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Methods for Dealing With Reaction Time OQutliers

Roger Ratchff

The effect of outliers on reaction time analyses is evaluated. The first section assesses the power of
different methods of minimizing the effect of outliers on analysis of variance (ANOVA) and makes
recommendations about the use of transformations and cutoffs. The second section examines the
effect of outliers and cutoffs on different measures of location, spread, and shape and concludes
using quantitative examples that robust measures are much less affected by outliers and cutoffs than
measures based on moments. The third section examines fitting explicit distribution functions as a
way of recovering means and standard deviations and concludes that unless fitting the distribution
function is used as a model of distribution shape, the method is probably not worth routine use.

Almost everyone who has analyzed reaction time data has
been faced with the problem of what to do with outlier response
times. Outliers are response times generated by processes that
are not the ones being studied. The processes that generate out-
liers can be fast guesses, guesses that are based on the subject’s
estimate of the usual time to respond, multiple runs of the pro-
cess that is actually under study, the subject’s inattention, or
guesses based on the subject’s failure to reach a decision. For
almost any theoretical or empirical purpose, it is desirable to
eliminate outliers from the data. However, eliminating outliers
requires unambiguously identifying them, and that is extremely
difficult. The problem is that the distribution of response times
from the real processes under study overlaps to a great extent
the distribution of outlier response times. So the best we can
hope to do is to reduce the effects of potential outliers while
eliminating as little as possible of the data of real interest.

In this article, I present a series of simulation studies of re-
sponse time distributions. The results of these studies offer prac-
tical recommendations for how to deal with outliers. The article
contains three sections that progress from the purely practical
question of how to improve the power of analysis of variance
(ANOVA), to the issue of how outliers affect descriptive statistics
for response time distributions, and then to the issue of fitting
explicit models to distributions that may contain outliers. The
three sections of the article move from a pragmatic emphasis
on hypothesis testing to the theoretical domain of modeling.

In the first section of the article, distributions of response
times with and without outliers are simulated and the power of
ANOVA to find significant differences between distributions is
investigated as a function of several possible ways to deal with
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outliers. In the second section, I examine the variability in mea-
sures of the shape, spread, and location of reaction time distri-
butions under several schemes for eliminating outliers. Corre-
lations among the different measures show to what extent the
measures evaluate the same things. In the third section I present
an examination of the use of explicit theoretical distribution
functions to describe the shapes of empirical reaction time dis-
tributions and to allow the mean and standard deviations of the
empirical distributions to be recovered.

Reaction Time Models

To evaluate the effectiveness of various methods for eliminat-
ing outliers, simulated reaction time distributions, both with
and without outliers, were generated. Reaction time distribu-
tions are usually skewed to the right. This means that the distri-
butions rise rapidly and then fall off slowly with a long skewed
tail. For the simulations reported in this article, two explicit the-
oretical distribution functions were used to mimic empirical
reaction time distributions. The first was the convolution of the
normal and the exponential distributions (called the ex-
Gaussian by Luce, 1986). It has been used successfully as a con-
venient summary of empirical reaction time distributions in a
range of experimental paradigms (Heathcoate, Popiel, &
Mewhort, 1991; Hockley, 1982, 1984; Hohle, 1965; Ratcliff,
1978, 1979, 1981, 1988a, 1988b; Ratcliff & Murdock, 1976;
Ulrich & Miller, 1992). The distribution has three parameters:
the mean of the normal, u, the standard deviation of the normal,
¢, and the parameter and mean of the exponential, 7. The ex-
pression for the ex-Gaussian is
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The mean of the ex-Gaussian is u + 7 and the variance is 7% +
0. Because empirically the size of ¢ is usually not more than
one fourth the size of 7, the standard deviation in the distribu-
tion is approximately 7 (i.e., V[1 + (1/4)}] = 1.03). The param-
eter ¢ approximately represents the rise in the left tail of the
distribution, and T approximately represents the fall in the right
tail. I have found in fitting this distribution to data that u + 7 is
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a good approximation to the mean of the data. When random
samples of data are generated from the theoretical distribution,
then if p is higher than the population g, = will most often be
lower than the population = and vice versa (leading to a negative
correlation in the parameter estimates).

To use the ex-Gaussian to generate a simulated data point, a
random number drawn from a normal distribution is added to
a random number drawn independently from an exponential
distribution (see Ratcliff, 1979). Repeating this process with
different random numbers yields a simulated distribution of re-
sponse times.

The other theoretical distribution function used for the re-
search presented here was the inverse Gaussian or Wald distri-
bution. It is the distribution of finishing times derived from a
one-boundary diffusion process (the continuous version of the
random walk). This distribution has been shown to be an ac-
ceptable model of reaction time distributions (e.g., Luce, 1986;
Ratcliff, 1978, 1988b). The expression for the inverse Gaussian
is
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where the parameters of the model are 6, A, and ¢,,, and 8 + 7., is
the mean of the distribution and the standard deviation is y(8°/
\). An algorithm for generating random numbers from the in-
verse Gaussian is available (Chhikara & Folks, 1989, p. 53). An-
other form of this distribution written in terms of the diffusion
process (Ratcliff, 1978) is
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There are a number of other theoretical functions that have
been used to fit reaction time distributions such as the lognor-
mal, gamma, and so forth (see Luce, 1986, Appendix B; Ratcliff
& Murdock, 1976; see also Ulrich & Miller, 1992). These other
functions are not considered in this article. However, if some
aspect of the results appeared to be critically dependent on spe-
cific distributional assumptions, then it would be straightfor-
ward to examine these other distributions in ways parallel to
those reported here.

Types of Outliers

There are two major types of reaction time outliers: short and
long. There may also be spurious reaction times that overlap the
center of the distribution of normal responses, but these are
impossible to identify. Short reaction times occur with some
frequency in experiments in which mean reaction time is short
(e.g., choice reaction time; Swensson, 1972), but in other situa-
tions where reaction time is longer (e.g., more than 500 ms) and
subjects are cooperating, they are infrequent (e.g., Ratcliff &
Murdock, 1976). When they do occur, with uncooperative sub-
jects or subjects tested by an experimenter showing lack of in-
terest, they are usually easy to spot (e.g., the reaction time dis-
tributions are bimodal, the accuracy of the fastest responses is

at chance, or both) and so they are not considered here. How- .

ever, long spurious reaction times are almost certainly always
present, usually overlapping with long genuine reaction times.
Separating genuine from spurious response times is by no
means a simple issue. Some models might predict a high tail in
the reaction time distribution, and what might be outliers for
one model, might not be outliers for another model. However,
to some extent, these theoretical considerations are independent
of the experimenter’s desire to improve the power of experimen-
tal analyses.

