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The main aim of this chapter is to describe research in two. agggs of cognitive
psychology that are relevant to the interests of workers-in Artificial Intelligence
(Al), cognitive science, and neural modeling. The chapter is divided into two
parts: First, a parallel-processing associative model for recognition of indepen-
dent items is presented. This model can be viewed as an up-to-date example of
~ psychology’s contribution to parallel-processing systems. The second part of the
chapter presents some experimental results and psychological models concerned
with processes and the representation of organized information in human mem-
ory.

In the area of neural modeling researchers are usually concerned with develop-
ing models that are able to account for behavioral results. Researchers in Artifi-
cial Intelligence have two slightly divergent aims: The first is to develop com-
puter programs that perform certain tasks with humanlike or better intelligence.
The second aim is to use any insights as theories of human performance and to

_model behavioral results. For both of these it is necessary to select aspects of
human performance for comparison. The neural modeler or Al researcher has to
find and select behavioral data that can provide good tests for his or her model
but this process can be rather haphazard. For example, the selection may be made
on the basis of the last few articles read, or it may be the latest paradigm of the
local cognitive psychologist. :

In the first section of this chapter I describe a parallel-processing associative
model for recognition that accounts for a great deal of data in its domain of
applicability and use this model as a case study in examining the relationship
between theory and data. In particular several important properties of reaction
time data are presented and several major properties of the human processing
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system are brought into focus and described in terms of the model. It should be
made clear at the outset that the model presented is composed of two parts: a
mathematical model and a metaphor that is used to elucidate the model and
present a particular view of the processing system. Several of the neural network
models presented in this book may be quite compatible with the mathematical
model, yet may present a different metaphor for the model (see Hinton, Chapter
6, this volume).

10.1. A MODEL FOR ITEM RECOGNITION

Reaction time has been used as the main dependent variable for developing and
testing many models in cognitive psychology. I argue that the statistic, mean
reaction time, is almost totally inadequate for such purposes (though it has
proved useful in getting some areas of research started). One problem is that
certain models of the recognition process, serial scanning models, can be
mimicked by several other kinds of models, for example, parallel-processing
models and direct-access models (based on strength theory), at the level of mean
reaction time. Thus it is difficult to press any claims as to the nature of the
processes involved in the tasks under study. Another problem that has arisen is
that many models that are quite adequate at the level of mean reaction time have
serious problems with the shape of reaction time distributions. Models of pro-
cessing should account for the overall shape of reaction time distributions, that
is, produce distributions that are positively skewed. If such care is not taken, then
it is possible to produce models that are falsified by the data that they were
designed to fit (see Ratcliff & Murdock, 1976).

Another factor of considerable importance is the relationship between accu-
racy-and reaction time. There is always a relationship between accuracy and
reaction time in recognition data: In a condition in which recognition is easy, a
response is usually accurate and fast, whereas in a condition in which recognition
is harder, a response is less accurate and slower. (This reflects difficulty of
retrieval rather than the speed-accuracy tradeoff that will be discussed later.) It is
relatively easy to produce a model that deals just with reaction time or just with
accuracy, but I believe that it is important for any model of processing to deal
with the relationship between accuracy and reaction time. A third factor of
considerable importance is flexibility in the processing system. Subjects can
choose to respond slower in most tasks in order to gain accuracy, or they can
sacrifice accuracy to increase speed. Flexibility should therefore be central to any
model of processing. »

I now present a model for the process involved in recognizing whether an item
is a member of a previously presented list. This model attempts to account for the
shape of reaction time distributions, the relationship between speed and accu-
racy, and the flexibility in the processing system. In a typical procedure, a list of



10. PARALLEL PROCESSING IN HUMAN MEMORY 311

items (words, letters, numbers, or pictures) is presented to a subject. This list is
called the memory set. The subject is then presented with a test item and has to
respond as to whether that item was in the list. Typically accuracy and reaction
time are recorded and form the basic data.

According to the model the test item is encoded and then compared to the
representation of each item in the memory set simultaneously (i.e., in parallel).
Each individual comparison is accomplished by a random walk process. A deci-
sion is made when any one of the comparisons ends in a match or when all of the
comparisons end in a nonmatch. When the decision has been made, the appro-
priate response is initiated. The overall scheme is shown in Fig. 10.1.

