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The study of models of memory often seems
like a backwater in the overall study of mem-
ory. Models do not have a prominent place in
experimental studies of memory and they are
not used or examined by most researchers in
the field. This review examines the various
questions that models can address, discusses
why theory is not as prominent in the memory
domain as in other domains of science, and
presents an overview of current models. The
aim is to show why models should have
greater prominence and wider use.
Mainstream models for “long-term” mem-
ory take as their database the results of experi-
ments in which subjects are asked to study
and learn lists of items (words, nonsense syl-
lables, letters, numbers, sentences, or pic-
tures). Memory is tested in one of a number of
ways: asking subjects whether or not an item
occurred on the study list (recognition), asking
for recall of the items on the study list, asking
what item on the study list was associated
with a cue, asking for the recency or frequency
of appearance of an item on the study list, and
so on. The dependent measures are usually ac-
curacy, confidence ratings, or a combination
of reaction time and accuracy. The eventual
aim is to account for the effects on all the de-
pendent variables for a range of experimental
tasks-and for a range of experimental manipu-
lations, including the length of the study list,
the strengths of the items in memory, the type
of material, the similarity among study and
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test items, levels of processing, rehearsal
methods, and so on.

Recent development of models of long-term
memory has proceeded relatively indepen-
dently of other areas of memory research. For
example, there has been little contact between
the long-term memory models and the find-
ings of implicit memory experiments and
there has been little explicit theoretical work
in the domain of implicit memory. Over the
last 20 years, the domains of reaction time re-
search and memory have not interacted in
strongly productive ways, although there has
been a recent resurgence of interest in random
walk and diffusion reaction time models and
so there may soon be more fruitful interac-
tions. The one domain of research with which
there is some sharing of representation and
process assumptions is categorization. In this
domain, subjects are presented with exem-
plars and through feedback learn how to as-
sign the exemplars to categories. Some models
of categorization are essentially long-term
memory models in that they assume a repre-
sentation of a category is built up_with learn-
ing and the category decision process depends
on retrieval from this memory representation.

Short Historical Background

The attempt to produce models of memory
that can account for data both qualitatively
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and quantitatively has had a history of work-
ing from small models with very restricted
ranges of application to more comprehensive
models with wider ranges of application.
Early memory models (in the 1960s to '70s)
used the dichotomy between short-term mem-
ory and long-term memory as a reason either
for restricting the domain of the model to
short-term or long-term memory OI for ex-
plaining how information progressed from
short-term to long-term memory. In many of
the models, component processes paralleled
developments in mathematical psychology,
borrowing the mechanisms of Markov chains
(used in models of associations), signal detec-
tion theory (used in perception and strength
based models), or serial search processes (de-
rived from the computer metaphor and used
in the influential Sternberg, 1966, serial
search model). Two excellent sources for the
state of the art in the early 1970s are the books,
Models of Human Memory (Norman, 1970)
and Human Memory: Theory and Data (Mur-
dock, 1974). As is shown in these books, many
of these were models of a particular task (e.g.,
paired associate learning and cued recall, or
memory search and recognition) and the mod-
els were usually applied only to a restricted
range of experimental data.

In the late 1960s and early 1970s, there
were two more comprehensive models that
were particularly influential. One was Atkin-
son and Shiffrin’s (1968) model of short-term
and long-term memory. The model provided a
qualitative/theoretical basis for the separation
of short- and long-term memory, although the
mathematical structure of the model was not
widely applied to experimental data. The
model served as a focus for testing hypotheses
about how the two kinds of memory might be
differentiated and it was the “modal” memory
model in that it represented the pinnacle of
development of models of its class. It was also
the stepping-off point for attacks on the sim-
ple rigid bipartite division of memory into
short- and long-term components.

The second influential model was Ander-
son and Bower’s (1973). Because the model
was explicitly applied to memory both for the
standard paradigms and for sentences, it was
influential at the intersection of traditional
memory research and the rapidly developing
domain of language research. This union of
memory and language theory evolved in the
early 1990s into a rational model (Anderson,
1990, 1993) of memory that is intended to

apply over a range of domains that includes
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memory, sentence processing, and categoriza-
tion. The notion of rationality has become a
critical component of the newest memory mod-
els, as will be discussed below. Anderson, Bo-
thell, Lebiere, and Matessa (1998) recently
applied the Anderson (1993) model to the stan-
dard list-learning experiments targeted by more
traditional models, but the model was fit only
to selected aspects of data so, until more com-
prehensive evaluations have been carried out, it
is too soon to tell how the model will fare.