To illustrate the difference in detectability of short and long
outliers, four example distributions are shown in Figure 1. Re-
sponse times to represent the real process, the one under study,
were produced from an ex-Gaussian distribution with parame-
ters ¢ = 400 ms, ¢ = 40 ms, and r = 200 ms. One thousand
randomly drawn response times from this distribution are plot-
ted in the histogram in the top left corner. To produce a mixture
of the real process and outliers, 800 random numbers were gen-
erated from the ex-Gaussian distribution for the real process,
and 200 random numbers were generated from the same ex-
Gaussian distribution with 4 = 600 ms (bottom left), u = 200
ms (top right), and ¢ = 800 ms (bottom right). For outliers in
the right tail, the histograms show that it is difficult to detect
whether or not there is a mixture even when g = 800 ms, a
mean of about 2 standard deviations above the mean of the real
distribution. In contrast, when the outliers are in the left tail,
the distribution becomes either markedly more symmetrical or
humped in the left tail. Response times in the left tail are much
more easily identified as problematic compared with noncon-
taminated distributions than response times in the right tail. In
practice, outliers in the left tail show up in one or a few subjects’
conditions and comparisons with distributions from other sub-
jects or conditions can be used to identify them. These results
can be summarized as follows: Short outliers stand alone; long
outliers hide in the tail.

I should stress that even with the outlier distribution dis-
placed 2 standard deviations above the mean, it is almost im-
possible to determine whether there are outliers in the tail. In
the example in Figure 1, it is difficult to decide whether the
hump in the right tail is spurious or the product of a mixture of
two real processes. In practice, outliers are even more difficult
to spot than in this simple case. The outliers’ distribution most
likely has a much greater standard deviation than the distribu-
tion of the real process, giving a long and elevated tail, because
outliers often come from spurious events such as loss of atten-
tion, daydreaming, distraction, and so forth. Determining
whether any particular group of extreme reaction times con-
tains mostly real responses or mostly outliers is extremely
difficult. Therefore, finding methods that minimize the effects
of suspect observations is an important aim of statistical meth-
ods in the analysis of reaction time. In fact, the goal for our
models and empirical research should be to account for the
middle 85-95% of the observations in our reaction time distri-
butions; these are the data that are most likely to come from the
real processes under consideration and also most likely to be
critical in testing hypotheses and models.

The statistics literature provides a number of tests for outli-
ers, tests that determine whether there are one, two, or some
undetermined number of outliers (e.g., Barnett & Lewis, 1978;
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Figure 1.

The mixture distribution produced by mixing a distribution with the same distribution shifted

by one standard deviation to the right or left or two standard deviations to the right. (The mixture distribu-

tion has 20% of the total observations.)

Lovie, 1986; Shapiro & Wilk, 1972), suggesting that there are
methods already available to address many of the questions
concerning outliers discussed here. However, the specifics of the
reaction time domain severely limit the applicability of these
methods. The methods I have found in the literature have dealt
with distributions such as the Gaussian, exponential, or gamma
distributions that are not generally appropriate for reaction
time distributions. It is certainly possible to develop such meth-
ods for the classes of distributions that have been applied to
reaction time, but as far as I know this has been done only for
the exponential and gamma distributions (see Barnett & Lewis,
1978). There are other methods for reducing the influence of
outliers (e.g., M-estimators, Barnett & Lewis, 1978) that weight
response times differentially as a function of distance from the
center of the distribution. These methods might improve power
of the data analyses by a small amount, but significant effort
would be needed to determine the form of the function used to
weight the data, and so far as I know, there has been no such
effort in the reaction time domain.

So what should be done? A single extremely long outlier can
increase the mean, inflate the standard deviation, and change
measures of shape such as skewness by a very large amount (see
Ratcliff, 1979). The aim is to lessen the impact of such outliers
by trimming them out of the data, by using robust statistics, or
by using transformations that minimize their effects. In the next

section, I examine the power of ANOVA under various schemes
to minimize the influence of outliers. The power was compared
for reaction time distributions with and without outliers and for
distributions with outliers eliminated by various rules.

Power of Analysis of Variance
Under Outlier Minimization

Simulations Using the Ex-Gaussian Distribution

Analysis of variance of reaction times is used to detect
whether reaction time distributions across experimental condi-
tions are significantly different from each other. To conduct an
ANOVA of simulated data requires generating reaction times
from a theoretical distribution for each experimental condition
and then performing an ANOVA on the reaction times. In what
follows, the same distribution was assumed for each experimen-
tal condition except that the mean was changed in some of the
conditions relative to others (e.g., by adding 40 ms). To examine
power, 1,000 replications of this process (generating simulated
data and running an ANOVA on it) were performed and the
number of analyses that gave a significant difference out of
1,000 is reported.

The experiment that was simulated was chosen to mimic typ-
ical psycholinguistic and lexical decision experiments and other
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experiments in which there were limited numbers of observa-
tions per condition per subject (because of limited numbers of
experimental stimuli). The simulated experiment had four con-
ditions, seven observations per condition, and 32 subjects. Re-
sponse times in two of the conditions were increased to produce
a main effect. The parameters for the ex-Gaussian distribution
of the process of real interest were: 1 = 400 ms, ¢ = 40 ms, and
7 = 200 ms. The size of the main effect was 20, 30, or 40 ms and
was introduced in p for some studies or in 7 for other studies.
Variability across “subjects” was added by selecting a random
number from a rectangular distribution with range from —50 to
50 ms (small variability across subjects) or —150 to 150 ms
(large variability across subjects) and adding it to u (a discussion
of putting subject variability in 7 is presented later). A response
time statistic (e.g., the mean, median, or trimmed mean) was
computed for each subject condition, and these statistics were
compared ina 32 X 2 X 2 ANOVA.

To include outliers in the experiment, reaction times were se-
lected either from the distribution used for the real process with
probability 0.9 or from an outlier distribution with probability
0.1. This means that a particular condition could have zero,
one, two, or even more outliers out of seven observations. The
outlier distribution was the same as the real process distribution
except that a random time chosen from a rectangular distribu-
tion with range 0 ms to 2,000 ms was added to a reaction time
from the real process distribution. In psychological terms, this
mimics a loss of attention that would cause a subject to delay
the beginning of processing. The method for choosing outliers
was designed to introduce inliers as well as outliers, that is, spu-
rious observations through almost the whole distribution.
Without systematic empirical studies, this assumption seems
reasonable. If other assumptions about the outlier distribution
were advanced, simulations similar to those reported here could
be performed to compare results.