This scheme (random walk comparison process: comparisons carried out in
parallel, self-terminating for positive responses and exhaustive for negative re-
sponses) provides the core of the mathematical model. It is later shown that this
model does a good job in dealing both qualitatively and quantitatively with a
relatively large amount of data from recognition studies. The metaphor that
follows is not the only possible description of the processing system, but it does
provide a reasonable way to understand the operation of the mathematical model.
In a later section the relationship between the mathematical model and neural
network models (providing a different metaphor for the model) is examined.

The metaphor used to describe the interaction between the test item and items
in memory is a resonance metaphor. The test item causes memory items to
resonate: the greater the resonance, the closer the match; the smaller the reso-
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FIG. 10.1. An overview of the recognition model. Copyright 1978 by the
American Psychological Association. Reprinted by permission.



312 RATCLIFF

nance, the poorer the match. The resonance metaphor is used to indicate that
items outside the immediately preceding memory set are accessed in the com-
parison process. Atkinson, Herrmann, and Wescourt (1974) have shown that
items in a set of instructions enter the comparison process. They presented items
from the instructions as negative items in the test list in a recognition experiment.
Reaction time to these items was slower than reaction time to control items.
Monsell (1978) has traced out the decay function and found that a test item last
presented several lists back can influence speed and accuracy of a ‘‘no’’ re-
sponse. The size or amount of resonance drives the random walk: the greater the
resonance, the greater the rate of approach to the match boundary; the smaller the
resonance, the faster the approach to the nonmatch boundary.

The size of the resonance is determined by several factors. First, it appears
that every kind of similarity enters the comparison; for example, Juola, Fischler,
Wood, and Atkinson (1971) performed an experiment with words as study and
test items. They looked at three types of negative test items (items to which the
correct answer was ‘‘no’’): homophones and synonyms of stimulus words and
neutral words. They found that synonyms were 60 msec slower than neutral
words and that homophones were 120 msec slower than neutral words. When
homophones were broken down into two classes, visually similar and visually
dissimilar, increases in reaction times were 200 msec and 40 msec, respectively.
These results show that semantic, visual, and acoustic similarities enter the
comparison between a test item and stimulus items. Morin, DeRosa, and Stultz
(1967) have shown that the more numerically remote a negative probe is from the
memory set, the faster the response (e.g., a negative response to a 1 as a test item
is faster than a negative response to a 6 if the study items were 7, 8, and 9).
Besides similarity, how recently a study item was presented affects both reaction
time and accuracy in many different paradigms.

From this discussion it can be seen that many different kinds of information
enter the comparison process. The probe information interacts with memory trace
information producing a yes or no response. In order to maintain the notion that
the memory trace consists of many different kinds of information, the term
relatedness is used to describe the overall amount of match. An example of the
way relatedness may be derived independently is given in Rips, Shoben, and
Smith (1973). They obtained ratings from subjects for the similarity between
pairs of birds and pairs of animals. From these similarity ratings multidimen-
sional scaling solutions were obtained for birds and animals separately. Two-
dimensional solutions were adequate; the dimensions were identified as predacity
and size. To determine the relatedness between two concepts, the euclidean
distance between the two concepts in the two-dimensional space can be assessed.
This single-measure relatedness is used as the value of drift that drives the
random walk process to determine whether probe and memory items match. If
relatedness is high, then drift toward the match boundary is rapid; if relatedness
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is low, then drift is towards the nonmatch boundary. In the mathematical model
relatedness has variability in that two nominally equivalent items (e.g., having
the same serial position in the memory set) may have different relatedness val-
ues, for example, because they have been learned to different levels.

The comparison process can be illustrated by supposing that the probe and
memory items are represented by a vector of features. The comparison then
proceeds by a gradual accumulation of feature matches (which could be either a
serial or parallel process). Each time a match occurs between a feature in the
probe and a feature in the memory item a step is taken toward the match bound-
ary in the random walk. Each time a nonmatch occurs, a step is taken toward the
nonmatch boundary. Relatedness represents the overall number of feature
matches between the probe and the memory item. In terms of the resonance
metaphor the size of the resonance represents the average rate of feature matches.

One source of variability, variability in relatedness, has already been men-
tioned. It can be seen that there is a second source of variability and that is
variability in the rate of accumulation of evidence. Two probe vectors, with the
same number of feature matches to a particular memory-item vector, may have
differences in the order of matches and nonmatches so that one comparison may
have mainly feature matches in the first part of the comparison, and another
comparison may have mainly nonmatches in the first part of the comparison.
These two processes would have quite different times to reach the match or
nonmatch boundary (the processes may even reach different boundaries). Thus
we can identify two different sources of variability in the model; variability in
relatedness and variability in the comparison process.