Beginning in the 1980s, models were devel-
oped that were aimed at being comprehensive
in both the range of tasks and the range of data
to which they were applied. Murdock’s (1982)
TODAM model was designed to apply across
the categories of information that Murdock
used to classify memory, item information, as-
sociative information, and serial order infor-
mation (see Murdock, 1974, p. 16), and the
processes that operate on those kinds of infor-
mation. Around the same time, Raaijmakers
and Shiffrin’s (1981) search model for free re-
call (SAM) accounted for many of the experi-
mental findings from free recall experiments,
and Gillund and Shiffrin (1984) extended the
model to data from recognition experiments.
A little later, Hintzman’s (1986, 1988) MIN-
ERVA2 model was applied to recognition and
categorization and then extended to judg-
ments of recency and frequency. The next sec-
tions of this review describe these models in
more detail, then describe the empirical phe-
nomena that were inconsistent with the mod-
els, and then finally describe the next genera-
tion of models.

Global Memory Models

The SAM, MINERVAZ, and TODAM models
are called the global memory models for two
reasons. First, for each of the models, it is as-
sumed that a test item contacts a great deal of
information in memory, possibly all stored
memories. Second, the models were intended
to explain data from a range of experimental
tasks and a range of experimental manipula-
tions within those tasks.

MINERVAZ, SAM, and TODAM each make
different assumptions about how information
is represented in memory. SAM stores strengths
between cues to memory (test items) and
itemns in memory. TODAM assumes that items
are vectors with random values as the ele-
ments of a vector. Memory is assumed to be @
single vector into which all the item vectors
are stored. MINERVAZ assumes that items areé
vectors with elements +1, 0, or -1, and that
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items are stored in separate vectors in mem-
ory. For recognition memory, the three models
share the same assumption about retrieval: at
test, a test item matches all of memory and a
single value of familiarity is produced that
serves as the basis for the decision about
whether the test item was or was not on the
study list. Recognition memory is the main
area in which the coverage of the models over-
laps, so it has become a central focus for test-
ing and evaluation, and the two models of the
next generation, to be described below, focus
almost entirely on recognition memory.

A good introduction to the global memory
models is presented in Neath (1998) and this
would be a useful starting point for readers
new to memory models.

The SAM Model

The SAM model (Gillund & Shiffrin, 1984;
Raaijmakers & Shiffrin, 1981) represents infor-
mation in a cued dependent structure. That is,
what is stored are the strengths of the connec-
tions between cues (test items) that interrogate
memory and items stored in memory (“im-
ages”). These strengths are built up by an en-
coding process that uses a simple short-term
buffer. During the time an item to be studied
is in the buffer, ¢ units of “self strength” per
unit of time are built up between the item as
a cue and the image of the item in memory
and a units of strength are built up between
the general study context and the image of the
item in memory. “Interitem strengths” (b units
per unit of time) are also built up between the
item as a cue and the images in memory of
each of the other items that are in the buffer at
the same time. There is also assumed to be
some residual strength between an item as a
cue and the images of each of the other items
in memory; this serves the role of pre-experi-
mental strength of connection between items.

At retrieval, a cue interrogates memory. In
recognition, the cue is assumed to be the test
item plus the context in which it is presented.
The strength from each of these to an item in
memory is calculated, and the product of
these two strengths is formed. This calculation
is performed for all items in memory and all
the products are summed. The sum is a mea-
sure of the global familiarity of the test item.
This value of familiarity is used in a signal de-
tection analysis to produce hit and false alarm
rates. A criterion is set on familiarity, and if
the computed value is greater than the crite-
rion, then the decision is that the item was on
the study list and an “old” response is pro-

duced; if the computed value is lower than the
criterion value, then the decision is that the
item was not on the study list and a “new”
response is produced. Free recall is a two-
phase process, sampling and recovery. First,
the context cue is used to probe memory and
for each item in memory, a “sampling proba-
bility” is produced; this probability is a func-
tion of the item’s strength relative to other
items and it is the probability that the item
will be selected for recovery. If an item is se-
lected, then it has some probability of being
recovered that is a function of its strength, so
the stronger the item, the greater the probabil-
ity of recovery. If recovery fails, the process
resamples and attempts another recovery. An
item that is successfully recovered is used as
a cue along with context for an attempt to re-
trieve another item. This process continues
until a criterion number of attempts is made
without a successful retrieval. Cued recall
works like free recall except that there are two
cues with which to probe memory, the recall
cue and the context.

SAM has been successfully applied to a
wide range of experimental data. The recogni-
tion process has changed in the transition to
the new generation of models, but the recall
assumptions still provide the most successful
explanation of recall data.

The MINERVA2 Model

In MINERVAZ2 (Hintzman, 1986, 1988), items
are represented as vectors of features. At
study, a new memory vector is created for
each studied item, with the each feature of the
item copied into the vector with a probability
that varies as a function of study time. Fea-
tures have values of plus or minus 1 or, if a
feature is not copied into memory, the value
for that feature is set to zero. For recognition,
a test item’s vector is compared with each vec-
tor in memory and a dot product (divided by
the number of features) is formed to give the
degree of match—the “activation” value. This
value is cubed and then the activation values
for all the items in memory are summed to
provide an overall measure of match called
“echo intensity.” If this value is greater than a
criterion, an “old” response is produced; if it
is less, a “new” response is produced.

