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The effects of aging on response time are examined in 2 simple signal detection tasks with young and
older subjects (age 60 years and older). Older subjects were generally slower than young subjects, and
standard Brinley plot analyses of response times showed typical results: slopes greater than 1 and
(mostly) negative intercepts. R. Ratcliff, D. Spieler, and G. McKoon (2000) showed that the slopes of
Brinley plots measure the relative standard deviations of the distributions of response times for older
versus young subjects. Applying R. Ratcliff’s (1978) diffusion model to fit the response times, their
distributions, and response accuracy, it was found that the larger spread in older subjects’ response times
and their slowness relative to young subjects comes from a 50-ms slowing of the nondecision compo-
nents of response time and more from conservative settings of response criteria.

In most cognitive tasks, response times slow as age increases. In
an effort to understand this slowing, much research has focused on
a regularity that emerges when older subjects’ response times are
plotted against young subjects’ response times in what is called a
“Brinley” function. The regularity is that the function is always
approximately a straight line with a slope in the range of about 1.0
to 2.5, a regularity that has been found across a wide range of
experimental paradigms (Brinley, 1965; Cerella, 1985, 1991,
1994; Faust, Balota, Spieler, & Ferraro, 1999; Fisher & Glaser,
1996; Fisk & Fisher, 1994; Hale & Jansen, 1994; Hale, Myerson,
& Wagstaff, 1987, Maylor & Rabbitt, 1994; McDowd & Craik,
1988; Myerson & Hale, 1993; Myerson, Hale, Wagstaff, Poon, &
Smith, 1990; Myerson, Wagstaff, & Hale, 1994; Nebes & Madden,
1988; Perfect, 1994; Salthouse, 1991, Chap. 8; Salthouse & Som-
berg, 1982; G. A. Smith, Poon, Hale, & Myerson, 1988; Spieler,
Balota, & Faust, 1996).

In most early work the slope of the Brinley function was taken
as evidence supporting a general slowing hypothesis. The fact that
response times for young subjects can be transformed to response
times for older subjects by the multiplicative constant that is the
slope of the Brinley plot has been interpreted as showing that the
effect of aging on response time is a general slowing that applies
indiscriminately to all aspects of cognitive processing. However,
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despite this mainstream tradition, there have been a number of
calls for a more analytic approach, including questions about the
uniformity of slowing effects across various components of cog-
nitive processes and across various cognitive tasks (Allen, Ash-
craft, & Weber, 1992; Allen, Madden, Weber, & Groth, 1993;
Cerella, 1994; Fisher & Glaser, 1996; Fisk & Fisher, 1994; Hart-
ley, 1992; Hertzog, 1992; Lima, Hale, & Myerson, 1991; Madden,
1989; Madden, Pierce, & Allen, 1992; Myerson, Ferraro, Hale, &
Lima, 1992; Myerson et al., 1994; Perfect, 1994).

Recently, Ratcliff, Spieler, and McKoon (2000) presented a
theoretical analysis of Brinley plots and showed that their slope is
not a measure of how much older subjects slow relative to young
subjects. Instead, it is a measure of the relative variance in their
response times across conditions (so long as the distributions have
about the same shape). The slope of a Brinley plot is typically
around 1.5 because the standard deviation of the response times for
older subjects is about 1.5 times greater than the standard deviation
of the response times for young subjects. What this means is that
the target for theories of aging effects must be an understanding of
the cognitive mechanisms underlying the response times that make
up the distribution of response times for a cognitive task. Given an
understanding of the mechanisms responsible for response time
distributions, we can begin to construct a picture of how the
mechanisms might change with age such that the distribution
spreads to give greater variance.

With this goal in mind, we conducted two signal detection
experiments with young and older subjects and analyzed their data
with Ratcliff’s diffusion model (Ratcliff, 1978, 1980, 1981, 1985,
1988; Ratcliff & Rouder, 1998, 2000; Ratcliff, Van Zandt, &
McKoon, 1999). For a number of cognitive tasks, for young
subjects the diffusion model offers an accurate explanation of
multiple facets of response time data including the probabilities of
correct and error responses and the shapes of the distributions of
response times for correct and error responses. The model divides
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decision processes into several components: the quality of the
information from a stimulus that drives the decision process, the
variability in the quality of information, the criteria that set bound-
aries on the amount of information that must be accumulated in
order for a decision to be made, and the nondecisional (encoding
and response execution) parts of response time. The question for
the experiments here was which of these components change with
age.

In the sections below, we first review Brinley plots, then present
the two experiments. We then describe the diffusion model and
finally fits of the model to the experimental data.

Quantile—Quantile Plots

Ratcliff et al. (2000) showed that Brinley plots are what are
commonly called in statistics quantile-quantile (Q-Q) plots. A
Q-Q plot is a plot of the quantile points of one distribution against
the quantile points of another distribution. The quantiles of a
distribution are the points that divide the total frequency in the
distribution into parts. For example, the median point divides the
distribution into halves (.5 quantiles), the three quartile points
divide the distribution into quarters (.25 quantiles), and so on. For
empirical data, the mean response time for an experimental con-
dition is a point from a distribution of means, and so each mean is
a quantile of the distribution. Plotting means for older subjects
against means for young subjects in a Brinley function therefore
yields a Q-Q plot.

There are three issues that need clarification here. First, what is
the distribution that the quantiles come from? In Experiment 1
presented below, 10 X 10 arrays containing asterisks and spaces
were used as stimuli. The number of asterisks can vary from 1 to
100 so there are 100 possible conditions in the experiment; there-
fore, there are 100 mean reaction times, one for each condition.
These can be used to construct a Brinley plot by using the mean
reaction time for each condition for older subjects and for young
subjects. If an experiment manipulated a continuous variable (e.g.,
stimulus duration) instead of a discrete one (number of asterisks),
then mean response times would come from a continuous distri-
bution of possible conditions. In any experiment the full range of
conditions may not be sampled. For example, in one experiment
we might sample from a range of stimulus durations that span the
range of accuracy values from low to high, and in another exper-
iment we might sample only those durations that produce poor
performance. In both cases the conditions sampled would be the
same for the older and young subjects, and therefore the quantiles
would be the same for the older and young subjects, so long as the
scale of difficulty was the same for both groups.

The second issue is how the quantiles are computed. In Q-Q
plots, the shortest mean reaction time from older subjects would be
plotted against the shortest mean reaction time for young subjects,
and the next shortest against the next shortest, and so on. However,
in a Brinley plot the mean response times for each condition for
older and young groups are plotted against each other, even if the
fastest condition for older subjects is not the fastest condition for
young subjects. This is because the experimental conditions pro-
vide an independent measure of difficulty, which allows us to line
up points that correspond between older and young subjects. Then
the Brinley plot is a Q-Q plot. In within-task comparisons in a
single experiment in which Brinley plots are produced for the

means across conditions, accuracy can be used to check the index
of task difficulty. Accuracy should line up in the same ordinal way
as response time across conditions for older and young subjects.
(An accuracy index would be hazardous to use with between-task
experimental designs because the tasks might differ in other ways;
accuracy and reaction times might not line up in the same order.)

The third issue is whether the relationship between Brinley plots
and Q-Q plots can be carried through to meta-analyses in which
results from different experiments are combined (so condition
means from different experiments are all plotted together). For a
meta-analysis Brinley plot to be accurately called a Q-Q plot, the
different conditions in the different experiments would have to
correspond to the same relative levels of difficulty for older and
young subjects. When similar tasks are combined, then Brinley
plots are reasonably good approximations to Q-Q plots. However,
as some analyses have shown, slopes of Brinley plots can be
different for different subsets of experiments (e.g., perceptual vs.
computational, Cerella, 1994; Fisk & Fisher, 1994), and in such
cases we would not want to identify Brinley plots with Q-Q plots.
However, the mathematics of the Q-Q analysis for slope and
intercept presented will often still apply, and the slope of the
Brinley plot will be the ratio of standard deviations in the mean
reaction times for the two groups (so long as the distributions have
approximately the same shape).

Q-Q plot theory provides insights into the regularities that have
been observed in Brinley plots. Equation 1 shows the relationship
between the quantiles of the response time distributions of older
and young subjects. A quantile for older subjects, Q,, is defined in
terms of a quantile for young subjects, Q,, and the means and
standard deviations of the distributions of means across experi-
mental conditions for older and young subjects.

Q. = (0,/0,)Qy + w, — py(0/0y). ¢9)

This equation holds for a wide range of distributions, for example,
normal, logistic, Cauchy, gamma (with a fixed “number” param-
eter), exponential, Weibull (with fixed exponent), uniform, and
ex-Gaussian (with the parameter of the exponential component a
constant multiplied by the standard deviation of the normal com-
ponent; Ratcliff & Murdock, 1976). However, the distributions
across conditions for the older and young subjects have to have the
same shape. If the distribution for the group with the larger spread
is more skewed than that for the group with the smaller spread, an
upwardly accelerated Brinley plot is obtained (see Nebes & Mad-
den, 1988).

The equation shows that when the condition means for the older
subjects (the Q,s) and the young subjects (the Q,s) are plotted
against each other, the slope of the function is the ratio of the
standard deviations of the distributions, and, so long as the distri-
butions have the same shape, the function is linear. Thus, the slope
of a Brinley plot is greater than 1 because older subjects have a
greater spread in mean response time across conditions than young
subjects. Also, the Q-Q analysis (i.e., Equation 1) explains why,
given means and standard deviations with values typical of those
found in experimental data, the intercept of the function is usually
negative when the slope is greater than 1 (Ratcliff et al., 2000,
Table 2) and becomes more negative as the slope increases (cf.
Cerella, 1985, 1991; Maylor & Rabbitt, 1994, p. 224). Equation 1
also shows that it is the intercept of the Brinley plot that provides
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information about the relative speeds of the older and young
subject groups.