Common methods used to eliminate outlier reaction times
include using the median response time, using specific cutoff
response times, and using cutoffs at some number of standard
deviations above the mean response time. For comparisons of
the power of different methods, the complete response time dis-
tribution (with no responses eliminated) was used as a baseline.
The methods for eliminating outliers compared with this base-
line were as follows: eliminating all responses longer than a cut-
off value, transforming the data, trimming the mean by elimi-
nating the longest response time in each condition for each sub-
ject, calculating medians instead of means, eliminating
response times above some value determined by standard devi-
ations, and Windsorizing (replacing observations 2 standard de-
viations above the mean by observations at 2 standard devia-
tions above the mean; Barnett & Lewis, 1978). I examined five
different cutoff values, two different transformations (log and
inverse; each reaction time was converted to log or inverse be-
fore taking the mean for that condition), and two different stan-
dard deviation values, | standard deviation above a subject’s
mean (in which the standard deviation was calculated over all
four experimental conditions) and 1.5 standard deviations
above the mean. Note that in the studies that follow, absolute
times were used to determine the cutoff and these times are used
in the presentations of the data. But in applying these methods

to real data, it would be at least as valuable to use percentages
of errors eliminated by the cutoff.

There were six different sets of studies with ex-Gaussian dis-
tributions, and each study had a main effect difference between
two of the four experimental conditions. Two of the six studies
had the main effect in u; one study had outliers and one did not.
Two more studies had the main effect in 7; one with outliers and
one without. The last two studies both had outliers, and one
with the effect in i and one with the effect in 7, but they differed
from the first four studies in that there were large differences in
subject mean reaction times in relation to the standard devia-
tion of the distribution (i.e., the range could be 1.5 times the
standard deviation). For each study, ANOVA provided F values
for the two main effects and their interaction. The level of sig-
nificance was set at 0.05. I expected that about 5% of the in-
teractions and about 5% of the main effects for which there was
no real effect would appear spuriously significant. The impor-
tant question concerns the real main effect (for which 20-40 ms
was added to each response time); the question is which meth-
ods of eliminating outliers led to the most uniformly high power
for detecting this effect across the six studies?

Results

None of the methods for dealing with outliers affected the
alpha level, and the number of significant F values out of 1,000
for the null main effect and the interaction varied randomly be-
tween about 35 and 65 across the conditions, studies, and meth-
ods of dealing with outliers.

Figure 2 shows the results from the two studies with and with-
out outliers for which there was a 30-ms effect in u. For the
no outlier case, when a cutoff value was adopted to eliminate
outliers, power increased as the cutoff was reduced from no cut-
off at all to 1,000 ms. The median and trimmed mean had low
power, and the standard deviation cutoffs and the two transfor-
mations had higher power. The differences in power among
these methods were the smallest found across all the studies.

The bottom curve shows the effect of the introduction of out-
liers. The power with a 1,000-ms cutoff was about 0.6, but this
dropped to around 0.2 as the cutoff was increased until there
was no cutoff. The loss of power is due to the increased variabil-
ity in the mean differences among conditions as a result of the
presence of long spurious observations. This result shows the
danger of ignoring the presence of outliers; power can easily
drop to a third of what it would be under ideal conditions (no
outliers). With reduced cutoff values (down to 1,000 ms), power
came to within a few percent of what it would have been without
outliers. For the trimmed mean, median, and log transforma-
tions, outliers reduced power. But outliers left the inverse trans-
formation and the standard deviation cutofs still relatively high
in power.

I should stress that these results are conditional on the 30-ms
effect being in u, so that the whole distribution of reaction times
shifted to the right. Cutting off the right tail reduced noise with-
out disturbing the 30-ms effect. Figure 3 shows that the pattern
of results was somewhat different when the effect was in r, elon-
gating the right tail of the distribution (a more common pattern
of results in reaction time studies than a shift of the whole dis-
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Figure 2. The power of analysis of variance for different conditions for the ex-Gaussian distribution with
a 30-ms effect in x with no outliers (crosses) and 10% outliers (boxes).

tribution). When the effect was in the tail, cutting off values
reduced the effect, thereby reducing power. Introducing outliers
into the right tail introduced a trade-off between reducing the
effect of the outliers and eliminating real responses that were an
important part of the effect. These results are discussed in detail
in the next paragraphs.

When the effect was 40 ms in the 7 parameter and there were
no outliers, cutoffs had the opposite effect as when the effect
was in u and there were no outliers (see Figure 3, top curve).
Eliminating responses longer than a cutoff value decreased
power; as the cutoff value was decreased, cutting off a larger and
larger proportion of responses (to 8.5% at the 1,000-ms cutoff),
the power decreased from a high of 70% to a low of less than
40% (Figure 3). The standard deviation cutoffs had low power
and the two transformations and the trimmed mean had rela-
tively high power. Again, the median had lower power than the
optimal cutoff. Overall, the power was less with a 40-ms effect
in the tail of the distribution (+ parameter), 0.7 maximum
power, than when the effect was in a shift of the whole distribu-
tion by 30 ms (u parameter), 0.9 maximum power (Figure 2).
Windsorizing provided high power because long genuine reac-
tion times were replaced by long genuine times at two standard
deviations. But this is the only case that Windsorizing had high
power.

When the effect was in the tail (40 ms in the 7 parameter)
and outliers were introduced, the overall power decreased from
when there were no outliers (Figure 3, bottom curve). Cutoff
values increased power as the values decreased from no cutoff
to a cutoff of 1,500 ms, but further decreases in the cutoff values

reduced power as more and more of the response times from
the real distribution were eliminated. Figure 3 shows that the
inverse transformation had higher power than the log, the me-
dian, the trimmed mean, and the standard deviation cutoffs.

Other simulation studies examined the effect of placing sub-
Jject variability in r compared with u above (i.e., spreading the
distribution as opposed to shifting it). This had little impact on
the power of the ANOVA. There were only two main differences.
The first was a decrease in overall power in a particular measure
from usually a few percent to an occasional decrease of 20% or
30% when subject variability was in 7 relative to u. The second
effect was for the standard deviation cutoff: when the experi-
mental effect was in 7 and subject variability was in g, power for
the | standard deviation cutoff was lower than for the 1.5 stan-
dard deviation cutoff (Figure 3). When the subject variability
was in 7, the power for the 1.5 standard deviation cutoff was
higher than for the 1 standard deviation cutoff.