For recognition, the model does a good job
of predicting many of the standard experimen-
tal results, including the effects of repetition
and study time on performance. It also has
been successfully applied to frequency judg-
ment data and to categorization. Processes
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have been suggested that would allow the
model to explain recall data but there have not
been any specific applications.

The TODAM Model

In TODAM, an item is a vector of attributes
and each attribute has a value derived from a
normal distribution with mean zero. Memory
is a single vector, a composite memory trace
of all studied items. A study, for each studied
item, the probability that an attribute is en-
coded is a function of study time. The vector
for each studied item is simply added to the
single memory vector. If two items are studied
together in a pair (e.g., paired associate learn-
ing), the association between the two items is
the convolution of their vectors (see Neath,
1998) and this convolution is stored in the sin-
gle memory vector along with the vectors of
the individual items.

For recognition, the vector for a test item is
compared with the single memory vector us-
ing a dot product (i.e., multiplying corre-
sponding attributes together and summing
over attributes). The resulting sum is com-
pared with a criterion value just as in the SAM
and MINERVA2 models. The mathematics of
the model would actually work in exactly the
same way if it was assumed that the items are
stored in separate vectors in memory instead
of a composite, so the differences between this
model and MINERVAZ2 are less than they
might seem at first examination.

For cued recall, one member of a studied
pair is presented and the vector for this item
is correlated with the memory vector. This
produces a noisy version of the other member
of the pair and this is cleaned up to produce a
response. Recent empirical work on the inter-
actions of associative and item information
has required a revision of TODAM; TODAM2
is the most recent version of this model (Mur-
dock, 1997).

The Data that Challenged
the Global Memory Models

It is often thought that the global memory
models are unfalsifiable, that they can be ma-
nipulated to produce any pattern of data by
varying parameter values or adding new pa-
rameters. Recently, Slamecka (1991) voiced
this view directly: “If the models have any-
thing, they have resilience, or to put it more
precisely, their inventors have resilience, and
I suspect that after some skillful patching of
assumptions and/or fine-tuning of some pa-

rameters, these veterans will lumber down the
runway and lift off again.” If this were correct,
the enterprise would truly be of little interest.
Fortunately for science, and unfortunately for
the global memory models (and Slamecka’s ar-
gument), the models are solidly grounded in
the phenomena to which they were addressed.

To understand what kinds of tests falsify
the models, it is necessary to understand
which are the fundamental assumptions of the
models that are not subject to patching and pa-
rameter twiddling. We discuss two such as-
sumptions. One has to do with the way the
output quantities specified by the models
(e.g., familiarity values) get larger as the
strengths of the items stored in memory in-
crease and the second concerns variability in
the match between a test item and memory.

The easiest demonstration of the models’
inabilities to handle the effects of increasing
strength of items in memory is the “mirror ef-
fect.” According to the models, increasing the
strength of an item in memory should increase
the probability that an item is called “old” for
items that are indeed “old” because they were
on the study list and for items that are not
“o0ld”—that is, items that were not on the
study list. But often this is not the empirical
result. For example, low-frequency words are
more likely to be called old if they were stud-
ied but they are more likely to be called new
if they were not (e.g., Glanzer & Adams, 1985;
Glanzer, Adams, Iverson, & Kim, 1993).

One solution the models could offer for this
problem is that the retrieval process begins by
determining whether a test item is low versus
high frequency and then alters the decision
criterion for old versus new responses, but ev-
eryone agrees this is an unsatisfactory solu-
tion. Some of the problems with this solution
(besides the fact that it is exactly the kind of
solution that Slamecka uses to attack the mod-
eling enterprise} are, first, that responses can
be made just as quickly when frequencies are
not mixed in the study and test lists as when
they are; second, subjects are not very good at
determining the frequencies of words; and
third, in experiments with a number of differ-
ent frequency values, the multiple criteria re-
quired would make the task very difficult.

The second falsifiable assumption of the
models is that as the strength of an item in-
creases, variability increases. In SAM, vari-
ability is introduced at encoding. For each
unit of time that an item remains in the encod-
ing buffer, the units of strength that are built
up are not the fixed values of the strength pa-
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rameters (the ¢, a, and b values), but instead
they are these values with probability one
third, .5 times these values with probability
one third, or 1.5 times these values with prob-
ability one third. It follows that, as the amount
of time in the buffer increases, both the en-
coded strength values and the variability in
those values increases. Similar behavior is
produced by the variability assumptions in
MINERVA2 and TODAM. The assumptions
about variance underlay all predictions of the
models and only fundamental alteration of the
basic structures of the models could change
these assumptions.

