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Abstract

The diffusion model is one of the major sequential-sampling models for two-choice
decision-making and choice response time in psychology. The model conceives of
decision-making as a process in which noisy evidence is accumulated until one of two
response criteria is reached and the associated response is made. The criteria represent
the amount of evidence needed to make each decision and reflect the decision maker’s
response biases and speed-accuracy trade-off settings. In this chapter we examine the
application of the diffusion model in a variety of different settings. We discuss the optimality
of the model and review its applications to a number of cognitive tasks, including
perception,memory, and language tasks. We also consider its applications to normal and
special populations, to the cognitive foundations of individual differences, to value-based
decisions, and its role in understanding the neural basis of decision-making.
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Diffusion Models for Rapid Decisions
Over the last 30 or 40 years, there has been a

steady development of models for simple decision-
making that deal with both the accuracy of deci-
sions and the time taken to make them. The models
assume that decisions are made by accumulating
noisy information to decision criteria, one criterion
for each possible choice. The models successfully
account for the probability that each choice is
made and the response time (RT) distributions for
correct responses and errors. The models are highly
constrained by the behavior of these dependent
variables. The most frequent applications of these
models have been to tasks that require two-choice
decisions that are made reasonably quickly, typically
with mean RTs less than 1.0–2.0 s. This is fast
enough that one can assume that the decisions come
from a single decision process and not from multi-
ple, sequential processes (anything much slower and
the single-process assumption would be suspect).

The models have been applied successfully to many
different tasks including perceptual, numerical, and
memory tasks with a variety of subject populations,
including older adults, children, dyslexics, and
adults undergoing sleep deprivation, reduced blood
sugar, or alcohol intoxication.

An important feature of human decision-making
is that the processing system is very flexible because
humans can switch tasks, stimulus dimensions,
and output modalities very quickly, from one trial
to the next. There are many different kinds of
decisions that can be made about any stimulus. If
the stimulus is a letter string, decisions can be made
about whether it is word or a nonword, whether
it was studied earlier, whether the color is red or
green, whether it is upper or lower case, and so on.
Responses can be made in different modalities and
in different ways in those modalities (for example,
manually, vocally, or via eye movements). The same
decision mechanism might operate for all these
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tasks or the mechanism might be task and modality
specific.

For two-choice tasks, the assumption usually
made is that all decision-related information, that
is, all the information that comes from a stimulus or
memory, is collapsed onto a single variable, called
drift rate, that characterizes the discriminative or
preference information in the stimulus. In some sit-
uations, subjects may be asked to make judgments
based on more than one dimension that cannot be
combined in this way. In such cases, the systems
factorial methods of Townsend and colleagues (e.g.,
Townsend, 1972; see the review in Townsend &
Wenger, 2004) may be able to be used to deter-
mined whether processing on the different dimen-
sions is serial or parallel, or some hybrid of the two.

In this chapter, we focus on one model of the
class of sequential sampling models of evidence
accumulation, the diffusion model (Ratcliff, 1978;
Ratcliff & McKoon, 2008; Smith, 2000). A
comparison of the diffusion model with other
sequential-sampling models, such as the Poisson
counter model (Townsend & Ashby, 1983), the
Vickers accumulator model (Smith & Vickers,
1988; Vickers, 1970), and the leaky competing
accumulator model (Usher & McClelland, 2001)
can be found in Ratcliff and Smith (2004). In
the diffusion model, for a two-choice task, noisy
evidence accumulates from a starting point (Figure
3.1), toward one of two decision criteria or
boundaries and the quality of the information that
enters the decision process determines the rate of
accumulation.

Fitting the model to data provides independent
estimates of drift rates, decision boundaries, and a
parameter representing the duration of nondecision
processes. The model’s ability to separate these
components is one of its key contributions and
places major constraints on its ability to explain
data. Stimulus difficulty affects drift rate but not
the criteria, and to a good approximation, speed-
accuracy shifts are represented in the criteria, not
drift rate. If difficulty varies, changes in drift
rate alone must accommodate all the changes in
performance, namely accuracy and the changes in
the spreads and locations of the correct and error
RT distributions. Likewise, changes in the criteria
affect all the aspects of performance. In these ways,
the model is tightly constrained by data.

In a perceptual task, drift rate depends on the
quality of the perceptual information from a stim-
ulus; in a memory task, it depends on the quality
of the match between a test item and memory. In

a brightness discrimination task, for example, if the
accumulated evidence reaches the top boundary, a
“bright” response is executed and a “dark” response
would then correspond to the bottom boundary.
Figure 3.1 shows an example, using a brightness
discrimination task. Evidence accumulates from a
stimulus to the “bright” boundary or to the “dark”
boundary. The solid arrow shows the drift rate for
a bright stimulus, the dashed arrow shows the drift
rate for a less bright stimulus, and the dotted arrow
shows the drift rate for a dark stimulus.

The three paths in Figure 3.1 show three differ-
ent outcomes, all with the same drift rate. Noise
in the accumulation process produces errors when
the accumulated evidence reaches the incorrect
boundary and it produces variable RTs that form a
distribution of RTs that has the shape of empirically
obtained distributions. In the figure, one path leads
to a fast correct decision, one to a slow correct
decision, and one to an error. Most responses are
reasonably fast, but there are slower ones that spread
out the right-hand tails of the distributions (as in
the distribution at the top of Figure 3.1). As drift
rate changes from a large value to near zero, the
mean of the RT distribution for both correct and
error responses increases because the tail of the RT
distribution spreads out. Figure 3.2 shows simulated
individual RTs from the model as a function of
drift rate, which is assumed to vary from trial
to trial. The shortest RTs change little with drift
rate, and so a fast response says nothing about the
difficulty of the trial. The probability of obtaining
a slow response from a high drift rate is very small
(e.g., Figure 3.2) and so conditions with the slowest
responses come from lower drift rates (see Ratcliff,
Philiastides, & Sajda, 2009).

Figure 3.1 show the accumulation-of-evidence
process. Besides this, there are processes that

Quality of Evidence from Perception or Memory

Bright

Dark

Fig. 3.1 The diffusion decision model with three simulated
paths and three different drift rates.
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Fig. 3.2 Plots of individual RTs as a function of drift rate for
the trial. The parameters of the diffusion model were, boundary
separation, a = 0.107, starting point z = 0.048, duration of
processes other than the decision process, Ter = 0.48 s, SD in
drift rate across trial η= 0.20, range in starting points sz = 0.02,
range in nondecision time st = 0.18 s, drift rate v = 0.3.

encode stimuli, access memory, transform stimulus
information into a decision-related variable that
determines drift rate, and execute responses. These
components of processing are combined into one
“nondecision” component in the model, that has
mean Ter . The total processing time for a decision
is the sum of the time taken by the decision process
and the time taken by the nondecision component.

The boundaries of the decision process can be
manipulated by instructions (“respond as quickly
as possible” or “respond as accurately as possi-
ble”), differential rewards for the two choices,
and the relative frequencies with which the two
stimuli are presented in the experiment. Changes
in instructions, rewards, or biases affect both
RTs and accuracy but in the model, to a good
approximation, the effects on RTs and accuracy are
due to shifts in boundary settings alone, not drift
rates or nondecision time. (However, if subjects are
pushed very hard to go fast, then nondecision time
and drift rates can be lower (e.g., Starns, Ratcliff, &
McKoon, 2012.)

Figure 3.3, left panel, shows boundaries moving
in for speed relative to accuracy instructions and the
right panel shows how subjects can be biased toward
the top response versus the bottom response by
moving decision criteria from the dashed line to the
solid line settings. It is also possible (Figure 3.3 right
panel) to adjust the zero point of drift rate (the drift
rate criterion) to accommodate biases between the
two responses (see Leite & Ratcliff, 2011; Ratcliff,
1985; Ratcliff & McKoon, 2008, Figure 3.3).

A problem with early random walk models,
which were precursors to the diffusion model, was
that they predicted equal correct and error RT
distributions if the drift rates for two stimuli were
equal in magnitude but opposite in sign (Laming,
1968; Stone, 1960; but see Link & Heath, 1975).
This prediction is also made by the diffusion model
in the absence of across-trial variability in model
parameters. In fact, the patterns of the relative speed
of correct versus error responses are as follows: with
accuracy instructions and/or difficult tasks, errors
are slower than correct responses, and with speed
instructions and/or easy tasks, errors are faster than
correct responses (Luce, 1986).

In the diffusion model, the observed patterns of
correct versus error RTs fall out naturally because
there is trial-to-trial variability in drift rate and
starting point (e.g., Ratcliff, 1981). Figure 3.4
illustrates how this mixing works with just two
drift rates or two starting points instead of their
full distributions. In Figure 3.4 left panel, the v1

drift rate produces high accuracy and fast responses,
the v2 one lower accuracy and slow responses.
The mixture of these produces errors slower than
correct responses because 5% of the 400 ms process
averaged with 20% of the 600 ms process gives a
weighted mean of 560 ms, which is slower than the
weighted mean for correct responses (491 ms). In
Figure 3.4, right panel, the distributions to the left
are for processes that start near the correct boundary
(the dotted arrow shows the distance the process
has to go to make an error—the larger the distance,
the slower the response) and the distributions to the
right are for processes that start further away from
the correct boundary. Processes that start near to the
correct boundary have few errors and those errors
are slow, whereas processes that start further away
have more errors and the errors are fast, leading
to errors faster than correct responses. In practice,
drift rate is assumed to be normally distributed from
trial to trial and the starting point is uniformly
distributed, but these specific functional forms are
not critical (Ratcliff, 2013).

Some researchers have argued that across-trial
variability in the parameters is not needed (Palmer,
Huk, & Shadlen, 2005; Usher & McClelland,
2001). However, it is unreasonable to assume
that subjects can set their processing components
to identical values on every equivalent trial of
an experiment (i.e., ones with the same stimulus
value). For drift rates, across-trial variability in drift
rate is exactly analogous to variability in stimulus or
memory strength in signal detection theory. Later
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Speed/Accuracy tradeoff
Boundary separation changes

Bias towards top boundary (dashed) changes
to bias towards bottom boundary (solid)

Fig. 3.3 In the left panel, boundary separation alone changes between speed and accuracy instructions. In the right panel, the starting
point varies with bias.
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Fig. 3.4 Variability in drift rate and starting point and the effects on speed and accuracy. The left panel shows two process with drift
rates v1 and v2 and the starting point halfway between the boundaries with correct and error RTs of 400 ms for v1 and of 600 ms for
v2. Averaging these two illustrates the effects of variability in drift rate across trials and in the illustration yields error responses slower
than correct responses. The right panel shows processes with two starting points and drift rate v. Averaging processes with starting point
0.5a+0.5 (high accuracy and short RTs) and starting point 0.5a−0.5 (lower accuracy and short RTs) yields error responses faster than
correct responses.

we describe an EEG study of perceptual decision-
making that provides independent evidence for
across-trial variability in drift rate and mention
another that provides evidence for variability in
starting point.

