, 1968; Link and
Heath, 1975; Ratcliff, 1985; Ratcliff et al., 1999; Voss et al., 2004;
Palmer et al., 2005; Bogacz et al., 2006; Wagenmakers et al.,
2008a; Forstmann et al., 2010; Summerfield and Koechlin, 2010).

Next, we identified brain regions that are susceptible to the
model-based bias mechanism. We informed the fMRI analyses
with quantitative measurements of bias in each manipulation.

This allowed us to study the specific bias effects of the prior
information reflected in the cue, rather than a general effect of the
cue itself (Forstmann et al., 2011). For the prior probability ma-
nipulation we found regions in the frontoparietal network that
were sensitive to changes in starting point. These results are in
line with those from earlier studies that investigated bias in choice
behavior: regions such as SFG, MFG, left IFG and IPS have been
associated with decision processes (Heekeren et al., 2004, 2006;
Philiastides and Sajda, 2007; Ho et al., 2009; Kayser et al., 2010)
and prior or value-induced bias in decision making (Boettiger et
al., 2007; Serences, 2008; Basten et al., 2010; Preuschhof et al.,

A B

Figure 5. Effects of bias in DDM parameters. A, Bias is measured in starting point z, which is assumed to be half-way threshold
when information is neutral (a/2), closer to the correct bound when valid (z � �z), and further from the correct bound when
invalid (z ��z). Similarly, bias in the drift rate v is measured with �v. The drift rate will increase for valid (v ��v) but decrease
for invalid (v ��v) prior information. B, Average proportional bias effects across subjects for starting point (top) and the drift rate
(bottom) for prior probability and potential payoff, in and outside the scanner environment. Results show significant effects for
changes in the starting point, but not for changes in the drift rate. Error bars represent 1 SE from the mean.

Figure 6. BOLD responses for starting point changes in the prior probability manipulation
(cluster corrected, z � 2.6, p � 0.05).
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2010; Scheibe et al., 2010; Summerfield and Koechlin, 2010; Han-
sen et al., 2011). Furthermore, we found increased BOLD re-
sponses in occipital regions which have been associated with
value-based decision making (Serences, 2008; Summerfield and
Koechlin, 2008).

Other regions, such as the medFG and ACG, were sensitive to
starting point changes as well. The medFG and ACG regions have
been associated with processing prior information in decision
making (Scheibe et al., 2010). Furthermore, ACG has been asso-
ciated with speed-accuracy tradeoff processes that involve a
change in the distance between the start and end point of the
accumulation process (Forstmann et al., 2008).

For the bias manipulation with potential payoff, we found
similar regions of the frontoparietal network that were sensitive
to changes in starting point. In addition, we found sensitivity to
starting point changes for the left OFC and the right hippocam-
pus. Recently we have shown that OFC and hippocampus play a

role in setting starting point values in a similar manipulation,
suggesting a specific role for these areas in changing the dynamics
of the decision process (Forstmann et al., 2010).

In the scanner session, the biasing effects of the potential pay-
off on RT and accuracy did not exceed the level of significance.
This might be due to a smaller number of trials in the scanner
session, resulting in a lower statistical power. However, other
studies with similar manipulations report that the biasing effect
of a payoff manipulation is less strong than a manipulation of
prior probability (Maddox and Bohil, 1998; Simen et al., 2009;
Leite and Ratcliff, 2011), suggesting that the diminished effect by

the payoff manipulation might have a
more systematic cause. One explanation
could be that subjects are more sensitive
to “being accurate” than “gaining re-
ward,” resulting in a more pronounced ef-
fect for prior knowledge about the
direction of the stimulus, instead of the
reward associated with it. This, in turn,
might result in a lower activity pattern of
brain regions associated with the biasing
cue, explaining the smaller effects on
BOLD responses for the starting point co-
variate in the payoff manipulation. Subse-
quently, although a conjunction analyses is
conservative by nature, the smaller effects of
payoff on the BOLD signal influences this
analyses as well. However, despite the ex-
ploratory nature of these analyses, the re-
sults are in line with studies of expected
value and bias, suggesting that this effect
might be more robust than assumed by the
lenient threshold (Boettiger et al., 2007;
Serences, 2008; Gläscher et al., 2009;
Wunderlich et al., 2009; Fleming et al.,
2010b; Forstmann et al., 2010; Philias-
tides et al., 2010; Scheibe et al., 2010;
Hare et al., 2011).