In the specific mathematical model, the comparison process is modeled by the
continuous analog of the random walk: the diffusion process. The diffusion
process is the component of the model that accounts for such factors as reaction
time distributions, speed-accuracy relationships, and variable criteria, that is,
flexibility in processing. The critical assumption made is that relatedness is
proportional to the average drift in the diffusion process. Relatedness between a
probe and a memory-set item when the probe matches the memory item is
assumed to be distributed normally with mean u and variance 7)* and for a
nonmatching probe and memory item, relatedness is again assumed to be distrib-
uted normally with mean v (¥ > v usually) and variance %?. A criterion is set
between u and v such that values of drift on the u side of the criterion are positive
(drift towards the match boundary) and values of drift on the v side of the
criterion are negative. Figure 10.2 illustrates the relatedness distributions, the
random walk process, and the diffusion process.

Reaction time distributions of the usual empirical shape are produced by the
diffusion model. Figure 10.3 shows the way in which the normal distribution
maps into a positively skewed reaction time distribution. In addition variability in
drift works to make the distributions more positively skewed. As can be seen
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FIG. 10.2. An illustration of the random walk and diffusion process together
with relatedness distributions that drive the diffusion process. Copyright 1978 by
the American Psychological Association. Reprinted by permission.

from Fig. 10.3, a prediction of the model is that as relatedness decreases, the
mean and mode of the distribution both increase and diverge as is seen in reaction
time data.

There are three variable criteria in the model: the zero point of relatedness,
and the positions of the two boundaries. It is assumed that all these criteria are to
some extent under the subject’s control. The way subjects are able to control their
speed-accuracy criteria is by adjusting the position of the match and nonmatch
boundaries. The criterion in relatedness can be adjusted, in the same way that the
criterion in signal detection theory can be adjusted, to vary the relative numbers
of false positive responses and false negative responses. These two sets of criter-
ion adjustments are not entirely independent in that adjustments in any of the
three criteria produces changes in both speed and accuracy of responses.
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From Fig. 10.2, it can be seen that the random walk process integrates both
reaction time and accuracy in a single theoretical mechanism. This integration
allows speed-accuracy trade-off to be explained in terms of changes in boundary
positions. The closer the match and nonmatch boundaries are to the starting point
of the random walk, the faster and less accurate are responses; the further away
from the starting point, the slower and more accurate are the responses (with
relatedness values and relatedness criterion held constant). There are two major
ways in which speed-accuracy trade-off may be studied. First subjects can be
induced to respond with either speed or accuracy by instructions. This mode of
responding can be termed information-controlled processing; the subject deter-
mines when to respond based on the amount of information accumulated. The
model as described so far is concerned with this mode of responding. Second, the
experimenter may determine the time at which the subject will respond using a
deadline or signal to respond. In this case, the mode of processing may be termed
time-controlled processing. Figure 10.4 shows the way the distribution of evi-
dence spreads in time-controlled processing. Initially the evidence begins at the
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FIG. 10.3. A geometrical illustration of the mapping from a normal relatedness
distribution to a skewed reaction time distribution (with variance in drift s* = 0).
(Note that as relatedness decreases, the distribution tail skews out. a represents the
distance between the bottom and top boundaries of the diffusion process; z repre-
sents the distance between the bottom boundary and the starting point; and «
represents the mean of the normal relatedness distribution.) Copyright 1978 by the
American Psychological Association. Reprinted by permission.
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FIG. 10.4. Spread of evidence as a function of time in the unrestricted diffusion
process for one matching and one nonmatching process. (At time ¢,, there is a
large amount of overlap; at time 3, the overlap has reached asymptote, with
asymptotic d’ = (u — v)/ 1 [See middle panel of Fig. 10.2]. u is the mean of the
match relatedness distribution, and v is the mean of the nonmatch relatedness
distribution.) Copyright 1978 by the American Psychological Association. Re-
printed by permission.

starting point z; as processing proceeds, evidence spreads out with the variance a
function of time (7). At large values of time the distributions of evidence (both
for matching and nonmatching comparisons) will tend to an asymptotic form: All
comparisons with positive relatedness will have reached a position on the posi-
tive side of the starting point, and comparisons with negative relatedness will
have drifted negative. Thus it can be seen that accuracy will asymptote as a
function of time at the d’ value defined by the relatedness values (and this is
observed in practice; see Reed, 1976).

