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Practice effects were examined in a masked letter discrimination task and a masked brightness discrim-
ination task for college-age and 60- to 75-year-old subjects. The diffusion model (Ratcliff, 1978) was fit
to the response time and accuracy data and used to extract estimates of components of processing from
the data. Relative to young subjects, the older subjects began the experiments with slower and less
accurate performance; however, across sessions their accuracy improved because the quality of the
information on which their decisions were based improved, and this, along with reduced decision criteria,
led to shorter response times. For the brightness, but not the letter, discrimination task, the older subjects’
performance matched that of the younger group by the end of 4 sessions, except that their nondecision
components of processing were slightly slower. These analyses illustrate how a well-specified model can
provide a unified view of multiple aspects of data that are often interpreted separately.
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Research that has examined the effects of practice in simple
perceptual tasks such as signal detection, motion and orientation
discrimination, letter discrimination, and visual search has found
that practice improves performance for both young and older
adults (for reviews, see Gibson, 1953, 1969; Kausler, 1994). Some
studies report greater levels of improvement in older adults (e.g.,
Rogers & Fisk, 1991), whereas others show equivalent levels of
improvement in young and older adults (e.g., Ball & Sekuler,
1986; Hertzog, Williams, & Walsh, 1976; McDowd, 1986; Plude
et al., 1983; Salthouse & Somberg, 1982). However, currently little
is known about the mechanisms that underlie improvement in
these tasks as a function of aging (Salthouse & Somberg, 1982;
Welford, 1985).

In this article, we use the diffusion model (Ratcliff, 1978, 1981,
1985, 1988, 2002; Ratcliff, Gomez, & McKoon, 2004; Ratcliff &
Rouder, 1998, 2000; Ratcliff & Smith, 2004; Ratcliff, Van Zandt,
& McKoon, 1999; P. L. Smith, 2000; P. L. Smith, Ratcliff, &
Wolfgang, 2004) to characterize age differences in practice effects
in two perceptual tasks: a masked letter discrimination task and a
masked brightness discrimination task. The diffusion model is a
model of the cognitive processes that underlie decision making in
two-choice response time tasks. It separates processing into several

components: the quality of the information from the stimulus that
is available to the decision system (drift rate), the decision criteria
that determine the amounts of information that must be accumu-
lated before a decision can be made, and the nondecision compo-
nents of processing such as stimulus encoding and response exe-
cution. The model has been successfully applied to experimental
data from a variety of two-choice tasks, including the masked letter
and brightness discrimination tasks used here (Ratcliff, 2002;
Ratcliff & Rouder, 2000), and it provides the most comprehensive
account of data in its domain currently available (Ratcliff &
Rouder, 1998; Ratcliff & Smith, 2004; Ratcliff, Van Zandt, &
McKoon, 1999).

In aging research, the model has provided insights into age
differences in letter (Thapar, Ratcliff, & McKoon, 2003) and
brightness (Ratcliff, Thapar, & McKoon, 2003) discrimination as
well as signal detection-like tasks (Ratcliff, Thapar, & McKoon,
2001), recognition memory (Ratcliff, Thapar, & McKoon, 2004),
and lexical decision (Ratcliff, Thapar, Gomez, & McKoon, 2004).
By applying the diffusion model to the data, Ratcliff et al. have
been able to separate the effects of aging on the quality of stimulus
information from the effects of aging on criterion settings and on
the nondecision components of processing. In all of the experi-
ments, older subjects were slower than young subjects in the
nondecision components of processing (with response time differ-
ences between 40 and 100 ms). In most of the experiments, older
subjects adopted more conservative decision criteria than young
subjects. In all of the experiments except masked letter discrimi-
nation, the quality of the information driving the decision process
was not significantly different between young and older subjects.
The finding that the quality of the information was better for young
than older subjects in masked letter discrimination but not masked
brightness discrimination is consistent with findings in the psy-
chophysical literature using accuracy and threshold measures (e.g.,
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Elliot, Whitker, & MacVeigh, 1990; Higgins, Jaffee, Caruso, &
DeMonasterio, 1988; Owsley, Sekuler, & Siemsen, 1983; Spear,
1993). These studies show a deficit as a function of age for high
spatial frequency stimuli (e.g., letters) but not for low spatial
frequency stimuli (e.g., brightness patches). Together, the patterns
of deficits that have been found across the tasks pose a challenge
to theories that have postulated some type of general slowing
mechanism to account for age-related deficits in cognition (e.g.,
the generalized slowing hypothesis; Brinley, 1965; Cerella, 1985,
1994; Myerson, Adams, Hale, & Jenkins, 2003; Ratcliff, Spieler,
& McKoon, 2000, 2004; Salthouse, 1985). These accounts are
hard-pressed to explain the similarity in slowing of the nondeci-
sional components of processing observed across tasks coupled
with task-specific deficits in the quality of stimulus information
and response criteria. In contrast, the diffusion model not only
accounts for all the data from the tasks, but it provides interpre-
tations of the effects of aging on performance that corroborate the
conclusions reached by researchers in the psychophysical
literature.

In the experiments in this article, masked brightness discrimi-
nation and masked letter discrimination performance improved
with practice for both young and older subjects. The aim was to
investigate whether the improvements in performance were due to
changes in the criteria that determine the amounts of information
that must be accumulated before a decision, changes in the quality
of stimulus information driving the decision process, changes in
the nondecision components of response time, or some combina-
tion of these.

Masked brightness and masked letter discrimination are similar
to some of the tasks that have been studied in research on percep-
tual learning. For example, Fine and Jacobs (2002) compared the
effects of practice on a number of perceptual tasks and found that
learning was modest with simple stimuli but more pronounced
with complex stimuli. In particular, naming common objects and
spatial frequency discrimination (the two tasks most like the letter
discrimination and brightness discrimination tasks used here)
showed relatively small practice effects. From a theoretical per-
spective, some research on perceptual learning has focused on
separating out components of processing that might be responsible
for improvements in performance (e.g., Dosher & Lu, 2004), but
few studies have examined response time and none has used the
behavior of both accuracy and response time, as the diffusion
model does, to jointly constrain theoretical interpretations of data.
(In fact, Fine & Jacobs, 2002, explicitly excluded tasks using
response time measures.)

In this article, the performance of young and older subjects was
compared across three 1-hr sessions of masked letter discrimina-
tion in Experiment 1 and across four 1-hr sessions of masked
brightness discrimination in Experiment 2.

When Ratcliff et al. (2003) investigated age differences in
brightness discrimination, they found that older subjects were
slower than young subjects in the nondecision components of
response time, but this was the only significant difference in the
components of processing between the two groups. Older subjects
did not set significantly more conservative decision criteria than
young subjects, nor was the stimulus information on which their
decisions were based of significantly lower quality. However,
Ratcliff et al. reported only data from experimental sessions for
which subjects’ performance had stabilized, and in general, this

was the first two sessions of performance for young subjects but
the second and third or third and fourth sessions for older subjects.
The question we address in this article is how practice contributed
to the performance of the older subjects. In other tasks, older
subjects often set more conservative decision criteria than young
subjects, but they also move their settings significantly depending
on whether the task instructions emphasize speed or accuracy.
Thus, older subjects might reasonably be expected to move to less
conservative settings with practice. Criteria settings are highly
correlated with response time (averaged across conditions; Rat-
cliff, Thapar, Gomez, & McKoon, 2004; Ratcliff et al., 2003;
Thapar et al., 2003), so less conservative settings across sessions
would mean shorter response times across sessions. More specu-
lative are hypotheses about the effects of practice on older sub-
jects’ nondecision components of processing and on the quality of
stimulus information entering the decision process. Practice might
speed up some nondecision components of processing such as
response execution. It also might—or might not—improve sub-
jects’ abilities to obtain discriminative information about bright-
ness versus darkness from a stimulus. The quality of the informa-
tion from a stimulus is correlated with response accuracy, so better
information on which to base decisions would mean more accurate
responses. Issues like these about how to isolate the effects of
practice on specific, separable components of processing have
rarely been addressed in the aging literature (see Touron, Hoyer, &
Cerella, 2001).

Thapar et al. (2003) found that masked letter discrimination
differs from brightness discrimination in that older subjects were
disadvantaged in evidence available from the stimuli and in setting
more conservative response criteria, not just in the nondecision
components of processing. Like the Ratcliff et al. (2003) study,
Thapar et al.’s letter discrimination data were collected after sub-
jects’ performance had stabilized, and for older subjects, this was
usually after two sessions of practice. Here, we examine perfor-
mance as it changes across sessions. For the nondecision compo-
nents of processing and for decision criteria settings, the same
expectations can be generated as for brightness discrimination: a
possible speedup for nondecision components and possibly less
conservative decision criteria. However, the findings in the psy-
chophysical literature that high spatial frequency stimuli are espe-
cially difficult for older subjects suggest the hypothesis that prac-
tice does not yield improvements in the quality of information on
which letter discrimination is based.

Experiment 1: Letter Discrimination

On each trial, one of two letters was displayed on the screen and
then masked, and a subject’s task was to indicate which letter was
presented. Stimulus duration was manipulated such that perfor-
mance varied from near chance at the shortest duration to near
ceiling at the longest duration. Speed instructions alternated with
accuracy instructions across blocks of trials. The speed instructions
stressed that subjects should respond as quickly as possible, and
the accuracy instructions stressed that they should respond as
accurately as possible. The speed–accuracy instructions were in-
cluded for two reasons: first, to provide more complex patterns of
data and, therefore, more stringent measures of the components of
processing identified by the diffusion model; and second, to in-
vestigate the extent to which, and through what components of
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processing, the performance of older subjects can be pushed to-
ward the performance levels of young subjects.