The most important point is that because the slope of a Brinley
plot is a ratio of standard deviations, it does not measure general
slowing. Instead, it is a measure of the relative spreads in the older
versus the young subjects’ mean response times across experimen-
tal conditions. So, for example, mean response time may have a
200-ms range across conditions for young subjects and a 300-ms
range for older subjects.

Perhaps the easiest way to see that the intercept carries infor-
mation about slowing is to consider a standard Brinley plot with
slope 1.5 and intercept —200 ms. Suppose that all the older
subjects were speeded up by 500 ms so they were faster than the
young subjects. This would result in a slope of 1.5 (the same as the
first case when older subjects were slower than young subjects) but
with an intercept of —700 ms. The reason that the misinterpreta-
tion of Brinley plots has not been noticed before is that the means
and the standard deviations in the distributions of means across
conditions are usually correlated: The slower a group of subjects,
the more spread are their mean response times across conditions.

Given a correct understanding of Brinley plots, the aim is to
develop models that can explain why variance in response times
increases with age. However, Ratcliff et al. (2000) showed that it
is relatively easy for models to do this. For example, any model of
the sequential sampling class (see Luce, 1986, chaps. 8 and 9)
could produce larger variances in older subjects’ response times
relative to young subjects’ response times by assuming lower rates
of accumulation of evidence for older subjects or more conserva-
tive response criteria for older subjects. Critical tests of models
must involve aspects of the data other than the Brinley plot
regularities. For the diffusion model, these tests include jointly
fitting response time data and accuracy data, explaining how the
shapes of the response time distributions change as a function of
accuracy, and explaining the relative speeds of correct and error
responses.

Diffusion Model

The aim of the experiments described below was to collect data
to which an explicit model of processing, Ratcliff’s diffusion
model, could be fit and then to use the parameters of the model to
understand which of the model’s components change between the
young and the older subjects. The experiments used a relatively
simple signal detection paradigm. For young subjects, the diffu-
sion model fits data from this paradigm very well (Ratcliff &
Rouder, 1998; Ratcliff et al., 1999), and the fits of the model allow
coherent interpretations of processing in terms of the parameters of
the model.

The diffusion model describes how stimulus information drives
a decision process over time. The key feature of the diffusion
model that we planned to exploit is that the model allows for the
separation of the information that drives the decision process from
the other components of the process. Although the model has not
previously been used to study the effects of aging on response
time, Ratcliff et al. (2000) illustrated the potential usefulness of the
approach.

Ratcliff’s diffusion model is a member of the class of
sequential-sampling models, which are designed to account for
response time and accuracy in experimental paradigms using two-

choice tasks. The diffusion model has done a good job of explain-
ing data for recognition memory tasks (e.g., the Sternberg, con-
tinuous memory, prememorized list, and study-test paradigms).
With no important modifications, it has also been applied to
perceptual matching of letter strings (Ratcliff, 1981), to the varied
and consistent mapping procedures with the Sternberg paradigm
(Strayer & Kramer, 1994), to several perceptual paradigms (Rat-
cliff & Rouder, 1998), and to new paradigms such as the speed-
accuracy decomposition procedure (Meyer, Irwin, Osman, & Kou-
nios, 1988; Ratcliff, 1988). Models of this class have also recently
received strong support from data from single cell recordings in
monkeys (Hanes & Schall, 1996).

We postpone a detailed description of the diffusion model until
after the experimental data have been presented. To anticipate, the
model fit the data quite well and yielded interpretations of the
effects of age on processing that are considerably different from
the common, general slowing interpretation.

Experiment 1

Experiments 1 and 2 both used simple signal-detection para-
digms (e.g., Espinoza-Varas & Watson, 1994; Lee & Janke, 1964;
Ratcliff & Rouder, 1998; Ratcliff et al., 1999; Vickers, 1979). In
Experiment 1, on each trial an array of asterisks was presented on
a computer screen, and a subject was asked to decide whether the
number of asterisks presented in the display was “high” or “low”
(see Figure 1). The number of asterisks that was presented was
chosen from one of two distributions of numbers, a high distribu-
tion (M = 56) and a low distribution (M = 38), each distribution

Examples of Stimuli for Experiment 1

*  kkk  kk *k * * %
* kkk dkk hkk
khkk kK Number of * *
*%  kk k kk *|  Agterisks
kdk Kk * * * *
*hkkdk  kk ok *
* *kk Kk kk *
* hk k kk Kk
*k  *x * *k  * *
*k k  kkkk Kk L
High Low
Examples of Stimuli for Experiment 2
a
n
Distance -
Between
Two Dots
[ ] a [ ]
Large Medium Small
C .85 .50 15
(Probability that the feedback is “Large”)
Figure 1. Examples of stimuli for Experiments 1 and 2.
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with a fixed mean and standard deviation, and all the numbers
were between 0 and 100. Feedback was given after each trial to tell
the subject whether his or her response had correctly indicated the
distribution from which the stimulus had been chosen. Other than
this feedback, the subject had no information about the distribu-
tions. The distributions overlapped substantially, so that even after
many trials of feedback, the observer could not be highly accurate.
A display of 50 asterisks, for example, might have come from the
high distribution on one trial and the low distribution on another.

This type of signal detection paradigm has one particular feature
that makes it extremely useful. It allows the probabilities of the
two responses, “high” and “low,” to be varied in small steps from
a high probability of one of the responses to a high probability of
the other response. For example, a display of 5 asterisks will have
a high probability of a “low” response, a display of 90 asterisks
will have a high probability of a “high” response, and a display
of 50 asterisks will have medium probabilities of both responses.
This feature forces a model to account for the relationships be-
tween response probabilities and response speeds at all levels of
response probability.

Method

Subjects. There were three groups of young adults, one group of 39
adults, one of 33, and one of 36 (15 men and 24 women, 10 men and 23
women, and 11 men and 25 women, respectively). There was also one
group of 40 older adults (16 men and 24 women). The young adults were
college students who participated in return for course credit in an intro-
ductory psychology course at Northwestern University or were paid for
their participation at a rate of $8 per hour. The older adults were healthy,
active, community-dwelling individuals aged 60 years or older. The older
adults were recruited from advertisements posted at local senior citizen
centers, and they received $15 for their participation. To participate in the
study, the older adults had to meet the following inclusion and exclusion
criteria: at least 60 years old at the time of entry into the study, a score of 26
or above on the Mini-Mental State Examination (Folstein, Folstein, &
McHugh, 1975), and a score of 15 or less on the Center for Epidemiolog-
ical Studies-Depression Scale (CESD; Radloff, 1977). In addition, all
subjects completed a medical history form and were excluded if there was
evidence of disturbances in consciousness, medical or neurological disease
causing cognitive impairment, head injury with loss of consciousness, or
current psychiatric disorder. Finally, ail participants completed the Picture
Completion subtest and the Vocabulary subtest of the Wechsler Adult
Intelligence Scale—Revised (Wechsler, 1981). Estimates of full-scale 1Q

Table 1
Subject Background Characteristics

were derived from the scores of the two subtests (Kaufman, 1990). The
means and standard deviations for standard background characteristics are
shown in Table 1.

We did not collect the background data presented in Table 1 for the
young subjects tested in Experiment 1, though we did collect it for the
young subjects in Experiment 2. To provide an additional check on the
young subject characteristics, a new group of young subjects was given
these tests in the fall quarter (they were performing a memory experiment).
They were mainly freshmen and so had a smaller number of years of
education, but otherwise their characteristics were similar to those of the
young group from Experiment 2 and the older subjects (apart from age).

Subjects in the first group of young adults came from an introductory
psychology class subject pool. They were tested at the end of a spring
quarter, and they were relatively unmotivated (by our informal assessment,
these subjects often produce poor results from psycholinguistic experi-
ments where careful reading is required and often produce large standard
deviations in response times). The term “motivated” here is meant to carry
only an informal, observational, connotation: If subjects are unmotivated in
this sense, at some points in the experiment they are more likely to ignore
the stimuli and hit one response key all the time, hit response keys as
quickly as possible without processing the stimuli, take long breaks within
trials, and so on. Subjects of the second group were also from the intro-
ductory psychology subject pool, but they were tested at the beginning of
a quarter. In other experiments, these subjects almost always provide good
data with small standard deviations in response times. Subjects from the
third group were recruited by advertisement and were paid for their
participation. Because subjects in this group often want to participate in
other experiments for pay, they are usually motivated to produce good data.
The older subjects seemed eager to participate and perform well in the
experiment. The three different groups of young subjects were tested in an
effort to ensure that any differences between older and young were not
simply the result of a lack of effort of young subjects in performing the task.

Stimuli.  The asterisks were displayed in a 10 X 10 grid in the upper left
corner of a video graphics adaptor (VGA) monitor, subtending a visual
angle of 4.30° horizontally and 7.20° vertically. They were clearly visible,
light characters presented against a dark background. The VGA monitors
were driven by IBM 486-style microcomputers that controlled stimulus
presentation time and recorded responses and response times.