For each of the models, the variance as-
sumptions lead to the prediction of a “list
strength effect.” Consider a mixed study list in
which some items are studied for a long time
(e.g., 5s) and some for a short time (e.g., 1s)
versus a pure list in which all items are stud-
ied for a short time. For SAM, when a recogni-
tion test item is matched against the items in
memory, variance in familiarity is increased
for the mixed list relative to the pure list be-
cause of the increased variance in the strength
values of the long-study items. This increase
in familiarity variance increases the chance
that the familiarity value will be below crite-
rion for an “old” response for short-study
items. This results in lower accuracy for the
short-study items in the mixed list relative to
the pure list. This is the predicted “list
strength” effect and data almost never show
this effect in recognition (Murnane & Shiffrin,
1991; Ratcliff, Clark, & Shiffrin, 1990; Shiffrin,
Ratcliff, & Clark, 1990), though an effect is pre-
dicted and obtained in recall (Tulving & Has-
tie, 1972; Shiffrin et al.,, 1990). MINERVA2
and TODAM make the same prediction for
recognition and so they are also disconfirmed
by the data.

The mirror effect and the list strength effect
are two examples of predictions of the models
that are testable, contradicted by experimental
data, and inalterable by minor modifications
to the models. These are the kinds of phenom-
ena and tests that are at the heart of testing
and evaluating the models.

New Generation Global
Memory Models

Two new models have been developed to deal
with the phenomena that the older global
memory models could not explain, as well as
all the phenomena that they could explain.
The models, REM (Shiffrin & Steyvers, 1997)
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and McClelland and Chappell’s (1999) model,
have much in common. In both, items are rep-
resented as vectors of features and, in recogni-
tion, the degree of match between a test item
and memory is compared with a criterion
value to make the old/new decision.

At encoding, the features of each studied
item are stored in vectors in memory, a sepa-
rate vector for each item. In each unit of time,
some proportion of an item’s features are
stored, some with their accurate values and
some with incorrect values. The vector for a
test item is matched against all the vectors in
memory. For each vector in memory, the prob-
ability is calculated that the memory vector
was generated from a study item identical to
the test item. A likelihood ratio is produced
by dividing this probability by the probability
that the memory vector was generated from
some different item. For REM, the likelihood
ratios for all the items in memory are summed
and the result is compared with a criterion to
decide whether the test item is old or new. For
McClelland and Chappell’s model, the maxi-
mum of the likelihood ratios is compared to
the criterion. As the proportion of features
stored for a study item increases, the probabil-
ity of a match increases and the probability of
a nonmatch decreases, essentially differentiat-
ing between old and new test items (Shiffrin
et al., 1990).

The key feature of the two new models is
the use of the likelihood ratio for evaluating
the degree of match between a test item and
memory. The models account for the mirror
effect because as the likelihood ratio for a
match increases (because there are more
matching features), the likelihood ratio for a
mismatch decreases (because there are more
mismatching features). The models account
for the list strength effect because strengthen-
ing an item only slightly affects the likelihood
ratios for mismatches.

There are two main assumptions of these
models that allow them to produce likelihood
ratios. The first is that feature storage is falli-
ble; incorrect values of features are stored
with some probability. If storage were com-
pletely accurate, then there would be no mis-
matches when the test item is the same as the
study item that produced the memory vector
and the likelihood ratio could not be com-
puted. The second is that items are repre-
sented as vectors of individual features. This
makes it possible to calculate the probability
of a match between a test item and an item in
memory that is not the same as the test item.
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The two new models are quite similar to
Hintzman’s MINERVA2 model in terms of
their representational assumptions. They dif-
fer from MINERVAZ in their assumption about
how the degree of match is computed (likeli-
hood ratio versus echo intensity).

The new models are at the stage of develop-
ment where they have been shown to account
for the data that was problematic for the older
memory models, but as yet no critical tests of
the models have been developed. What will be
needed is a clear understanding of which are
the critical underlying structures of the mod-
els that cannot be altered without completely
changing the predictions. These models leave
the field at an exciting point, awaiting critical
new challenges, applications to wider do-
mains, and the next cycle of testing and evalu-
ation.

Reaction Time and
Memory Models

All of the global memory models, including
REM and McClelland and Chappell’s model,
predict response accuracy; little attention is
paid to the behavior of the other dependent
variable they eventually will have to model,
reaction time. Although there are many regu-
larities in the relationship between reaction
time and accuracy (see Atkinson & Juola,
1973; Hockley & Murdock, 1987; Ratcliff,
1978), substantive research has not been done
to integrate the mechanisms that predict accu-
racy in these models with mechanisms to pre-
dict reaction time.

One of the important problems that will
have to be faced is how to translate a dimen-
sionless quantity, familiarity or likelihood,
into a quantity with a time-related dimension
(e.g., rate of processing). In the two new mod-
els, the distributions of likelihood values are
highly skewed and there would be no reason-
able linear translation from likelihood values
to rate of accumulation of evidence. What
would be needed would be a transformation
(e.g., log likelihood; McClelland & Chappell,
1999) to make the distributions less highly
skewed. Considerable research is needed to de-
termine what kinds of transformations might
work to correctly predict reaction time data.