From this discussion it can be seen that the random walk comparison process
is capable of accounting for the shape of reaction time distributions, the relation-
ship between reaction time and accuracy, and the flexibility of processing evident
in speed-accuracy trade-off. :

Error Analysis and the Time Course of Evidence
Accumulation

If it is possible to investigate the patterns of errors at different signal lags in a
deadline or response signal experiment, then it is possible to examine the kind of
information that is being used by the subject at different points during the time
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course of accumulation of evidence. Pachella, Smith, and Stanovich (1978)
performed experiments in which subjects were presented visually with one of
‘four stimuli, the letters B, C, D, and E were required to name the stimulus at
certain deadlines. Pachella et al. performed error analyses at each of the dead-
lines and found that the error patterns could be well fitted by an informed
guessing model. The informed guessing model in this application had the follow-
ing states: BCDE, BD, and CE (determined by fits of the model to the data; other
sets were shown to be unimportant). If subjects had no information they- guessed
from the set BCDE; if they had some information, then they either had informa-
tion that distinguished the set BD from CE or total information. As the deadline
became longer, the probability of being in one of the confusion sets became
smaller. From the results it can be seen that it is possible to trace out the time
course of accumulation of evidence and to find out the form of the evidence being
accumulated at particular points during the time course.

McClelland (1979) has presented a model for the case where processes oper-
ate in cascade; that is, one processing stage can make use of the partial results of
a previous processing stage. It is possible to account for the results of Pachella et
al. (1978) in terms of this cascade model by supposing that at short lags the
response is made on the basis of information from early processing stages in
which the subject has little information (i.e., is in a guessing state). At inter-
mediate lags the response is made on the basis of partial information from which
the subject can distinguish sets BD from CE, and at longer lags the subject uses
information from later processing stages in which total information is available.
Ratcliff (1980) has presented the mathematics necessary to deal with the diffu-
sion process when the rate of information accumulation varies as a function of
time. In this case, experiments of the kind performed by Pachella et al. (1978)
will provide information that may help identify the processing stages in a
cascade-type model or that might identify the type of evidence being accumu-
lated at a particular time in a diffusion model.

The Decision Process

The decision process is conceived of as a process in which the results of many
comparisons are combined to produce a single yes/no decision. The process
terminates when one comparison ends in a match leading to the production of a
positive decision but has to wait for all comparisons to terminate in a nonmatch to
produce a negative response.

It may be somewhat difficult to see how *‘yes’” and “‘no’’ responses can have
about the same reaction time, as is observed experimentally, when negative
responses require that all comparisons terminate whereas positive responses re-
quire only one comparison to terminate with a match. The model allows the
" relative speed of yes and no responses to be determined by the relative starting
point to boundary distances, and in fits of the model it is found that the starting
point to match boundary distance is in general greater than the starting point to



318 RATCLIFF

nonmatch boundary distance. Because subjects are able to manipulate these
boundary positions (in the formulation of the model), they can vary the relative
speeds of match and nonmatch processes that lead to yes and no responses (note
that accuracy will also covary). A direct analogy can be found in the analysis of
detection data and signal detection theory. In signal detection theory the propor-
tions of correct yes and correct no responses are used to compute two measures of
performance, a measure of discriminability and a measure of the criterion that
subjects set. The criterion setting reflects the relative certainty subjects place on
yes and no responses: Subjects can chose to respond ‘‘yes’’ only when very sure
thus producing relatively few but very accurate yes responses, or subjects can
chose to respond ‘‘no’’ only when very sure, or at any point in between. Ratcliff
and Hacker in an unpbulished experiment investigated criterion effects on reac-
tion time by measuring reaction time in two experiments in which subjects were
encouraged to be sure when responding ‘‘yes’’ in one condition and to be sure
when responding ‘‘no’’ in another condition. In a recognition memory task
reaction time was found to covary with accuracy in that when subjects were
responding in the sure yes-condition, accuracy for yes responses was high and
reaction time for yes responses was 168 msec slower than reaction time for no
responses. In the sure no-condition accuracy for no responses was high and
reaction time for no responses was 203 msec longer than for yes responses. These
data can be modeled by assuming that the random walk boundaries are adjusted
so that in the sure yes-condition the match boundary is far away from the starting
point and the nonmatch boundary is relatively close to the starting point. This
adjustment will lead to the observed pattern of data. The main point to note is that
the relative speed of yes and no responses is under the control of the subject and
is another indication of the flexibility in processing discussed earlier.