The number of asterisks for presentation on a given trial was selected by
randomly sampling from one of two discrete, approximately normal dis-
tributions with means 38 and 56 and standard deviation 14.4 (following
Espinoza-Varas & Watson, 1994). The discriminability (d') between these
distributions was therefore approximately 1.25. The probability of sam-
pling each of the two distributions was .5. The feedback on a trial indicated
from which of the two distributions the number of asterisks had been

Experiment 1: Older Experiment 2: Older Experiment 2: Northwestern:

adults adults Young adults Young adults
Measure M SD M SD M SD M SD
M age 67.7 6.7 68.1 4.4 20.6 1.7 19.1 9.5
Years of education 16.5 22 16.5 23 14.4 1.1 12.0 0.2
MMSE 28.9 1.3 294 0.77 29.5 0.64 28.7 1.4
WAIS-R Vocabulary 14.7 2.6 15.5 23 15.5 1.7 14.2 2.1
WAIS-R Picture Completion 12.1 22 12.1 14 109 22 10.7 24
IQ Estimate 121.9 104 122.4 9.6 118.9 7.9 112.8 7.2

CESD: Total 7.6 42 7.8 3.8 8.6 3.8

Note.  MMSE = Mini-Mental State Examination; WAIS-R = Wechsler Adult Intelligence Scale—Revised; CESD = Center for Epidemiological

Studies-Depression Scale.
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selected. This means that feedback to a display with 40 asterisks, for
example, would be “low” about twice as often as “high.” The two distri-
butions crossed at the number 47; this number is referred to as the
crossover point for the two distributions. The display positions of the
asterisks for a given trial were selected randomly from the possible 100
positions in the 10 X 10 character grid.

Because there were 100 different possible numbers of asterisks that
could be displayed, there were 100 possible different experimental condi-
tions. The number of trials for each of the numbers of asterisks was
determined by selecting randomly from the high or the low distribution,
and each subject participated in one 30-min session consisting of 550 trials.
Therefore, the number of observations for each condition varied from
about 2 (for numbers of asterisks less than 5 or greater than 95) to about 25
(for numbers of asterisks around the crossover point 47). In data analyses
the 100 conditions were grouped such that each group contained the data
for conditions for which responses had about the same response times and
probabilities. For one group there were about 350 data points, and for the
other groups there were between 80 and 180 data points.

Procedure. Subjects were instructed that the number of asterisks on
each trial was selected at random from one of two groups of numbers, a
“low” group and a “high” group, and that the low group had fewer asterisks
on average than the high group. A subject’s task was to decide whether the
number of asterisks presented came from the low group, in which case they
were to press the “Z” key on the computer keyboard, or the high group, in
which case they were to press the “?” key. If a response did not match the
distribution from which the stimulus was generated, an error message was
displayed immediately after the response. The subjects understood that
they could not be completely accurate, that numbers from the middle of the
range (e.g., 50) could have come from either distribution, and that their task
was to give their best judgment. It is important to note that, for the subjects,
an error was defined according to the distribution from which the stimulus
was chosen. So a high response to 47 asterisks was correct half the time and
was an error half the time. Subjects were fully informed about this
ambiguity, using X-ray diagnosis as an illustration of the ambiguity in
signal-detection tasks of this kind.

A trial began with the presentation of a 10 X 10 grid with asterisks. The
asterisks remained on the screen untii the subject responded, at which point
the screen was erased. If the response was correct, a 700-ms waiting period
ensued, and then the asterisks for the next trial were presented. If the
response was in error, the message “ERROR” appeared on the screen for
500 ms, followed by the next trial 700 ms later. Each block of 50 trials was
completed in less than 2 min. Between each two blocks, subjects were
encouraged to take a brief rest if desired.

Results

We present the data analyses in two parts: (a) standard Brinley
plots and (b) the full range of correct and error response proba-
bilities and their associated response time distributions displayed
in quantile probability functions. Theoretical analyses with the
diffusion model are presented after Experiment 2. Mean response
times less than 300 ms and greater than 3,500 ms were eliminated
from the data analyses.

The three groups of young subjects differed little in reaction
time and accuracy, so we combined the data for the three groups
in some analyses (in which we did not compare the three groups).
We fit the diffusion model to the three groups separately, and the
parameters of the model were similar across groups.

To display the data compactly, they were grouped in several
ways. First, we examined response time and accuracy to “low”
responses to low stimuli and *“high” responses to high stimuli and
found that they did not differ from each other systematically.
Therefore we collapsed them together. That is, responses for each

stimulus for which the probability of a “high” response was larger
than .5 were collapsed with the corresponding stimulus for which
the probability of a “low” response was greater than .5. For
example, the probability of responding “high” to 57 asterisks was
the same as the probability of responding “low” to 37 asterisks
(and their response times were not significantly different), so
responses for 57 asterisks and 37 asterisks were collapsed. We
designate these greater-than-.5-probability responses as correct
responses. Similarly, responses for each stimulus for which the
probability of a “high” response was less than .5 were collapsed
with the corresponding stimuli for which the probability of a “low”
response was less than .5, and these responses were designated as
errors. Note that these designations for describing the results are
not the same as the correct and error feedback given to subjects
during the experiment.

After collapsing in the way just described, responses for the
various experimental conditions (i.e., for the various numbers of
asterisks) were grouped such that responses in each group had
approximately the same response times and response probabilities.
The 100 different experimental conditions were combined into
four groups of experimental conditions. The four groups were
defined as follows: “low” responses for stimuli less than 35 aster-
isks and “high” responses for stimuli greater than 61 were grouped,
“low” responses to Stimuli 36—-40 were grouped with “high”
responses to Stimuli 56—60, and in the same way (high combined
with low as in the last example), Stimuli 41-45 were grouped with
Stimuli 51-55, and Stimuli 46-48 were grouped with Stimuli
49 -50. Because the stimuli were obtained by selecting the num-
bers of asterisks from normal distributions, the numbers of re-
sponses in the four groups varied. For the young late-term subjects,
for example, the total numbers of data points in the four groups
were 8,900, 3,700, 4,000, and 2,100.

Brinley plot. Figure 2 shows a Brinley function with the data
Experiment 1
1100
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Figure 2. A Brinley plot for Experiment 1. The points on the graph
represent the same conditions for older and young subjects. The error bars
represent 2 standard errors.
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for the older subjects plotted against the data for the first group of
young subjects (later term, subject pool); the other young groups
produced similar results. The four points corresponding to the
fastest responses on the function are the mean response times for
correct responses for each of the four groups of experimental
conditions, and the two slowest points are the mean response times
for error responses for two of the four groups with lowest accu-
racy. We did not display mean error response times for the two
groups with higher accuracy because the data are a mixture of
responses from some subjects with many errors (e.g., 10%) and
some subjects with zero or very few errors (e.g., 1% or 2%); thus
the mean error response times would not be representative of the
group.

The error bars in Figure 2 are 2 standard errors in length. The
diagonal line is the best fitting straight line. The function is linear,
replicating the usual finding in the literature. The slope is 2.27 with
an intercept of —688 ms, both in the normal range of results (see
Cerella, 1985, Figure 3; Ratcliff et al., 2000, Figure 3). The fact
that the slopes are greater than 1 means that the spread in response
times for older subjects is greater than that for young subjects.

Latency probability functions and quantile probability func-
tions. A difficulty in dealing with two-choice response time data
is the number of dependent variables: the probabilities of correct
and error responses and the distributions of response times for
correct and error responses. Each of these must be described for
each experimental condition. Plotting each dependent variable
separately for each experimental condition would make the rela-
tive behaviors of the dependent variables extremely difficult to
grasp.

Latency probability functions help solve this problem because
they present the joint behavior of response probability and mean
correct and error response times. A latency probability function is
constructed by plotting the probabilities of responses on the x-axis
and mean response times on the y-axis. Responses with probability
greater than .5, on the right-hand end of the axis (in the asterisk
task, these are correct “high” responses to stimuli from the high
distribution for stimuli greater than the crossover point 47 asterisks
and correct “low” responses to stimuli from the low distribution
for stimuli lower than the crossover point) are the correct re-
sponses. Responses with probability less than .5, on the left-hand
end of the axis, are error responses.

Latency probability functions were used 20 to 30 years ago to
test among various response time models (e.g., Audley & Pike,
1965; Vickers, 1979; Vickers, Caudrey, & Willson, 1971), but
after that they were largely ignored. Perhaps the main reason for
this was that a latency probability function clearly displays error
response times, and few models of the past 30 years deal ade-
quately with error response times. Recently, however, new models
have become available that do deal with error response times, and
so the latency probability function is once again a useful tool for
displaying data and evaluating models.

Unfortunately, latency probability functions do not provide in-
formation about the shapes or spreads of response time distribu-
tions. To show distributional information along with response
probability, we introduce a new type of parametric plot, the quan-
tile probability function. For this function, quantiles of the re-
sponse time distribution for each experimental condition are plot-
ted as a function of response probability. Examples are shown in
Figure 3, for which the .1, .3, .5 (median), .7, and .9 quantiles are

plotted for each of the four (groups of) experimental conditions for
the data from Experiment 1. The Xs are the data points, and the
lines are the best fitting functions from the diffusion model, which
we discuss later. As a specific example, consider the second panel,
data for the later-term subject pool group of young subjects. For
both correct and error responses for all four conditions, response
times at the fastest quantile are about the same, about 450 ms.
Responses in the middle of the response probability range, those
with probabilities of .3 to .7, are slower than responses with higher
or lower probabilities because the response time distributions
spread. Responses in the .9 quantiles, for example, are much
slower for responses in the middle of the probability range than at
the ends of the range.

Quantile probability functions contain information about all the
data from the experiment: the probabilities of correct and error
responses and the shapes of the response time distributions for
both correct and error responses. The information about the re-
sponse time distributions is as detailed as the choice of quantiles;
more detail can be plotted by using a larger number of quantiles
(e.g., 20 quantiles instead of the 5 in Figure 3).