What the Models Have Not

Been Used For

If the memory models were having an impact
on empirical research, then we would expect
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to see the results of experiments interpreted in
terms of model parameters. But this is almaost
never done; the question is, why not? One rea-
son is that many phenomena will be ex-
plained in the same way with or without a
model. For example, obtaining a fit of a mode]
to the increase in accuracy that occurs as a
function of study time would not be news
(even though such explicit fitting has rarely
been done). Second, there are technical diffj-
culties in fitting the models to data that have
not been explored in detail. For example, in
the SAM model, the effects of study time
could be modeled by varying any one of sev-
eral parameters. This means that the studies
that show what kinds of data will constrain
the models have not been presented in a way
that allows nonexperts to use the models.
Third, there have been few compelling dem-
onstrations that the models are needed to in-
terpret experimental data in domains where
the experimental questions concern simple
hypotheses.

The big payoff for actually fitting the mod-
els to experimental data will come with appli-
cations of the models to research in memory
as a function of development in children,
aging, head injury, varieties of amnesia, and
so on, where the parameters of a model can be
used to explain what aspects of processing
and/or memory lead to the differences in per-
formance observed across subject groups and
between the individuals in a group. Variations
in parameter values across individuals of dif-
ferent classes could be used to evaluate hy-
pothesized explanations of their differences in
performance. The models could also be used
to examine performance across a range of
tasks to determine if the same components or
processes are affected in the same ways across
tasks. This kind of evaluation of common
mechanisms across tasks is not possible with-
out theory. In ways like these, the models
could be expanded from their narrow focus on
standard list learning experimental proce-
dures to questions about the larger domain of
human memory.

Uses of the Memory Models:
Compound Cue Models for
Associative Priming

One of the phenomena that is not explained in
the same way with the global memory models
as it is without the models is priming in lexi-
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cal decision and recognition. This kind of
priming is the speedup in processing for a
word that results from processing a related
word just before it. For example, in making
word/nonword decisions about strings of let-
ters, if a target test word doctor is preceded by
a related prime word, nurse, then the “word”
response to doctor is speeded by 30 to 50 ms.
The usual theoretical interpretation of priming
is based on spreading activation: the prime
word activates other words related to it in
memory and this advance activation leads to a
speedup on the target (see McNamara, 1992a,
1992b, 1994a, 1994b). An alternative explana-
tion of priming is the compound cue model
(Ratcliff & McKoon, 1988, 1994, 1995; Mc-
Koon & Ratcliff, 1992), which is based on the
global memory models’ accounts of pair recog-
nition. In pair recognition, a pair of words is
presented simultaneously and the task is to
decide whether both were on the study list. If
the two words were studied in a pair together,
the degree of match between the test probe
and memory is greater than if both words were
studied but in different pairs. Ratcliff and
McKoon use the same mechanism to explain
priming, adding some assumptions about how
reaction time is derived from degree of match.
There has been considerable controversy over
whether spreading activation (ACT*; Ander-
son, 1983) or compound cue mechanisms give
the best account of priming, with no clear
winner.

Models of Categorization

Categorization research has been dominated
by two main classes of models, exemplar
based models and decision bound models (see
contrasts between the models in Ashby &
Maddox, 1993; McKinley & Nosofsky, 1995).
Exemplar-based models assume that a cate-
gory membership decision is based on stored
exemplars of the category, exemplars that
were learned in the process of performing the
experimental task. This means that the models
are essentially memory models. Nosofsky
(1991) examined the relationship between cat-
egorization and recognition memory and
found that both could be explained for his ex-
perimental data with the same exemplar based
memory representation but different retrieval
processes for the two tasks. Apart from a few
examples like this, the categorization models
have largely operated independently of the
memory models, and more theoretical interac-

tion between models in the two classes is
overdue.

Implicit Memory Models

The memory models examined so far deal
with what has been called explicit memory,
but there is another domain of research that is
concerned with the effects of prior study on
performance in tasks that do not require recol-
lection of prior study; this has been called im-
plicit memory. Much research on implicit
memory has centered on the experimental
finding that repetition of a stimulus produces
a benefit to performance even when conscious
memory of the prior episode with the stimulus
is not required. A key result is the finding that
on many tasks, this repetition priming effect is
unimpaired in amnesics even when their ex-
plicit memory, as shown by recognition or re-
call tasks, is severely impaired. It has been
claimed that this priming is produced by a
separate memory system from the system that
performs explicit memory tasks. For example,
Squire (1992) proposed a hierarchy of separate
systems and Schacter and Tulving (1994) pro-
duced a taxonomy of multiple memory sys-
tems. The problem with this approach is that
it is driven by hypothesis testing; at no point
are the hard theoretical questions asked about
how information is represented within each
memory system, how processing works within
each system, or how processes interact among
the systems. Crucially, there is no discussion
of how processing works for the tasks in
which repetition effects are found.