It is important to understand that the diffusion
model is highly falsifiable, not by mean RTs
and accuracy values but by RT distributions. If
empirical distributions are not right skewed, and do
not shift and spread in exactly the right ways across
experimental conditions, the model is falsified.
Ratcliff (2002) generated sets of data with RT
distributions that are plausible but never obtained
in real experiments. For one set, the shapes and
locations of the RT distributions were changed as
a function of task difficulty, and for the other, the
shapes and locations were changed as a function
of speed versus accuracy instructions. For none of
the resulting distributions was the model able to fit
the data. In addition, the distributional predictions
of the model are tested every time it is fit to
empirical data.

expressions for accuracy and rt
distributions

For a two-boundary diffusion process with no
across-trial variability in any of the parameters, the
equation for accuracy, the proportion of responses
terminating at the boundary at zero, is given by

P(v,a,z)= e−2va/s2− e−2vz/s2

e−2va/s2−1
(1)

(or 1−z/a if drift is zero), and the cumulative
distribution of finishing times at the same boundary
is given by

G(t ,v,a,z)= P(v,a,z)− π s2

a2 e
−vz
s2

×
∞∑

k=1

2k sin
(

kπz
a

)
e
− 1

2

(
v2

s2
+ k2π2 s2

a2

)
t(

v2

s2 + k2π2 s2
a2

)
(2)

where a is boundary separation (the top boundary
is at a, the bottom boundary is at 0 and the
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distribution of finishing times is the distribution
at the bottom boundary), z is the starting point,
v is drift rate, and s is the SD in the normal
distribution of within-trial variability (square root
of the diffusion coefficient).

These expressions can be derived as a solution
of the partial differential equation for the first
passage-time probability for the diffusion process
(Feller, 1968). The results are described in detail
in Ratcliff (1978) and Ratcliff and Smith (2004).
Because Equation 2 contains an infinite sum, values
of the RT density function need to be computed
numerically. The series needs to be summed until
it converges; this means that terms have to be
added until subsequent terms become so small that
they do not affect the total. This is complicated
by the sine term, which can allow one value in
the sum to be small, whereas the next one is not
small. To deal with this practically, it is necessary
to require that two or three successive terms are
very small.

The predictions from the model are obtained
by integrating the results from Equations 1 and
2 over the distributions of the model’s across-trial
variability parameters using numerical integration.
In the standard model, drift rate is normally
distributed across trials with SD η, the starting
point is uniformly distributed with range sz , and
nondecision time is uniformly distributed with
range st . The predicted values are “exact” numerical
predictions in the sense that they can be made as
accurate as necessary (e.g., 0.1 ms or better) by
using more and more steps in the infinite sum and
more and more steps in the numerical integrations
(packages perform fitting are mentioned later).

Alternative computational methods for obtain-
ing predictions for diffusion models have been
described by Smith (2000) and Diederich and
Busemeyer (2003). The approach described by
Smith uses integral equation methods derived from
renewal theory. It was originally developed in
mathematical biology to model the firing rates
of integrate-and-fire neurons (Buonocore, Giorno,
Nobile, & Ricciardi, 1990). The method is more
computationally intensive than the infinite series
approach of Equation 2, but has the advantage
that it can be applied to processes in which the
drift rates or decision criteria change over time
or in which the accumulated information decays
during the course of a trial. Smith (1995) and
Smith and Ratcliff (2009) have proposed models in
which drift rates depend on the outputs of visual
and memory processes that change during a trial.

They obtained predictions for these models using
the integral equation method.

Diederich and Busemeyer (2003) proposed a
matrix method for obtaining predictions for dif-
fusion models. In their approach, a continuous-
time, continuous-state diffusion process is approx-
imated by a discrete-time, discrete-state birth-
death process. The probability that the process
takes a step up or down at each time point is
characterized by a transition matrix whose entries
express the rules by which the process evolves over
time. By approximating the process in this way,
the problem of obtaining RT distributions and
response probabilities can be reduced to one of
repeated matrix multiplication. This solution can
be expensive computationally, but mean RTs and
response probabilities can be obtained efficiently by
solving the associated algebraic eigenvalue problem,
avoiding the need for repeated matrix multiplica-
tion. The method can also be applied to more
complex problems that cannot be solved using the
method of Equation 2 and has the advantage that it
is very robust computationally.

In some situations, it is important to generate
predictions by simulation because simulated data
can show the effects of all the sources of variability
on a subject’s RTs and accuracy. The number of
simulated observations can be increased sufficiently
that the data approach the predictions that would
be determined exactly from the numerical method.
The expression for the update of evidence, �x, on
every time step �t during the decision process,
is determined by the drift rate, v, plus a noise
term (Gaussian random variable, εi with SD σ ) to
represent variability in processing:

�xi = vi�t+σηi
√
�t (3)

This equation provides the most straightforward
method of simulating the diffusion process, but
it is not the most efficient. Tuerlinckx, Maris,
Ratcliff, & De Boeck (2001) examined four
methods for simulating diffusion processes and
found that a random walk approximation is better
than using Equation 3. They also showed that a
“rejection” method is even more efficient. However,
if the process is nonstationary and complicated
(e.g., with time varying drift rate, or boundaries that
have some functional form) or there are several dif-
fusion processes running to model multiple choice
tasks, simulation is the simplest way to produce
predictions, and the random walk approximation is
likely the most efficient.
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In fitting the diffusion model to data, accuracy
and RT distributions for correct and error responses
for all the conditions of the experiment must
be simultaneously fit and the values of all of
the components of processing estimated simulta-
neously. One commonly used fitting method uses
quantiles of the RT distributions for correct and
error responses for each condition (the 0.1, 0.3,
0.5, 0.7, and 0.9 quantile RTs). The model predicts
the cumulative probability of a response at each RT
quantile. Subtracting the cumulative probabilities
for each successive quantile from the next higher
quantile gives the proportion of responses between
adjacent quantiles. For a chi-square computation,
these are the expected values, to be compared to
the observed proportions of responses between the
quantiles (i.e., the proportions between 0.1, 0.3,
0.5, 0.7, and 0.9, are each 0.2, and the proportions
below 0.1 and above 0.9 are both 0.1) multiplied
by the number of observations. Summing over
(Observed-Expected)2/Expected for correct and
error responses for each condition gives a single
chi-square value that is minimized with a general
SIMPLEX minimization routine. The parameter
values for the model are adjusted by SIMPLEX until
the minimum chi-square value is obtained.

In any data set, there is the potential problem of
outlier RTs, which could be fast (e.g., fast guesses)
or slow (e.g., inattention). The quantile based
method provides a good compromise that reduces
the influence of outliers because the proportion
of responses between the quantiles is used and
extreme RTs within the bins have no influence on
fitting. To additionally deal with outliers, a model
of such processes is used in some model fitting
approaches so that data is assumed to be a mixture
of diffusion processes plus a small proportion of
outliers. For details of the fitting methods for the
standard diffusion model and modeling outliers, see
Ratcliff and Tuerlinckx (2002)

New methods for fitting the diffusion model
have been developed recently and, over the
last 6 or 7 years, fitting packages have been
made available by Vandekerckhove and Tuerlinckx
(2007) and Voss and Voss (2007). Also, Bayesian
methods have been developed (Vandekerckhove,
Tuerlinckx, & Lee, 2011) and a Bayesian package
by Wiecki, Sofer & Frank (2012) has been made
available. These Bayesian methods also implement
hierarchical modeling schemes, in which model
parameters for individual subjects are assumed to
be random samples from population distributions
that are specified within the model. The means and

variances of the population distributions, which are
estimated in fitting, determine a range of probable
values of drift rates and decision boundaries for
individual subjects. Because all subjects are fit
simultaneously using these methods, the parameters
are constrained by the group parameters especially
with low numbers of observations. The application
of these hierarchical methods are in their infancy
and some applications with large numbers of
subjects, both simulated and real, that show
their benefit over and above the more traditional
methods are needed.

To show how well the diffusion model fits
data, we plot RT quantiles against the proportions
for which the two responses are made. The top
panel of Figure 3.5 shows a histogram for an
RT distribution. The 0.1–0.9 quantile RTs and
the 0.005 and 0.995 quantiles are shown on the
x-axis. The rectangles represent equal areas of
0.2 probability mass between the 0.1–0.3, 0.3–0.5,
etc. quantile RTs (and as can be seen, these represent
the histogram reasonably well).

These quantiles can be used to construct a
quantile-probability plot by plotting the 0.1–0.9
quantile RTs vertically, as in the second panel of
Figure 3.5, against the response proportion of that
condition on the x-axis. Usually, correct responses
are on the right of 0.5 and errors to the left (if
there is no bias toward one or the other of the
responses). Example RT distributions constructed
from the equal area rectangles are also shown in
grey. When there is a bias in starting point or
when the two response categories are not symmetric
(as in lexical decision and memory experiments),
two quantile probability are needed, one for each
response category.

With quantile probability plots, changes in RT
distribution locations and spread as a function
of response proportion can be seen easily and
compared with model fits. In the bottom panel of
Figure 3.5, the 1–5 symbols are the data and the
solid lines are the predictions from fits of the model
to the data (with circles denoting the exact location
of the predictions). As can be seen in this example,
as response proportion changes from about 0.6 to
near 1.0, the 0.1 quantile (leading edge) changes
little, but the 0.9 quantile changes by as much as
400 ms. This is in line with the model predictions.
Also, as can be seen, error responses are slower than
correct responses mainly in the spread, not in the
leading edge location. Thus, quantile-probability
plots allow all the important aspects of the data to
be read from a single plot.
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Fig. 3.5 The top panel shows a RT distribution overlaid with
0.1, 0.3, 0.5, 0.7, and 0.9 quantiles, where the area outside the
.1 quantile ranges from 0.005 to 0.1 and the area outside the .9
quantile ranges from 0.9 to 0.995. The areas between each pair
of middle quantiles are 0.2 and the areas below 0.1 and above
0.9 are 0.095. The quantile rectangles capture the main features
of the RT distribution and therefore a reasonable summary of
overall distribution shape. The middle panel shows quantile RTs
for the 0.1, 0.3, 0.5 (median), 0.7, and 0.9 quantiles (stacked
vertically) plotted against response proportion for each of the
six conditions. Correct responses are plotted to the right, and
error responses to the left. The bottom panel shows a quantile
probability function from Ratcliff and Smith (2010, Experiment
2) with the numbers representing data and the lines representing
predictions.