Method

Subjects. Twenty-seven young subjects (19 women and 8 men) and 27
older subjects (19 women and 8 men) completed three 1-hr sessions, each
receiving a $45 honorarium for their participation. The young subjects
were traditional-aged college students enrolled at Haverford College and
Bryn Mawr College, recruited from fliers posted on campus.

The data for the older subjects in the experiment came from the study by
Thapar et al. (2003). The subjects included in the analyses presented here
were those for whom all three of their first three sessions of data were
available. There were other subjects in the Thapar et al. study for whom the
first session had been discarded (it had served as practice). An analysis of
the second sessions for the 27 subjects included here and the 11 whose first
session was discarded showed no significant differences between them.

The older subjects were healthy, active, community-dwelling individuals
60 to 75 years old living in the suburbs of Philadelphia and were recruited
from advertisements placed in local newspapers. All subjects, both older
and young, met the following inclusion criteria to participate in the study:
a score of 26 or above on the Mini-Mental State Examination (Folstein,
Folstein, & McHugh, 1975) and no evidence of disturbances in conscious-
ness, medical or neurological disease causing cognitive impairment, head
injury with loss of consciousness, or current psychiatric disorder. Subjects
had normal or corrected-to-normal vision (20/30 or better) as measured by
a Snellen E chart. All subjects completed the Vocabulary subtest and the
Picture Completion subtest of the Wechsler Adult Intelligence Scale-III
(Wechsler, 1997). Means and standard deviations for the background
characteristics are presented in Table 1.

Stimuli and procedure. Stimuli were presented on a PC computer and
responses collected on the keyboard. The stimuli were white letters dis-
played in the center of the computer screen against a dark background.
Letters were paired so as to be dissimilar to each other: F/Q, P/L, W/K,
B/N, T/X, and G/R. The same pair was used for all the trials of a block of
trials. For each block, the two letters were displayed one to the left of the
center of the computer screen and one to the right and remained on the
screen throughout the block. Each test trial began with a “�” sign fixation
point in the center of the screen and was displayed for 500 ms. Then the
target letter was displayed, followed by a variable delay (one of six
stimulus durations) and a mask. The mask remained on the screen until the
subject made a response. Subjects were instructed to press the ?/ key on the
keyboard if the right alternative had been presented and the Z key if the left
alternative had been presented. Six stimulus durations were used: 10, 20,
30, 40, 50, and 60 ms. The mask consisted of a square outline, larger than
the letter stimuli, filled with randomly placed horizontal, vertical, and
diagonal lines that varied from trial to trial. Each block consisted of 96
trials. The target letter corresponding to the correct response for each trial

was determined randomly with the restriction that each alternative be used
equally often. Different tests lists were used for each subject within an age
group, and the same test lists were used for the young and the older
subjects.

Each session consisted of 12 blocks of letter identification trials. There
were 6 blocks of trials with speed instructions and 6 blocks of trials with
accuracy instructions, with speed and accuracy instructions alternating. For
the speed blocks, subjects were instructed to respond as quickly as possi-
ble. Responses longer than 650 ms were followed by a “TOO SLOW”
message displayed for 700 ms, and responses shorter than 250 ms were
followed by a “TOO FAST” message displayed for 1,500 ms. For the
accuracy blocks, subjects were instructed to respond as accurately as
possible. Incorrect responses were followed by an “ERROR” message
displayed for 300 ms. No feedback was provided for correct responses.
Each test block lasted approximately 2 min, and subjects were encouraged
to take brief rest breaks between blocks.

Results

For the young subjects, correct response times less than 300 ms
and greater than 3,000 ms were considered outliers and were
eliminated from analyses; for the older subjects, the cutoffs were
300 ms and 3,500 ms. For older subjects, 3.7%, 1.1%, and 0.8% of
the data were eliminated for the three sessions (1 subject contrib-
uted 1.2% of the outliers for the first session). For young subjects,
2.3%, 3.7% (1 subject contributed 1.3%), and 2.9% (the same
subject contributed 1.2%) were eliminated for the three sessions.

For the first sessions, most of the outliers were fast guesses,
identified by response times shorter than 300 ms with accuracy at
chance. Over sessions and with instructions, these were largely
eliminated for the older subjects, but the young subjects continued
to produce 2% to 4% fast outliers. The fast outliers were due, at
least to some extent, to a misunderstanding of the speed instruc-
tions; some subjects initially interpreted them as requiring fast
guesses (despite instructions to the contrary), and some of these
subjects continued to produce fast guesses across all the sessions.

Figure 1 (left panels) shows the effects of practice on mean
response times for correct and error responses and on mean accu-
racy values. Overall, as expected, young subjects were faster and
more accurate than older subjects, and responses were slower and
more accurate with accuracy instructions than with speed instruc-
tions. Error responses were slower than correct responses, and
their response times show about the same patterns across condi-
tions as correct responses. The finding of interest is that the
performance of older subjects improved more with practice than

Table 1
Subject Characteristics

Measure

Experiment 1: Letter discrimination Experiment 2: Brightness discrimination

Young subjects Older subjects Young subjects Older subjects

M SD M SD M SD M SD

Mean age (years) 20.9 1.76 69.3 4.32 19.9 1.25 68.8 4.73
Education (years) 14.2 1.64 16.0 2.78 13.0 1.32 15.1 2.45

MMSE 29.3 1.01 28.9 1.32 28.9 1.04 28.8 1.27
WAIS-R Vocabulary 14.8 2.44 13.0 2.75 15.9 2.01 13.2 2.33
WAIS-R Picture Recognition 12.4 2.27 12.7 2.27 12.13 2.40 11.7 2.05

Note. MMSE � Mini-Mental State Examination; WAIS-R � Wechsler Adult Intelligence Scale Revised.
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that of young subjects; this is apparent in both response times and
accuracy. Averaging over speed and accuracy instructions, older
subjects’ mean correct response times were 266 ms longer and
14% less accurate than those of the young subjects in the first
session and only 138 ms longer and 8% less accurate in the third
session. The data displayed in Figure 1 are averaged over stimulus
duration. Generally, responses were faster and more accurate with
longer durations (an effect that was larger for the older subjects),

and performance improved with practice more for shorter than
longer durations. Analyses of variance (ANOVAs) of the mean
response times and accuracy values are presented in the Appendix.

To examine the effects of practice on response time distribu-
tions, quantile probability functions were generated. A quantile
probability function is a plot of the quantiles of the response time
distribution for each experimental condition as a function of re-
sponse probability. In Figure 2, the .1, .3, .5 (median), .7, and .9

Figure 1. Mean correct response time, mean accuracy, and mean error response time (RT) as a function of
speed accuracy condition, subject group (young vs. older), and session for Experiment 1 (letter discrimination)
and Experiment 2 (brightness discrimination).
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Figure 2. Top: Quantile probability plots for young and older subjects as a function of speed–accuracy
condition and session for Experiment 1 (letter discrimination). The lines represent the theoretical fits of the
diffusion model. From bottom to top, the Xs represent the .1 (leading edge), .3, .5, .7, and .9 (tail) quantile
response times. Bottom: The translation of quantile response times into density functions. The areas between the
.1, .3, .5, .7, and .9 quantiles in a probability density function have equal area (0.2), so equal area rectangles
between the quantiles have heights corresponding to the probability density. The two examples show separations
between two quantiles of sizes X and Y on the left and of sizes U and V on the right. These separations are shown
in the two density functions on the right with heights equal to 0.2/X, 0.2/Y, 0.2/U, and 0.2/V. This illustrates that
about 90 panels of density functions would be required to provide the same information presented in the quantile
probability plots.
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quantiles are plotted for each of the six stimulus duration condi-
tions (for young and older subjects and for speed and accuracy
conditions, separately). The Xs are the data points and the lines are
the best fitting functions derived from the diffusion model (dis-
cussed in detail later). The data for the left- and right-hand re-
sponse alternatives were combined because there were no signif-
icant differences between them. The six right-hand points for each
quantile represent correct responses at each of the six stimulus
durations. For example, the upper left panel of Figure 2 shows
young subjects’ data for the first testing session with speed in-
structions. The probability of a correct response varies from .97 (at
the longest stimulus duration) to .68 (at the shortest stimulus
duration). The left-hand points for each quantile represent error
responses, with further left points representing errors in the higher
accuracy conditions, which correspond to the longer stimulus
durations. In many cases for errors, fewer than six stimulus dura-
tion conditions are displayed because there were fewer than five
errors for many of the subjects and thus quantiles could not be
computed; these were the cases for which stimulus duration was
longest.

The quantile probability functions in Figure 2 show the same
trends as the means in Figure 1 for the two groups of subjects,
speed and accuracy instructions, and practice. They also show
faster and more accurate responses for the longer than the shorter
stimulus durations. In addition, the quantile probability functions
allow examination of how each of the variables affect response
time distributions.

First, for stimulus duration, the longest durations have the
fastest correct responses (the distributions on the far right of each
of the Experiment 1 panels in Figure 2). As duration decreases
(moving from the far right toward the center), the leading edges of
the response time distributions increase by only a small amount,
whereas the tails of the distributions increase by a greater amount.
The older subjects’ accuracy values generally lie a little closer to
.5 probability correct than the young subjects’ values, reflecting
the lower accuracy of the older subjects. For each stimulus dura-
tion condition, error responses are slower than correct responses,
but otherwise error responses (the distributions to the left of
center) tend to mirror correct responses; mean response times
decrease as stimulus duration increases mainly because of de-
creases in tail rather than decreases in leading edge.