Figure 4 shows results for the two studies in which the subject
variability was large relative to the standard deviation for indi-
vidual subjects’ distributions. The motivation for these studies
came from analyzing real data, which is presented in a later
section. Two cases are shown, one with a 20-ms effect in ¢ and
one with a 20-ms effect in 7, but both with a 300-ms range in
subject variability. Both cases have outliers from the same dis-
tribution as above (a random number from 0 to 2,000 ms
added).

Results show that power as a function of cutoff is similar to
the patterns in Figures 2 and 3. However, the relative power of
other measures changes. In particular, the standard deviation
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cutoffs have power near the optimal cutoff, and the median is
now equal to or better than the inverse transformation. The rea-
son that the standard deviation cutoff increases in power is that
outliers are trimmed relative to the base reaction time for that
subject, whereas with cutoffs, outliers for a fast subject are not
touched but real responses for another subject are trimmed. In
the studies just discussed, subject variability was small enough
that the distributions for individual subjects were hardly sepa-
rated.

Simulations Using the Inverse Gaussian Distribution

To ensure that the results of these simulations were not idio-
syncratic to the ex-Gaussian distribution, a similar set of studies
was conducted with the inverse Gaussian distribution (Equa-
tion 2). To provide a main effect difference between two of the
four experimental conditions, the drift rate in the inverse
Gaussian was increased by 40 ms. This is similar to having 20%
of the 40-ms effect in « and 80% of the effect in 7 in the ex-
Gaussian. Subject variability in the inverse Gaussian was intro-
duced in the drift rate and was 100 ms in range as in the first
four studies. Qutliers were generated from the distributions in
the same way as was just discussed.

Figure 5 shows the resulting power values with outliers (bot-
tom curve) and without outliers (top curve). In general, the pro-
files look similar to those produced by the ex-Gaussian with a
40-ms effect in the 7 parameter. The power is higher with the
inverse Gaussian but the qualitative features are the same.

515

Analysis of Two Experiments

To further examine the power of analysis of variance under
various methods for eliminating outliers, I computed F statis-
tics for the data from two real experiments. Two lexical decision
experiments described in an article by McKoon and Ratcliff
(1992, Experiments 1 and 3) were used. These experiments
were selected because the effects are very small and so push the
limit of experimental methods. Experiment 1 had four condi-
tions in a 4 X 1 design and there were 52 subjects. There were 9
observations per subject per condition when the subject made
no errors in the condition. Experiment 3 had two groups of 44
subjects with two conditions per group (a 2 X 2 design), and
12 observations per subject per condition when there were no
errors.

All of the same methods for eliminating outliers used with
the simulations just presented were applied to the data from the
two experiments. The results are graphed in Figure 6 in terms
of values of the F statistic. For the earlier simulations, results
were graphed in terms of power, defined as the number of sig-
nificant F values out of a thousand simulations. This number
correlates highly with the average F value for the thousand sim-
ulations. To show this, the average value of F for four of the sets
of simulations (those in Figures 3 and 4) was compared with the
number of F values that were significant; the correlation was
0.989, showing that the average F value tracks power very
closely.

The values of the F statistic for the different methods are
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Figure 3. The power of analysis of variance for different conditions for the ex-Gaussian distribution with
a 40-ms effect in 7 with no outliers (crosses) and 10% outliers (boxes).




516 ROGER RATCLIFF

Inverse Gaussian, 40 ms effect in drift rate, top no outliers, bottom outliers
o
8 —_—
& V’%Ne%\ \ /
o
8 g -
- O
5 >{
3 Q\EQ/Q\EH
s <
o |
&
o -
nocut 2500 2000 1500 1250 1000 log(RT) 1/RT  trim median 1.5SD 1SD wind
Condition

Figure 4. The power of analysis of variance for different conditions for the inverse Gaussian distribution
with a 40-ms effect in drift rate with no outliers (crosses) and 10% outliers (boxes).

shown in Figure 6. A significant F value for these experiments
is about 4.0, and this line is drawn horizontally on the figure.
The pattern of responses for the crosses (Experiment 3) mimics
the pattern found when an effect is in 7 for an ex-Gaussian dis-
tribution contaminated with outliers (and also mimics the sim-
ilar case for the inverse Gaussian). Note that the standard devi-
ation cutoff is reasonably high because of high between-subjects
variability (individual subjects’ means ranged from 470 ms to
770 ms). For this experiment, the inverse transformation is not
far from optimal.

The pattern from Experiment 1 is much like that shown in
Figure 4 with ex-Gaussian distributions with large variability
among subjects and small effect size. In fact, in the data, subject
mean reaction time varies from around 450 ms to 750 ms. For
this experiment, trimming at 1 standard deviation gives a larger
F than does a low cutoff. Unlike Experiment 3, the inverse
transformation is some distance from optimal. One difference
between this experiment and Experiment 1 is that here, the size
of the effect is smaller relative to subject variability.

Discussion

The first important general result from both the simulations
and analysis of the experiments from McKoon and Ratcliff
(1992) was that greatest power is obtained by eliminating re-
sponse times longer than some specific cutoff value. But, the
specific value of the cutoff for greatest power varied depending
on whether the distribution included outliers and on how the

distribution shape changed as a function of the increases in
mean reaction time associated with the experimental condi-
tions. When the difference between conditions was in g, elimi-
nating long reaction times increased power because faster reac-
tion times are more stable than longer reaction times. When the
difference between conditions was in 7 and there were no outli-
ers, eliminating long reaction times eliminated reaction times
that were responsible for the effect, and so power decreased.
When there were outliers, cutting off extreme reaction times
increased power until the elimination of the real reaction times
responsible for the effect had a greater impact than the elimina-
tion of outliers.

It follows from these results that a practical recommendation
would be to find out how distribution shape is changing as a
function of increases in the mean (e.g., Heathcoate et al., 1991;
Hockley 1982, 1984; Ratcliff, 1978, 1979, 1981, 1988a; Ratcliff
& Murdock, 1976). There are several ways to do this: Collect
large amounts of data for a few subjects for some experimental
conditions, collect smaller amounts of data from more subjects
and construct distributions for the group (Ratcliff, 1979), or
find appropriate results in the literature. Then a cutoff value
can be chosen that is appropriate for the distribution shape. The
previous simulations used absolute cutoffs (e.g., 1,000 ms or
2,500 ms). More properly, cutoffs should be selected as a func-
tion of the proportion of responses eliminated. For example,
in the previous simulations, a 1,000-ms cutoff resulted in the
elimination of as much as 10% of the data when there were no
outliers and up to 15% of the data when there were outliers. A
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reasonable range is to choose cutoffs that vary from no cutoff at
all to a cutoff that eliminates 10% or 15% of the data. If the
distribution is spreading, it would be reasonable to choose a
cutoff value that eliminated approximately 5% of the observa-
tions, or if the distribution is shifting, a value that eliminated
approximately 10% of the distribution. To confirm ANOVAs
generated on data trimmed by cutoff values, analyses can be
performed on data transformed by the inverse function. This
transformation was only a few percentage points lower in power
than specific cutoff values except when there was large variation
in subject means.