Variants of the Standard Two-Choice Task
Up to this point, we have discussed how the

diffusion model explains the results of experiments
in which subjects respond with one of the two
choices in their own time. The model has also
been successfully applied to paradigms in which
decision time is manipulated. Here we discuss three
of these.

response signal and deadline tasks
For response signal and deadline tasks, a signal is

presented after the stimulus and a subject is required
to respond as quickly as possible (in, say, 200–300
ms). For a deadline paradigm, the time between the
stimulus and the signal is fixed across trials. For a
response signal paradigm, the time varies from trial
to trial (Reed, 1973; Schouten & Bekker, 1967;
Wickelgren, 1977; Wickelgren, Corbett, & Dosher,
1980). With the deadline paradigm, subjects can
adopt different strategies or criteria for different
deadlines. This is not the case for the response signal
paradigm in which processing can be assumed to be
the same up to the signal.

To apply the diffusion model to response signal
data, Ratcliff (1988, 2006) assumed that there
are response criteria just as for the standard two-
choice task, and at some signal lag, responses
come from a mixture of processes, those that have
terminated at one or the other of the boundaries
and those that have not. This is in accord with
subjects’ intuitions that, at the long lags, the
decision has already been made, the response has
been chosen, and the subject is simply waiting
for the signal. As the time between stimulus and
signal decreases, a larger and larger proportion of
processes will have failed to terminate. Differences
among experimental conditions of different diffi-
culties appear as differences in the proportions of
accumulated information at the different lags. At
the longest lags (2 or more seconds), all or almost all
processes will have terminated. For nonterminated
processes, there are two possibilities: that decisions
are made on the basis of the partial information
that has already been accumulated (Figure 3.6
top panel) or that they are simply guesses (Figure
3.6 middle panel). Ratcliff (2006) tested between
these possibilities with a numerosity discrimination
experiment (subjects decide whether the number of
asterisks displayed on a PC monitor is greater than
or less than 50). The same subjects participated
in the response signal task and the standard task
and examples of the response signal data and model
fits are shown in Figure 3.7. When the model
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Fig. 3.6 The top two panels shows two models for how the diffusion model accounts for response signal data. In the top panel, the
proportion of “large” responses at time T1 is the sum of processes that have terminated at the “large” boundary (the black area above the
boundary) and nonterminated processes (the black area still within the diffusion process), i.e., partial information. The middle panel
shows the same assumption as the top panel except that if a process has not terminated, a guess is used instead of partial information.
The bottom panel shows a heat maps of simulated paths for the diffusion model. White corresponds to high path density and black to
a low path density. For the diffusion model, the distribution to the right corresponds to the asymptotic distribution of path positions
after about 0.2 seconds (i.e., the vertically oriented distributions in the top panel).

was fit to the two sets of data simultaneously,
it fit well and it fit equally well for the two
possibilities for nonterminated processes. In other
words, “guessing and partial information models
could not be discriminated.

meyer, irwin, osman,& kounios, (1988) partial
information paradigm

This paradigm used a variant of the response
signal task in which, on each trial, subjects
responded either in the regular way unless a signal

42 e l e m e n t a r y c o g n i t i v e m e c h a n i s m s



11

1
1 1 1

0.0

0.2

0.4

0.6

0.8

1.0

22

2
2 2 2

3
3

3
3 3 3

4

4

4 4 4
4

5
5 5 5 5

566

6
6 6 6

7
7

7
7

7 7

88

8

8 8 8

1
1 1 1 1 1

2

2
2 2 2 2

3

3

3 3 3 3

4

4
4 4 4

4

5
5 5 5 5

5

6
6 6 6

6 677
7 7 7 7

88
8 8 8 8

1
1

1 1 1 1

0.0

0.2

0.4

0.6

0.8

1.0

2

2
2 2 2 2

3
3

3 3
3 3

44
4

4 4
4

55 5
5 5 5

6

6

6

6
6

6

77

7

7 7 7

8
8

8

8 8 8

1

1

1

1

2
2

2
2

3

3

3

3
3 3

4
4

4

4 4 4

55 5 5 5 56
6

6
6 6 6

77
7

7 7 7

88
8

8

1 12 2

8 8

0 500 1000 1500
Response Signal Lag (ms)

0 500 1000 1500
Response Signal Lag (ms)

S1
S2

S4
S3

R
es

po
ns

e 
Pr

op
or

tio
n 

fo
r “

La
rg

e”
 R

es
po

ns
es

Fig. 3.7 Plots of response proportion as a function of response signal lag from a numerosity discrimination experiment (Ratcliff, 2006)
for four subjects. The task required subjects to judged whether the number of dots in a 10x10 array was greater that 50 or less or equal
to 50. The digits 1–8 (in reverse order) and the eight lines represent eight groupings of numbers of dots (e.g., 13–20, 21–30, 31–40,
41–50, 51–60, 61–70, 71–80, and 81–87 dots).

to respond occurred, in which case they were
to respond immediately. Thus, any trial could
be a signal trial or a regular trial. Meyer et al.
developed a method based on a race model that
decomposes accuracy on the signal trials (at each
signal lag) into a component from fast finishing
regular trials and a component based on partial
information. Results showed that partial informa-
tion, in some tasks (see also Kounios, Osman, &
Meyer, 1987) grew quickly and leveled off at
about one-third the accuracy level of regular
processes.

Ratcliff (1988) examined the predictions of the
diffusion model with the assumption that decisions
on signal trials were a mixture of processes that
terminated at a boundary and processes based on
position in the decision process, that is, partial
information. Therefore, if a process was above the
starting point (i.e., the black area in the vertical
distribution in the top panel of Figure 3.6), the
decision corresponded to the choice at the upper
boundary.

Figure 3.6 bottom panel shows a heat map of
the evolution of simulated diffusion processes. The
map shows the density of processes as they begin at
the starting point and spread out to the boundaries.
The hotter the color (whiter), the more processes
in that region. As time goes by, the color becomes

cooler because there are fewer and fewer processes
that have not terminated. As in the top panel,
the evolution of paths moves the mean position
(the thick black line) from the starting point at
0.5 to a point a little above 0.6 by about 0.2
s. This produces an almost stationary distribution
(the distribution to the right of the heat map),
which gradually collapses over time (the two vertical
distributions in the top panel of Figure 3.6).

For the case in which partial information is used
in the decision, the expression for the distribution
of the positions x of decision processes at time t is
given by:

p(x, t)= e
v(x−z)

s2

∞∑
n=1

2

a
sin

(nπz
a

)

× sin
(nπx

a

)
e
− 1

2

(
v2

s2
+ n2π2 s2

a2

)
t

(4)

where s2 is the diffusion coefficient, z is the
starting point, a is the separation between the
boundaries, and v is the drift rate. For model fitting,
the expression in Equation 4 must be integrated
over the normal distribution of drift rates and the
uniform distribution of starting points to include
variability in drift rate and starting point across
trials. This can be accomplished with numerical
integration using Gaussian quadrature. The series in
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Equation 4 must be summed until it converges; this
means that terms have to be added until subsequent
terms become so small that they do not affect
the total (i.e., the series has converged to within
some criterion, e.g., 10−5). Then, to obtain the
probability of choosing each response alternative,
the proportion of processes between 0 and a/2 (for
the negative alternative) and between a/2 and a (for
the positive alternative) is calculated by integrating
the expression for the density over position.

time-varying processing
Ratcliff (1980) examined two cases in which drift

rate changes across the time course of processing.
For one, drift rate changes discretely at one fixed
time. Because there is an explicit expression for
the distribution of evidence at that time, this
distribution can be used as a starting distribution
for a second diffusion process. If the time at which
evidence changes is not a fixed time but has a
distribution over time, this can be integrated over.
This allows both response signal and regular RT
tasks to be modeled. For another case, boundaries
are removed completely and drift rate and the drift
coefficient varied continuously over time. Only the
first case has been used in modeling response signal
data (as in Ratcliff, 1988, 2006).

go/nogo task
In the go/no go task, subjects are told to respond

for one of the two choices but to make no response
for the other choice. Withholding responses for one
of the choices is similar to the response signal task
in which responses must be held until the signal.
Gomez, Ratcliff, and Perea (2007) proposed that
there are two response boundaries for the go/no
go task just as for the standard task, but subjects
made a response only when accumulated evidence
reaches the “go” boundary. Gomez et al. successfully
fit the model simultaneously to data from the
standard task and data from the go/no go task. They
also tested a variant for which there was only one
boundary, the “go” boundary, but this variant could
not fit the data well.

Application of the diffusion model simultane-
ously to the standard task and response signal task
or to the standard task and go/no go tasks places
powerful constraints on the model and, when it is
successful, it offers new insights into the cognitive
processes involved in these tasks. It also provides
theoretical convergence between the three tasks,
with two boundaries for all three tasks and withheld
responses for the latter two.

The first conclusion is that applying models
to multiple tasks simultaneously produces strong
constraints on models that (if they successfully
account for data) lead to new understanding of
how the tasks are performed. In the context of the
sequential sampling models discussed in this article,
this approach yielded a new view of response signal
performance: responses increase in accuracy over
time mainly because the proportion of terminated
processes increases and the increase in accuracy does
not come entirely from the increasing availability
of partial information. Moreover, versions of the
models that provide quite good fits to the data
from the standard RT and response signal tasks
individually could not account for both sets of data
simultaneously with parameters that were consistent
across tasks.

Optimality
In animal studies, performance has been de-

scribed in terms of how close it comes to maxi-
mizing reward rate. This is part of a larger theme
in neuroscience, which reprises the classical signal
detection and sequential-sampling literatures, in
which reward rate is used as a criterion for un-
derstanding whether neural computations approach
optimality. For animals, how close performance is
to optimal in terms of reward rate is a reasonable
question to ask because animals are deprived of
water or food and their overwhelming desire is
to obtain them. Also they are trained for many
sessions and so there is ample opportunity to
optimize reward. However, when this kind of
optimality is translated to human studies, the a
priori reasonableness comes into question. This is
because humans do not aim to get the most correct
per unit time. Instead, they aim to get the most
correct in the available time. If a student takes a
2-hour exam and obtains 60% correct in 1 hour,
but another student gets 80% correct in 2 hours, the
first has more correct per unit time, but the second
would be more likely to pass the course.