Second, the differences in mean response times between young
and older subjects come mostly from larger values in the tails for
the older subjects’ distributions; the leading edges of the older and
young subjects’ distributions differ by only about 100 ms, on
average, whereas the mean response times differ by about 200 ms.
Similarly, the longer mean response times for conditions with
accuracy instructions than for conditions with speed instructions
come mostly from increases in the tails.

Third, the large speedups in the older subjects’ response times
from the first to the second and third sessions come mainly from
decreases in the tails of their response time distributions. The
changes in the leading edges of their distributions are much
smaller than the changes in the tails. The young subjects’ response
times change little across sessions, but their increases in accuracy
are shown by the shifts of the distributions toward higher proba-
bilities of correct responses and lower probabilities of error re-
sponses from the first to the second and third sessions. The older
subjects’ distributions also shift toward higher probabilities of

correct responses and lower probabilities of error responses across
sessions, although the effect is not as obvious in the figure because
their accuracy rates are lower.

The quantile probability plots show the complete patterns of
data that the diffusion model must explain: accuracy values, cor-
rect and error response times, and the shapes of the response time
distributions across all the conditions of stimulus duration, instruc-
tions, practice, and age group. The task for the model is to identify
the components of processing responsible for the effects of each
independent variable. For example, the model should explain what
components of processing are responsible for the longer response
times and higher error rates for older subjects than young subjects
and why there is a larger decrease in response times for the older
relative to the young subjects across sessions (a decrease of about
100–200 ms for older subjects vs. about 20–50 ms for young
subjects) but only a relatively small increase in accuracy (about
6–12% correct for older subjects vs. about 1–6% correct for young
subjects). We hold off on reporting the results from the fits of the
diffusion model until after Experiment 2.

Experiment 2: Brightness Discrimination

The stimuli were squares of 64 � 64 pixels presented on a
computer monitor. The difficulty of the stimuli was varied by
stimulus duration and brightness; brightness was manipulated by
varying the proportions of white versus black pixels. On each trial,
a square was presented and then masked, and the subjects’ task
was to decide whether the square was bright or dark. As in
Experiment 1, speed instructions alternated across blocks of trials
with accuracy instructions. For each subject, four sessions of data
were collected.

Method

Subjects. There were 26 older subjects (17 women and 9 men) and 24
young subjects (18 women and 6 men) recruited in the same manner as
described for Experiment 1. All subjects were paid $15 per session for four
sessions, and all had to meet the inclusion criteria described in Experiment
1. Means and standard deviations for the background characteristics are
presented in Table 1.

The data for the older subjects came from the study described by Ratcliff
et al. (2003). Data for 7 of the subjects from the earlier study were not
included here because they were unavailable to complete four sessions, and
data from 2 others were not included here because substantial proportions
of their data were classified as outlier response times.

Stimuli and procedure. Stimuli were presented on a PC computer and
responses collected on the keyboard. The 64 � 64 squares of black and
white pixels were presented on a gray background (the whole display was
320 � 200 pixels). There were six levels of brightness, achieved with six
values for the probability of a pixel being white: .350, .425, .475, .525,
.575, and .650. These were crossed with three stimulus durations: 50, 100,
and 150 ms. Four checkerboard patterns, each 64 � 64 pixels, were used
to mask each stimulus; presented sequentially, they were as follows: a
checkerboard with 2 � 2 black and white squares, a checkerboard the same
as the first but with the black and white squares reversed, a checkerboard
with 3 � 3 black and white squares, and its reverse. The checkerboards
were designed to mask both smaller and larger random features of a
stimulus that might have remained visible through only one or two of the
masks. The smaller checkerboard seemed to eliminate the smaller random
patterns in a stimulus, and the larger checkerboard seemed to eliminate the
larger random patterns.
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Each trial began with a “�” sign fixation point presented for 250 ms.
Then the stimulus was displayed, followed by the four checkerboard masks
displayed for 17 ms each. A gray background was then presented until a
response was made. In accuracy blocks, if a response was correct, there
was a 500-ms pause followed by the next trial; if a response was incorrect,
the word “ERROR” was displayed for 300 ms, then erased, and followed
by a 500-ms pause before the next trial. Responses of “bright” to stimuli
with fewer than .5 white pixels and responses of “dark” to stimuli with
more than .5 white pixels were defined as errors. In speed blocks, there was
no accuracy feedback. If a response was shorter than 250 ms, a message
“TOO FAST” was displayed; if a response was longer than 700 ms, “TOO
SLOW” was displayed. Then there was a 500-ms pause before the next
trial.

In each session, five blocks of accuracy trials alternated with five blocks
of speed trials, with 144 trials per block presented in random order. There
were a total of 40 trials for each brightness, duration, and speed versus
accuracy condition in each session. Subjects were encouraged to take brief
rest breaks between blocks.

Results

For the young subjects, response times less than 280 ms and
greater than 3,000 ms were considered outliers and eliminated.
This corresponded to 2.2%, 1.0%, 0.7%, and 0.6% of the data for
Sessions 1 through 4, respectively. For the older subjects, the
cutoffs were 280 ms and 3,500 ms, and this corresponded to 1.8%,
0.6%, 0.4%, and 0.1% of the data for Sessions 1 through 4,
respectively. As with Experiment 1, most of the outliers were fast
guesses, and these were gradually eliminated for most subjects
across sessions.

Figure 1 (right panels) shows performance across speed and
accuracy instructions and sessions for the older and young sub-
jects. ANOVAs for the data are reported in the Appendix. Re-
sponses were faster and less accurate with speed than accuracy
instructions. Error responses were slower than correct responses,
more so for the older subjects than the young subjects. Older
subjects improved across the test sessions in speed (from an
average of 717 ms to 603 ms) and accuracy (from .71 to .82),
whereas young subjects improved mainly in accuracy (from .75 to
.83) and less in speed (from 624 ms to 586 ms). By the last test
session, the older subjects’ performance closely matched that of
the young subjects except that correct response times were about
50 ms longer with speed instructions. The data presented in the
figure are averaged over the stimulus brightness and duration
variables. Performance was better with the stimuli that were easier
to classify as bright or dark, and the effect of practice was to
improve performance for the less bright and dark stimuli relative to
the brighter and darker stimuli.

In Figure 3, the .1, .3, .5, .7, and .9 quantiles are plotted for
young and older subjects and for speed and accuracy instructions.
The Xs are the data points and the lines are the best fitting
functions from the diffusion model. Eighteen quantiles (six bright-
ness values � three durations) are plotted for correct responses in
each panel of Figure 3, but there are fewer than 18 for error
responses because many subjects had fewer than five errors in the
conditions with highest accuracy (very bright or very dark stimuli),
especially, for example, young subjects with accuracy instructions.

The effects of the independent variables on the shapes of the
response time distributions were similar to those in Experiment 1.
For correct responses, as the difficulty of the stimuli increased
across the brightness and duration conditions, the slowdown in the

leading edges of the distributions was small, whereas the increase
in the tails of the distributions was much larger. As in Experiment
1, the effects of instructions and practice were larger on the tails of
the response time distributions than on the leading edges.

The Diffusion Model

The diffusion model is a model of the processes involved in
making simple two-choice decisions. The model is designed to
apply only to relatively fast two-choice decisions that are com-
posed of a single-stage decision process (as opposed to the
multiple-stage process that might be involved in reasoning tasks or
card-sorting tasks). The model assumes that decisions are made by
a noisy process that accumulates information over time from a
starting point toward one of two response boundaries, as in Figure
4, where the starting point is labeled z and the upper and lower
boundaries are labeled a and 0, respectively.

The rate of accumulation of information is called the drift rate,
v, and it is determined by the quality of the information extracted
from the stimulus. For example, if the letter A was displayed for a
long time before masking, information quality would be good and
the mean value of the drift rate toward the boundary for an A
response would be large. Within each trial, there is noise (vari-
ability) in the process of accumulating information so that pro-
cesses with the same mean drift rate do not always terminate at the
same time (producing response time distributions) and do not
always terminate at the same boundary (producing errors). This
source of variability is called within-trial variability. The bottom
panel in Figure 4 shows two processes with the same mean drift
rate toward the top boundary. One terminates at the correct bound-
ary, and the other terminates at the incorrect boundary. Besides the
decision process, there are nondecision components of processing
such as encoding and response execution. These are combined in
the diffusion model into one component with mean Ter (nondeci-
sion components of response time) and range st (range of the
distribution of nondecision times across trials; both shown in the
top panel of Figure 4).

In the experiments presented here, subjects are instructed to
respond either as quickly or as accurately as possible. Speed–
accuracy trade-offs are modeled by altering the boundaries of the
decision process: Wider boundaries require more information be-
fore a decision can be made, and this leads to more accurate and
slower responses.

Empirical response time distributions are positively skewed and
spread out more as drift rate decreases. The diffusion model
naturally predicts this by simple geometry; equal size decreases in
the rate of approach to the boundary lead to increases in response
time smaller for faster processes than for slower processes.

In the diffusion model, variability across trials in the compo-
nents of processing is explicitly represented (Ratcliff, 1978, 1981;
Ratcliff & Rouder, 1998; Ratcliff et al., 1999). Across-trial vari-
ability in drift rate is assumed to be normally distributed with
standard deviation �. Across-trial variability in starting point is
assumed to have a uniform distribution with range sz. The across-
trial variabilities in drift rate and starting point, in conjunction with
boundary positions and drift rates, determine the relative speeds of
correct versus error responses. If variability in drift rate dominates,
then errors are slower than correct responses. If variability in
starting point dominates, then errors are faster than correct re-
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sponses. There is also variability across trials in the nondecision
component of processing, which is assumed to have a uniform
distribution with mean Ter and range st (Ratcliff, Gomez, & Mc-
Koon, 2004; Ratcliff & Tuerlinckx, 2002). The effect of this
variability depends on drift rate; with a large value of drift rate,
variability in the nondecision component of processing can shift

the leading edge of the response time distribution shorter than it
would otherwise be (by as much as 10% of st; Ratcliff & Tuer-
linckx, 2002).