Summary of the Model

The model I present deals with aspects of experimental data that are held to be '
critical for any reasonable model of item recognition. The relationship between
accuracy and reaction time is implicit in the random walk comparison process
and the random walk process guarantees reaction time distributions of the correct
shape. Flexibility in processing is allowed by the variable (subject-controlled)
criteria, and adjustment of these criteria allow the modeling of such things as
speed-accuracy trade-off. As well as accounting for the experimental data within
any single paradigm, the model accounts for performance on several different

paradigms and thus allows comparisons to be made among those paradigms (see
Ratcliff, 1978, for details).

Comparison with Anderson’s Model

It is easy to see relationships between the above model and certain neural net-
work models. In particular, the model can be related to a recognition model
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developed by J. A. Anderson (1973). In that model the memory representation of
a set of items is a vector of N elements. A particular item is represented by a
specific vector of N elements. The memory representation of several traces is
then the vector sum of the individual traces. The match between a probe and the
overall memory is simply the dot product between the probe vector and the
overall memory vector (i.e., each element in the probe vector is multiplied by the
corresponding element in the memory vector). In Anderson’s model positive and
negative evidence (element matches and nonmatches, respectively) are accumu-
lated separately until one of them exceeds a fixed criterion. If this were modified
so that positive and negative evidence canceled, then the comparison process
would be a random walk. The model suffers the problem, however, that there is
no separate record of each memorized item. Thus, on the basis of this memory,
subjects would be unable to judge such things as frequency of occurrence of
items in a list and would be unable to determine in which list an item had been
presented (these arguments are the same as those presented against strength
theory, see Anderson, J.R., & Bower, 1972; Wells, 1974).

In contrast to neural network models of the type developed by Anderson, the
retrieval model I describe maintains that the representations of items in memory
are functionally independent; that is, there are separate representations of the
occurrence of individual items. It turns out that in fitting response signal data
(Reed, 1976), a model that assumes that all information about the study material
is combined in a single vector would not produce adequate fits. The inadequacy
of such a fit is one reason that the item recognition model described above
maintains separate representations for each item encoded.

General Discussion

For neural modelers whose area of interest is higher cognitive functioning, one of
the major aims of modeling is to realize psychological functions such as recogni-
tion, association, and categorization in terms of reasonable neural models. There
are presently available models that do a good job of representing similarity,
partial matching of items, reconstruction of stimuli from degraded probes, rec-
ognition, association, and categorization (see Anderson & Mozer, Chapter 7, and
Kohonen et. al., Chapter 4, this volume). Each of the models does a good job of
mimicking human performance within its domain and has desirable properties
from the standpoint of system design.

There are three major problems with these kinds of models. The first is that
they seldom add much to our psychological understanding of the structure and
processes that they model in that they rarely make strong predictions about how
humans will perform in other tasks, they rarely integrate experimental paradigms
so as to provide parameter invariance across tasks. The second problem concemns
mimicking of the different neural schemes by each other and the difficulty of
separating these schemes on the basis of desirable properties or fits to data. The
third problem concerns the completeness of such models; each of the models can
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be considered a building block.or an element in an intelligent system, but there
seems to be no attempt to develop a control structure that fits these elementary
processes together to produce an intelligent system. There are also several more
detailed difficulties, and these include problems in modeling semantic networks
with labeled relationships that appear to be a prerequisite to representing world
knowledge and allowing the system to make inferences (see Hinton’s chapter in
this volume).

Atrtificial Intelligence models seem to be complementary in some respects.
The main concern is with a whole system (no matter how modest) that in fact
performs the tasks it was designed to perform. The notion of control and of fitting
elementary processes together is of central importance. In these models (see
Fahiman, Chapter 5, this volume) world knowledge and relational information
are used in the knowledge base, and such information allows inferences to be
made. However, such Aritificial Intelligence models have difficulty in represent-
ing similarity (except by relative distance in the network) and in performing
partial matching (matching an incomplete probe against memory). It is also
difficult to see how such models would be implemented in the nervous system.