Bogacz, Brown, Moehlis, Holmes, & Cohen
et al. (2006) performed extensive analyses of
optimality and set the stage for analyses of data.
They showed that optimality as defined by reward
rate can be adjusted by changing boundary settings.
If the boundaries are too far apart, subjects are
accurate, but slow and so there are few correct
per unit of time. If boundaries are too narrow,
RT is short but accuracy is low and there are few
correct responses per unit of time. Thus, there
is a boundary setting that maximizes the number
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correct per unit of time and it is possible to test
whether subjects set criteria near to this value.

Starns and Ratcliff (2012) tested undergraduate
subjects on a simple numerosity discrimination task
in which different groups of subjects were tested
at different levels of difficulty. They were tested
in blocks of trials that had a fixed total duration
for which they were instructed to get as many
correct in the time allowed and in blocks of trials in
which the number of trials was the same no matter
how fast they went. Reward-rate optimality predicts
that when difficulty increases, subjects should speed
up and sacrifice accuracy.per unit time. Results
showed subjects did the opposite, slowing down
with increases in difficulty. This is the result we
might expect from years of academic training to
spend more time on difficult problems.

Starns and Ratcliff (2010) analyzed several
published data sets with young and older adults
and found that young adults with accuracy feedback
sometimes approached reward-rate optimality. But
older adults rarely moved more than a few percent
away from asymptotic accuracy. Young adults in
the context of psychology experiments (or perhaps
practice with video games, some of which promote
speed) will sometimes be able to optimize perfor-
mance in terms of number correct per unit of time.
In general, however, concerns about accuracy that
have been trained for years appear to dominate.

Domains of Application
One criterion for how well a model performs

is whether it simply reiterates what is already
known from traditional analyses. Here we describe
a number of applications, some of which provide
new insights into processing, individual differences
and differences among subject groups are obtained,
But in other cases, the obvious results are obtained.
Even when obvious results are obtained, the model
integrates the three dependent variables, namely,
accuracy and correct and error RT distributions,
into a common theoretical framework that provides
explanations of data that many hypothesis-testing
approaches do not. Hypothesis-testing approaches
usually select only accuracy or only mean RT as the
dependent variable. In some cases, the two variables
tell the same empirical story, but in other cases, they
are inconsistent. The model based approach helps
to resolve such inconsistencies.

Perceptual Tasks
Recently diffusion models have been applied

to psychophysical discrimination tasks in which

stimuli are presented very briefly, often at low
levels of contrast, sometimes with backward masks
to limit iconic persistence. The focus has been
to understand the perceptual processes involved
in the computation of drift rates. Psychophysical
paradigms have historically been used mainly with
threshold or accuracy measures but recent studies
have collected accuracy and RT data.

Ratcliff and Rouder (2000) and Smith, Ratcliff,
and Wolfgang (2004) found that the diffusion
model provided a good account of accuracy and
distributions of RT from tasks with brief backward-
masked stimuli. They compared the model with a
constant drift rate from starting point to boundaries
to the model with varying drift rate. Drift rates
might be thought to decrease over time if they either
tracked stimulus information or were governed by
a decaying perceptual trace. However, there was no
evidence in either study of increased skewness in the
RT distributions or very slow error RTs at low levels
of stimulus discriminability, as would have been
expected if the decision process had been driven by
a decaying perceptual trace. Instead, it appears that
the information that drives the decision is relatively
durable.

The standard application of the model assumes
that, at some point in time after stimulus encoding,
the decision process turns on, and evidence is
accumulated toward a decision. This time is
assumed to be the same across conditions and drift
rate is assumed to be at a constant values from the
point the process turns on. The assumption of a
constant drift rate could be relaxed: Ratcliff (2002)
generated predicted accuracy and RT quantiles for
several conditions under the assumption that drift
rate ramped up from zero to a constant level over
50 ms. He fit the standard model to these predicted
values and found that the model fit well with
nondecision time increased by 25 ms and with
starting point, and nondecision time variability
increased. Thus, a ramped onset of drift rate over
a small time range will be indistinguishable from an
abrupt onset.

Smith and Ratcliff (2009) developed a model,
the integrated system model, that is a continuous-
flow model comprised of perceptual, memory,
and decision processes operating in cascade. The
perceptual encoding processes are linear filters
(Watson, 1986) and the transient outputs of the
filters are encoded in a durable form in visual short-
term memory (VSTM), which is under the control
of spatial attention. The strength of the VSTM
trace determines the drift rate for the diffusion
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process and the moment-to-moment variations in
trace strength act as a source of noise in the
decision process. Because the VSTM trace in the
model increases over time (i.e., drift rate is time
varying), predictions for the model are obtained
using the integral equation methods described pre-
viously (Smith, 2000). The model has successfully
accounted for accuracy and RT distributions in
tasks with brief backward-masked stimuli.

The main area of application of the integrated
system model has been to tasks in which spatial
attention is manipulated by spatial cues. In many
cuing tasks, in which a single well-localized stimulus
is presented in an otherwise empty display, atten-
tion shortens RT but increases accuracy only when
stimuli are masked (Smith, Ratcliff, & Wolfgang,
2004; Smith, Ellis, Sewell, & Wolfgang, 2010).
The model assumes that attention increases the
efficiency with which perceptual information is
transferred to VSTM and that masks interrupt
the process of VSTM trace formation before
it is complete. These two processes interact to
produce a cuing effect in accuracy only when
stimuli are masked but an unconditional effect
in RT. The model has successfully accounted for
the distributions of RT and accuracy in attention
tasks in which the timing of stimulus localization
is manipulated via onset transients and localizing
markers (Sewell & Smith, 2012). These studies have
helped illuminate the way in which performance is
determined by perceptual, memory, attention, and
decision processes acting in concert.

Diederich and Busemeyer (2006) also considered
the effects of attention on decision-making in
a diffusion-process framework, studying decisions
about multi-attribute stimuli for which it is plau-
sible that people shift their attention sequentially
from one attribute of a stimulus to the next.
They assumed that some attributes would provide
more information than others and modeled this
successfully as a sequence of step changes in drift
rate during the course of a trial.

Recognition Memory
One of the early applications of the diffusion

model was to recognition memory. In global
memory models, a test item is matched against
all memory in parallel, and the output is a single
value of strength or familiarity (Gillund & Shiffrin,
1984; Hintzman, 1986; Murdock, 1982, and
later, Dennis & Humphreys, 2001; McClelland &
Chappell, 1998; Shiffrin & Steyvers, 1997). From
this point of view, the diffusion model provides

a meeting point between the decision process and
memory, specifically, the drift rate for a test item
represents the degree of match between a test item
and memory.

In signal detection approaches to recognition
memory, there has been considerable interest in
the relative standard deviations (SDs) in strength
between old and new test items, typically measured
by confidence judgement paradigms. The common
finding is that z-ROC functions (i.e., z-score
transformed receiver operating characteristics) are
approximately linear with a slope less than 1 (e.g.,
Ratcliff, Sheu, & Gronlund, 1992). There have
been two interpretations of this finding. One is
a single-process model that assumes the SD of
memory strength is normally distributed, but the
SD for old items is larger than that for new
items. The other is a dual-process model in which
the familiarity of old and new items comes from
normal distributions with equal SDs but there is
an additional recollection process (e.g., Yonelinas,
1997).

In fits of the diffusion model to recognition
memory data, it has been usually assumed that
the SD in drift rate across trials is the same for
studied and new items. Starns and Ratcliff (2014)
performed an analysis of existing data sets that
allowed the across-trial variability in drift rate to
be different for studied and new items. They found
that the across-trial variability in drift rate was larger
(in about 66% of the cases for individual subjects)
for studied items than for new items. It also turned
out that the interpretations of the other model
parameters did not change when variability was
allowed to differ. The advantage of this analysis is
that the relative variability of studied and new items
was able to be determined from two-choice data and
did not require confidence judgments.

Lexical Decision
Much like recognition memory, a test item for

lexical decision is matched against memory. The
output is a value of how “wordlike” the item is.
For sequential sampling models, proposals about
how lexical items are accessed in memory must
provide output values that, when mapped through
a sequential sampling model, produce RTs and
accuracy that fit data (Ratcliff, Gomez, & McKoon,
2004). (Note that there are other models that have
integrated RT and accuracy with lexical processes,
in particular, Norris, 2006).

Often, lexical decision response time (RT) has
been interpreted as a direct measure of the speed
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with which a word can be accessed in the lexicon.
For example, some researchers have argued that
the well-known effect of word frequency—shorter
RTs for higher frequency words—demonstrates the
greater accessibility of high frequency words (e.g.,
their order in a serial search, Forster, 1976; the
resting levels of activation in units representing
the words in a parallel processing system, Morton,
1969). However, other researchers have argued, as
we do here, against a direct mapping from RT to
accessibility. For example, Balota and Chumbley
(1984) suggested that the effect of word frequency
might be a by-product of the nature of the task
itself, and not a manifestation of accessibility. In
the research presented here, the diffusion model
makes explicit how such a by-product might come
about.

Semantic and Recognition Priming Effects
For semantic priming, the task is usually a lexical

decision. A target word is immediately preceded in
a test list either by a word related to it (e.g., cat dog)
or some other word (e.g. table dog). For recognition
priming, the task is old/new recognition and a
target word is immediately preceded by a word that
was studied near to it in the list of items to be
remembered or far from it. In the diffusion model,
the simplest assumption about priming effects is
that they result from higher drift rates for primed
than unprimed items.

It has been hypothesized that the difference in
drift rates between primed and unprimed items
arises from the familiarity of compound cues to
memory (McKoon & Ratcliff, 1992; McNamara,
1992, 1994; Ratcliff & McKoon, 1988, 1994).
The compound cue for an item is a multiplicative
combination of the familiarity of the target word
and the familiarity of the prime (see examples in
Ratcliff & McKoon, 1988). If the prime and target
words are related in memory, the combination
produces a higher value of the joint familiarity than
if they were not related. For primed items, the
prime and target share associates in memory, the
joint familiarity would be higher than if the prime
and target do not share associates. This model was
capable of explaining a number of phenomena in
research on priming including the range of priming,
the decay in priming, the onset of priming, and
so on.