The four quantile probability functions in Figure 3 show data for
the older subjects and for the three groups of young subjects. As is
expected (Espinoza-Varas & Watson, 1994; Ratcliff & Rouder,
1998; Ratcliff et al., 1999) and was just mentioned, response times
for correct responses increase as correct response probability
moves from near 1 to near .5. The change in the shape of the
response time distribution is in the tail, the .7 and .9 quantiles (i.e.,
the distribution skews out rather than shifting; e.g., see Ratcliff &
Murdock, 1976). The .1 quantile changes little across conditions,
whereas the .9 quantile changes considerably. Error responses are
slower than correct responses, as shown in the quantile probability
functions by comparison of mirror image points on opposite sides
of the .5 probability point. For example, the quantiles at probability
.2 are higher (slower) than the quantiles at their mirror image,
probability .8. The error response times are longest when error
response probability is in the .2 to .4 range, and they are shorter
when error response probability is less than .1. However, error
response times are never shorter than their mirror image correct
response times.

There is one aspect of the results in Figure 3 in which the older
subjects differ from the young subjects, which is that the distribu-
tion of error response times shifts for older subjects (all error
response times become longer as accuracy increases; in particular,
the response time for the .1 quantile increases from about 600 to
700 ms as error rate decreases from .4 to .1). However, there is a
problem here, which is that, unlike the young subjects, some of the
older subjects produced too few errors in the extreme conditions to
allow computation of quantiles. Twenty six out of 40 older sub-
jects had fewer than five errors in the highest accuracy (lowest
error rate) condition. So the error response times for error rates
with probabilities between .2 and O are based on the data from
some but not all of the older subjects. In addition, some of the
older subjects produced some very slow response times, of the
order of several seconds (in pilot work, some older subjects actu-
ally tried to count the number of asterisks before we instructed
them to go with a global sense of the number). These extra long
response times were masked in the accurate conditions by many
faster response times, but in the error conditions, these were the
only responses produced. For these reasons, the fits of the model
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Figure 3. Quantile probability plots for older and young subjects for Experiment 1. The lines represent the
theoretical fits of the diffusion model, and the Xs represent the data. The lines in order from the bottom are for
the .1, .3, .5, .7, and .9 quantile response times. For older subjects, there are seven points displayed because the
highest accuracy error condition had too few observations for several of the subjects to produce quantiles.
Correct responses are to the right of the .5 response probability point, and the corresponding error responses are
to the left (if the correct response probability is p, the error response probability is 1 — p).

to the average data miss fitting the extreme error response times
(i.e., for low response probabilities).

In sum, the experimental data show qualitatively similar trends
for older and young subjects. The locus of the effects of age on
response time will be apparent through analyses of the data with
the diffusion model.

Experiment 2

There were two goals for Experiment 2. The first was to gen-
eralize the signal detection task to a different kind of stimulus.
Instead of judging whether some number of asterisks was “high”
or “low,” subjects were asked to decide whether the distance
between two dots was “large” or “small.” The second goal was to
add a speed—accuracy manipulation. For some blocks of trials
subjects were instructed to respond as quickly as possible, and for
other blocks of trials they were instructed to respond as accurately
as possible. With this manipulation, mean response time can vary
by as much as 500 ms (Ratcliff & Rouder, 1998, Experiment 1).
The speed—accuracy manipulation provides a strong test of the
diffusion model because only one parameter of the model can vary
between the speed and accuracy conditions, yet the model must
accommodate all differences in response time and accuracy.

Method

Stimuli. The stimuli were 32 pairs of dots presented on the screen of a
personal computer monitor, the same as was used in Experiment 1. The
bottom dot was in a fixed position on the screen, and the upper dot varied

in vertical distance above it (see Figure 1). There were 32 different
distances (and thus 32 different experimental conditions), varying between
e in. (1.7 ¢m; “small”) and 1 %6 in. (2.4 cm; “large”) in equal-size steps.

On each trial, a distance was chosen from the 32 possible distances, each
with probability 1/32 of being chosen. Which response, “large” or “small,”
was considered the correct response was chosen according to a probability
associated with each stimulus: For Stimuli 1 through 6, “small” was chosen
with probability .999. For Stimuli 7 through 15, “small” was chosen with
probabilities .913, .888, .856, .819, .774, 722, .664, 601, and .534,
respectively. For Stimuli 16 through 25, “large” was chosen with the same
probabilities of “small” Stimuli 15 through 7. For Stimuli 26 through 32,
“large” was chosen with probability .999.

Subjects. Seventeen young adults (5 men and 12 women) and 13 older
adults (4 men and 9 women) participated in the experiment. The young
adults were college students who were recruited from the Northwestern
University student body by advertisements and received $16 for their
participation. The older adults were healthy, active, community-dwelling
adults aged 60 years or older. They were recruited from advertisements
posted at local senior citizen centers and received $30 for their participa-
tion. All subjects completed the CESD and a medical history form. Sub-
jects were excluded if there was evidence of any of the following: distur-
bances in consciousness, medical or neurological disease causing cognitive
impairment, head injury with loss of consciousness, current psychiatric
disorder, a score of 25 or below on the Mini-Mental State Examination,
or a score of 16 or more on the CESD. The older adults also completed
the Vocabulary subtest of the Wechsler Adult Intelligence Scale—
Revised (Wechsler, 1981). Estimates of full-scale IQ were derived from
the scores of the two subtests (Kaufman, 1990). The means and standard

deviations for these standard background characteristics are shown in
Table 1.
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Procedure. Each subject participated in two 45-min sessions. There
were 12 lists of stimuli per session, and each list was made up of three
presentations of each of the 32 stimuli in random order. A subject’s task
was to decide whether the distance between the dots was large or small,
pressing the “/” key on the keyboard if large and the “Z” key if small. Of
the 12 lists per session, half were speed lists and half were accuracy lists.
In both list types subjects were given feedback 200 ms after the response:
“CORRECT” or “ERROR” presented for 500 ms followed by a blank
screen for 200 ms. In addition to the accuracy feedback, in the speed blocks
responses longer than 700 ms had a “TOO SLOW" message presented for
500 ms followed by a 200-ms blank screen. In the accuracy blocks, after
the accuracy feedback, a “large” response to Stimuli 1-6 or a “small”
response to Stimuli 2632 had the message “BAD ERROR” presented for
500 ms followed by a 200-ms blank screen.

Results

The results are organized in the same way as for Experiment 1;
first we present Brinley plots and then quantile probability func-
tions. Also as in Experiment 1, the experimental conditions were
collapsed into four groups for analysis. Along with grouping by
similar response times and accuracy (e.g., Distances 1-8 grouped
together), we grouped first, high-probability responses (“large”
responses to large distances and “small” responses to small dis-
tances) and second, low-probability responses (“small” responses
to large distances and “large” responses to small distances). Spe-
cifically, the stimulus groupings were (a) “small” responses to
Distances 1-8 were grouped with “large” responses to Distances
21-32, (b) “small” responses to Distances 9 and 10 were grouped
with “large” responses to Distances 19 and 20, (c) “small” re-
sponses to Distances 11 and 12 were grouped with “large” re-
sponses to Distances 17 and 18, and (d) “small” responses to
Distances 13 and 14 were grouped with “large” responses to
Distances 15 and 16. There was a slight bias toward “small”
responses that made these grouping choices optimal.

Brinley plots. Figure 4 shows Brinley plots for older versus
young subjects for the speed blocks and for the accuracy blocks.
As is typical, the functions are linear. For the speed blocks the
slope is 1.46. If this were an index of the internal speed of
processing for the older versus the young subjects, then the slope
should be the same for the accuracy blocks. However, the slope for
the accuracy blocks is 2.62, almost twice as large. If this were put
in terms of the general slowing hypothesis, it would mean that
older subjects’ processing is only 1.46 times slower than young
subjects’ under speed instructions but 2.62 times slower under
accuracy instructions. This is inconsistent with the widely held
view that processing speed is a characteristic of the individual and
not a characteristic of combinations of the individual with task
instructions. It is also especially inconsistent with the view that the
slope of the Brinley plot is an index of the speed of neural
processes.

If we think of this slowing due to speed—accuracy instructions as
reflecting a change in speed—accuracy criteria (see Pachella, 1974,
and the application of the diffusion model below), then the reason
for the change in the slope of the Brinley plot is that older subjects
change their criteria more with accuracy instructions than do
young subjects. It could be that the criterion change is greater for
older subjects, or it could be that the same criterion shift has a
larger effect for old subjects at their position on the speed—
accuracy trade-off function (see Pachella, 1974). We discuss cri-
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Figure 4. Brinley plots for the speed and the accuracy conditions for
Experiment 2. The points on the graph represent the same conditions for
older and young subjects. The error bars represent 2 standard errors.

terion changes in more detail below with application of the diffu-
sion model.
. For the speed and accuracy blocks for Experiment 2, the inter-
cepts of the Brinley plots are negative, consistent with typical data
and with Experiment 1. The fact that the slopes are greater than 1
means that the spread in response times for older subjects is greater
than for young subjects, but this difference is reduced for speed
conditions relative to accuracy conditions.

If the speed condition for older subjects is plotted against the
accuracy condition for young subjects, the slope is 0.54 with a
positive intercept of 200 ms. A result like this might be obtained
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if subjects had participated in prior experiments with older subjects
participating in deadline or response signal experiments, where
rapid responses are required and young subjects participating in
difficult tasks in which accurate responding is required. If the
speed--accuracy criteria carried over from the prior task to the new
task, then this pattern of results (a Brinley slope less than 1) could
be obtained. In terms of general slowing, this would mean that the
mental processes for older subjects trained to perform quickly are
twice as fast as the mental processes of young subjects trained to
be accurate.

The point is that the changes that subjects set in their speed—
accuracy criteria can alter the slopes of Brinley plots a great deal.
Thus, the slope can only be interpreted in terms of the criteria
subjects set.