A second feature of the results is the suggestion to examine
the size of an effect relative to the differences in average response
times across subjects. If there are large differences among sub-
jects and the effect is small, then a cutoff that is based on indi-
vidual subject standard deviations may also give high power (in
addition to the cutoffs and inverse transformations just noted).

Some of the simulations were repeated with the effect as an
interaction instead of a main effect. The same patterns of results
were obtained as in Figures 2 and 3.

Generality. The generality of these results is an important
issue because recommendations should be as widely applicable
as possible. It is important to determine if the recommenda-
tions apply for manipulations such as altering the size of the
effect in u, altering the size of the effect in 7, making the size
of the effect variable across subjects, altering the proportion of
outliers, and altering the precise form of the distribution used
in the simulations. First, altering the size of the effect in u pro-

duces the same profiles of power for a set of simulations with a
20-ms effect in x compared with the 30 ms effect for the simu-
lations in Figure 2. In all conditions in which the effect was in p
and between subject variability was not too large relative to the
standard deviation for any subject, a low cutoff or the inverse
transformation gave the greatest power. Second, altering the size
of the effect in 7 does not change the profile shown in Figures 3
and 5. With variability between subjects small relative to any
subject’s standard deviation, the same pattern was obtained
with an 80-ms effect in 7 as with a 40-ms effect in 7 (Figure 3).
Third, a further study examined varying the size of the effects
across subjects (some subjects having a large effect, some almost
no effect at all). With the effect in 7 varying from 0 to 80 ms
randomly chosen from a uniform distribution, the pattern of
results was the same as with 7 set to 40 ms for all subjects. Thus
differences in the size of the effect between subjects does not
alter conclusions about the relative power of different methods.
Fourth, changing the proportion of outliers from 0.9 to 0.8 re-
duced power but left the pattern across different conditions the
same. Fifth, as was just pointed out, the ex-Gaussian and the
inverse Gaussian produced similar results for similar changes
in distribution shape, showing that the results are not tied to the
precise form of the distribution assumed for these simulations.
The general conclusion is that the simulations presented here
capture the relative merits of different methods of dealing with
outliers for a wide range of effects for distributions that are
shaped like reaction time distributions. If the distributions un-
der study are not of this form (significantly more normal, bi-
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Figure 5. The power of analysis of variance for different conditions for the ex-Gaussian distribution with
a 20-ms effect in 7 (crosses) and a 20-ms effect in u (boxes) with 300-ms variability across subjects.
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Figure 6. F statistics for two experiments from McKoon and Ratcliff (1992); Experiment | (boxes) and
Experiment 3 (crosses). (The horizontal line is the 0.05 significance level.)

modal, varying greatly in spread across subjects, etc.), then
studies similar to those above should be performed based on
distributions that mimic the observed distributions.

Transformations.  Figure 7 shows how transformations
change distribution shape. The density functions illustrate two
experimental conditions generated from ex-Gaussian func-
tions, one shifted from the other by a 40-ms change in the mean
by a change in u. When the inverse transformation is used on
these distributions, the distributions become more skewed to
the left, the differences in the leading edges of the distributions
are magnified (note that the left tail in the density function be-
comes the right tail in the inverse transformation), and the
differences in the right tail become smaller. For the log transfor-
mation, the distributions are a little less skewed than the origi-
nals, and the difference in the tails of the two distributions is
smaller in relation to the difference in the leading edges than for
the original distributions.

For two ex-Gaussian distributions that differ in the r param-
eter (Figure 8), one distribution has a lower peak than the other
and a more elongated tail. Although the difference between the
tails appears small, examination of the horizontal difference be-
tween the two curves shows that the difference is actually quite
large. As before, the log transformation reduces the skewness of
the distributions and the inverse minimizes the effects of long
reaction times.

For two inverse Gaussian distributions that differ in mean 6
because they differ in drift rate, the effects of transformations
are about the same as for ex-Gaussian distributions that differ

in the r parameter. The log transformation tends to normalize
the distributions and the inverse transformation leads to slightly
right skewed distributions.

Figures 7 and 8 allow determination of what the effects of the
transformations would be if the distributions included outliers.
Both the inverse and log transformations reduce the impact of
long response times in the tails of the distributions, and there-
fore would reduce the impact of long outliers, leading to higher
power for ANOVA. The log transformation does not reduce the
importance of the extreme values as much as the inverse trans-
formation and so produces a smaller increase in power. The in-
crease in power was shown in Figures 2-6, and Figures 7 and 8
show that the improvement in power occurs because the effect
of reaction times in the tail of the distribution is de-emphasized.

Errorresponses. Itisimportant to consider here how to deal
with error responses. Errors can have different distributional
properties from correct responses (e.g., see Ratcliff & Murdock,
1976). The empirical question is how to handle the loss of data
from error responses, that is, whether errors should be elimi-
nated and extra trials run in the conditions giving errors to re-
place the error data, or whether error responses should be re-
placed by the mean or median of the condition. Both these
methods have been used; the first carries the risk that response
criteria change from early conditions to those in which the extra
trials are run, so that the trials with most errors would be
affected most by the change in criteria. The second reduces vari-
ability for those conditions with a large number of errors. But
neither of these problems will be fatal under well-controlled sit-
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Figure 7. An example of the effect of log and inverse transformations on the ex-Gaussian distribution for

distributions with a 40-ms difference in u.

uations. However, these procedures can be finessed by using a
summary statistic for the subject condition in the data analysis.
In the previous analyses, there were seven observations per con-
dition, and with trimming or cutoffs, there might be only four
or five observations left to determine the statistic (median,
mean, etc.). The elimination of errors work the same way; elim-
inating errors simply reduces the number of data points con-
tributing to the condition (unless very few or no correct re-
sponses were left).