McKoon and Ratcliff (2012) compared priming
in word recognition to associative recognition.
Subjects studied pairs of words and then per-
formed either a single-word recognition task or

an associative recognition task (see also Ratcliff,
Thapar, & McKoon, 2011). For the associative
recognition task, subjects decided whether two
words of a test pair had or had not appeared in the
same pair at study. In the single-word task, some test
words were immediately preceded in the test list by
the other word of their studied pair (primed) and
some by a word from a different pair (unprimed).
Data from the two tasks were fit with the diffusion
model and the results showed parallel behavior: the
drift rates for associative recognition and those for
priming were parallel across ages and IQ, indicating
that they are based, at least to some degree, on the
same information in memory.

Value-Based Judgments
Busemeyer and Townsend (1993) developed a

diffusion model called decision field theory to ex-
plain choices and decision times for decisions under
uncertainty, and later Roe, Busemeyer, Townsend
(2001) extended it to multi-alternative and multi-
attribute situations. According to the theory, at
each moment in time, options are compared in
terms of advantages/ disadvantages with respect
to an attribute, these evaluations are accumulated
across time until a threshold is reached, and the
first option to cross the threshold determines the
choice that is made. The theory accounts for a
number of findings that seem paradoxical from
the perspective of rational choice theory. Usher
and McClelland (2004) proposed another diffusion
model to account for a similar range of findings.

Milosavljevic, Malmaud, Huth, Koch, & Rangel
(2010) examined several variants of diffusion mod-
els for value-based judgments. They found that the
standard model with across-trial variability in model
parameters provided a good account of data from
their paradigm. More recently, Krajbich and Rangel
(2011) have used a model similar in character to
decision field theory. They examined value-based
judgments for food items and had subjects choose
which of two alternatives they preferred. They
monitored eye fixations and in modeling, they
assumed evidence was accumulated at a higher rate
for the alternative fixated. Their model accounted
for RTs and accuracy and for the influence of which
of the two choices was fixated and for how long.

Philiastides and Ratcliff (2013) examined value-
based judgments of consumer choices with brand
names presented on some trials as well as the items
for which the choices were made. When the quality
of the brand name was in conflict with the perceived
quality of the item, the probability of choosing the
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item was lower then when they were consistent.
Application of the diffusion model showed that the
effect of the brand was to alter drift rate but none
of the other parameters of the model. This means
that the value of the stimulus and brand name were
processed as a whole.

Currently, there is a growing interest in the
application of diffusion models to decision-making
in marketing and economics, including neuroe-
conomics. Wide application of diffusion models
in this domain are in their infancy, but the
potential for theoretical advancement is great, as is
demonstrated by these examples.

Aging
The application of the diffusion model to studies

of aging has been especially successful, producing a
different view of the effects of aging on cognition
than has been usual in aging research. The general
finding in the literature has been that older adults
are slower than young adults (but not necessarily
less accurate) on most tasks, and this has been
interpreted as a decline with age in all or almost
all cognitive processes. However, application of the
diffusion model showed that this is not correct
(Ratcliff, Thapar, & McKoon, 2003, 2004, 2006,
2007; Ratcliff, Thapar, Gomez, & McKoon,
2004). For example, Ratcliff, Thapar, and McKoon
(2010) tested old and young adults on numerosity
discrimination, lexical decision, and recognition
memory. What they found is that older adults had
slower nondecision times and set their boundaries
wider, but their drift rates were not lower than
those of young adults. In contrast, in some tasks
(associative recognition and letter discrimination),
large declines in drift rate with age have been found
(Ratcliff et al., 2011; Thapar et al., 2003).

Individual Differences
The diffusion model has been used to examine

individual differences. To do so requires that the
SDs in model parameters from estimation variabil-
ity are smaller than the SDs between subjects. In
the aging studies described earlier, with about 45
minutes of data collection, individual differences
in drift rates, boundary settings, and nondecision
time were three to five times larger than the SDs of
the model parameters. (See Ratcliff & Tuerlinckx,
2002, for tables of SDs in model parameters).

Schmiedek, Oberauer, Wilhelm, Suβ, &
Wittmann (2007) analyzed data from eight
choice-RT tasks (including verbal, numerical, and

spatial tasks) from Oberauer, Suβ, Wilhelm, and
Wittmann (2003). They found that drift rates
in the diffusion model mapped onto working
memory, speed of processing, and reasoning ability
measures (each of these was measured by aggregated
performance on several tasks).

In aging studies by Ratcliff et al. (2010, 2011),
IQs ranged from about 80 to about 140. Applying
the model showed that drift rate varied with IQ (by
as much as 2:1 for high versus lower IQ subjects)
but boundary separation and nondecision time did
not. This is the opposite of the pattern for aging.
This dissociation provides strong support for the
model because it extracts regularity from the three
dependent variables (accuracy and correct and error
RT distributions).

Individual differences across tasks in model
parameters provide strong evidence for common
abilities across tasks. In the Ratcliff et al. (2010)
study, in the lexical decision, item recogni-
tion, and associative recognition tasks, there are
strong correlations across subjects in drift rate,
and these correlated with IQ as measured by
WAIS vocabulary and matrix reasoning. Also,
boundary separation correlates across tasks as did
nondecision time. These results show that the
diffusion model extracts components of processing
that show systematic individual differences across
tasks.

Consistent boundary setting across tasks are
of special interest because boundary settings are
optional, because they can be easily changed by
instruction (e.g., go fast or be accurate). In
most real-life situations, we rarely encounter more
than single decisions on a particular stimulus class
(except perhaps at Las Vegas or in psychology
experiments). This means that there is little chance
of adjusting decision criteria in real life because
there is little extended experience with a task in
which the decision maker can extract statistics from
a long sequence of trials in which the structure
of the trials do not change. The diffusion model
assumes that a decision maker uses this decision
mechanism across many tasks, and so we would
expect to see correlations in boundary separation
across tasks. This is a result that has been obtained
whenever the comparison has been made.

Child Development
A natural extension from the aging studies is to

test children on similar tasks to those performed
with older adults to trace the course of develop-
ment within the model framework. Ratcliff, Love,
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Thompson, and Opfer (2012) tested several groups
of children on a numerosity discrimination task
and a lexical decision task. The results showed that
relative to college age subjects, children’s drift rates
were lower, boundary separation was larger, and
nondecision time was longer. These differences were
larger for younger relative to older children. In
other laboratories, drift rates have been found to
be lower for ADHD and dyslexic children relative
to normal controls (ADHD, Mulder et al., 2010;
dyslexia, Zeguers et al., 2011). These studies show
that the diffusion model can be applied to data
collected from children, a domain in which there
has been relatively little research with decision
models.

Clinical Applications
In research on psychopathology and clinical pop-

ulations, two-choice tasks are commonly used to
investigate processing differences between patients
and healthy controls. For highly anxious individu-
als, it is well-established that they show enhanced
processing with threat-provoking materials, but this
is found reliably only when there are two or more
stimuli competing for processing resources, not one.
However, when White, Ratcliff, Vasey, & McKoon
(2010) applied the diffusion model to the RT and
accuracy data from two-choice lexical decision task
with single words that included threatening and
control words, they found a consistent processing
advantage for threatening words in high-anxious in-
dividuals, whereas traditional comparisons showed
no significant differences Because the diffusion
model makes use of both RT and accuracy data, it
has more power to detect differences among subject
populations than simply RT or accuracy alone.

Studies of depression have had somewhat dif-
ferent patterns of results. Depressive symptoms
are more closely linked with abnormal emotional
processing with a negative emotional bias in clinical
depression, even-handedness (i.e., no emotional
bias) in dysphoria, and a positive emotional bias in
nondepressed individuals. However, item recogni-
tion and lexical decision tasks often fail to produce
significant results. White, Ratcliff, Vasey, &
McKoon (2009) used the diffusion model to
examine emotional processing in dysphoric (i.e.,
moderately high levels of depressive symptoms)
and nondysphoric college students to examine
differences in memory and lexical processing of
positive and negative emotional words (which were
presented among many neutral filler words). They
found positive emotional bias in nondysphoric

subjects and even-handedness in dysphoric subjects
in drift rates. As before, this pattern was not
apparent with comparisons of reaction times or
accuracy, consistent with previous null findings.

One limitation of these studies and similar ones
is that there may be relatively few materials with
the right kinds of properties or structures (also
in language processing experiments for example).
The emotional word pools for the experiments
only contained 30 words each. This left relatively
few observations (especially for errors) to use in
fitting the diffusion model, which would result
in unreliable parameter estimates. To remedy this,
the model was fit to all conditions simultaneously,
including the neutral filler conditions which had
hundreds of observations. The only parameter
that was allowed to vary between the conditions
was drift rate. Estimates for the other parameters
(e.g., nondecision time and boundary separation)
largely determined by the filler conditions because
the fitting method essentially weighted estimation
of the parameters common to all conditions by
the number of observations for each condition.
Thus, the filler conditions largely determined all
model parameters except the drift rates for the
critical conditions, resulting in an increase in
power. The results showed a bias for positive
emotional words in the nondysphoric participants,
but not in the dysphoric participants (White et al.,
2009).

This difference in emotional bias was not
significant when the diffusion model was fit only
to the emotional conditions with few observations,
nor was it significant in comparisons of mean RT or
accuracy.

Another study examined the effects of aphasia in
a lexical decision task. The impairments produce
the exaggerated lexical decision reaction times
typical of neurolinguistic patients. In diffusion
model analyses, decision and nondecision processes
were compromised, but the quality of the infor-
mation upon which the decisions were based did
not differ much from that of unimpaired subjects
(Ratcliff, Perea, Colangelo, & Buchanan, 2004).

Manipulations of Homeostatic State
Ratcliff and Van Dongen (2009) looked at

effects of sleep deprivation with a numerosity
discrimination task, van Ravenzwaaij, Dutilh,
and Wagenmakers (2012) looked at the effects
of alcohol consumption with a lexical decision
task, and Geddes et al. (2010) looked at the
effects of reduced blood sugar with a numerosity
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discrimination task. Applying the model to all of
these studies, the main effect was a reduced drift
rate but with either small or no effect on boundary
separation and nondecision time.

These results show that the diffusion model
is useful in providing interpretations of group
differences among different subject populations.
Furthermore, as noted earlier, the model can be
used to examine individual differences (even with
only 45 minutes of data collection for a task). This
means that this modeling approach, when paired
with the right tasks, may have a useful role to play
in neuropsychological assessment.