In sum, the parameters of the diffusion model correspond to the
components of the decision process as follows: z is the starting
point of the accumulation of evidence, sz is the variability in the

Figure 3. Quantile probability plots for young and older subjects as a function of speed–accuracy condition and
session for Experiment 2 (brightness discrimination). The lines represent the theoretical fits of the diffusion
model. From bottom to top, the Xs represent the .1 (leading edge), .3, .5, .7, and .9 (tail) quantile response times
(RT).
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starting point, a is the upper boundary, the lower boundary is set
to 0, � is the variability in the mean drift rate across trials, Ter is
the mean value of the nondecision components of processing, and
st is the variability in the nondecision components. For each
different stimulus condition in an experiment, it is assumed that the
rate of accumulation of evidence is different and so each has a
different value of drift, v. Within-trial variability in drift rate, s, is
a scaling parameter for the diffusion process (i.e., if it were
doubled, other parameters could be multiplied or divided by two to
produce exactly the same fits of the model to data).

The two experiments presented here use a masking manipula-
tion. This means that stimulus information is nonstationary; that is,
it is available for the time for which the stimulus is displayed and
then at the mask it is terminated. Ratcliff and Rouder (2000)
examined two classes of models for how drift rate in the diffusion
model relates to the availability of information from the stimulus.
For one, drift rate is constant (stationary) over time. This could
come about if the information on which drift rate depends is
information from the stimulus that is maintained in a short-term
store. For the other class of models, drift rate is nonstationary. Two

Figure 3 (continued).
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nonstationary models were examined: one in which drift rate
increased until the onset of the mask and then decreased and
another in which drift rate was constant until mask onset and then
fell to zero. Both nonstationary models predict slow error re-
sponses, much slower than found in experimental data. In contrast,
the stationary model fit the data well for the letter discrimination
task examined by Ratcliff and Rouder and a number of other
studies (Ratcliff, 2002; Ratcliff & Rouder, 2000; Ratcliff & Smith,
2004; Ratcliff, Thapar, & McKoon, 2003; P. L. Smith et al., 2004;
Thapar, Ratcliff, & McKoon, 2003), so we assume stationarity of
stimulus information for the current studies.

It should be stressed that the two experimental manipulations,
speed–accuracy instructions and difficulty (presentation duration
in the letter discrimination task and presentation duration and
brightness in the brightness discrimination task), are modeled by
changes in one and only one parameter each. For instructions, the
diffusion model has to account for the changes in accuracy and
response time distribution shape (the relative shifts and spreads in
the distributions) for both correct and error responses, with only
the separation between the boundaries varying. Similarly, changes
in drift rate alone must account for changes in accuracy and
response time distributions for both correct and error responses as
a function of difficulty. Both of these manipulations produce
changes that involve many degrees of freedom, and the model
must account for these with changes in just one degree of freedom.

Fitting the Diffusion Model to Data

The diffusion model is fit to data under several general assump-
tions about which components of processing can change across
levels of an independent variable and which cannot change. First,
as just discussed, subjects can adjust their response criteria accord-

ing to whether instructions emphasize speed or accuracy, but they
are assumed not to change drift rates. Drift rates are affected only
by the quality of the information from a stimulus. In other words,
the values of drift rate can increase with stimulus duration, but they
are kept constant across the two types of instructions. Second,
when subjects adjust response criteria, they can separately adjust
the distances from the starting point to the two criteria. However,
for the data presented here, the model fit well with the two
distances set equal to each other (i.e., the amount of evidence
needed to make one response was the same as that needed to make
the other response). Third, it is assumed that Ter, the mean value of
the nondecision components of processing, is constant across
levels of stimulus difficulty and instructions. Although small dif-
ferences in Ter might reasonably be assumed between, for exam-
ple, speed versus accuracy instructions, little would be added to the
quality of the fits of the model to data (except a somewhat better
fit to the .9 quantile response times in the conditions with accuracy
instructions), and nothing significant would change in interpreta-
tions of the data. Finally, for the fits presented here, it was assumed
that all of the across-trial variability parameters were constant
across levels of stimulus difficulty and instructions.

Under these assumptions, the model must capture all the trends
in the data for mean response times for correct and error responses,
for the shapes of the response time distributions, and for the
accuracy values, in other words the data displayed in the quantile
probability functions. The structure of the model places strong
constraints on how this can be achieved. In the model, Ter deter-
mines the placement of the quantile probability functions vertically
(i.e., on the response time axis). The shapes of the quantile prob-
ability functions are determined by just three parameters: the
distance between the two response criteria a, the standard devia-
tion in drift across trials �, and the range of the starting point
across trials sz. The drift rates for the different levels of stimulus
difficulty sweep out the function across response probabilities,
with the parameter a being the main determinant of the spread of
the response time distribution at each level of stimulus difficulty.

For the data from Experiments 1 and 2, short and long outlier
response times were eliminated from the analyses, as described
previously in the Results sections. Ratcliff and Tuerlinckx (2002)
showed that the influences of further contaminant responses (e.g.,
from momentary lapses of attention) can be excluded by including
a parameter to represent them in the model. The variable po is the
probability of a contaminant in each condition of the experiment;
its value comes from a uniform distribution that has maximum and
minimum values corresponding to the maximum and minimum
response times in the condition. For the experiments reported here,
the value of po was assumed to be the same across all experimental
conditions (speed and accuracy instructions, level of difficulty of
the stimulus, and session) for each subject group. Its values were
less than .008 for Experiment 1 and less than .002 for Experi-
ment 2.

The diffusion model was fit to the data by minimizing a chi-
square value with a general SIMPLEX minimization routine that
adjusts the parameters of the model until it finds the parameter
estimates that give the minimum chi-square value (see Ratcliff &
Tuerlinckx, 2002, for a full description of the method). The data
entered into the minimization routine for each experimental con-
dition were the mean response times over subjects for each of the
five quantiles for correct and error responses and the correspond-

Figure 4. An illustration of the diffusion model with two sample paths
and illustrations of the distributions of parameter values across trials.
(RT � response time; Ter � nondecision components of response time;
� � standard deviation in drift across trials; sz � range of the distribution
of starting point [z] across trials; v � drift rate; st � range of the
distribution of nondecision times across trials.)
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ing mean accuracy values. The quantile response times and the
diffusion model were used to generate the predicted cumulative
probability of a response by that quantile response time. Subtract-
ing the cumulative probabilities for each successive quantile from
the next higher quantile gives the proportion of responses between
adjacent quantiles. For the chi-square computation, these are the
expected values, to be compared with the observed proportions of
responses between the quantiles (i.e., the proportions between 0,
.1, .3, .5, .7, .9, and 1.0, which are .1, .2, .2, .2, .2, and .1)
multiplied by the number of observations. Summing over (ob-
served – expected)2/expected for all conditions gives a single
chi-square value to be minimized.

The model was fit to means across subjects instead of to the data
for individual subjects because there were too few responses per
condition. Furthermore, quantile response times could not be com-
puted for some conditions for many subjects, in particular the
quantiles for error responses in the most accurate conditions. For
a condition in which accuracy was very high, there were often
fewer than the five error responses needed to compute five quan-
tiles. To deal with this problem, cutoffs were set on accuracy
values. If the mean accuracy value across subjects for an experi-
mental condition was greater than .9 for the letter discrimination
task or greater than .78 for the brightness discrimination task, then
quantiles for error responses for that condition were not computed.
For these error conditions, a single value (instead of the six values
that would be obtained from five quantiles) was added to the
chi-square computation, that is, a value of (observed – expected)2/
expected based on the proportion of errors. The cutoff for the
brightness task was lower than for the letter task because there
were fewer observations per condition. The use of these cutoffs
explains why quantiles for error responses from high accuracy
conditions are not plotted in Figures 2 and 3.

Fitting the model to group averages rather than individual sub-
jects means that the chi-square goodness-of-fit index minimized in
fitting is not a meaningful statistic for measuring absolute good-
ness of fit (Ratcliff & Smith, 2004). However, in prior studies in
which parameter values obtained from fits to group average data
were compared with averages over parameter values obtained from
fits to individual subject data, there was little difference between
the two sets of parameter values (Ratcliff et al., 2001, 2003;
Ratcliff, Thapar, Gomez, & McKoon, 2004; Ratcliff, Thapar, &
McKoon, 2004; Thapar et al., 2003).

Experiment 1: Masked Letter Discrimination

Table 2 presents the values of the model’s parameters that best
fit the data and Figure 5 shows them graphically. These parameter
values were used to generate the model’s predictions that are
shown by the solid lines in Figure 2.

The fits of the model to the quantile probability functions in
Figure 2 are generally as good as those reported in the study that
previously examined the same task (Thapar et al., 2003). For each
group of subjects and each session, the model accurately accounts
for the large changes in spread and smaller changes in leading edge
of the response time distributions as stimulus difficulty increases
and as instructions shift from speed to accuracy. Between groups,
the model accurately accounts for the relatively small differences
in the leading edges of the response time distributions between the
young and older subjects and the much larger differences in the
response time distributions’ spread. Across sessions, the model fits
the much larger changes in performance for the older than the
young subjects.