Recommendations

The main aim of ANOVAs in the kinds of experiments inves-
tigated here is to demonstrate the reliability and replicability of
differences among experimental conditions. In our field, the
most frequent way of analyzing reaction time data is to use cut-
offs that are the same across conditions and that eliminate a
small percentage of responses (not a fixed percentage). Al-
though the results of the simulations show that this is not always
the best way, it is probably too much to hope for the field to
change radically so a reasonably conservative recommendation
is as follows:

I. Try a range of cutoffs and make sure that an effect is sig-
nificant over some range of nonextreme cutoffs.

2. Use the inverse transformation (or standard deviation cut-
offs if subject variability is large) to confirm the cutoff analyses.

3. Ifthe effect is novel, unexpected, or important, replicate it
or partially replicate it in another experiment.

4. Most important, choose the method before analyzing the
data; do not use several methods and choose only the one that
is significant. Even if only one or two F values are significant
out of 10 or 12 analyses using different methods for eliminating
outliers, then the effect can still be real, especially if the profile
of F values mirrors one of the profiles presented here. In such
cases in which most of the analyses produce nonsignificant F
values, if the profile is meaningful and the significant F values
are from conditions in which significant F values would be ex-
pected, then the experiment should be repeated with more sub-
jects, better control, or both.

Measures of Central Tendency, Dispersion, and Shape

The first section of this article dealt with the very practical
question of how to lessen the impact of outliers and increase the
power of standard ANOVA. This second section moves to the
issue of the effects of outliers and methods to eliminate them in
standard statistics for describing distributions. Generally speak-
ing, this moves from the hypothesis testing questions of the prior
section to questions about estimating the statistics of distribu-
tions for model testing or for describing empirical effects on the
distributions (for example, is the increase in mean linear, or
does variability increase as a log function).
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The aim of this section is to examine the behaviors of various
measures of central tendency, spread, and shape for response
time distributions under conditions of outliers versus no outliers
and cutoffs versus no cutoffs (see also Ratcliff 1979). There are
two main questions to be asked about these measures: First,
how likely are they to give a close estimate of the distribution
statistic that they are designed to measure, and second, how
variable are they when the data includes outliers, the data is
trimmed at some cutoff value, or both? These are two different
kinds of variability: The first is what is the standard deviation in
the estimate of a statistic as a function of cutoffs and outliers,
and the second is how much the estimate varies because of out-
liers or because a cutoff is used to eliminate outliers. A statistic
can have a low value on one of these and a high value on the
other, as is shown in the following paragraphs. For example, one
statistic for which the standard deviation of its estimate for a set
of data is small may have widely varying estimates (each with
small standard deviation) as a function of cutoffs or outliers,
whereas another statistic that has a larger standard deviation
may vary little as a function of cutoff or outliers.

It is important to distinguish between the two sources of vari-
ability. For hypothesis testing, the standard deviation in a statis-
tic should be as small as possible so that power is as high as
possible: The smaller the standard deviation in measuring the
statistic, the more likely a difference between two experimental
conditions is to be significant. But, if the statistic is very sensitive

to outliers or cutoffs, then any experiment in which conditions
might be affected differentially by outliers or cutoffs could have
reduced power (or an increased probability of a false-positive
outcome). For example, if the difference between two experi-
mental conditions is that one distribution of response times is
shifted in relation to the other, then using the same cutoff for
both conditions could eliminate enough responses from the
slower distribution that power to detect a difference in some
measure between the conditions would be reduced. Or, two con-
ditions might differ only in their relative numbers of outliers, so
that a measure insensitive to outliers is needed to avoid falsely
finding significance for a spurious effect. In general, a measure
insensitive to cutoffs reduces the likelihood of finding a signifi-
cant difference between conditions when none actually exists or
finding a nonsignificant difference when one really does exist.
There can be theoretical reasons for the use of different statistics
for testing particular predictions of models or for estimating
model-based parameters. The discussion can be useful in pro-
viding a sample method for performing analyses of such model-
based quantities.

To illustrate the impact of even a single outlier on the tradi-
tional measures of shape (skewness and kurtosis derived from
moments), a simple simulation was performed. Two distribu-
tions of 100 reaction times each were generated from an ex-
Gaussian distribution with + = 200 ms, ¢ = 600 ms, and ¢ =
40 ms; for one of the distributions, a single response time was
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Table 1
Estimates of Parameters With and Without a Single Outlier
M Variance 3rd Moment 4th Moment
Outlier (s) (s%) (s%) (s% Skewness Kurtosis
No outlier 802 3.95x 10* 1.37 X 107 1.01 x 10'° 1.75 6.47
Outlierat2.5s 821 6.75 X 10* 5.88 X 107 8.86 X 10'° 3.35 19.45

replaced by an outlier response time equal to 2.5 s. Table 1
shows the mean, variance, 3rd and 4th moments, and skewness
and kurtosis for the two distributions. Note that an outlier at
2.5 s is not uncommon in experiments in cognitive psychology
in which mean reaction time is in the range of 600 to 900 ms
(see Table 3, Ratcliff, 1979). The results in Table 1 show dra-
matically the effect of one outlier on the higher moments and
derived measures. For example, the second, third, and fourth
moments are changed by factors of two, four, and eight, respec-
tively, and the measures of skewness and kurtosis are changed
by factors of two and three, respectively. Ratcliff (1979) pre-
sented similar results: In a large experiment, the first four mo-
ments were calculated with outliers between 2 and 5 s included
and with these outliers trimmed out. In these real experimental
data, the changes were even more dramatic than those shown in
Table 1 (for example, the fourth moment changed by as much
as a factor of 30). From a practical point of view, such depen-
dence on outliers is devastating for the use of moments in reac-
tion time work (see Ratcliff, 1979).

Table 2 shows a number of different measures for distribu-
tions. To evaluate the effects of outliers on these measures and
how the effects of outliers can be reduced, simulated distribu-
tions were generated. First, 1,000 sample reaction times from
an ex-Gaussian distribution with x = 500 ms, ¢ = 40 ms, and =
= 200 ms were generated, and the various statistics were com-
puted over these 1,000 response times. Then, this was repeated
for a total of 100 simulations. From the 100 replications, the

mean and standard deviation in the mean for each statistic were
calculated, and these are displayed in Table 2. These statistics
were calculated for distributions with no outliers and for distri-
butions with 10% outliers; the outliers were generated from the
same ex-Gaussian as the real reaction times but with an added
random delay of from 0 to 2,000 ms (from a rectangular distri-
bution). The statistics were calculated either with no response
times eliminated or with all response times longer than 1,000
ms eliminated.