Both of these areas of research have insights to gain from psychology. At
some point a researcher has to choose some set of phenomena to model. If the
choice is made on the basis of what an intelligent system should do, then this
often boils down to the use of informal psychological data. Psychology can point
to data that may rule out various alternate, intuitively appealing models. For
neural modelers, psychological results can often form the basis for the whole
modeling effort, and for Artificial Intelligence researchers, psychological results
can point to more useful methods of organizing the theoretical processing sys-
tem. It should be noted that psychology often gains insights from Aurtificial
Intelligence, and some theories developed first in Artificial Intelligence are then
taken as psychological theories and subjected to experimental test.

In the next section I present a brief discussion of some psychological research
on the topic of the organization of information in memory and processes involved
in encoding and retrieval.

10.2. ORGANIZED MEMORY: PROCESS AND
STRUCTURE

There seem to have been relatively few attempts by cognitive psychologists to
communicate the present certainty of phenomena and theories to groups such as.
Artificial Intelligence researchers and neural modelers. This section is a small
attempt to present some of the more recent findings in the general area of
research concerned with the structure of semantic knowledge and the representa-
tion of text in memory and with processes involved in manipulating this informa-
tion. In particular I discuss topics such as the distinction between automatic and
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strategic processes, a line of research that may allow us to decide whether
inferences are made at input or outpuit in text processing and the processing of
world knowledge (verification of well-known facts).

Automatic and Strategic Processes

The processes involved in priming have come under considerable scrutiny re-
cently. The main result is that presenting one concept (word or letter) can activate
another concept leading to a faster match, lexical decision, or recognition for the
second concept. For example, in a letter-matching task (Posner & Snyder, 1975),
the subject is to respond as to whether two target letters presented simultaneously
are the same or different. The same response is speeded if a prime letter, pre-
sented before the target letters, matches the target letters (i.e., a facilitation
effect). _

Automatic and strategic components of priming can be separated by studying
the time course of this facilitation, using a procedure in which the target letters
are presented at a variable interval (e.g., at 50, 100, 200, and 400 msec) after the
prime. The priming effect appears to have two components. The first component
has been called an automatic component; it is characterized by a very rapid onset;
in many experiments, prime onset to target onset as short as 100 msec is suffi-
cient to produce facilitation. The second component has been termed strategic
facilitation and is characterized by a much less rapid onset, often several hundred
milliseconds.

Automatic and strategic processes can also be distinguished by probability
manipulations. Automatic processing has no inhibition associated with low prob-
ability alternatives whereas strategic processing often has inhibition associated
with low probability alternatives. For example, in the letter-matching paradigm,
if the prime does not match the test letters (in a condition in which there is a low
probability of a prime-target nonmatch) then there is inhibition; that is, the same
response is slowed (Posner, 1978, p.100). v