Examining the changes in shape of the response time distribu-
tions more specifically (Figure 2 for Experiment 1; also Figure 3
for Experiment 2), increases in response times from the easier to
the more difficult conditions show proportional increases for each
of the response time quantiles. That is, if the increase in difference
in response times between the first and second quantiles is 20%,
then the increase in the difference between each of the other
quantiles is also 20%. Plotting these increases against each other
would give a straight line function (as in Ratcliff et al., 2000,
Figure 12; see also Rabbitt & Banerji, 1989; G. A. Smith &
Brewer, 1995).

The largest misses for the model are for the data with the most
variability: The quantiles for error response times are more vari-
able than for correct responses because there are fewer error
responses. The model also tends to miss the data at the higher
quantiles, especially the .9 quantiles. These misses possibly rep-
resent subjects aborting processing for test items for which re-
sponse time would become very long (Ratcliff et al., 2003; Thapar
et al., 2003). The misses for the higher quantiles show up where
the most variability would be expected: more for the older subjects
than the young subjects and more in the first than the later test
sessions.

Table 2
Experiment 1, Letter Discrimination: Parameter Values for Processing Components

Group session as aa Ter � sz st

Young 1 0.065 0.109 0.373 0.119 0.032 0.142
Young 2 0.060 0.103 0.355 0.113 0.014 0.130
Young 3 0.056 0.096 0.364 0.139 0.004 0.137
Older 1 0.118 0.159 0.424 0.126 0.027 0.130
Older 2 0.082 0.129 0.434 0.093 0.008 0.162
Older 3 0.074 0.132 0.436 0.143 0.020 0.165

Note. The estimated proportion of contaminants was less than 0.8% for all conditions. The parameters of the
model are as follows: as � boundary separation for speed conditions; aa � boundary separation for accuracy
conditions; Ter � nondecision component of response times; � � standard deviation in drift across trials; sz �
range of the distribution of starting point (z) across trials; and st � range of the distribution of nondecision times
across trials.
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Figure 5. Parameter estimates for young and older subjects across sessions for the letter discrimination task.
The error bars represent 2 standard errors derived using Monte Carlo methods. The horizontal lines show the
means to aid evaluation of differences across sessions. (as � boundary separation in the speed condition; aa �
boundary separation in the accuracy condition; Ter � nondecision components of response time; � � standard
deviation in drift across trials; sz � range of the distribution of starting point [z] across trials; v � drift rate; st �
range of the distribution of nondecision times across trials.) Drift rates v1 through v4 correspond to stimulus
durations of 10 ms, 20 ms, 30 ms, and 40 ms, respectively.
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The interesting questions concern what components of process-
ing change with practice and how these components change dif-
ferently for older compared with young subjects. The values of the
model parameters that represent the various processing compo-
nents are shown in Table 2 and Figure 5. In Figure 5, the drift rate
values are shown for stimulus durations of 10, 20, and 30 ms and
the average of the 40, 50, and 60-ms durations because drift rate
values were almost the same for the latter three durations. Figure 5
shows two standard error bars around the parameter values. The
standard error bars were derived from Monte Carlo simulations of
the model that were used to determine the average variability that
would be expected from repetitions of the experiment with the
same parameter values (Ratcliff & Tuerlinckx, 2002).

For letter discrimination, Thapar et al. (2003) showed that older
subjects set their criteria (a) farther apart than young subjects, that
the nondecision components of processing (Ter) are longer for
older subjects, and that drift rates are smaller for older subjects.
These findings were replicated here: Older subjects set their cri-
teria farther apart by about 40%, their value of Ter was larger by
about 70 ms, and their drift rate values were about half those of
young subjects. However, the older subjects improved more with
practice than the young subjects in both response times and
accuracy.

In the diffusion model, response time is largely determined by
the settings of the response criteria and by the amount of time
taken up by the nondecision components of processing. For the
findings presented here, the time for the nondecision components
changed little across sessions for either group of subjects. In
contrast, the distance between the response criteria decreased for
both groups of subjects, but more so for the older than the young
subjects.

The finding that is perhaps surprising is that the quality of the
stimulus information underlying the older subjects’ decisions im-
proved with practice. Older subjects’ drift rates increased by small
amounts for the 10 and 20 ms stimulus durations and by larger
amounts for the longer durations. Information quality (i.e., drift
rate) largely determines accuracy (Ratcliff, Thapar, Gomez, &
McKoon, 2004; Ratcliff, Thapar, & McKoon, 2004). Changes in
drift rates accounted for the older subjects’ increase in overall

accuracy from about .72 to about .80. For the young subjects, drift
rates changed almost not at all with practice, except with stimulus
durations of 20 ms.

For the across-trial variability parameters of the model, there
were no large differences between the young and older subjects
and no systematic changes across sessions for either group, al-
though variability in the nondecision components of processing in
early sessions is somewhat larger for the older subjects. However,
these findings for the across-trial variability parameters are qual-
ified by the large amounts of variability in their values (see Ratcliff
& Tuerlinckx, 2002).

Experiment 2: Masked Brightness Discrimination

Table 3 shows the values of the best fitting parameters for the
model, Figure 3 the predictions from them for the quantile prob-
ability functions, and Figure 6 the parameters graphically (with
two standard error bars). For Figure 6, “bright” responses to bright
stimuli and “dark” responses to dark stimuli were combined, and
also the data were collapsed across stimulus duration conditions
because duration had a small effect on performance, whereas
brightness had a large effect. The fits of the model to the quantile
probability functions are generally good (see Figure 3), as good as
those in Ratcliff et al. (2003), with the theoretical functions inter-
secting the data points for most of the predicted quantile functions.
However, the same qualifications apply as for the letter discrimi-
nation data: The model misses where the data are more variable;
specifically, there is more variability for the longer than the shorter
quantiles, for errors than correct responses, and for older than
young subjects.

In tasks like the brightness discrimination task in Experiment 2,
subjects often have a slight bias toward one or the other of the
response alternatives. In other words, subjects put a criterion on
the brightness dimension to determine which stimuli will be called
“bright” and which will be called “dark.” For example, a subject
might make a “bright” response to all stimuli for which the
proportion of white pixels was above .55 and “dark” to all the other
stimuli. In the diffusion model, this criterion is implemented as a
bias on drift rates (see Ratcliff, 1985, 2002; Ratcliff et al., 1999).

Table 3
Experiment 2, Brightness Discrimination: Parameter Values for Processing Components

Group
session as aa Ter � sz st

Drift bias (stimulus duration)

50 ms 100 ms 150 ms

Young 1 0.072 0.173 0.436 0.254 0.058 0.208 0.059 �0.00 �0.064
Young 2 0.073 0.124 0.432 0.206 0.013 0.149 0.055 �0.009 �0.063
Young 3 0.065 0.155 0.436 0.216 0.004 0.150 0.070 �0.006 �0.068
Young 4 0.063 0.130 0.435 0.268 0.023 0.145 0.105 0.018 �0.053
Older 1 0.084 0.162 0.477 0.182 0.067 0.250 0.037 �0.004 �0.037
Older 2 0.067 0.155 0.471 0.208 0.011 0.207 0.042 �0.013 �0.048
Older 3 0.068 0.129 0.461 0.237 0.007 0.159 0.065 �0.012 �0.060
Older 4 0.067 0.122 0.469 0.290 0.011 0.156 0.073 �0.018 �0.065

Note. The estimated proportion of contaminants was less than 0.2% for all conditions. The parameters of the
model are as follows: as � boundary separation for speed conditions; aa � boundary separation for accuracy
conditions; Ter � nondecision component of response times; � � standard deviation in drift across trials; sz �
range of the distribution of starting point (z) across trials; and st � range of the distribution of nondecision times
across trials.
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For modeling the brightness data presented here, the amount of
bias was allowed to vary across the stimulus duration conditions.

For masked brightness discrimination, Ratcliff et al. (2003)
found that, after practice, response time differences between older
and young subjects were due almost entirely to slower nondecision
components of processing. The data from the experiment presented
here show that the older subjects’ nondecision components of
processing averaged about 40 ms longer than those of the young
subjects in the first session and about 30 ms longer in the fourth
session. With speed instructions, the older subjects decreased their
response times from the first to the fourth sessions more than
young subjects did, mainly by decreasing their criteria settings
more than the young subjects, especially from the first to the
second sessions. By the fourth session, their criteria settings were
similar to those of the young subjects. With accuracy instructions,
criteria settings were more variable and less reliable in Experiment
1 and elsewhere (Ratcliff et al., in press).

Accuracy also improved for the older subjects more than the
young subjects with practice, and the component of processing
responsible for this was mainly drift rate. The older subjects’ drift
rates increased significantly across sessions, at least doubling from
the first to the fourth sessions. In contrast, the increase in drift rates
for young subjects was less than 30% from the first to the fourth
sessions.

Finally, for the across-trial variability parameters, variability in
the nondecision components of processing decreased across all
sessions for the older subjects and from the first to the second
sessions for the young subjects. The older subjects’ variability in
drift rates was somewhat larger than that of the young subjects,
although, just as for Experiment 1, the results for the variability
parameters are qualified by the large variability in their estimates.

General Discussion

Experiments 1 and 2 examined the effects of practice on per-
formance in perceptual tasks for young and older subjects. In
particular, by applying a model that estimates the contributions to
performance of various components of processing, it was possible
to determine which components changed with practice for older
compared with young subjects. Much of the model’s power to
accomplish this derives from the constraints that are placed on it
by the requirement that it account for all aspects of accuracy and
response time measures.