Situations in Which the Standard
Model Fails

There are several cases in which the standard
diffusion model fails to account for experimental
data. These fall into two classes: one involves
dynamic noise and categorical stimuli and the other
involves conflict paradigms. For both, the main way
the model fails is that there are cases for which the
onset of the RT distribution (i.e., the leading edges)
for one condition is delayed relative to the onset for
other conditions.

Ratcliff and Smith (2010) and Smith, Ratcliff, &
Sewell (2014) tested letter discrimination, horizon-
tal versus vertical bars discrimination, and Gabor
patch orientation discrimination with stimuli de-
graded with either static noise or with dynamic
noise. Noise was implemented by reversing the
contrast polarity of some proportion of the pixels
(randomly selected) for each of the letter, random
bars, and Gabor patch stimuli. For dynamic noise,
a different random sample of pixels was chosen on
every frame of the display, whereas static noise used
a single image with one random sample reversed.
Dynamic noise and, to a lesser extent static noise,
produced large shifts in the leading edges of the
RT distribution. The shapes of the RT distributions
were consistent with the model but increasing
noise increased estimates of the nondecision time
parameter Ter . This finding is inconsistent with
the hypothesis that noise increases RTs simply by
reducing the rate at which evidence accumulates in
the decision process. Instead, it implies that noise
delays the onset of the diffusion process.

Smith, Ratcliff, and Sewell (2014) showed that
shifts in onsets can be explained by Smith and
Ratcliff ’s (2009) integrated system model. with the
assumption that noise slows the process of forming
a stable perceptual representation of the stimulus. In

the integrated system model, drift rate and diffusion
noise grow in proportion to one another to an
asymptote. Unlike the standard model, in which
the onset of evidence accumulation is abrupt, the
onset of evidence accumulation in the integrated
system model is gradual, controlled by the growth
of diffusion noise. Smith Ratcliff & Sewell, 2014
showed that this model could explain the shifts in
the onsets of RT distributions found by Ratcliff and
Smith (2010).

Smith, et al. (2014) also considered a sec-
ond, release-from-inhibition model, which was
motivated, in part, by physiological principles.
They modeled release from inhibition using an
Ornstein-Uhlenbeck (OU) diffusion process with a
time-varying decay coefficient. In the OU process,
information accumulation is opposed by a decay
term that pulls the process back toward its starting
point. The larger the decay, the harder it is for the
process to accumulate enough information to reach
a criterion and trigger a response. In the standard
OU process, decay is proportional to the distance
of the process from its starting point, but does
not vary with time. Smith et al. (2012) assumed
that decay was time-locked to the stimulus. At the
start of the trial, before a perceptual representation
of the stimulus is formed, the decay term is large
and the process remains near its starting point
with high probability. As stimulus information
becomes available, the decay term progressively
decreases, allowing information to accumulate in
the same way as it does in the standard model.
This model was also able to account for data
like those reported by Ratcliff and Smith (2010).
Because the inhibition process behaves somewhat
like the standard model with variable starting
point, the release-from-inhibition model was able
to account for the fast errors found at high stimulus
discriminability in dynamic noise tasks without the
assumption of starting point variability.

Ratcliff and Frank (2012) also found shifts in
the leading edges of RT distributions in a reinforce-
ment learning conflict experiment for which the
stimuli were three pairs of letters (the same three
throughout the experiment). On each trial, one
of the pairs of letters were presented in random
order and the subject had to choose and respond
to one of the letters. One of the letters of the
pair was reinforced more often than the other (in
this case, reinforcement was simply a “correct” or
“incorrect” message). After a training phase, on a
small proportion of the trials, letters from different
pairs were presented together. When the two letters
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were the highly reinforced members of the pairs,
they were chosen nearly equally often and there
was no slowing of the RT distribution. But when
the letters that were reinforced with low probability
were presented together, there was a delay in the
leading edge of the RT distribution, an average
delay of over 100 ms. This was explained in two
ways, one in terms of the basal ganglia model of
Frank (2006), and one in terms of the diffusion
model. For the diffusion model to explain the
data, a delay in the onset of the decision process
could be used to produce good fits to the data.
But this was, to some degree, a redescription
of the empirical result. The basal ganglia model
explained these conflict trials by an increase in
threshold in the neural circuitry. This was linked
to the diffusion model by showing that a transient
increase in boundary separation was also capable
of explaining the result (the delay in onset of the
RT distribution). It turned out that an increase
in boundary separation with an exponential decay
mimics a delayed onset.

White, Ratcliff and Starns (2011) also found
leading edge shifts in a flanker task. In their
experiment, a target angle bracket was presented
that pointed in the direction of the correct response.
On conflict trials, the target bracket was embedded
in a string pointing the other way. Again, RT
distributions could not be explained with only a
difference in drift rates, but a model with drift
rate changing over the time course of the decision,
starting by being dominated by the flankers and
then gradually focusing on the central symbol, was
successful.

All of these paradigms suggest that, in these
conflict situations, drift rate is not stationary over
time. It is necessary to go beyond the basic decision
model and begin to integrate it with models of
perceptual and cognitive processing.

Competing Two-Choice Models
The diffusion model described to this point is

one of a class of sequential sampling models that
share many features. They all have given the same
interpretations of effects of independent variables,
which are the same across the models (e.g., Donkin,
Brown, Heathcote, & Wagenmakers, 2011;
Ratcliff, Thapar, Smith, & McKoon, 2005). This
means, for example, that the effects of aging on
model components are the same, whichever model
is used.

The leaky competing accumulator (LCA) model
(Usher & McClelland, 2001) was developed as

Criteria

Inhibition(β)

Leak or
Decay (k)Leak or

Decay (k)

Stimulus
strength

Gaussian
Noise(σ)

+
Gaussian
Noise(σ)

+Variable
Start. Pt.
Range sz

v1–v

c1

c2

Fig. 3.8 An illustration of the leaky competing accumulator.
The model includes an inhibition term (−kxj) in which the
increment to evidence in accumulator i is reduced as a function
of activity in the other accumulator (xj ) and a decay term in
which the increment to evidence is reduced as a function of
activity in the accumulator (−βxi). The decision criteria for
the two accumulators are c1 and c2, the accumulation rates are
v1 and v2 (v1+v2=1), and there is variability in the starting
points that is uniformly distributed across trials with range st .
Variability in processing within a trial is normally distributed
with standard deviation σ.

an alternative to the diffusion model. Part of
the motivation was to implement neurobiological
principles that the authors believed should be
incorporated into RT models, especially mutual
inhibition mechanisms and decay of information
across time.

In the LCA model, like the diffusion model,
information is accumulated continuously over time.
There are two accumulators, one for each response,
as shown in Figure 3.8, and a response is made when
the amount of information in one of the counters
reaches its criterion amount. The rate of accumu-
lation, the equivalent of drift rate in the diffusion
model, is a combination of three components. The
first is the input from the stimulus (v), with a
different value for each experimental condition. If
the input to one of the accumulators is v, the input
to the other is 1−v so that the sum of the two rates
is 1. The second component is decay in the
amount of accumulated information, k, with size
of decay growing as the amount of information in
the accumulator grows, and the third is inhibition
from the other accumulator, β, with the amount of
inhibition growing as the amount of information
in the other accumulator grows. If the amount
of inhibition is large, the model exhibits features
similar to the diffusion model because an increase
in accumulated information for one of the response
choices produces a decrease for the other choice.
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Just as in the diffusion model, the accumulation
of information is assumed to be variable over
the course of a trial, with a normal distribution
with standard deviation σ. Because of the decay
and inhibition in the accumulation rates, the
tails of RT distributions are longer than they
would be if produced without these factors (cf.,
Smith & Vickers, 1988; Vickers, 1970, 1979;
Vickers, Caudrey, Willson, 1971), which leads to
good matches with the skewed shape of empirical
distributions.

The expression for the change in the amount of
accumulated information at time t in counter i, is:

�xi =
⎛
⎝vi− kxi−

∑
j �=i

βxj

⎞
⎠�t

+σηi

√
�t i= 1,2 (5)

The amount of accumulated information is not
allowed to take on values below zero, so if it is
computed to be below zero, it is reset to zero.
This is theoretically equivalent to constraining the
diffusion process with a reflecting boundary at zero.

The LCA model without across-trial variability
in any of its components predicts errors slower
than correct responses. To produce errors faster
than correct responses and the crossover pattern
such that errors are faster than correct responses for
easy conditions and slower for difficult conditions,
Usher and McClelland assumed variability in the
accumulators’ starting points, just as is assumed in
the diffusion model and by Laming (1968).

In the diffusion model, moving a boundary
position is equivalent to moving the starting point.
Moving the starting point an amount y toward one
boundary is the same as moving that boundary
an amount y toward the starting point and the
other boundary an amount y away from the starting
point. In the LCA model, changing the starting
point is not equivalent to changing a boundary
position because decay is a function of the distance
of the accumulated amount of evidence from zero.
Increasing the starting point by an amount y
increases decay by an amount proportional to y,
but with the starting point at zero, reducing the
boundary by y has no effect on decay. Usher
and McClelland (2001) implemented variability in
starting point by assuming rectangular distributions
of the starting points with minimums at zero.

No explicit solution is known for the pair of cou-
pled equations in Eq. 5, when they are constrained
by decision criteria and the requirement that the

accumulated information remain positive. Thus,
as in Usher and McClelland (2001), predictions
from the model are obtained by simulation. There
have been several analyses of this model. Bogacz
et al. (2006) showed that the model could be
reduced to a single diffusion process if leak and
inhibition were balanced and examined notions of
optimality (but see van Ravenzwaaij, van der Maas,
& Wagenmakers, 2012).

The Linear Ballistic Accumulator (LBA, Brown
and Heathcote, 2008) is similar to the LCA in that
it uses two accumulators, but it has no within-trial
variability, no decay, and no inhibition. The model
assumes that the rate of evidence accumulation and
the starting point for accumulation both vary ran-
domly from trial to trial, but that the process of ev-
idence accumulation itself is noise free. In essence,
the model assumes that there is noise in the central
nervous system on long, between-trial, time scales,
but none on short, moment-to-moment, time scales
that govern evidence accumulation within a trial.
This assumption appears incompatible with the
single-cell recording literature that has linked pro-
cesses of evidence accumulation with neural firing
rates in the oculomotor control system, because
such neural spike trains are typically noisy. To
reconcile these kinds of data with noiseless evidence
accumulation requires an argument to the effect
that individual neurons are noisy but the neural en-
semble as a whole is effectively noise free. However,
it is not clear that firing rates in weakly coupled
networks of neurons exhibit the kinds of central
limit theorem type properties that this argument
requires (Zohary, Shadlen, & Newsome, 1994), and
so the status central limit argument is unclear.