Quantile probability functions. Figure 5 shows quantile prob-
ability functions for responses under speed and accuracy instruc-
tions for older and young subjects. The functions all look similar
to each other and similar to the functions for Experiment 1. The
change in distribution shape over conditions is displayed in the
behavior of the quantile response times: Response times at the .1
quantile vary little across conditions, whereas response times at the
.9 quantile vary the most across conditions. In other words, the
changes in response time are due to the distributions skewing out.
The shapes of the functions for the speed and accuracy conditions
are similar, although the scales on the y-axes are different (varying
by about 3:1 for the older subjects’ accuracy responses to the
young subjects’ speed responses). This means that speed—accuracy
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instructions had a large effect on response time, but the overall
shapes of the response time distributions stayed about the same. At
the same time, the effect of speed versus accuracy instructions on
accuracy was small: The largest difference in accuracy between
the speed and accuracy conditions was about:4%. In the quantile
probability functions, this appears as a horizontal shift in the five
quantiles for each condition for speed versus accuracy conditions
(see also Ratcliff & Rouder, 1998).

The Diffusion Model

The data from Experiments 1 and 2 provide a complete set of
tests for modeling. The data spread the range in accuracy proba-
bilities from ceiling to floor, and a model must accommodate the
shapes of the response time distributions for correct and error
responses at all levels of accuracy. Also, with the speed-accuracy
manipulation, the range of data is replicated at two different
speed—accuracy criterion settings. A model should be able to
accommodate the effects of speed versus accuracy instructions on
both response time distributions and accuracy probabilities with
only criteria changing across the two kinds of instruction. In the
paragraphs below, we present the diffusion model in detail and
then fit it to the data. As we elaborate later, the model fits the data
well and, in doing so, provides a comprehensive picture of the
differences in processing between young and older subjects for the
simple signal detection tasks used in the experiments.
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Figure 5. Quantile probability functions for older and young subjects for speed and accuracy conditions for
Experiment 2. The lines represent the theoretical fits of the diffusion model, and the Xs represent the data. The
lines in order from the bottom are for the .1, .3, .5, .7, and .9 quantile response times. Correct responses are to
the right of the .5 response probability point, and the corresponding error responses are to the left (if the correct
response probability is p, the error response probability is 1 — p).
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Ratcliff’s diffusion model (Ratcliff, 1978, 1981, 1985, 1988:
Raicliff & Rouder, 1998, 2000; Ratcliff et al., 1999) is designed to
account for response time and accuracy in experimental paradigms
in which subjects are asked to make two-choice decisions. The
model has been successful in dealing with both averaged group
data and with data from individual subjects across a range of
experimental paradigms, but it has not previously been applied to
the effects of aging on response time.

The diffusion model is meant to apply only to two-choice
decisions that are relatively fast and composed of a single-stage
decision process (as opposed to the multistage decision processes
that might be involved in, e.g., reasoning tasks, card-sorting tasks,
and so on; for such tasks, other modeling techniques are available,
e.g., see Fisher & Glaser, 1996). As a rule of thumb, we would not
want to apply the diffusion model to experiments in which mean
response times are much longer than 1 to 1.5 s (although this is a
rough guideline rather than an absolute rule). With a multistage
decision process, it could be assumed that the diffusion model was
the decision process used in each of the individual stages.

The diffusion model assumes that decisions are made by a noisy
process that accumulates information over time toward one of two
response criteria or boundaries. The mean rate of accumulation of
information is called drift rate, and it is determined by the quality
of the information driving the decision process. For example, a
large number of asterisks would have a large value of drift rate
toward the large boundary. Within each trial, there is noise or
variability in the process of accumulating information so that
processes with the same mean drift rate will terminate at different
times (this produces distributions of response time) and sometimes
at different response boundaries (this is how errors occur). This
source of variability is called wirhin-trial variability. When one of
the criteria is reached, a response is initiated. Speed-accuracy
instruction manipulations are modeled by altering the boundaries:
Wider boundaries require more information before a decision can
be made, and this leads to more accurate and slower responses.

In the past, response time models had considerable difficulty in
dealing with the relative speeds of correct versus error responses.
Empirically, response times for errors are sometimes longer than
response times for correct responses, sometimes shorter, and
sometimes the relationship between error and correct response
times varies for an individual subject across the conditions of an
experiment (Ratcliff & Rouder, 1998; Ratcliff et al., 1999; P. L.
Smith & Vickers, 1988). The diffusion model can account for
these varying patterns by using variability in parameter values,
specifically across-trial variability in mean drift rate and across-
trial variability in the position of the starting point. In memory
tasks, across-trial variability in drift rate means, for example, that
the 10th word in a list of words to memorize is not encoded with
exactly the same strength for each list (Ratcliff, 1978). In the
signal detection tasks used in Experiments 1 and 2, across-trial
variability in drift rate means that a stimulus of 34 asterisks, for
example, would not always be encoded in exactly the same way.
This variability across trials in drift rate produces slow errors
relative to correct responses (see Ratcliff & Rouder, 1998; Ratcliff
et al., 1999). Without across-trial variability in drift rate, the
diffusion model (like any random walk or diffusion model with
constant mean drift rate across trials) predicts that error response
times should be the same as correct response times with the
starting point of the process equidistant from both response bound-

aries. The opposite pattern, error responses faster than correct
responses, is produced by variability in starting point across trials
(Laming, 1968; see also Ratcliff, 1981). With both of these two
sources of across-trial variability, crossover patterns of error ver-
sus correct response times are exactly predicted by the model
(errors faster than correct responses when accuracy is high, errors
slower than correct responses when accuracy is low). Currently, no
other model is capable of producing these patterns of results
(Ratcliff & Rouder, 1998; Ratcliff et al., 1999, see also P. L. Smith
& Vickers, 1988, Van Zandt & Ratcliff, 1995).

The parameters of the diffusion model correspond to the com-
ponents of the decision process as follows: z is the starting point of
the accumulation of evidence, a is the upper boundary, and 0 is the
lower boundary. For the simulations described in this article, the
boundaries were assumed to be symmetric about the starting point
so that z = a/2 (because the data are symmetric, “high” responses
to high stimuli produce the same values of accuracy and response
time as do “low” responses to low stimuli). The amount of vari-
ability in the mean drift rate across trials is assumed to be normally
distributed with standard deviation ), and the variability in starting
point is assumed to have a uniform distribution with range s,. For
each different stimulus condition in an experiment, it is assumed
that the rate of accumulation of evidence is different and so each
has a different value of drift, v. In the fits of the diffusion model
to the data from both Experiments 1 and 2, there were four values
of v, one for each group of experimental conditions. Finally, there
is a parameter T, that represents the nondecisional components of
response time such as encoding and response execution. Within-
trial variability in drift rate (s) was kept constant in all the simu-
lations because it is a scaling parameter for the diffusion process
(i.e., if it were doubled, other parameters could be multiplied or
divided by two to produce exactly the same fits of the model to
data).

The components of the model that are the most likely candidates
for explaining age-related differences in response times are drift
rate, boundary position, and 7,,. Older subjects might extract less
information from the stimulus, and so their drift rates might be
lower than young subjects’. They might also set boundary posi-
tions wider to make accurate performance more likely. Alterna-
tively, they might be slower in the nondecisional components of
processing. Across-trial variability might also differ between
young and old adults; this would have only a small effect on
correct response times but a large effect on error response times.

Fitting the Diffusion Model to Data

The diffusion model has four parameters that are free to vary to
fit the shape of the quantile probability function for a single data
set: the boundary separation, a; the nondecision component of
response time, T, the variability in drift across trials, n (the
standard deviation of a normal distribution); and the variability in
starting point, s, (the range of a rectangular distribution). With four
experimental conditions (four groupings of numbers of asterisks),
there are four drift rates. It is assumed that the response criteria
(represented by the boundary separation a) are constant across
different levels of the independent variable, that is, the number of
asterisks. This assumption is made because it seems unlikely that
subjects can determine how many asterisks are presented, adjust
decision criteria, and then use the information about the number of
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asterisks to make a decision within 400 to 800 ms (and it makes no
sense—if they had information about the stimulus to adjust crite-
ria, they could use this to make their decision). With these eight
parameters (a, T.,, 1, s, and four drift rates), the model has to fit
the probabilities of correct and error responses and their response
times for all of the conditions in an experiment. To capture the
shapes of the response time distributions for each group of condi-
tions, the model is fit to the quantiles for that group (five quantiles
for the data from Experiments 1 and 2). The parameters of the
model are not free to vary independently of each other because
they jointly affect predictions for all conditions. If one or two data
points are not in line with the model, it is not possible to adjust just
one parameter to bring these two points into line; all eight param-
eters must be adjusted. For example, adjusting boundary separa-
tion a alters both response times and accuracy values for all
conditions (and alters the location of the .1 quantile reaction time).

The diffusion model was fit to the data from Experiments 1
and 2 by minimizing a chi-square value with a general SIMPLEX
(Nelder & Mead, 1965) minimization routine that adjusts the
parameters of the model to find the parameters that give the
minimum chi-square value. The data entered into the minimization
routine for each group of experimental conditions were the re-
sponse times for each of the five quantiles for correct and error
responses (i.e., the values shown in Figures 3 and 5). The quantile
response times were fed into the diffusion model, and for each
quantile the cumulative probability of a response by that point in
time was generated from the model. Subtracting the cumulative
probabilities for each successive quantile from the next higher
quantile gives the proportion of responses between each quantile.
For the chi-square value, these are the expected values, to be
compared with the observed proportions of responses for each
quantile (multiplied by the number of observations). The observed
proportions of responses for each quantile are the proportions of
the distribution between successive quantiles (i.e., the proportions
between O, .1, 3, .5, .7, .9, and 1.0 are .1, .2, .2, .2, .2, and .1)
multiplied by the probability correct for correct response distribu-
tions or the probability of error for error response distributions (in
both cases, multiplied by the number of observations). Summing
over (observed — expected)?/(expected) for all conditions gives a
single chi-square value to be minimized.