We hypothesized that a common
mechanism of bias in choice behavior
would reflect changes in the BOLD re-
sponse associated with changes in starting
point, regardless of the type of prior infor-
mation provided by the cue. We identified
these regions by performing a conjunc-
tion analyses across both manipulations.

Five regions show similar effects for both bias manipulations:
right medFG, ACG and SFG, left middle temporal gyrus and IPS.
Subjects with a higher BOLD signal in these regions had a larger
change in starting point for both bias manipulations, suggesting a
specific role for these regions in a common mechanism underly-
ing bias in choice behavior. As noted already, these regions have
been shown to play a role in decision making as well as in pro-
cessing prior information. Furthermore, studies using value-
based choice paradigms have suggested a prominent role of
coding or computation of values in medFG and ACG (Boettiger
et al., 2007; Wunderlich et al., 2009; Fleming et al., 2010b; Philias-
tides et al., 2010). However, our results suggest that these regions do
not necessarily code for value, but rather reflect a common process
where a stage is set for a decision that maximizes reward (Feng et al.,
2009; Simen et al., 2009; Bogacz et al., 2010).

A question remains where in the brain the representation of
prior knowledge is coded, and how this information is processed

Figure 7. BOLD responses for starting point changes in the potential payoff manipulation
(uncorrected, z � 2.6, with cluster extent � 20). Occ., Occipital lobe.

Figure 8. BOLD responses for regions that were sensitive to starting point changes in both bias manipulations (conjunction,
uncorrected, z � 2.3, with cluster extent �5 voxels). For visualization purposes we added a graphical representation of the
relationship between changes in starting point and changes in BOLD signal for the prior probability and potential payoff manipu-
lation. Data points are derived from individual subjects. These results suggest a common network involved in the underlying
mechanism of bias in choice behavior. MTG, Middle temporal gyrus.
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over time in such a way that it causally changes the starting point
of the decision process. Results from imaging and modeling stud-
ies have shown value-specific effects in early visual areas, suggest-
ing that value might be encoded earlier in the process then has
been suggested up until now (Liston and Stone, 2008; Serences,
2008). Furthermore, human and non-human primate research
has shown bias effects in regions involved in early processes of
saccadic eye movement, suggesting bottom-up processing from
the value representation (Lauwereyns et al., 2002; Serences, 2008;
Summerfield and Koechlin, 2008; So and Stuphorn, 2010). Al-
though our results are in line with these findings, the low tempo-
ral resolution of the BOLD signal does not allow detailed analyses
of temporal processes, and as such other methods such as EEG
and MEG might help to investigate the causal dynamics of the
decision process.

Although our findings of a starting point mechanism are in
line with earlier findings, it does not necessarily rule out the pos-
sibility that changes in drift rate can also bias choice behavior. It
has been suggested that when the difficulty of trials is fixed (as in
this study), the starting point rather than drift rate should be
adjusted to maximize the rate of receiving reward (Bogacz et al.,
2006). However, in case of a variable difficulty across trials,
changing drift rate would be optimal. Furthermore, it has been
suggested that when the reliability of the sensory evidence differs,
bias enters the accumulation process dynamically (Hanks et al.,
2011). As such, the optimal strategy of using prior knowledge in
decision making might depend on specific conditions such as
reliability or uncertainty. In the current study, we fixed the level
of difficulty of the motion stimulus at a performance level of 80%
correct. At least under these circumstances, the bias process
seems to depend mostly on starting point changes, even for dif-
ferent manipulations of choice bias.

Conclusion
We used model-based functional MRI to investigate whether bias
in choice behavior is similar for different types of prior knowl-
edge. For two different types of prior knowledge we found that
changes in the starting point of the evidence accumulation can
account for the biasing effects in RT and accuracy of a simple
perceptual decision task. Imaging results showed that regions of
the frontoparietal network are involved in changing starting
points for both manipulations, suggesting a common mechanism
underlying the biasing effects of prior knowledge.
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