Our informal observations had suggested that older subjects’
performance improved substantially across one to two or three
sessions, whereas the performance of young subjects did not. The
results of the two studies reported here confirmed these observa-
tions. We found that performance improved with practice on both

tasks for both young and older subjects, with older adults’ perfor-
mance benefiting more. Our findings are consistent with results
reported in the broader literature on skill acquisition where differ-
ences in young and older adults’ learning functions have been
found in a variety of perceptual and cognitive tasks (e.g., Charness
& Campbell, 1988; Fisk & Rogers, 1991; Hertzog, Cooper, & Fisk,
1996; Jenkins & Hoyer, 2000; Rabbitt, 1979; Rogers, Hertzog, &
Fisk, 2000; Strayer & Kramer, 1994; Touron et al., 2001; Verhae-
ghen & Kliegl, 2000). In our experiments, the numbers of trials per
session were large, more than 1,000, and so subjects had more
practice than in other studies. For example, in the influential early
study of practice effects by Salthouse and Somberg (1982), there
were only about 375 trials per session, and the numbers of trials
per session were also lower than ours in the studies reviewed by
Fine and Jacobs (2002). Because of these differences, comparisons
between our results and earlier research need to take into account
the different numbers of trials per session in the studies.

The experiments presented here allowed analyses of the factors
that contribute to older subjects’ improvements across sessions in
letter and brightness discrimination. First, the main factor contrib-
uting to the speedup in their performance was a decrease in the
amount of evidence required before making a decision. For both
letter and brightness discrimination and with both accuracy and
speed instructions, the older subjects’ criteria decreased across
sessions, to the point at which, for brightness discrimination, the
values were about the same as for the young subjects. In contrast,
for the young subjects, there were smaller decreases in criteria.

Second, the contribution of nondecision components of process-
ing to the older subjects’ faster performance in later sessions was
negligible. The older subjects’ nondecision components of pro-
cessing were slower than the young subjects’, and they stayed
slower across sessions (although the older subjects did speed up by
about 20 ms in the brightness discrimination task).

Third, the older subjects’ decisions were based on better infor-
mation as practice increased, and this led to higher accuracy. In
letter discrimination, drift rates increased across sessions for the
older subjects, although their values for the more difficult condi-
tions were much lower than those of the young subjects. In
brightness discrimination, drift rates increased for the older sub-
jects sufficiently to match the young subjects’ drift rates in the
fourth session. The young subjects showed much smaller increases
in drift rates across sessions.

One hypothesis concerning the effects of aging on processing is
that aging increases noise (cf. Allen, Madden, Weber, & Crozier,
1992; Cremer & Zeef, 1987; Li, 2002; Li, Lindenberger, & Sik-
strom, 2001; Welford, 1981). In the diffusion model, this would
correspond to an increase in the parameter representing variability

Figure 6 (opposite). Parameter estimates for young and older subjects across sessions for the brightness
discrimination task. The error bars represent 2 standard errors derived using Monte Carlo methods. The
horizontal lines show the means to aid evaluation of differences across sessions. (as � boundary separation in
the speed condition; aa � boundary separation in the accuracy condition; Ter � nondecision components of
response time; � � SD in drift across trials; sz � range of the distribution of starting point �z� across trials; v
� drift rate; st � range of the distribution of nondecision times across trials.) Drift rates v1, v2, and v3 correspond
to stimuli with .525 and .475 pixels, .575 and .425 pixels, and .650 and .350 pixels, respectively, averaged over
stimulus duration.
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in drift rate within trials (s). However, the hypothesis that s
increases from the young to the older subjects in the tasks we have
studied does not appear to be reasonable. This is because s is a
scaling parameter, fixed to the same value (.1) for all groups,
conditions, and experiments. If it were fixed at some different
value, then all the other parameters of the model would change to
compensate. For example, if s were increased, the other parameters
would increase by the same ratio (drift rate, boundaries, and
variability in these parameters). Thus, s is not identifiable. How-
ever, suppose that s is, in fact, larger for older subjects than young
subjects. If this were true, then the values of drift rate that have
been calculated in fits of the diffusion model to older subjects’ data
would be too small; they should be larger, larger than the young
subjects’ drift rates and we find this unreasonable. With s � .1, the
drift rates for the older and young subjects were not significantly
different in Ratcliff et al. (2001), Ratcliff et al. (2003), or the
studies reported here; with s larger than .1 for the older subjects,
the drift rates for the older subjects would be larger, meaning that
subjects would be getting better evidence from the stimuli than the
young subjects, and this seems unlikely.

An important conclusion to be drawn from the two studies
reported here concerns the comparison of response criteria be-
tween young and older subjects. It appears that young subjects are
more willing to set their response criteria at lower levels than older
subjects in response to speed instructions. The accuracy lost by
such liberal setting of criteria is small (a few percentage points)
and the gain in speed can be quite large (tens or hundreds of
milliseconds). Young adults may either come into an experiment
with a much lower concern for accuracy or be more willing to
switch response strategies than older subjects. For example, work
by Touron and colleagues on noun-pair associative learning
(Touron & Hertzog, 2004a, 2004b) and arithmetic problems
(Touron, Hoyer, & Cerella, 2004) shows that older adults apply
more conservative criteria for selecting strategies, opting for
slower, nonoptimal, strategies over faster, but riskier, memory
retrieval strategies. However, the important point is that both
young and older subjects can change their criteria such that, at least
in some tasks, older subjects can match the speeds of young
subjects, although they may require significant amounts of practice
to do so. The implication is that performance levels can be com-
pared between young and older subjects only once the malleability
of the various components of processing is understood (Touron &
Hertzog, 2004b). In the context of a fully specified model, manip-
ulations of such variables as speed versus accuracy instructions
and amounts of practice allow examination of the dimensions on
which older subjects change their performance relative to young
subjects and the dimensions on which they do not change.

In an applied sense, the trade-offs between speed, accuracy, and
response criteria settings are somewhat surprising. In the diffusion
model, criteria settings have relatively small effects on accuracy.
Thus, if older subjects set their criteria at smaller values than they
otherwise would, even considerably smaller values, the small cost
in accuracy might be outweighed by the large gain in speed. For
example, in tasks like the perceptual discrimination tasks used for
this article, the sacrifice in accuracy might be only 2% to 3% with
a gain in speed of as much as 100 ms, or about 20% of total
response time. From a practical perspective, older people might
sometimes benefit more from a large increase in speed of process-
ing relative to a small loss in accuracy.

It should be stressed that the diffusion model is a model of the
decision process. It separates the evidence that enters the decision
process from the decision process, but beyond that it does not
provide an analysis of the processes that produce that evidence.
For each condition in an experiment, the model extracts an esti-
mate of the amount of evidence, namely drift rate, from the
dependent variables (accuracy, correct and error response times,
and their distributions). The drift rates serve as the contact point
between the diffusion decision process and models of how per-
ceptual information is extracted from stimuli (e.g., Ratcliff, 1981;
P. L. Smith et al., 2004) and how information extraction might
change with practice.

Other approaches to perceptual learning have separated compo-
nents of processing by examining the effects of experimental
manipulations on accuracy measures alone. For example, Dosher
and Lu (2000a, 2000b, 2004; Lu & Dosher, 2004) propose that
perceptual learning involves three different mechanisms: better
processing of the stimulus itself (stimulus enhancement, in their
terms), increased ability to exclude irrelevant information (exclu-
sion of external noise), and improved setting of thresholds for
responding (gain control). Dosher and Lu have been able to ex-
plain a variety of perceptual learning effects in terms of only
stimulus enhancement and external noise exclusion. To integrate
their approach with the diffusion model and explain response times
as well as accuracy, it can be speculated that stimulus enhancement
and external noise exclusion affect drift rates, whereas gain control
affects decision criteria.

For two-choice perceptual tasks, the diffusion model offers a
vehicle for combining the effects of the two dependent variables,
response time and accuracy, in order to provide a contact point
between factors that determine the evidence entering the decision
process and the decision process. The greater theoretical leverage
that comes from modeling both dependent variables simulta-
neously can lead to a better understanding of how perceptual
processes limit performance and, therefore, to a clearer picture of
what it is that a model of perceptual processing should explain.
The critical contribution of this study is that it demonstrates that
the diffusion model can be successfully applied to investigate the
effects of practice on a task as well as age differences in practice-
related improvements. An important next step will be to isolate the
mechanisms underlying the improvements in performance associ-
ated with cognitive training programs (Ball et al., 2002; Loewen-
stein, Acevedo, Czaja, & Duara, 2004).

References

Allen, P. A., Madden, D. J., Weber, T. A., & Crozier, L. C. (1992). Age
differences in short-term memory: Organization or internal noise? Jour-
nal of Gerontology: Psychological Sciences, 47, 281–288.

Ball, K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D.,
Marsiske, M., et al. (2002). Effects of cognitive training interventions
with older adults. Journal of the American Medical Association, 288,
2271–2281.

Ball, K., & Sekuler, R. (1986). Improving visual perception in older
observers. Journal of Gerontology, 41, 176–182.

Brinley, J. F. (1965). Cognitive sets, speed and accuracy of performance in
the elderly. In A. T. Welford & J. E. Birren (Eds.), Behavior, aging and
the nervous system (pp. 114–149). Springfield, IL: Charles C Thomas.

Cerella, J. (1985). Information processing rates in the elderly. Psycholog-
ical Bulletin, 98, 67–83.

368 RATCLIFF, THAPAR, AND MCKOON



Cerella, J. (1994). Generalized slowing in Brinley plots. Journals of
Gerontology, Series B: Psychological Sciences and Social Sciences, 49,
65–71.