Multichoice Decision-Making and
Confidence Judgments

Recently, interest in the neuroscience domain
in multichoice decision-making tasks has devel-
oped for visual search (Basso & Wurtz, 1998;
Purcell et al., 2010) and motion discrimination
(Niwa & Ditterich, 2008; Ditterich, 2010). In
psychology, there have been investigations using
generalizations of standard two-choice tasks (Leite
& Ratcliff, 2010) and in absolute identification
(Brown, Marley, Donkin, & Heathcote, 2008). In
addition, confidence judgments in decision-making
and memory tasks are multichoice decisions, and
diffusion models are being applied in these domains
(Pleskac & Busemeyer, 2010; Ratcliff & Starns,
2009, 2013; Van Zandt, 2002).
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It is clear that there is no simple way to extend
the two-choice model to tasks with three or more
choices. But models with racing accumulators can
be extended. Some models with racing accumula-
tors become standard diffusion models when the
number of choices is reduced to two.

Ratcliff and Starns (2013) proposed a model for
confidence judgments in recognition memory tasks
that uses a multiple-choice diffusion decision process
with separate accumulators of evidence for each
confidence choice. The accumulator that first reaches
its decision boundary determines which choice is
made. Ratcliff and Starns compared five algorithms
for accumulating evidence and found that one of
them produced choice proportions and full RT
distributions for each choice that closely matched
empirical data. With this algorithm, an increase in
the evidence in one accumulator is accompanied by
a decrease in the others with the total amount of
evidence in the system being constant.

Application of the model to the data from an
earlier experiment (Ratcliff, McKoon, & Tindall,
1994) uncovered a relationship between the shapes
of z-ROC functions and the behavior of RT
distributions. For low-proportion choices, the RT
distributions were shifted by as much as several
hundred milliseconds relative to high proportion
choices. This behavior and the shapes of z-ROC
functions were both explained in the model by the
behavior of the decision boundaries.

For generality, Ratcliff and Starns (2013) also
applied the decision model to a three-choice motion
discrimination task in which one of the alternatives
was the correct choice on only a low proportion
of trials. As for the confidence judgment data, the
RT distribution for the low probability alternative
was shifted relative to the higher probability alterna-
tives. The diffusion model with constant evidence
accounted for the shift in the RT distribution better
than a competing class of models.

Research on multichoice decision making,
including confidence judgments, is a growing
industry but the constraints provided by RT distri-
butions and response proportions for the different
choices makes the modeling quite challenging.

One-Choice Decisions
Relatively little work has been done recently on

one-choice decisions. In these, there is only one
key to press when a stimulus is detected. Ratcliff
and Van Dongen (2011) tested a model that used a
single diffusion process to represent the process of
accumulating evidence. The main application was

to the psychomotor vigilance task (PVT) for which
a millisecond timer is displayed on a computer
screen and it starts counting up at intervals between
2 and 12 s after the subject’s last response. The
subject’s task is to hit a key as quickly as possible to
stop the timer. When the key is pressed, the counter
is stopped, and the RT in milliseconds is displayed
for 1 s.

In single-choice decision-making tasks, the data
are a distribution of RTs for hitting the response
key. The one-choice diffusion model assumes the
evidence begins accumulating on presentation of
a stimulus until a decision criterion is hit, upon
which, a response is initiated (Figure 3.9 illustrates
the model). In the model, drift rate is assumed to
vary from trial to trial. This relates it to the standard
two-choice model, which makes this assumption to
fit the relative speeds of correct and error responses.
In application of the one-choice model to sleep
deprivation data, across-trial variability in drift rate
was needed to produce the long tails observed in the
RT distributions.

Ratcliff and Van Dongen (2011) fit the model
to RT distributions and their hazard functions
from experiments with the PVT with over 2000
observations per RT distribution per subject. With
only changes in drift rate, they found that the
model accounted for changes in the shape of RT
distributions. In particular, changes in drift rate
accounted for the change in hazard function shape
moving from a high tail under no sleep deprivation
to a low tail with sleep deprivation. They also fit
data for which the PVT was tested every 2 hours for
36 hours of sleep deprivation and found that drift
rate was closely related to an independent measure
of alertness, which provides an external validation
of the model.

Neuroscience
One of the major advances in understanding

decision making is in neuroscience applications
using single cell recording in monkeys (and rats),
human neuroscience including fMRI, EEG, and
MEG. All these domains have had interactions
between diffusion model theory and neuroscience
measures. Hanes and Schall (1996) made the first
connection between theory and single cell recording
data, and this was taken up in work by Shadlen and
colleagues (e.g., Gold and Shadlen, 2001).

monkey neurophysiology
In both psychology and neuroscience, theories

of decision processes have been developed that
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Fig. 3.9 An illustration of the one-choice diffusion model. Evidence is accumulated at a drift rate v with SD across trials η, until a
decision criterion at a is reached after time Td . Additional processing times include stimulus encoding time Ta and response output
time Tb; these sum to nondecision time Ter , which has uniform variability across trials with range st .

assume that evidence is gradually accumulated
over time (Boucher, Palmeri, Logan, & Schall,
2007; Churchland, Kiani, & Shadlen, 2008;
Ditterich, 2006; Gold & Shadlen, 2001, 2007;
Grinband, Hirsch, & Ferrera, 2006; Hanes &
Schall, 1996; Mazurek, Roitman, Ditterich, &
Shadlen, 2003; Platt & Glimcher, 1999; Purcell
et al., 2010; Ratcliff, Cherian, & Segraves, 2003;
Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves,
2007; Roitman & Shadlen, 2002; Shadlen &
Newsome, 2001). In these studies, cells in the
lateral intraparietal cortex (LIP), frontal eye field
(FEF), and the superior colliculus (SC) exhibit
behavior that corresponds to a gradual buildup in
activity that matches the buildup in evidence in
making simple perceptual decisions (see also Munoz
& Wurtz, 1995; Basso & Wurtz, 1998). The neural
populations that exhibit buildup behavior in LIP,
FEF, and SC prior to a decision have been studied
extensively. There is debate about where exactly the
accumulation takes place, but it is clear that (at
least) these three structures are part of a circuit that
is involved in implementing the decision. These
studies so far support the notion that there is a flow
of information from LIP to FEF and then to SC
prior to a decision.

In modeling the neurobiology of the decision
process, there are a number of models applied
to a range of different tasks. They all have
the common theme that they assume evidence is
accumulated to a decision criterion, or boundary,
and that accumulated evidence corresponds to
activity in populations of neurons corresponding
to the decision alternatives. The models considered
here have been explicitly proposed as models of
oculomotor decision making in monkeys or argued
to describe the evidence accumulation process in
humans or monkeys. The models fall into several

classes (Ratcliff & Smith, 2004; Smith & Ratcliff,
2004), including those that assume accumulation
of a single evidence quantity taking on positive
and negative values (Gold & Shadlen, 2000, 2001;
Ratcliff, 1978; Ratcliff et al., 2003; Ratcliff,
Van Zandt, & McKoon, 1999; Smith, 2000)
and those that assume that evidence is accu-
mulated in separate accumulators corresponding
to separate decisions (Churchland, et al., 2008;
Ditterich, 2006; Mazurek et al., 2003; Ratcliff
et al., 2007; Usher & McClelland, 2001). In
this latter class of models, accumulation can be
independent in separate accumulators, or it can
be interactive so that as evidence grows in one
accumulator, it inhibits evidence accumulation
in the other accumulator. The single accumula-
tor model can be seen as implementing perfect
inhibition because a positive increment toward one
boundary is an increment away from the other
boundary.

The models with separate accumulators have
the advantage because the two accumulators can
be used to represent growth of activity in the
populations of neurons corresponding to the two
decisions. In the single diffusion process models, if
the single process represented the aggregate activity
in the two populations, then the growth of activity
in the two populations would have to be perfectly
negatively correlated. This is plausible if the resting
activity level is relatively high in the neural popu-
lations (e.g., Roitman & Shadlen, 2002), but it is
less plausible in populations in which the resting
level is low (Hanes & Schall, 1996; Ratcliff et al.,
2007). However, the two classes of models largely
mimic each other at a behavioral level (Ratcliff,
2006; Ratcliff & Smith, 2004) and although the
choice of models with racing diffusion processes
seems to be superior in application in oculomotor
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responses in monkeys, this does not rule out the
viability of the single accumulator model for human
behavioral and neural data (Philiastides, Ratcliff, &
Sajda, 2006; Ratcliff et al., 2009).

Ratcliff et al. (2007; see also Ratcliff, Hasegawa,
et al., 2011) applied a dual diffusion model
to a brightness discrimination task. In the dual
diffusion model, evidence for the two responses is
accumulated by a pair of racing diffusion processes.
In Ratcliff et al.’s model, there was competition at
input (drift rates summed to a constant) but no
inhibition (i.e., Figure 3.8 without the inhibition).
Two rhesus monkeys were required to make a
saccade to one of two peripheral choice targets
based on the brightness of a central stimulus.
Neurons in the deep layers of the SC exhibited
a robust presaccadic activity when the stimulus
specified a saccade toward a target within the
neuron’s response field, and the magnitude of this
activity was unaffected by level of difficulty. Activity
following brightness stimuli specifying saccades
to targets outside the response field was affected
by task difficulty, increasing as the task became
more difficult, and this modulation correlated
with performance accuracy. The model fit the full
complexity of the behavioral data, accuracy and RT
distributions for correct and error responses, over a
range of levels of difficulty. Using the parameters
from the fits to behavioral data, simulated paths
of the process were generated and these provided
numerical predictions for the behavior of the firing
rates in SC neurons that matched most but not all
the effects in the data.

Simulated paths from the model were compared
to neuron activity. The assumption linking the
paths to the neuron data is that firing rate is linearly
related to position in the accumulation process; the
nearer the boundary the decision process is, the
higher the firing rate. The firing rate data show
delayed availability of discriminative information
for fast, intermediate, and slow decisions when
activity is aligned on the stimulus and very small
differences in discriminative information when
activity is aligned on the saccade. The model
produces exactly these patterns of results. The
accumulation process is highly variable, allowing
the process both to make errors, as is the case for
the behavioral performance, and also to account
for the firing rate results. Figure 3.10 shows sample
results for the firing rate functions (black lines) and
predicted firing rates (red lines).