Table 2 shows four different measures of central tendency
(mean, median, harmonic mean, and trimmed mean with the
slowest 10% of responses eliminated), three measures of spread
(standard deviation, mean deviation, and quartile deviation),
and four measures of shape (skewness based on the second and
third moment, Pearson’s second measure of skewness, quartile
skewness, and kurtosis). The harmonic mean (u;) is defined as
1/u, = 2:i(1/1;), the mean deviation is the sum of the absolute
values of the differences between the mean and each reaction
time; the quartile deviation is (Q; — Q,)/2, where Q5 is the third
quartile and Q, is the first quartile; Pearson’s second measure
of skewness (Pearson 2) is 3 (M — Mdn)/SD, where SD is the
standard deviation and quartile skewness = (Q; — 20> + O,)/

Qs — Q)

Results

Central tendency. There are two issues to consider: Which
measure shows the smallest standard deviation across different

Table 2
Examples of Distribution Statistics with Cutoffs and Qutliers
‘ No outlier, .1 outlier,
No outlier, 1,000-ms .1 outlier, 1,000-ms
no cutoff cutoff no cutoff cutoff
Statistic M SD M SD M SD M SD
M 700.3 6.1 654.6 4.5 799.5 1.6 657.3 5.0
Mdn 643.2 5.8 626.9 6.3 666.3 8.0 630.0 6.5
Har M 656.3 4.5 631.0 42 694.7 6.0 633.3 4.5
Trim M 648.7 4.8 625.6 4.6 686.8 7.4 628.2 4.9
SD 204.4 84 129.7 2.5 401.8 19.2 130.8 2.8
M dev 150.3 54 106.1 2.3 261.7 13.5 107.4 2.7
Quart dev it1.1 4.8 91.0 34 140.7 7.1 92.9 4.0
Skew 1.88 0.23 0.68 0.05 2.63 0.13 0.65 0.05
Pearson 2 0.84 0.05 0.64 0.07 0.99 0.04 0.62 0.08
Quart skew 0.249 0.046 0.203 0.045 0.306 0.045 0.195 0.049
Kurtosis 8.47 2.21 2.71 0.10 10.64 1.07 2.64 0.11
Note. Har M = harmonic mean; trim M = trimmed mean; M dev = mean deviation; quart dev = quartile

deviation; Pearson 2 = Pearson’s second measure of skewness; quart skew = quartile skewness.
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samples from the same underlying distribution, and which mea-
sure is least influenced by outliers and methods for eliminating
outliers. Over all the conditions (with and without outliers, with
and without cutoffs), the harmonic mean appears to have the
smallest standard deviation. (Note that the median, harmonic
mean, and trimmed mean do not estimate the mean of the dis-
tribution; they estimate the distribution’s median, harmonic
mean, and trimmed mean, respectively.) The median has a
greater standard deviation than the harmonic mean and
trimmed mean. The mean has a greater standard deviation than
the other measures when there is no cutoff, and when there is a
1,000-ms cutoff (eliminating about 8% of the observations
when there are no outliers and about 16% of the observations
when there are outliers), the standard deviation for the mean
is still higher than the standard deviation of the harmonic and
trimmed means, although less than that of the median. The fact
that the harmonic mean has the smallest standard deviation ac-
cords well with the results just presented that showed relatively
high power for the inverse transformation.

Although the harmonic mean shows the smallest standard de-
viation, it is not the measure least influenced by outliers. It is
more affected by outliers and cutoffs than the median (with the
mean being most affected). So if outliers are not a problem, that
1s, they are consistent across conditions and a consistent cutoff
value is used (either none or some fixed value), the harmonic
mean is the best choice to measure central tendency for statisti-
cal analysis. However, if it is possible that the probability of out-
liers is different across conditions, then medians will be more
stable. Questions about which measure to use can be empiri-
cally answered using Monte Carlo studies for the particular set
of conditions under examination with appropriate assumptions
about distribution shape and the presence or absence of outli-
ers.

Spread. 1t is clear from the results in Table 2 that the quar-
tile deviation is the most resistant to the effects of both cutoffs
and outliers and that it has the smallest standard deviation. The
results also show that the mean deviation and standard devia-
tion are critically dependent on the precise location of the cut-
off. This is especially problematic if the distribution means
change across experimental conditions; in this case, the position
of a cutoff value in relation to the means would change across
conditions. For example, for two distributions with the same
spread but different means, for a single fixed cutoff, estimates of
the standard deviation and mean deviation might show signifi-
cant differences between conditions. Thus, it would be most
useful when reporting standard deviations to also report quar-
tile deviations to confirm the trends.

Shape. Outliers and the cutoffs used to eliminate them
affected quartile skewness and Pearson’s 2 skewness by only a
factor of about 0.5, though quartile skewness has a larger stan-
dard deviation than Pearson’s measure. Thus, they are better
measures of shape than those derived from moments: Skewness
and kurtosis are both affected by cutoffs and outliers; in partic-
ular, introduction of a cutoff that eliminates 8% of the data re-
duced skewness and kurtosis by as much as a factor of four or
five. Thus as in the discussion of spread, the skewness and kur-
tosis measures will be sensitive to the cutoff used and changes in
these estimates across conditions may be due to changes in the

location of the distribution in relation to the cutoff. For mea-
suring shape, moments should not be used at all unless the sam-
ple sizes are in the tens of thousands and the extreme tails of the
distributions are of interest.

Linearity under transformations. One potentially major
problem in using measures such as the trimmed mean, har-
monic mean, and median is that trends that are linear in the
mean may not be linear in these measures. The important issue
1s the practical effect of these transformations on linearity. To
address this issue, two simulations were conducted for an exper-
iment with three conditions, each successive condition repre-
senting a linear increase in mean reaction time of 100 ms over
the last condition.

For the first simulation, 1,000 observations were obtained
from three ex-Gaussian distributions each with parameters o =
40 ms and 7 = 200 ms, one with u = 500, one with x = 600, a'
one with u = 700 ms. The mean, median, harmonic mean, and
trimmed mean (with 10% of the longest reaction times elimi-
nated) were calculated, the process was repeated 100 times, and
the averages of these measures were obtained over the 100 rep-
lications. Plotting the value of each measure for the three exper-
imental conditions showed a roughly linear increase, with 100-
ms differences between conditions. There were only slight devi-
ations from linearity, all less than 3 ms (i.e., none of the three
points lay more than 3 ms away from the straight line best fit of
the three points). This result would be expected because the
distribution was simply shifted by the values of u.