Charness, N., & Campbell, J. I. (1988). Acquiring skill at mental calcula-
tion in adulthood: A task decomposition. Journal of Experimental Psy-
chology: General, 117, 115–129.

Cremer, J., & Zeef, E. J. (1987). What kind of noise increases with age?
Journal of Gerontology, 42, 515–518.

Dosher, B., & Lu, Z.-L. (2000a). Mechanisms of perceptual attention in
precuing of location. Vision Research, 40, 1269–1292.

Dosher, B., & Lu, Z.-L. (2000b). Noise exclusion in spatial attention.
Psychological Science, 11, 139–146.

Dosher, B., & Lu, Z.-L. (2004). Mechanisms of perceptual learning. In L.
Itti & G. Rees (Eds.), Neurobiology of attention (pp. 471–476). Cam-
bridge, MA: MIT Press.

Elliot, D., Whitker, D., & MacVeigh, D. (1990). Neural contribution to
spatiotemporal contrast sensitivity decline in healthy ageing eyes. Vision
Research, 30, 541–547.

Fine, I., & Jacobs, R. A. (2002). Comparing perceptual learning tasks: A
review. Vision Research, 2, 190–203.

Fisk, A. D., & Rogers, W. A. (1991). Toward an understanding of age-
related memory and visual search effects. Journal of Experimental
Psychology: General, 120, 131–149.

Folstein, M. F., Folstein, S. E, & McHugh, P. R. (1975). Mini-Mental
State: A practical method for grading the cognitive state of patients for
the clinician. Journal of Psychiatric Research, 12, 189–198.

Gibson, E. J. (1953). Improvement in perceptual judgments as a function of
controlled practice or training. Psychological Bulletin, 50, 401–431.

Gibson, E. J. (1969). Principles of perceptual learning and development.
New York: Appleton-Century-Crofts.

Hertzog, C., Cooper, B. P., & Fisk, A. D. (1996). Aging and individual
differences in the development of skilled memory search performance.
Psychology and Aging, 11, 497–520.

Hertzog, C. K., Williams, M. V., & Walsh, D. A. (1976). The effect of
practice on age differences in central perceptual processing. Journal of
Gerontology, 31, 428–433.

Higgins, K. E., Jaffee, M. J., Caruso, R. C., & DeMonasterio, F. M. (1988).
Spatial contrast sensitivity: Effects of age, test-retest, and psychophys-
ical method. Journal of the Optical Society of America, 5, 2173–2180.

Jenkins, L., & Hoyer, W. J. (2000). Instance-based automaticity and aging:
Acquisition, reacquisition, and long-term retention. Psychology and
Aging, 15, 551–565.

Kausler, D. H. (1994). Learning and memory in normal aging. San Diego,
CA: Academic Press.

Li, S.-C. (2002). Connecting the many levels and facets of cognitive aging.
Current Directions in Psychological Science, 11, 38–43.

Li, S.-C., Lindenberger, U., & Sikstrom, S. (2001). Aging cognition: From
neuromodulation to representation. Trends in Cognitive Sciences, 5,
479–486.

Loewenstein, D. A., Acevedo, A., Czaja, S. J., & Duara, R. (2004).
Cognitive rehabilitation of mildly impaired patients on cholinesterase
inhibitors. American Journal of Geriatric Psychiatry, 12, 395–402.

Lu, Z.-L., & Dosher, B. (2004). Perceptual learning retunes the perceptual
template in foveal orientation identification. Journal of Vision, 4, 44–56.

McDowd, J. M. (1986). The effects of age and extended practice on
divided attention performance. Journal of Gerontology, 41, 764–769.

Myerson, J., Adams, D. R., Hale, S., & Jenkins, L. (2003). Analysis of
group differences in processing speed: Brinley plots, Q-Q plots, and
other conspiracies. Psychonomic Bulletin and Review, 10, 234–237.

Owsley, C., Sekuler, R., & Siemsen, D. (1983). Contrast sensitivity
through adulthood. Vision Research, 23, 689–699.

Plude, D. J., Kaye, D. B., Hoyer, W. J., Post, T. A., Saynisch, M. J., &
Hohn, M. V. (1983). Aging and visual search under consistent and
varied mapping. Developmental Psychology, 19, 508–512.

Rabbitt, P. (1979). How old and young subjects monitor and control
responses for accuracy and speed. British Journal of Psychology, 70,
305–311.

Rabbitt, P., & Banerji, N. (1989). How does very prolonged practice
improve decision speed. Journal of Experimental Psychology: General,
118, 338–345.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review,
85, 59–108.

Ratcliff, R. (1981). A theory of order relations in perceptual matching.
Psychological Review, 88, 552–572.

Ratcliff, R. (1985). Theoretical interpretations of speed and accuracy of
positive and negative responses. Psychological Review, 92, 212–225.

Ratcliff, R. (1988). Continuous versus discrete information processing:
Modeling the accumulation of partial information. Psychological Re-
view, 95, 238–255.

Ratcliff, R. (2002). A diffusion model account of reaction time and accuracy
in brightness discrimination task: Fitting real data and failing to fit fake but
plausible data. Psychonomic Bulletin and Review, 9, 278–291.

Ratcliff, R., Gomez, P., & McKoon, G. (2004). A diffusion model account
of lexical decision task. Psychological Review, 111, 159–182.

Ratcliff, R., & Rouder, J. F. (1998). Modeling response times for two-
choice decisions. Psychological Science, 9, 347–356.

Ratcliff, R., & Rouder, J. F. (2000). A diffusion model account of masking
in two-choice letter identification. Journal of Experimental Psychology:
Human Perception and Performance, 26, 127–140.

Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling
models for two-choice reaction time. Psychological Review, 111, 333–367.

Ratcliff, R., Spieler, D., & McKoon, G. (2000). Explicitly modeling the effects
of aging on response time. Psychonomic Bulletin and Review, 7, 1–25.

Ratcliff, R., Spieler, D., & McKoon, G. (2004). Analysis of group differ-
ences in processing speed: Where are the models of processing? Psy-
chonomic Bulletin and Review, 11, 755–769.

Ratcliff, R., Thapar, A., Gomez, P., & McKoon, G. (2004). A diffusion
model analysis of the effects of aging in the lexical-decision task.
Psychology and Aging, 19, 278–289.

Ratcliff, R., Thapar, A., & McKoon, G. (2001). The effects of aging on
reaction time in a signal detection task. Psychology and Aging, 16,
323–341.

Ratcliff, R., Thapar, A., & McKoon, G. (2003). A diffusion model analysis
of the effects of aging on brightness discrimination. Perception and
Psychophysics, 65, 523–535.

Ratcliff, R., Thapar, A., & McKoon, G. (2004). A diffusion model analysis
of the effects of aging on recognition memory. Journal of Memory and
Language, 50, 408–424.

Ratcliff, R., Thapar, A., & McKoon, G. (in press). Aging and individual
differences in rapid two-choice decisions. Psychonomic Bulletin and
Review.

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating the parameters of the diffu-
sion model: Approaches to dealing with contaminant reaction times and
parameter variability. Psychonomic Bulletin and Review, 9, 438–481.

Ratcliff, R., Van Zandt, T., & McKoon, G. (1999). Connectionist and
diffusion models of reaction time. Psychological Review, 106, 261–300.

Rogers, W. A., & Fisk, A. D. (1991). Are age differences in consistent-
mapping visual search due to feature learning or attention training?
Psychology and Aging, 6, 542–550.

Rogers, W. A., Hertzog, C., & Fisk, A. D. (2000). An individual differ-
ences analysis of ability and strategy influences: Age-related differences
in associative learning. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 26, 359–394.

Salthouse, T. A. (1985). A theory of cognitive aging. Amsterdam: North-
Holland.

Salthouse, T. A., & Somberg, B. L. (1982). Skilled performance: Effects of
adult age and experience on elementary processes. Journal of Experi-
mental Psychology: General, 111, 176–207.

369AGING, PRACTICE, AND PERCEPTUAL TASKS



Smith, G. A., & Brewer, N. (1995). Slowness and age: Speed-accuracy
mechanisms. Psychology and Aging, 10, 238–247.

Smith, P. L. (2000). Stochastic dynamic models of response time and
accuracy: A foundational primer. Journal of Mathematical Psychology,
44, 408–463.

Smith, P. L., Ratcliff, R., & Wolfgang, B. J. (2004). Attention orienting and
the time course of perceptual decisions: Response time distributions with
masked and unmasked displays. Vision Research, 44, 1297–1320.

Spear, P. D. (1993). Neural bases of visual deficits during aging. Vision
Research, 33, 2589–2609.

Strayer, D. L., & Kramer, A. F. (1994). Strategies and automaticity: I.
Basic findings and conceptual framework. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 20, 318–341.

Thapar, A., Ratcliff, R., & McKoon, G. (2003). A diffusion model analysis
of the effects of aging on letter discrimination. Psychology and Aging,
18, 415–429.

Touron, D. R., & Hertzog, C. (2004a). Distinguishing age differences in
knowledge, strategy use, and confidence during skill acquisition. Psy-
chology and Aging, 19, 452–466.

Touron, D. R., & Hertzog, C. (2004b). Strategy shift affordance and
strategy choice in young and older adults. Memory & Cognition, 32,
298–312.

Touron, D. R., Hoyer, W. J., & Cerella, J. (2001). Cognitive skill acqui-
sition and transfer in younger and older adults. Psychology and Aging,
16, 555–563.

Touron, D. R., Hoyer, W. J., & Cerella, J. (2004). Cognitive skill learning:
Age-related differences in strategy shifts and speed of component op-
erations. Psychology and Aging, 19, 565–580.