Consider, for example, what must happen
in a multiple memory systems account of
priming in word identification. In the tasks
used to show this phenomenon, a test word is
flashed briefly, then masked. A prior presenta-
tion of the word increases the probability of
correctly identifying it. If the earlier encounter
is stored as a new representation in a separate
memory system from that used for word iden-
tification, then when the test word is pre-
sented it must contact this representation and
the representation must become available to
the processes that are standardly used for
word identification in time to facilitate them.
It seems unlikely to us that any reasonable
mechanism could be constructed to work this
quickly to both identify the test word in the
implicit memory system and use the resulting
information to aid identification.
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Ratcliff and McKoon (1996, 1997) reported
data that provided the basis for a different in-
terpretation of implicit priming effects. Using
experimental procedures for which costs as
well as benefits could be examined, they
found that the facilitative priming effect for an
exact repetition of an item was accompanied
by inhibition in processing when a closely
similar item to the test item had been pre-
sented earlier. Ratcliff and McKoon argued
that this result shows a bias in processing, not
the operation of a separate memory system.
They explained bias with a model for word
identification (Ratcliff & McKoon, 1997), a
modification of Morton’s logogen model (Mor-
ton, 1969). Schooler, Shiffrin, and Raaijmakers
(1998) have also proposed a model for bias
that does not make use of a separate memory
system; their model uses the mechanisms of
REM. In both these cases, the models’ primary
aim is to explain standard processing, and
priming is only a by-product of the standard
processes (Morton, 1970). In addition, each of
these models is capable of dealing with other
criterial tests that have been said to identify
separate memory systems: dissociations and
stochastic independence (see also Ratcliff &
McKoon, 1996).

At this point, the domains of implicit and
explicit memory are related only by contrasts
(this is implicit memory or it is explicit mem-
ory). But as models for implicit memory are
developed, it is hoped that relationships be-
tween the two will become apparent (as in
Schooler et al.,, 1998) and that theoretical
progress will be made.

Connectionist Memory Models

Connectionist models might seem natural for
the storage of information. Much of the early
work in connectionist/neural network model-
ing did have a connection to memory. But
there have been few recent attempts to take
standard connectionist architectures and
build new memory models. For a simplistic
example, one might think that a multilayer
connectionist network would be ideal for stor-
ing information. Vectors of features could be
entered into the model and the system trained
to respond positively when a learned item was
presented for test. The problem is that the
model will learn to respond positively for ev-
erything because it has not been presented
with negative instances (people do not have to
be given negative instances because they
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know that any item not from the study list
should be given a negative response). Another
possibility might be to have every encounter
with a study item add to its strength in mem-
ory (e.g., something like Anderson’s, 1991,
matrix model). But if this growth leads to an
increase in variability, then a list strength ef-
fect is predicted, contrary to data (see Ratcliff,
1990). The key thing to keep in mind is that
data constrain and rule out many simple-
minded translations of many connectionist
representational schemes and learning algo-
rithms as a basis for memory models.

However, because the current memory
models are distributed, they offer the possibil-
ity of translation into connectionist terms. For
example, McClelland and Chappell’s model
(1999) is couched in connectionist terms, but
is almost identical in structure to the REM
model. The REM model assumes that items
are stored in independent vectors in memory
and these are accessed in parallel at test. The
McClelland and Chappell model assumes that
each item stored has a node and weights from
it to vector elements. This means, for each
item, there is a separate weight for each ele-
ment in the vector. The correspondence with
REM can be seen if the weights are equated
with features in the separate memory vectors
in REM. The conclusion is that there is con-
siderable overlap in representational assump-
tions between the connectionist model and
both the newer and the older global memory
models; it follows that the insights from one
of the domains should be used in theoretical
development in the other.

Conclusions

In many fields of sciences, theory and experi-
mental work go hand in glove. In cognitive
psychology, experimental work and theoreti-
cal work seem to have much less interaction.
Often this is because as new experimental par-
adigms are introduced, a lot of fruitful experi-
mental work can be performed to examine and
test verbal hypotheses. Then, often after a
great deal of experimental work has been per-
formed, the questions become more about de-
tails of methods and design than about the
larger questions that started the investigation.
This results in a reduction in the amount of
research in the domain, especially if some
other interesting empirical domain has come
to prominence. The questions that generate
the most interest in the empirical approach
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are often not critical for testing or evaluating
models. This means that the models may have
little to say about the empirical phenomena;
they may be able to easily explain the results
without adding additional insight. This is one
source of an often expressed sentiment among
experimentalists, that it is impossible to fal-
sify models. But, as described above, the last
15 or 20 years of development and testing of
models present a different picture and show a
progression in theory development and evalu-
ation.