In the fits to the data for the experiments, the data from each
subject were fitted individually to obtain the best fitting parameter
values, and then these values were averaged across subjects. These
averages are used in interpreting the effects of age and speed—
accuracy instructions.

For displaying in figures the quality of the fits to the data,
these averages might be used to generate predicted fits for
average data. However, there would be an averaging problem
because the diffusion model is nonlinear. If perfect fits were
produced for each individual, then averaging the parameter
values from the individual fits would not produce the same
parameter values as fitting the model to the data averaged
across the individuals. This means that displaying in figures
model fits generated from averaged parameter values will not
show how well the model fits the individual subjects’ data.
Faced with this problem, we chose to illustrate the quality of the
fit of the model in Figures 3 and 5 by using the fit of the model
to the average data (for averages across the quantiles, see
Ratcliff, 1979) rather than generating predicted values from the

average parameters. It is important to note that the differences
between the average of the parameters for the individual fits and
the parameters from the fits to the average data are not large;
both sets of parameter values lead to the same interpretations
for the effects of aging on parameters of the model.

The predictions of the diffusion model for latency probability
functions have interesting properties. It is a general characteristic
of the model that the predicted functions are parametric plots for
which the shape is completely determined by only three parame-
ters. To explain this we first review receiver operating character-
istics (ROCs) from signal detection theory. The top panel of Figure
6 shows an ROC function, which is a parametric plot, for normally
distributed signal and noise distributions with equal standard de-
viations. The parameter that sweeps out the function is the position
of the decision criterion between the signal and noise distributions.
Thus, the shape and position of the ROC function is independent
of the criterion; the criterion setting determines the position on the
function for a particular experiment.

The bottom panel of Figure 6 shows how the latency probability
function predicted from the diffusion model is also a parametric
plot. (We use the latency probability function here instead of the
quantile probability function for simplicity.) The drift rate param-
eter sweeps out the function. The shape of the function is deter-
mined by just three parameters: the boundary separation a, the
standard deviation in drift across trials 7, and the range of starting
point values s,. The displacement of the function in the vertical
direction is determined by 7,. The function represents a stringent
constraint on the model. There are only three parameters to fit the
shape of the function and only the single parameter drift rate to
sweep it out across experimental conditions. This applies to all the
quantiles of the response time distribution; the three parameters
determine all of these. These constraints apply in fitting data for all
experimental conditions for which subjects cannot change their
response criteria (or other parameters) from one experimental
condition to the next, that is, the constraints apply in within-
subjects designs (see Ratcliff, 1978, Experiment 2). For example,
in Experiments 1 and 2 subjects cannot change their response
criteria as a function of the number of asterisks, but in Experi-
ment 2 they can change their response criteria as a function of
speed versus accuracy instructions.

An even stronger constraint on the model is that the shapes of
the response time distributions and how they change across exper-
imental conditions are also completely determined by these same
three parameters. The diffusion model allows only one particular
kind of shape change as drift rate varies across experimental
conditions: As response times slow across experimental condi-
tions, the leading edges of the distributions must shift only slightly,
and the main changes in response times must come from the
distributions spreading in the higher quantiles. This is exactly what
the quantile probability functions in Figures 3 and 5 show: virtu-
ally no change in the fastest quantiles across conditions accompa-
nied by spreading in the slower quantiles.

Fits of the Diffusion Model to Experiments 1 and 2

The fits of the diffusion model are shown in Figures 3 and 5.
The Xs are the data points, and the solid lines are the best fitting
lines to those data points. In general the fits are quite good. The
only serious misses (greater than 20 ms) are in the .9 quantiles or
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Figure 6. Parametric plots for receiver operating characteristic (ROC) functions in signal-detection theory and

for latency probability functions. RT = response time.

in the conditions for which the probability of errors is low (i.e., the
conditions with few observations). The chi-square values for the fit
of the model to the group data from Experiment 1 for the four
groups of subjects were 75.9, 62.8, 43.0, and 41.8 (old, young,
paid, and early-term subjects, respectively), with df = 35 and
critical x¥* = 49.7. The first two groups had significant chi-square
values, whereas the last two did not. Because we computed chi-
square values for groups, there were averaging problems that
would lead to inflated chi-square values. These results, however,
show that the fits are only slightly different from the predictions.
For Experiment 2 the chi-square values were 105.5 and 99.2, with
df = 78 and with the critical chi-square value 99.8 for p = .05. One
value was barely significant and the other barely not significant,
which shows that the model fits the group data reasonably well.

The means of the parameter values from the fits of the model to
individual subjects are displayed in Table 2, and the standard
errors in the mean parameter values are displayed in Table 3.

The three groups of young subjects in Experiment 1 differed
little in the parameters a, T, 7, and s,. The parameter values
among the groups were all within two standard errors of each
other. Where the three groups did differ was that the drift rates for
the experimental conditions with highest accuracy were smaller for
the end-of-term subjects than for the other two groups. The end-
of-term subjects were extracting poorer information from the stim-
ulus displays than the other two groups, probably because they
were less motivated (¢ tests for drift rates v,, v,, and v, between the
end-of-term young subjects and the other two groups combined
were each significant at the .05 level).
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Table 2

Parameter Values From Fits of the Diffusion Model to Experiments 1 and 2

Experiment and

Experiment 1
Older 0.1705 0.3938 0.0928 0.0365 0.3507 0.2040 0.1152 0.0425
Young late term 0.1413 0.3409 0.0846 0.0513 0.2727 0.1472 0.0861 0.0037
Young early term 0.1475 0.3459 0.0992 0.0458 0.3152 0.1950 0.1188 0.0399
Young paid 0.1416 0.3549 0.0959 0.0561 0.3008 0.1801 0.1163 0.0410
Experiment 2
Older accuracy 0.1805 0.3234 0.1081 0.0453 0.3302 0.2063 0.1357 0.0364
Older speed 0.1096 0.3234 0.1081 0.0453 0.3302 0.2063 0.1357 0.0364
Young accuracy 0.1483 0.2846 0.1040 0.0396 0.3300 0.2050 0.1077 0.0425
Young speed 0.0914 0.2846 0.1040 0.0396 0.3300 0.2050 0.1077 0.0425

Note. a = boundary separation; T,, = nondecision component of response time; 1 = standard deviation in drift across trials; s, = range of the distribution

of starting point (z); v = drift rates.

The older subjects in Experiment 1 differed from the three
young groups combined in three main ways. First, the older
subjects spread their boundary positions wider than the young
subjects (larger values of the parameter g, #[142] = 4.07, p < .05),
indicating that they adopted a more conservative response criterion
in order to achieve greater accuracy. The standard error in the
mean values of a across subjects was also larger for the older
subjects, meaning that there were wider differences in this param-
eter across the older subjects than across the young subjects.

Second, the nondecision component of response time T, was
about 50 ms larger for the older subjects than for the young
subjects, #(142) = 4.53, p < .05. The standard error in this
parameter value was also larger across older subjects than young
subjects.

Third, and most surprising, was that the drift rates in the two
highest accuracy conditions were a little larger for the older
subjects than the three groups of young subjects combined,
1(142) = 3.44 and 2.74, p < .05 (the difference is also significant
with the late-term young subjects excluded for the highest drift
rate). This means that the older subjects were extracting better
information from the stimuli. We attribute this to higher motiva-
tion for the older subjects; that is, they were more likely to try to
perform well over the whole experimental session than were young
subjects. Accuracy values also suggest that older subjects are

Table 3

extracting better information because older subjects are more ac-
curate than the young subjects for equivalent conditions (this can
be seen in the quantile probability functions in a slight shift to the
right for older subject conditions compared with young subject
conditions). The main conclusion here is that the older subjects do
not have worse drift rates in this signal detection task. The evi-
dence that they extract from the stimuli is not of lower quality than
that of the young subjects.

It should also be pointed out that the across-trial variability in
drift rate (7)) was about the same for older and young subjects. It
might have been thought that older subjects would show more
variability, but they did not. There were also small, but not
significant, differences in starting point variability for the four
groups of subjects.

In Experiment 2, two of the same differences between older and
young subjects emerged. The parameter values and the standard
errors in them are shown in Tables 2 and 3. First, the boundary
separations and their standard errors were larger for the older than
the young subjects (the speed and accuracy boundary separations
were not separately significant, but the average of the two was),
#(28) = 2.26, p < .05. Second, there was about a 40-ms difference
between older and young subjects in the nondecision component of
response time, #(28) = 2.71, p < .05. However, in this experiment,
unlike Experiment 1, drift rates for the older subjects were not

Standard Errors Across Subjects in Parameter Values From Fits of the Diffusion Model to Experiments 1 and 2

Experiment and

group a Te n Sz Uy & U3 Uy

Experiment 1

Older 0.0073 0.0125 0.0075 0.0054 0.0155 0.0114 0.0062 0.0037

Young late term 0.0048 0.0074 0.0108 0.0054 0.0101 0.0080 0.0066 0.0085

Young early term 0.0065 0.0078 0.0121 0.0061 0.0158 0.0109 0.0083 0.0042

Young paid 0.0047 0.0070 0.0109 0.0058 0.0164 0.0091 0.0075 0.0035
Experiment 2

Older accuracy 0.0100 0.0129 0.0171 0.0080 0.0170 0.0170 0.0078 0.0127

Older speed 0.0042 0.0129 0.0171 0.0080 0.0170 0.0170 0.0078 0.0127

Young accuracy 0.0095 0.0044 0.0138 0.0044 0.0129 0.0137 0.0091 0.0050

Young speed 0.0035 0.0044 0.0138 0.0044 0.0129 0.0137 0.0091 0.0050

Note. a = boundary separation; 7., = nondecision component of response time; 7 = standard deviation in drift across trials; s, = range of the distribution

of starting point (z); v = drift rates.
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significantly larger than for the young subjects (except for the third
condition in which drift rate was a little larger for the older
subjects), #(28) = 2.74, p < .05. As in Experiment 1, the standard
deviation in drift across trials and the range of starting points did
not differ from older to young subjects, and the values were about
the same as those in Experiment 1.