Verhaeghen, P., & Kliegl, R. (2000). The effects of learning a new
algorithm on asymptotic accuracy and execution speed in old age: A
reanalysis. Psychology and Aging, 15, 648–656.

Wechsler, S. (1997). Resultative predicates and control. In Proceedings of
the 1997 Texas Linguistics Society Conference: Texas Linguistic Forum
38 (pp. 307–321). Austin: University of Texas at Austin.

Welford, A. T. (1981). Signal, noise, performance, and age. Human Fac-
tors, 23, 97–109.

Welford, A. T. (1985). Practice effects in relation to age: A review and a
theory. Developmental Neuropsychology, 1, 173–190.

Appendix

Experiment 1: Letter Discrimination

The experimental design was a 2 � 2 � 6 � 3 (Age � Speed–Accuracy
Instruction � Stimulus Duration � Session) mixed-design ANOVA, with
age as the only between-subjects variable. The dependent measures were
response time and response accuracy. An alpha level of .05 is used
throughout. Sphericity tests were carried out and, where significant,
Greenhouse-Geisser adjusted significance levels are reported. Significant
results were analyzed with an analysis of simple interactions and post hoc
comparisons using either the Tukey honestly significant difference test (for
equal variance among groups) or the Games-Howell test (for unequal
variance).

Response Time

The Age � Instruction � Stimulus Duration � Session mixed-factor
ANOVA revealed significant main effects of age, F(1, 52) � 101.34, p �
.001, instruction, F(1, 52) � 79.59, p � .001, stimulus duration, F(1.35,
70.34) � 77.74, p � .001, and session, F(1.51, 78.38) � 40.44, p � .001.
Young adults responded more quickly than older adults (479 vs. 666 ms,
respectively). Responses to the speed–stress condition were shorter than
those to the accuracy–stress condition (514 vs. 631 ms, respectively).
Performance improved with practice (630, 549, and 539 ms for Sessions 1,
2, and 3, respectively). Responses were slower to stimuli presented for
shorter durations than to stimuli presented for longer durations (mean
response times ranged from 631 ms at the 10-ms stimulus onset asynchrony
[SOA] to 535 ms at the 60-ms SOA).

As expected, these main effects were qualified by several higher order
interactions. Specifically, young and older adults were differentially influ-
enced by decreasing stimulus duration; older adults’ mean response times
for stimuli presented at 10 ms increased by 147 ms relative to stimuli
presented at 60 ms, whereas young adults’ mean response times increased
by 47 ms, resulting in a significant Age � Stimulus Duration interaction,
F(1.35, 70.34) � 21.35, p � .001. On average, older adults improved about
158 ms from Session 1 to Session 3, whereas young adults improved about
27 ms, resulting in a significant Age � Session interaction, F(1.51,
78.38) � 18.95, p � .001. The effects of practice were larger for stimuli
presented at shorter durations than longer durations, resulting in a signif-
icant Stimulus Duration � Session interaction, F(2.31, 120.20) � 12.36,
p � .001. Although this was true for both age groups, the effect was more

pronounced in young adults, resulting in a significant Age � Stimulus
Duration � Session interaction, F(2.31, 120.20) � 4.06, p � .05. More-
over, the effect was more pronounced in the accuracy–stress condition,
resulting in a significant Instruction � Stimulus Duration � Session
interaction, F(3.64, 189.31) � 2.67, p � .05. Across the three test sessions,
for both young and older adults, mean response times in the speed–stress
condition were shorter than mean response times in the accuracy–stress
condition. This finding was confirmed by the nonsignificant Age � In-
struction, Instruction � Session, and Age � Instruction � Session inter-
actions (all ps � .10). Last, the four-way Age � Instruction � Stimulus
Duration � Session interaction was not significant, F(3.64, 189.31) �
1.08, p � .37.

Response Accuracy

The results of the Age � Instruction � Stimulus Duration � Session
mixed-factor ANOVA revealed significant main effects of age, F(1, 52) �
40.88, p � .001, instruction, F(1, 52) � 127.30, p � .001, stimulus
duration, F(2.05, 106.50) � 387.34, p � .001, and session, F(1.72,
89.61) � 14.65, p � .001. Young adults were more accurate than older
adults (.87 and .76, respectively). Responses to the speed–stress condition
were less accurate than responses to the accuracy–stress condition (.80 and
.84, respectively). Performance improved with practice (.78, .82, and .85
for Sessions 1, 2, and 3, respectively). Responses to stimuli presented for
shorter durations were less accurate than those to stimuli presented for
longer durations (accuracy range � .63–.96).

These main effects were qualified by several higher order interactions.
Young and older adults were differentially influenced by decreasing stim-
ulus duration (range � .95–.56 in older adults and .96–.71 in young
adults), resulting in a significant Age � Stimulus Duration interaction,
F(2.05, 106.50) � 30.73, p � .001. Older adults improved more than
young adults (.10 vs. .04, respectively), which produced a significant
Age � Session interaction, F(1.72, 89.61) � 14.65, p � .001, and whereas
older adults improved at all stimulus durations, improvements in young
adults’ performance were limited to the shorter stimulus durations, result-
ing in a significant Age � Stimulus Duration � Session interaction,
F(5.79, 300.83) � 7.87, p � .001. Last, the four-way Age � Instruction �
Stimulus Duration � Session interaction was not significant, F(6.61,
343.56) � 1.14, p � .33.
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Experiment 2: Brightness Discrimination

The experimental design was a 2 � 2 � 6 � 3 � 4 (Age � Speed–
Accuracy Instruction � Brightness � Stimulus Duration � Session)
mixed-factor ANOVA, with age as the between-subjects variable. The
dependent measures were response accuracy and response time. In the
interest of presentational clarity, we report only the results that are directly
relevant to the hypotheses tested in this study, namely the effects of age and
session and the higher order interactions that include these variables.

Response Time

The results of the omnibus 2 � 2 � 6 � 3 � 4 (Age � Speed–Accuracy
Instructions � Brightness � Stimulus Duration � Session) mixed-factor
ANOVA revealed significant main effects of age, F(1, 48) � 6.23, p � .05,
speed–accuracy instructions, F(1, 48) � 199.38, p � .001, brightness,
F(2.28, 109.44) � 83.41, p � .001, and session, F(2.50, 120.20) � 14.15,
p � .001. Young adults responded more quickly than older adults (599 vs.
644 ms, respectively). Responses to the speed–stress condition were faster
than those to the accuracy–stress condition (538 vs. 705 ms, respectively).
Responses to stimuli that were more easily categorized as bright or dark
were faster than those to intermediate stimuli. Performance improved with
practice (672, 621, 602, and 593 ms for Sessions 1, 2, 3, and 4, respec-
tively). The main effect of stimulus duration was not significant. Regarding
practice effects, improvements in the accuracy–stress condition were more
pronounced than in the speed–stress condition, F(2.52, 120.88) � 5.45,
p � .001, and older adults benefited more from practice than young adults,
F(2.50, 120.20) � 5.03, p � .01. However, these effects were qualified by
a significant Age � Instruction � Session interaction, F(2.52, 120.88) �
3.08, p � .05. Follow-up analyses revealed that older adults’ performance
improved in both the accuracy–stress and the speed–stress conditions, but
their improvements were more pronounced in the accuracy–stress condi-
tion. In contrast, young adults’ performance was stable across the four test
sessions. The remaining higher order interactions involving age did not
approach significance (all ps � .10). Last, the four-way and the five-way
interactions were also not significant (all ps � .10).

Response Accuracy

The results of the omnibus 2 � 2 � 6 � 3 � 4 (Age � Speed–Accuracy
Instructions � Brightness � Stimulus Duration � Session) mixed-factor
ANOVA revealed significant main effects of speed–accuracy instructions, F(1,
48) � 93.36, p � .001, brightness, F(1.54, 73.87) � 321.32, p � .001,
duration, F(1.64, 78.79) � 183.29, p � .001, and session, F(1.49, 71.31) �
43.46, p � .001. Responses to the accuracy–stress condition were more
accurate than those to the speed–stress condition (.81 and .78, respectively).
Subjects were more accurate when responding to stimuli that were more easily
categorized as bright or dark than they were to intermediate stimuli. Response
accuracy increased as stimulus duration increased (.76, .80, and .82, for 50-ms,
100-ms, and 150-ms durations, respectively). Performance improved with
practice (.73, .81, .82, and .83, for Sessions 1, 2, 3, and 4, respectively). The
main effect of age (young � .81, old � .78) approached significance,
F(1,48) � 3.16, p � .08, and the Age � Speed–Accuracy Instructions
interaction was significant, F(1, 48) � 5.04, p � .05. Young adults were more
accurate than older adults in the accuracy–stress condition (young adults �
.83, older adults � .80), and although a similar pattern was observed in the
speed–stress condition (young adults � .79, older adults � .77), the difference
was not reliable. More important, young and older adults were not differen-
tially influenced by practice, as indicated by the nonsignificant Age � Session
interaction, F(1.49, 71.31) � 2.47, p � .10. Follow-up analyses confirmed that
both young and older adults’ performance showed reliable improvements for
stimuli at brightness levels .350, .425, .575, and .650 but not for stimuli at
brightness levels .475 and .525.

Last, the Instruction � Session, Brightness � Session, Duration �
Session, Brightness � Duration, and Instruction � Brightness � Dura-
tion � Session interactions were all significant (all ps � .05). Subsequent
analysis of these higher order interactions revealed that improvements in
responses to stimuli of different brightness levels varied by stimulus
duration and by speed–accuracy instructions. In addition, the main effect of
duration varied for stimuli of different brightness levels and for the speed–
accuracy conditions.
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