Models provide a means of going beyond
the more traditional empirical approach in
several ways. Models are needed when we
want to address issues across different experi-
ments, across different experimental para-
digms, or across different subject populations.
Also, models are needed to relate different de-
pendent variables such as reaction time, accu-
racy, confidence judgments, recall accuracy,
forced choice accuracy, and so on.

Models should aspire to the following
properties: a model should be fairly compre-
hensive, covering data from a range of experi-
mental tasks and a range of manipulations of
independent variables. A model should not be
a restatement of the experimental data—that
is, it should produce a coherent explanation
of the data and classify or organize the data
differently from a simple empirically based
classification, perhaps by showing invariances
in parameter values, performance characteris-
tics, or structures that cannot be seen in the
experimental data. Finally, a model can gain
considerable power if it can deal with more
than one dependent variable at a time.

The models of memory of the 1980s were
designed to achieve these aims. They were
comprehensive and they were able to handle
most of the experimental data within their do-
mains. They were falsifiable in that their basic
assumptions could be put to empirical test.
Their failures led to the new models (McClel-
land & Chappell, 1999; Shiffrin & Steyvers,
1997, 1998), which are now, in their turn, ripe
for evaluation and testing.

Acknowledgments This research was sup-
ported by National Institute of Mental Health
grant HD MH44640 and National Institute for
Deafness and other Communication Disorders
grant DC01240.

References

Anderson, J. A. (1991). Why, having so many
neurons, do we have so few thoughts? In

579

W. E. Hockley & S. Lewandowsky (Eds.),
Relating theory and data: Essays on hu-
man memory in honor of Bennet B. Mur-
dock (pp. 477-507). Hillsdale, Nj: Erl-
baum.

Anderson, J. R. (1983). The architecture of
cognition. Cambridge, MA: Harvard Uni-
versity Press.

Anderson, J. R. (1990). The adaptive charac-
ter of thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R. (1993). Rules of the mind.
Hillsdale, NJ: Erlbaum.

Anderson, J. R., & Bower, G. H. (1973). Hu-
man associative memory. Washington, DC:
Winston.

Anderson, J. R., Bothell, D., Lebiere, C., &
Matessa, M. (1998). An integrated theory
of list memory. Journal of Memory and
Language, 38, 341-~380.

Ashby, F. G., & Maddox, W. T. (1993). Rela-
tions between prototype, exemplar, and de-
cision bound models of categorization.
Journal of Mathematical Psychology, 37,
372-400.

Atkinson, R. C., & Juola, J. F. (1973). Factors
influencing the speed and accuracy of
word recognition. In S. Kornblum (Ed.), At-
tention and performance IV (pp. 583—
612). New York: Academic Press.

Atkinson, R., & Shiffrin, R. (1968). Human
memory: A proposed system and its con-
trol processes. In K. Spence & J. Spence
(Eds.), The psychology of learning and mo-
tivation (Vol. 2; pp. 90-195). New York:
Academic Press.

Gillund, G., & Shiffrin, R. M. (1984). A re-
trieval model for both recognition and re-
call. Psychological Review, 91, 1-67.

Glanzer, M., & Adams, J. K. (1985). The mir-
ror effect in recognition memory. Memory
and Cognition, 13, 8—20.

Glanzer, M., Adams, J. K,, Iverson, G. ], &
Kim, K. (1993). The regularities of recogni-
tion memory. Psychological Review, 100,
546—-567.

Hintzman, D. (1986). “Schema abstraction” in
a multiple-trace memory model. Psycholog-
ical Review, 93, 411-428.

Hintzman, D. (1988). Judgments of frequency
and recognition memory in a multiple-
trace memory model. Psychological Re-
view, 95, 528—551.

Hockley, W. E., & Murdock, B. B. (1987). A de-
cision model for accuracy and response la-
tency in recognition memory. Psychologi-
cal Review, 94, 341-358.

McClelland, J. L., & Chappell, M. (1999). Fa-
miliarity breeds differentiation: A Bayes-
ian approach to the effects of experience




580

in recognition memory. Psychological Re-
view, 105, 724-760.

McKinley, S. C., & Nosofsky, R. M. (1995). In-
vestigations of exemplar and decision
bound models in large, ill-defined category
structures. Journal of Experimental Psy-
chology: Human Perception and Perfor-
mance, 21, 128-148.

McKoon, G., & Ratcliff, R. {1992). Spreading
activation versus compound cue accounts
of priming: Mediated priming revisited.
Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 18, 1155—
1172.

McNamara, T. P. (1992a). Priming and con-
straints it places on theories of memory
and retrieval. Psychological Review, 99,
650-662.

McNamara, T. P. (1992b). Theories of prim-
ing: I. Associative distance and lag. Jour-
nal of Experimental Psychology: Learning,
Memory, and Cognition, 18, 1173-1190.