The speed-accuracy manipulation in Experiment 2 had a large
effect on performance. For both the young and older subjects,
boundary positions are set wider with accuracy instructions than
with speed instructions, but the difference is much larger for the
older subjects, consistent with the interpretation that they were
more motivated. The diffusion model provides good fits to all the
data despite having only one parameter (boundary position @) that
can vary between the speed and accuracy conditions (see Ratcliff
& Rouder, 1998, Experiment 1). Across these conditions, all the
other parameters must remain constant. The success of the model
at fitting such large differences in speed, accuracy, and response
time distributions between the two conditions is strong support for
the model.

Comparisons of parameter values across Experiments 1 and 2
show that the values are about the same for the two experiments,
and this also provides compelling support for the model. First, the
boundary separation parameters for the young and older subjects
are about the same for the accuracy condition of Experiment 2 as
for Experiment 1. For young subjects the parameters are .144 and
.148, and for older subjects the parameters are .171 and .181, for
Experiments 1 and 2, respectively. This suggests that, in this
simple signal detection task when no explicit instructions are
given, subjects tend to stress accuracy in their performance.

Second, the difference between the T, values for young and
older subjects is about the same in the two experiments, about 50
ms. This means that the motor output and other nondecision
components of processing are slower for the older subjects by
about the same amount in the two experiments. (It should be noted
that this 50-ms difference is not nearly as large as the slowing
factor of 1.5 or more that the Brinley plot analyses would suggest.)

Third, the two variability parameters, standard deviation in drift
across trials () and range of starting points (s,), differ little across
the experiments; they also differ little between the groups of
subjects (see Table 2). The differences between the averages for
the groups are much less than differences among the individuals.

Finally, the fits of the diffusion model to the data provide an
explanation for the Brinley plot results. Ratcliff et al. (2000)
showed that the diffusion model could produce slopes greater
than 1 with drift rates, boundary positions, or both differing
between young and older subjects. In Experiments 1 and 2 it is
clearly differences in boundary positions that produce the observed
differences in the spreads of mean response times across condi-
tions. The boundary separation is larger for older subjects than
young subjects, and there is more variability across subjects for
older subjects than young subjects. This is what produces the
larger spread in mean response time across conditions for older
subjects, and this in turn produces the greater than 1 value of slope
for the Brinley plot.

Individual Differences in the Diffusion Model

For most models, there have been no systematic studies of how
the parameters of the model vary across individual subjects, and

this is true of the diffusion model. It could be that some parameters
vary little across individuals. Or it could be that the distributions of
parameter values are highly skewed with most subjects having, for
example, fairly low values of drift rates, but a few (very motivated)
subjects having much higher values. Another possibility is that the
values of two or more parameters might be correlated across
individuals. For example, motivated subjects might set their
boundaries far apart under conditions for which they realize that
drift rates are low (as they might be in experimental conditions for
which the task was very difficult). For these subjects, drift rates’
and boundary positions would be correlated.

To provide a large sample size to examine parameter values
across individuals, we combined the three groups of young sub-
jects from Experiment 1 and plotted histograms for each of the
diffusion model parameters. Figure 7 shows these histograms, and
Figure 8 shows the same plots for the older subjects from Exper-
iment 1. The main result was that the distributions of parameter
values are about normal (with the exception of the leftmost peaks
for the 7 and s, parameters, Figures 7 and 8), perhaps with a little
more skew to the right than a normal distribution. The reason for
the slight skew is that for each of the parameters, there is a
minimum of zero but no maximum. The finding of roughly normal
distributions of parameter values across subjects shows that the

20

101 1 15

5 10

I— 5

0 0
14 018 022

01 02 03

04 05
a

Vi
20
15 15
10 10
5 5
== 0
015 025

025 0.30 035 040 045 0.05

Ter Va2
15 ( 20
10 15
10
5 5
0 | s B o | 0 —
00 01 02 03 0.0 0.10 0.20
Ul V3
25
15, ] 20
10 15
10
s 5
0 mi 0 —r
0.0 005 010 015 -0.10 0.0 0.10
S, A\ 77

Figure 7. Histograms for the parameter values across young subjects (the
three groups combined) for fits of the diffusion model for Experiment 1.
a = boundary separation; 7, = nondecision component of response time;
7 = standard deviation in drift across trials; s, = range of the distribution
of starting point (z); v = drift rates.



AGING AND REACTION TIME IN SIGNAL DETECTION 337

10 8
8 6
6 — .
4 ||
2 }Hjj : —,
0 g
0.10 015 020 0.25 0.2 0.4 0.6
a Vi
— 14
10 l— 12
8 10
6 8
4 | 6
o e
2 2
0 1 0
02 03 04 05 06 07 0.1 02 03 04
Teor V2
12
6 10
8
4 6
2 4
2
0 0
00 005 010 015 005 010 015 020
n V3
14
15 I
10 ‘g
6
5 4
2
0 0 L
0.0 004 008 012 00 004 008 0.12
S, Va

Figure 8. Histograms for the parameter values across older subjects for
fits of the diffusion model for Experiment 1. a = boundary separation;
T,, = nondecision component of response time; 7 = standard deviation in
drift across trials; 5. = range of the distribution of starting point (z); v =
drift rates.

diffusion model produces a reasonably uncontroversial interpreta-
tion of individual differences. Some subjects have small parameter
values, whereas others have large parameter values, but most are in
the middle.

A number of values of the 1 and s, variability parameters for
individual subjects were estimated to be zero (the left peak in the
histograms for these parameters). This is caused by the fitting
method. When the true m or s, parameter value is small, and other
parameter values are fixed at their minima, then there is no
minimum in the chi-square function as 7 or s, is increased from
zero. This occurs because of the variability in the data that enters
the chi-square computation. Without a minimum, the fitting
method produces a best fit at zero. There may also be cases in
which these parameters are genuinely small (e.g., 0.001), but the
fitting method cannot distinguish these cases because the variabil-
ity in the data is too large to allow such precise location of the
parameters.

The other aspect of individual differences that we examined is
whether some of the parameter values are correlated. For example,
a subject could take less time to encode the stimuli (smaller T,,)
and as a result have smaller drift rates. To examine covariations
among the parameters, we computed correlations across all the
young subjects from Experiment 1 for all the possible pairs of

parameter values. Table 4 shows these correlations, and Figure 9
shows scatter plots for each pair.

Many of the correlations in Table 4 are of moderate size (.2—.4),
but most would be considerably smaller if a few extreme values
were eliminated (e.g., if 5-10 points in the top ri;;rht-hand corner of
the panels in Figure 9 for the correlations between a and the drift
rates v were removed, the correlations would be close to 0).
Fig‘ure 9 shows that the main systematic correlations between
parameters are, first, the drift rates v;, v,, and v,. If one drift rate
value is high, the others are also high (v, is near 0 and so does not
correlate with the other drift rates). Second, the standard deviation
in drift across trials correlates with drift rates and with boundary
separation. As the drift rates increase, the variability in drift across
trials may increase simply as a scaling effect (i.e., the standard
deviation increases because the range above floor increases). The
variability in drift across trials may increase with boundary sepa-
ration because the more variable the drift rate across trials, the
more conservative the subjects will be, and this leads to them
setting a higher value of boundary separation. Boundary separation
does not covary with drift rate as much as standard deviation in
drift across trials covaries with each of them. This can be inter-
preted as meaning that a higher drift rate does not lead to more
conservative response criteria except through the intermediate
factor of variability in drift across trials. Although some of the
other correlations may be significant (a value of r = .32 is barely
significant at the .028 level corrected for the 28 possible compar-
isons; for N = 100-104 data points from 104 subjects and a p level
of .001, 1 — [1 — .001]*® = .028), this is not caused by a strong
linear relationship between the variables (see Figure 9) but rather
by a few scores being extreme in one direction or another.

The analyses of individual differences show no surprises. The
distributions of parameter values are reasonably normal, and there
are few large correlations among the parameter values. This means
that the conclusions that we draw from fitting the model to the data
are not distorted by extreme individual differences.

General Discussion

Overall, the diffusion model provides a novel interpretation of
aging effects on response time. Ratcliff et al. (2000) showed that
the Brinley plot regularities that have been obtained in aging
research can be explained by the diffusion model (and other
models of the sequential sampling class, e.g., accumulators, other
random walks, counter models, and so on; see Luce, 1986). The
larger variance of the older subjects’ distributions of response
times and the slower mean response times for older subjects can be
produced in a variety of different ways from the diffusion model,
for example, by differences between the older and young subjects
in drift rates, boundary positions, the nondecisional components of
response time, or combinations of these.

The fact that the data from both the older and young subjects are
fit by the same diffusion model suggests the same conclusion as
was drawn by G. A. Smith and Brewer (1995), that the “older
group used the same processing mechanisms as the younger group-
... but .. respond more carefully” (p. 246).