Neely (1977) provided a particularly clear example of the separation of au-
tomatic and strategic components of facilitation in a lexical decision task. Sub-
jects were presented with a prime word, to which they made no response,
followed by a target. The subjects were required to decide whether the target
letter string was a word. The prime was one of three category names or a row of
xs. Subjects were told that if the prime was bird then they should expect the
target letter string to be a member of the bird category if the letter string were a
word. If the prime was building then the target word would be a body part with
high probability. If the prime was body then the target letter string would be a
building part with high probability. Subjects were -explicitly told to shift their
attention when they saw the building or body prime to the expected category.
The time course of processing was examined by varying the prime to target
delay. For the categories building and body there was facilitation for a target that
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was a member of the prime category at short delays (250 msec). This was
interpreted as automatic activation. At longer delays (750 msec) the response to a
target that was a member of the prime category in this shift condition was
inhibited (a longer reaction time). The expected target (a body part if building
was the prime) produced facilitation at longer delays but not at short delays.
These results were interpreted as supporting the automatic-strategic distinction.
A similar series of questions can be asked about priming in recognition.
McKoon and Ratcliff (1980) and Ratcliff and McKoon (1978) have used priming
in recognition as a technique for examining the structure of text in memory. For
example, Ratcliff and McKoon (1978) presented sentences to subjects for study
and then tested single words for recognition. Response time to a word im-
mediately preceded in the test list by a word from the same sentence was 100
msec faster than the response time to a word immediately preceded by a word
from a different sentence. The size of the priming effect was found to be greater
if the priming pair were from the same proposition than if the priming pair were °
from different propositions. This result was taken as support for the view that the
structure of sentences is propositional. McKoon and Ratcliff (1980) showed that
the magnitude of the priming effect varies as a function of the distance between
the prime and test words in propositional structure of the paragraph. Thus the
technique provides an index of the distance between two propositions in terms
of the size of the priming effect. The priming effect in recognition shows that
activation is not just reserved for preexisting semantic networks. Accessing a
concept that was just studied in text serves to activate concepts related in the
text. The amount of activation varies as a function of the relative distance be-
tween the concepts in the text. The question arises as to whether the priming
effect is automatic or strategic. Ratcliff and McKoon (in press, a) have investi-
gated automatic and strategic components of priming in recognition. In the first
experiment it was found that the probability that a priming pair occurred in the
test list had no effect on the size of the priming effect. This suggests that the
priming effect is automatic in the sense of Tweedy, Lapinski, and Schvaneveldt
(1977). In the second experiment the time course of processing was examined.
A prime was presented to which the subject was not required to respond. Follow-
ing this by a variable amount of time (e. g., either 50, 150, 450, 850 msec) the
test word was presented for recognition. It was found that facilitation (when the
prime and test word were from the same sentence) had been produced by 150
msec. Inhibition (when the prime and test words were from different sentences)
occurred later in processing and showed up by 450 msec. The third experiment
was designed to investigate strategic priming. Subjects were presented with
two sentences and told that if the prime word was from one sentence, then the
test word would be from the other sentence with high probability, and they
should attempt to switch to that sentence. It was found that it took somewhat
longer than 750 msec for subjects to switch—there was little facilitation at 750
msec for words from different sentences, large facilitation at 1800 msec, but
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large inhibition when the prime and test words were from the same sentence
at 750 msec—which indicates that strategic priming in recognition in this para-
digm takes considerably longer than automatic processing. Thus we can con-
clude that the priming effects reported by McKoon and Ratcliff as an index of
paragraph structure are automatic priming effects because all intertest intervals
- were kept less than 200 msec.

The automatic-strategic distinction has implications for the earlier discussion
about flexibility of processing. Strategic processes are those subject to flexibility
such as changing criteria or selecting among alternative succeeding processes
during the course of processing. Automatic processes are those processes that run
off no matter what the subject attempts to do strategically. The distinction be-
tween automatic and strategic processes has considerable importance for models
of human processing (see also Schneider & Shiffrin, 1977 for discussion of the
development of automaticity) but as yet has been largely ignored in the areas of
Artificial Intelligence and neural modeling. The distinction may prove of help in
determining whether a particular kind of inference is made at the time of reading
a text or at the time of retrieval of that text.

Semantic Verification Experiments

Recent psychological investigation into the structure of semantic memory origi-
nated when Collins and Quillian (1969) performed several experiments to test
Quillian’s network theory of semantic memory. In this theory, concepts such as
robin, bird, animal, and thing are stored in a hierarchy with thing as the root
node and other concepts branching off (e.g., animal would be one link from
thing, bird one link from animal, and robin one link from bird). In the experi-
ments, subjects were asked to verify statements such as ‘‘a robin 1s a bird,”’ or “‘a
robin is an animal.’’ The prediction made was that the time required to verify the
sentence is a linear function of the distance between the concepts in the memory
representation. This prediction was verified and further experiments followed,
‘but several problems were found in attempting to fit data from negative re-
sponses. Rips, et al. (1973) developed an alternative model of the representation
of semantic information. Their model represents similarity in terms of overlap of
semantic features instead of distance in terms of number of links in a network
model. See Smith (1978) for a discussion of further properties of feature and
network models. Rips et al. performed several experiments in which the variable
semantic relatedness was controlled and varied, and they found that semantic
relatedness was a much better predictor of reaction time than hierarchical dis-
tance (in fact it was even suggested that the variable heirarchical distance had no
effect on reaction time). Smith, Shoben, and Rips (1974) developed a feature-
matching model that accounted for reaction time differences in terms of feature
overlap, where feature overlap was used to represent semantic relatedness. In
addition, Smith et al. added a decision mechanism (similar to signal detection
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theory) that was based on a model for item recognition developed by Atkinson
and Juola (1973). This retrieval model predicted that the more related (the greater
the feature overlap) are two concepts, the faster and more accurate the positive
response, and the slower and less accurate the negative response. Thus, verifying
““a robin is a bird’’ is faster than verifying ‘‘a penguin is a bird’’ and responding
negatively to ‘“‘a bird is a robin’’ is slower and less accurate than responding
negatively to ‘‘a bird is a penguin.”’ This prediction is upheld when the relation-
ship tested is of the form category and member, but when the relationship is an
antonym relationship, the prediction is contradicted by data (e.g., Glass,
Holyoak, & Kiger, 1979). Antonym relationships are verified quite quickly, the
more related the terms, the faster. For example, ‘‘is a brother a sister?”’ is
responded to negatively more quickly than a more indirect (and less related)
antonym such as *‘is a brother a female?”’ Holyoak and Glass (1974) have
presented data that suggest that production frequency is a better predictor of
reaction time in such semantic verification tasks. From their results they de-
veloped a model to account for negative decisions that involved production or
search then.checking. Lorch (1978) has presented data that suggests that the two
separate factors, production frequency and semantic relatedness, both have ef-
fects on verification reaction time and accuracy.