McNamara, T. P. (1994a). Priming and theo-
ries of memory: A reply to Ratcliff and
McKoon. Psychological Review, 101, 185—
187.

McNamara, T. P. (1994b). Theories of prim-
ing: II. Types of primes. Journal of Experi-
mental Psychology: Learning, Memory, and
Cognition, 20, 507-520.

Morton, J. (1969). The interaction of informa-
tion in word recognition. Psychological Re-
view, 76, 165—178.

Morton, J. (1970). A functional model for
memory. In D. A. Norman (Ed.), Models of
human memory (pp. 203-254). New York:
Academic Press.

Murdock, B. B. (1974). Human memory: The-
ory and data. Potomac, MD: Erlbaum.

Murdock, B. B. (1982). A theory for the stor-
age and retrieval of item and associative in-
formation. Psychological Review, 89, 609—
626.

Murdock, B. B. (1997). Context and mediators
in a theory of distributed associative mem-
ory (TODAM2). Psychological Review, 104,
839-862.

Murnane, K., & Shiffrin, R. M. (1991). Interfer-
ence and the representation of events in
memory. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 17,
855—-874.

Neath, 1. (1998). Human memory: An intro-
duction to research, data, and theory. Pa-
cific Grove, CA: Brooks/Cole.

Norman, D. A. (1970). Models of human mem-
ory. New York: Academic Press.

Nosofsky, R. M. (1991). Tests of an exemplar
model for relating perceptual classification

ORGANIZATION OF MEMORY

and recognition memory. Journal of Experi-
mental Psychology: Human Perception
and Performance, 17, 3—27.

Raaijmakers, J. G. W., & Shiffrin, R. M. (1981).
Search of associative memory. Psychologi-
cal Review, 88, 93—-134.

Ratcliff, R. (1978). A theory of memory re-
trieval. Psychological Review, 85, 59—108.

Ratcliff, R. (1990). Connectionist models of
recognition memory: Constraints imposed
by learning and forgetting functions. Psy-
chological Review, 97, 285-308.

Ratcliff, R., & McKoon, G. (1988). A retrieval
theory of priming in memory. Psychologi-
cal Review, 95, 385—408.

Ratcliff, R., & McKoon, G. (1994). Retrieving
information from memory: Spreading acti-
vation theories versus compound cue theo-
ries. Psychological Review, 101, 177-184.

Ratcliff, R., & McKoon, G. (1995). Sequential
effects in lexical decision: Tests of com-
pound cue retrieval theory. Journal of Ex-
perimental Psychology: Learning, Memory,
and Cognition, 21, 1380-1388.

Ratcliff, R., & McKoon, G. {1996). Biases in
implicit memory tasks. Journal of Experi-
mental Psychology: General, 125, 403—
421.

Ratcliff, R., & McKoon, G. (1997). A counter
model for implicit priming in perceptual
word identification. Psychological Review,
104, 319-343.

Ratcliff, R., Clark, S. E., & Shiffrin, R. M.
(1990). The list-strength effect: I. Data and
discussion. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition,
16, 163—-178.

Schacter, D. L., & Tulving, E. (1994). What are
the memory systems of 19947 In D. L.
Schacter & E. Tulving (Eds.), Memory sys-
tems 1994 (pp. 1-38). Cambridge, MA:
MIT Press.

Schooler, L., Shiffrin, R. M., & Raaijmakers, J.
(1998). Theoretical note: A model for im-
plicit effects in perceptual identification.
Manuscript submitted for publication.

Shiffrin, R. M., Ratcliff, R., & Clark, S. E.
(1990). The list strength effect: II. Theoreti-
cal mechanisms. Journal of Experimental
Psychology: Learning, Memory, and Cogni-
tion, 16, 179-195.

Shiffrin, R. M., & Steyvers, M. (1997). A
model for recognition memory: REM: Re-
trieving effectively from memory. Psycho-
nomic Bulletin and Review, 4, 145—166.

Shiffrin, R. M., & Steyvers, M. (1998). The ef-
fectiveness of retrieval from memory. In
M. Oaksford & N. Chater (Eds.), Rational




MEMORY MODELS 581

Models of Cognition (pp. 73-95), Oxford campus: A synthesis from findings with
University Press: Oxford, England. rats, monkeys, and humans. Psychological
Slamecka, N. J. (1991). The analysis of recog- Review, 99, 195-231.
pition. In W. E. Hockley & S. Lewandow- Sternberg, S. (1966). High-speed scanning in
sky (Eds.), Relating Theory and Data: Es- human memory. Science, 153, 652-654.
says on Human Memory in Honor of Tulving, E., & Hastie, R. (1972). Inhibition ef-
Bennet B. Murdock. Hillsdale, NJ: Erl- fects of intralist repetition in free recall.
baum. Journal of Experimental Psychology, 92,

Squire, L. R. (1992). Memory and the hippo- 297-304.