The experiments described in this article examined the effects of
aging in simple response time tasks. When the diffusion model was
used to interpret the data, three main effects of aging were found.
First, the older subjects set wider, more conservative response
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Correlations Among Parameter Values for Individual Subjects for All Young Subjects for Experiment 1

a T

er n Sz U (%3 U3 Uy
a — 086 675 353 487 354 310 207
T.. 086 e 223 -.079 .350 281 165 .168
7 675 223 — 408 694 664 541 279
s, 353 -.079 408 — 285 318 .303 251
v, 487 .350 .694 . 285 — .822 682 .363
v, 354 .281 .664 318 .822 — 770 449
vy 310 165 541 .303 .682 770 — 403
Uy .207 .168 279 251 363 449 403 —

Note. a = boundary separation; T, = nondecision component of response time; = standard deviation in drift across trials; s, = range of the distribution

of starting point (z); v = drift rates.

criteria than the young subjects. This means that older subjects
preferred more evidence than the young subjects to make a deci-
sion, and so they were acting more conservatively than the young
subjects. Second, the nondecisional components of processing
were slower for the older subjects by about 50 ms. Third, drift rates
were never smaller for the older subjects than for the young
subjects, and in some conditions of Experiment 1 they were
significantly larger than for the young subjects. This means that the
quality of evidence obtained from the stimulus displays is just as
good (sometimes better) for the older subjects than for the young
subjects.

In Experiment 2 both older and young subjects were able to
adjust their speeds of processing according to speed versus accu-
racy instructions. This is consistent with the diffusion model and
other models of the sequential sampling class. The differences in
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Figure 9. Scatter plots of parameter values for fits of the diffusion model
to individual subjects for young subjects (three groups combined) for
Experiment 1. ¢ = boundary separation; 7,. = nondecision component of
response time; n = standard deviation in drift across trials; 5, = range of
the distribution of starting point (z); v = drift rates.

performance under speed versus accuracy instructions are ex-
plained by movement of the criteria, which represent the amount of
evidence required for a decision (a greater change for older sub-
jects than younger subjects).

We can speculate why older subjects adopt more conservative
response criteria. First, fit the diffusion model to pilot data from a
letter identification task with masking (cf. Ratcliff & Rouder,
2000). Overall, the older subjects responded about 150 ms slower
than the young subjects. The nondecisional component of process-
ing was larger for the older subjects, and the response criteria were
more conservative for the older subjects than for the young sub-
jects (the same qualitative pattern as we found in Experiments 1
and 2 above). However, in contrast with the experiments presented
here, drift rates were lower for older subjects than young subjects,
by nearly a factor of two. This means that the older subjects are
getting perceptual information at a lower rate than young subjects.
If lower rates of accumulation of information occur in many tasks
for older subjects, then, as a result, they might adopt more con-
servative decision criteria across all tasks that require rapid one-
process decisions. This would explain why the older subjects are
more conservative in the signal detection tasks even when their
information accumulation is just as good as for young subjects.

Although we would not want to apply the diffusion model to
tasks in which mean response times were much over 1 to 1.5 s, the
finding that older subjects adopt more conservative criteria may
also apply in tasks where response time is much greater than a
second. For example, Hertzog, Vernon, and Rypma (1993) exam-
ined the effect of speed—accuracy instruction in a mental rotation
task. They found the same kinds of qualitative effects we obtained
here. Older subjects were less willing to trade accuracy for speed
than were young subjects. It may be that criteria that determine
how much information is needed for a decision or how much
information is needed before the processing system can proceed to
another stage of processing are set globally so that they apply
across a range of experimental tasks.

Patterns the Diffusion Model Cannot Fit

Roberts and Pashler (2000) have criticized the use of goodness-
of-fit measures as the sole method for evaluating a model and have
suggested that knowing what a model cannot fit is almost as
important as knowing that it can fit a data set. This leads to the
suspicion that a many-parameter model such as the diffusion
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model can fit any pattern of results (a reviewer of another article
recently made this claim). Ratcliff (2001) has presented examples
of empirical data that could not be fit by the diffusion model. He
showed several possible quantile probability functions that could
not be obtained with the diffusion model (under the assumption,
appropriate for the relevant applications, that all that changes in the
model across experimental conditions is drift rate). Quantile prob-
ability functions that the diffusion model cannot fit include
U-shaped functions; for example, if the inverted U-shaped quantile
probability functions in Figures 3 and 5 were flipped upside down,
the diffusion model could not fit them. Other examples that the
diffusion model could not fit include quantile probability functions
with large changes in the .1 quantile across conditions, functions
with normal distributions of reaction times, functions with tails
significantly longer than exponential, and so on. The point from
these examples is that the model is highly constrained. The pat-
terns of data it can explain are produced from experiments, and the
patterns that it cannot explain are not produced from the two-
choice experiments that have been addressed by the diffusion
model so far.

Alternative Models

No alternative models are presented in this article for contrast
with the diffusion model. The reason is that it is only in the last few
years that attempts have been made to explicitly fit accuracy and
reaction time distributions for correct and error responses with
stochastic processing models. Before this, the focus was on only
some aspects of the experimental data, for example, accuracy and
correct mean response time. Some competitor models that are
promising are Ornstein Uhlenbeck diffusion models (Busemeyer
& Townsend, 1993; P. L. Smith, 1995), accumulator models, and
counter models (LaBerge, 1962; P. L. Smith & Vickers, 1988;
Vickers, 1979). These models should be able to account for accu-
racy rates and for correct and error response time distributions.
However, none of these models has yet been shown to successfully
account for the full range of experimental data across more than a
single experimental paradigm. When these models (e.g., Ratcliff &
Smith, 2001; Van Zandt, Colonius, & Proctor, 2000) have been
more fully evaluated, they can be applied to the data presented in
this article, and their parameters can be used to interpret the effects
of aging by using the application of the diffusion model in this
article as a guide.

Brinley Plots

The study of the effects of aging on response times in cognitive
tasks has focused in large part on the degree to which cognitive
processes slow with age. The reason for this has been the common
interpretation of Brinley plots, that their slope shows the degree to
which the mental processes of older people are slowed relative to
young people (see Cerella, 1985, 1991, 1994; Myerson et al., 1990;
Nebes & Madden, 1988).

Fisher and Glaser (1996) questioned the use of Brinley plots
when they showed that, within a framework that assumes that
cognitive processes are actually combinations of processes (oper-
ating in serial or parallel fashion or a combination of the two), the
conclusions that might be drawn from qualitative analyses of
Brinley plots are not unique. For example, response time data for

older versus young subjects that appear to be consistent with a
general slowing of all components of processing could instead be
the result of different components slowing at different rates. They
also showed the opposite, that data that might be interpreted as
showing differential slowing of components could also be the
resuit of general slowing of all components. Thus, where it is
appropriate to think of processing as combinations of processes
(we think of appropriate domains as those where response times
are seconds), these warnings imply that the Brinley plot cannot be
used by itself to make inferences about processing.

Ratcliff et al. (2000) provided a different attack on the diagnos-
ticity of Brinley plots. As mentioned above, they showed that the
slope of the Brinley plot does not measure the slowing of one
group of subjects relative to another; rather, it measures the spread
in mean response times across conditions of one group relative to
another. It is the intercept of the Brinley plot rather than the slope
that gives a measure of slowing. The slope of the Brinley plot is an
index of the relative spread of the subjects’ response times across
conditions.

There are also practical problems with the standard Brinley
analyses, as exemplified by the data from Experiment 2. For this
experiment, the slope of the Brinley plot was affected in almost a
2:1 ratio by the speed—accuracy manipulation. Were the slope of
the Brinley plot to indicate the relative speed of mental processes
for older versus young subjects, then the results of Experiment 2
would indicate, first, that the older subjects’ mental processes
speed up in going from accuracy to speed instructions, and second,
that the relative speeds of older versus young subjects are different
under speed versus accuracy instructions. Most extremely, if the
response times of the older subjects in the speed condition are
plotted against the response times of the young subjects in the
accuracy condition, then the slope is about 0.5, indicating that the
speed of mental processes for the older subjects is about twice that
of the young subjects. Obviously, the often-invoked hypothesis
that Brinley plots show a general slowing of cognitive processes
for older people is not consistent with the data from Experiment 2.

The relative processing speeds shown in Experiment 2 also
conflict with two prominent models, Cerella’s (1990) neural net-
work model and Myerson et al.’s (1990) information loss model.
Cerella suggested that processing is performed in a series of stages
within a neural network. The effect of aging is to break some of the
links, with the result that cognitive computations must take longer
neural paths. Myerson et al. suggested that cognitive tasks are
performed by series of processes and that the effect of aging is to
slow down each process by a fixed amount. The fact that older
people can speed their responses to a rate faster than that of young
subjects (when the young subjects are trying to be accurate)
implies that these models would have to incorporate adjustable
processing rates. However, this would conflict with the models’
basic hypotheses about information loss or speed of neural pro-
cesses, the hypotheses that motivated the models.

Summary

The two experiments presented here show that, at least in simple
signal detection tasks, there is considerably less difference be-
tween older and young subjects in processing speed than has been
supposed in prior research. The main reason older subjects are
slower than young subjects and have wider distributions of re-
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sponse times across conditions is that the older subjects set more
conservative response criteria than the young subjects, and older
subjects have longer nondecisional components of response time
than young subjects. Of course, it is likely that in other rapid,
two-choice decision tasks, there is degradation in the quality of the
information that enters the decision process for older versus young
subjects. For example, there might be decrements in extraction of
perceptual information from difficult-to-see stimuli or decrements
in information extracted from long-term memory. Along with
these decrements, however, our data suggest that much of the slow
down observed in response times for older subjects will come from
more conservative response criteria.
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