There have also been significant modeling efforts
to relate models based on spiking neurons to

diffusion models (e.g., Deco, Rolls, Albantakis,
& Ramo, 2013; Roxin & Ledberg, 2008; Wong
and Wang, 2006). Smith (2010) made an explicit
connection between diffusion processes at a macro
behavioral level and shot noise processes at a slightly
abstract neural level.

Smith (2010) sought to show how diffusive
information accumulation at a behavioral level
could arise by aggregating neural firing rate pro-
cesses. He modeled the representation of stimulus
information at the neural level as the difference
between excitatory and inhibitory Poisson shot
noise processes. The shot noise process describes
the cumulative effects of a number of time-varying
disturbances or perturbations, each of which is
initiated by a point event, which arrive according
to a Poisson process. These discrete pulses are
assumed to have exponential decay, and so, in
time, some of these decaying traces add, and this
is the shot noise process (e.g., Figure 3.1, Smith,
2010). In his model, the disturbances represent the
flux in postsynaptic potentials in a cell population
in response to a sequence of action potentials.
Smith showed that the time integral of such Poisson
shot-noise pairs follows an integrated Ornstein-
Uhlenbeck process, whose long-time scale statistics
are very similar to those assumed in the standard
diffusion model. His analysis showed how diffusive
information at a behavioral level could arise from
Poisson-like representations at the neural level.

Subsequently Smith and McKenzie (2011) inves-
tigated a simple model of how long time scale infor-
mation accumulation could be realized at a neural
level. Wang (2002) previously argued that models
of decision-making require information integration
on a time scale that is an order of magnitude greater
than any integration process found at a neural level.
He argued that the most plausible substrate for
such long-time scale integration is persistent activity
in reverberation networks. Smith and McKenzie
considered a very simple model of a recurrent
loop in which spikes cycle around the loop with
exponentially distributed cycle times and new spikes
are added superposition. The activity in the loop
could, therefore, be modeled as a superposition of
Poisson processes.

They showed that a model based on such recur-
rent loops could realize the kind of long-time scale
integration process described by Wang and that
it, too, exhibited a form of diffusive information
accumulation that closely matches what is found
behaviorally. In particular, the resulting model
successfully predicted the RT distributions and
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Fig. 3.10 Neural firing rates averaged over cells for firing rates aligned on the stimulus for the two monkeys from Ratcliff, Hasegawa
et al. (2007). The firing rates are divided into thirds as a function the behavioral response (fastest third, middle third, and slowest third).
The left hand column show easy conditions, bright responses to 98% white pixels and dark responses to 98% black pixels and the right
hand column shows difficult conditions, bright responses to 55% white pixels and dark responses to 55% black pixels. The first row
shows firing rates for cells in the receptive field of the target corresponding to the correct response and the correct response is made
(target cell). The second row shows firing rates for cells in the receptive field of the target corresponding to the incorrect response for
the stimulus when a correct response is made (competitor cell). The solid lines are the data and the dashed lines are model predictions.

choice probabilities from a signal detection exper-
iment reported by Ratcliff and Smith (2004).

Human Neuroscience
Diffusion models are currently being com-

bined with fMRI and EEG techniques to look
for stimulus-independent areas that implement
decision-making (e.g., vmPFC, Heekeren,
Marrett, Bandettini, & Ungerleider, 2004) and to
map diffusion model parameters onto EEG signals
(Philliastides et al., 2006).

eeg support for across-trial variability in
drift rate

Philiastides, Ratcliff, and Sajda (2006) used a
face/car discrimination task with briefly presented
degraded pictures. They recorded EEGs from mul-
tiple electrodes during the task and then weighted
and combined the electrical signals to obtain a
single number or regressor that best discriminated
between faces and cars. This was repeated over 60

ms windows from stimulus onset on up. The single-
trial regressor was significant at two times, around
180 ms and around 380 ms. Ratcliff, Philiastides,
and Sajda (2009) reasoned that, if the regressor was
an index of difficulty, then in each condition of the
experiment, responses could be sorted into those
that the electrical signal said were more facelike
and those that were more carlike. When responses
were sorted and the diffusion model fit to the two
halves of each condition, the drift rates for the two
halves differed substantially but only for the later
component at 380 ms.

The diffusion model provides an estimate of
nondecision time, which represents the duration
of encoding and stimulus transformation processes
prior to the decision time (as well as response
output processes). This estimate shows that the
decision process begins no earlier than 400 ms
after stimulus onset, and so the late EEG signal
component indexes difficulty on a trial-to-trial
basis prior to the onset of the decision process.
Therefore, these two features of the late component
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provide evidence that drift rate varies from trial to
trial.

eeg support for across-trial variability in
starting point

Bode, Sewell, Lilburn, Forte, Smith and Stahl
(2012) reported EEG evidence consistent with
trial-to-trial biasing of the starting point of the
diffusion process. They recorded EEG activity in
a task requiring discrimination between briefly
presented images of chairs or pianos that were
presented in varying levels of noise and then
backward masked. They applied a support vector
machine pattern classifier to the EEG signals at
successive time points and showed that decisions
could be decoded (i.e., predicted) from the EEG
several hundred milliseconds before the behavioral
response. When the stimulus display contained
only noise and no discriminative information, the
decision outcome could still be predicted from
the EEG, but only from the activity prior to
stimulus presentation and not from any later
time points. Bode et al. found that the RT
distributions and accuracy in their task were well
described by a diffusion model in which the
starting point for evidence accumulation was biased
toward the upper or lower boundary, depending
on the participant’s previous choice history. They
proposed that the information in the prestimulus
EEG was a neural correlate of the process of
setting the starting point, which occurs prior to the
start of evidence accumulation. When the display
contained no stimulus information and the drift
of the diffusion process was zero, the primary
determinant of the decision outcome would be the
participant’s bias state: Processes starting near the
upper boundary would be more likely to terminate
at that boundary, and similarly for the lower
boundary.

structural mri
Studies that have examined structural connec-

tions between brain areas that are implicated
in the control of decision making have found
correlations between tract strength and decision-
making variables. Forstmann et al. (2010) found
a relationship between cortico-striatal connection
strength and the ability of subjects to change their
speed-accuracy tradeoff settings. Mulder, Boekel,
Ratcliff, & Forstmann (2014) found correlations
between subjects’ ability to bias their responses in
response to reward and vmPFC-STN connection

strength. These studies are the beginning of a new
approach to brain structure and processing.

fmri
A major problem with attempts to relate results

from fMRI measurements to the growth of activity
in decision-related brain areas is the sluggishness of
the BOLD response. Despite this, there are many
studies that use diffusion models in analyses of
fMRI data. Mulder, Van Maanen, & Forstmann
(2014) have reviewed a number of studies of
perceptual decision making using fMRI methods
and found evidence for regions associated with dif-
ferent components of diffusion models. Although
there was some converegence, maps of the peak-
coordinates of the activity for model components
showed quite a large scatter across areas. This
research would require a chapter by itself but
the notion the some brain areas accumulate noisy
evidence from other areas is certainly a mainstream
belief in neuroscience and diffusion models are one
theoretical framework that relates the neural to the
behavioral level.

Conclusions
The use of diffusion models in representing

simple decision-making in a variety of domains is an
area of research that is seeing significant advances.
The view that evidence is accumulated over time
to decision criteria seems a settled view. The
competing models seem to produce about the same
conclusions about processing within experimental
paradigms, and so broad interpretations do not
depend on the specific model being used. In
psychological applications, the basic theory and
experimental applications are well established and
somewhat mature. But application to individual
differences (including neuropsychological testing)
and different subject and patient populations are
in their infancy. Also, neuroscience applications
in both experimental and theoretical research are
blossoming, with a variety of experimental methods
being used as well as a variety of variants on the basic
models developed in psychology.
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Glossary
Accumulator Model: A model in which positive incre-
ments are continuous random variable and the time at
which the increments are made are discrete in time. The
accumulators race to separate decision criteria.

Confidence Judgments: Tasks in which responses are made
on a discrete scale using different response keys.

Decision Boundaries: These represent the amount of
evidence needed to make a decision.

Decision criteria: The amount of evidence for one or other
alternative to make a decision. In diffusion models, the
criteria are represented as boundaries on the evidence space.

Diffusion Model: A model that assumes continuously
available evidence in continuous time. Evidence accumu-
lates in one signed sum and the process terminates when
one of two decision criteria are reached.

Diffusion Process: A process in which continuously
variable noisy evidence is accumulated in continuous time.

Drift rate: The average rate at which a diffusion process
accumulates evidence.

Go/Nogo Tasks: Tasks in which subjects respond to one
stimulus type but hold their response until a time out for
the other response.

Leaky Competing Accumulator Model: A model in
which evidence is continuously available in continuous
time. Evidence is accumulated in separate accumulators
(i.e., separate diffusion processes) and there is both decay
in an accumulator and inhibition from other accumulators.

Nondecision Time: Duration of processes other than the
decision process. These include encoding time, response
output time, memory access time in memory tasks, and the
time to transform the stimulus representation to a decision-
based representation for perceptual tasks.

Optimality: Often defined in terms of “reward rate” or the
number correct per unit time in simple decision making
experiments by analogy with animal experiments.

Ornstein-Uhlenbeck diffusion process: This describes
a noisy evidence accumulation process with leakage or
decay; the standard (Wiener or Brownian motion) diffusion
process describes a process in which there is no leakage.

Poisson Counter Model: A model in which increments are
discrete equal-sized units, but the time at which they arrive
as the accumulators are Poisson distributed (exponential
delays between counts).

Poisson shot noise process: A process in which each
point event in a Poisson process generates a continuous,
time-varying disturbance or perturbation. The shot noise
process is the cumulative sum of the perturbations. The
shot noise process has been used as a model for a variety
of phenomena, including the flow of electrons in vacuum
tubes, the cumulative effects of earth tremors, and the
flux in the postsynaptic potential in cell bodies in a neural
population.

PVT: The psychomotor vigilance test in which a counter
starts counting up and the subject simply hits a key to stop
it counting.

Random walk model: A discrete-time counterpart of the
diffusion process. A diffusion process accumulates evidence
in continuous time, whereas a random walk accumulates
evidence at discrete time points.

Response Signal and Deadline Tasks: Tasks in which
the subject is required to respond at an experimenter-
determined time. The dependent variable is usually
accuracy and the task measures how it grows over time in
the decision process.

Response Time Distributions: The distribution of times
at which the decision process terminates (i.e., a histogram
of times for data).

Single Cell Recording in Animals: Recordings from single
neurons often in awake behaving animals.
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