In order to account for many of the problems found in the original Collins and
Quillian model, Collins and Loftus (1975) presented a revision of the model. The
model assumes that concepts are stored in a network with the links between
concepts labeled (as before) and weighted (i.e., by weights that denote strength
of association between the concepts). The mechanism for retrieval consists of
two stages: First, activation spreads from concepts represented in the question to
activate a portion of semantic memory; second, that active portion is evaluated.
This model has two main problems. First, the spreading activation process is
probably not able to produce the levels of successful retrieval that humans pro-
duce (see Anderson & Hinton, Chapter 1, this volume). Furthermore, Ratcliff
and McKoon (in press, b) have shown that the time required for activation to
spread through a semantic network is very small, activation spreads too fast to
account for any temporal variability in reaction time data (i.e., reaction time
differences between conditions). Thus it seems that the spreading activation
component of this model is largely unnecessary. Second, the evaluation process
is not spelled out in sufficient detail though several different matching processes
are described, for example, using counterexamples or distinguishing properties.
However it is quite unclear which combination of mechanisms are used to ex-
plain experimental data and how all these mechanisms may be coordinated in a
processing system.

From this discussion it can be seen that the theoretical interpretation of seman-
tic verification is no longer simple (as it was with the models of Collins &
Quillian, 1969, or Rips et al., 1973). We can identify two important variables
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that affect performance, semantic similarity and production frequency, and we
can note that antonyms appear to be processed differently to category-member
relationships. But as yet we have no general relatively complete model of seman-
tic verification. It is my guess that no simple elegant model will be developed for
the semantic verification task; rather the kind of model developed will incorpor-
ate several autonomous subprocesses as in the Collins and Loftus (1975) model.

10.3. CONCLUSIONS

A main concern of this chapter is the relationship between psychological data and
theory. In the first part of the chapter, a parallel-processing, associative model
for recognition is presented. Besides providing a recent example of psychology’s
contribution to the theme of this book, the model provides an example of a theory
that is general (applies across a range of paradigms) yet also explains and fits data
within its domain in considerable detail. At the core of the model is a random
walk comparison process that relates accuracy and reaction time, accounts for the
shape of reaction time distributions, and allows the flexibility in processing
necessary to account for speed-accuracy trade-off and other criterion ad-
justments. A model such as this can be seen as a replacement for informal data
because the model summarizes a great deal of data in its domain so that other
modelers need only concern themselves with the predictions of the model as a
first step in further development. In a great number of enterprises in cognitive
psychology, theories of the generality and detail of the theory presented in the
first part of this chapter are not available. The second part of the chapter de-
scribes recent developments in two areas of research, each of which is concemed
with some aspects of the structure of semantic information and text in memory
and the processes involved in encoding, accessing, and retrieving such informa-
tion. First it is argued that an important characteristic of the human processing
system is the distinction between automatic processes that have rapid onset and
are not subject to flexibility of processing and strategic processes that have much
slower onset and can be adjusted by subjects particular processing strategies.
This distinction has not yet entered the areas of neural modeling and Artificial
Intelligence. Second an empirical method of studying the structure and process of
permanent knowledge, the study of semantic verification, is reviewed. At present
it seems that explanations of semantic verification results can no longer be simple
but that we can identify two important variables, semantic relatedness and prod-
uction frequency, and it seems that antonyms are processed differently from
category-member relationships. There is a great deal of psychological research
into parallel processing and associative memory, and it is hoped that this discus-
sion will prove useful to neural modelers, Artificial Intelligence researchers, and
perhaps even psychologists.
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