In a second simulation, r was varied from 200 ms to 300 ms
to 400 ms, with x fixed at 500 ms and ¢ fixed at 40 ms. The
results were exactly the same as when y was varied, with the
exception of a scale change. In calculations of the mean, the
differences between experimental conditions were linear, with
increments of 100 ms. For the median, the differences were 68
ms with linearity; for the harmonic mean, the differences were
62 ms with linearity; and for the trimmed mean, the differences
were 74 ms with linearity. The differences between conditions
were all within 3 ms of linearity. Note that the estimated differ-
ences for the trimmed mean and harmonic mean are different
from the estimated increases in the regular mean (100 ms) when
the increase in the mean results from varying 7, that is, skewing
of the tail of the distribution. Thus, when working with models,
use of these alternatives to the regular mean would require pre-
dictions based on these alternate measures, not predictions
based on mean reaction time (e.g., a 75-ms linear increase in
the trimmed mean from a 100-ms effect in the mean of the un-
derlying process).

What the Statistics Measure

When using measures of location, dispersion, and shape, it is
important to understand precisely what aspects of the distribu-
tion are being measured. For measures of location this is clear,
but for the measures of dispersion and shape, we want to know
what parts of the distribution contribute to the estimates and
influence them most. Skewness, kurtosis, and variance are
based on the moments of a distribution. Ratcliff (1979) sum-
marized arguments showing that estimates of moments depend
on response times from the extreme tails of a distribution (see
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Pearson, 1963). The extreme tails are not the most interesting
aspect of a distribution from both theoretical and empirical
points of view, because many observations (tens of thousands,
for example) are needed to provide adequate information about
the extreme tails and because the moments have high standard
deviations and are sensitive to outliers (as previously discussed,
see Table 1). ‘

Two alternatives to moments for the measurement of shape
were suggested by Ratcliff (1979). One was robust statistics that
measure aspects of distributions that are represented by the
middle 90% of the observations. The second was to fit explicit
functions to the distributions (this is considered further in the
next section). Robust measures were championed by Tukey
(1977) and by Mosteller and Tukey (1977), and since then there
have been many books written about them, and they have been
incorporated into many statistical data analysis packages. The
measures that have the best credentials as robust measures
(though not necessarily included in the usual list of robust mea-
sures) are the median, quartile deviation, and the Pearson 2
measure of skewness. The results from Table 2 support this con-
clusion.

In summary, it is possible to make general recommendations
both for untrimmed data and for data with responses elimi-
nated that are slower than a cutoff value. For the untrimmed
data, the harmonic mean, quartile deviation, and Pearson’s
skewness or quartile skewness appear to provide the best com-
promises in terms of insensitivity to outliers and their small
standard deviations. These statistics are also likely to be rela-
tively invariant if cutoffs are used. If the standard deviation or
other moment-based estimators are to be used in conjunction
with cutoffs, and the distributions of experimental conditions
are shifted in relation to each other, then it is necessary to con-
firm any differences obtained with the moment estimators by
using alternative estimators.

Results for Correlations Among Measures

Correlations among the different measures of location, dis-
persion, and shape provide another way to understand what they
are measuring. Correlations can make apparent dependencies
among the different measures, and show whether different ran-
dom samples that produce different estimates of one measure
also produce systematic changes in another measure. For exam-
ple, a single long outlier reaction time would be expected to in-
crease the estimates of mean, standard deviation, and skewness,
leading to a positive correlation among them. In contrast, a
combination of long and short outlier reaction times that in-
crease standard deviation may not affect skewness, and so the
correlation between these two measures may be low. In these
examples, a number of samples are generated with the same
parameter values and the different measures of location, disper-
sion, and shape are calculated for each sample. These measures
are correlated across samples.

Tables 3 and 4 show examples of these correlations for distri-
butions of reaction times with no outliers, both with no re-
sponse times eliminated and with all response times longer than
1,000 ms eliminated. For each measure, Figure 9 shows the
scatter plot of the means for that measure from each of the 100

replications of the simulated distribution (ex-Gaussian with u
= 500 ms, ¢ = 40 ms, and 7 = 200 ms).

These results present a sampling of the kinds of observations
that can be derived from examination of the correlations and
scatter plots. First, the mean is highly correlated with other
measures of central tendency, less with the median than the oth-
ers. When a cutoffis used, the correlation rises because the mea-
sures are less dependent on variable long reaction times. The
high correlations show that the three means are essentially mea-
suring the same thing. Second, the three means are positively
correlated with mean deviation and standard deviation, but the
relationship is by no means strong, as Figure 9 shows. Third,
the three means are slightly negatively correlated with the mea-
surements of shape. The larger the mean, the more likely the
distribution is to be less skewed, though again, the relation is
small. Fourth, the median is negatively correlated with the Pear-
son 2 and quartile skewness measures. This is because the me-
dian enters these expressions as a negative quantity, and as with
the mean, the larger the median the less likely the distribution is
to be skewed.

For the measures of scale or dispersion, the standard devia-
tion and mean deviation are highly correlated and are essen-
tially measuring the same thing, whereas they are somewhat less
correlated with quartile deviation. The shape measures corre-
late with each other to some extent: Pearson’s 2 measure of
skewness and quartile skewness measure roughly the same
thing, and there is only a weak relation between each of these
two measures and skewness measured from the third moment.
This shows the influence of extreme values where an extreme
value will have a large effect on skewness but little effect on quar-
tile skewness and Pearson’s 2 measure of skewness. The three
measures correlate negatively with skewness and kurtosis when
the cutoff is used because standard deviation enters the denom-
inator of these terms (this effect is less than the effect of extreme
values with no cutoff).

Recommendations

The statistic of choice for comparing distributions and testing
hypotheses about differences between distributions is one for
which its estimate has a small standard deviation and shows sta-
bility under conditions of outliers and cutoffs to eliminate out-
liers. On the other hand, if the true value of a characteristic of a
distribution (e.g., central tendency or spread) is required, then
the chosen statistic should be the one least sensitive to the effects
of cutoffs and outliers.

The numerical examples presented in this section are not
generally applicable to other domains: They are specific to dis-
tributions like reaction time distributions, which are skewed to
the right with outliers to the right. In the reaction time domain,
it appears that the often used median is not a particularly good
measure of central tendency unless the true center (median) of
the distribution is required because it has relatively high vari-
ability compared with, for example, the harmonic mean (cf. the
power results in the first section). The quartile deviation is a
reasonable alternative to the ubiquitous standard deviation and
both are useful. For the measures of shape, the measures based
on moments are too variable and measure uninteresting parts
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Correlations Between the Different Measures of Location, Spread, and Shape

Jor the Case of No Outliers and No Cutoff

Statistic 1 2 3 4 5 6 7 8 9 10 11
1. M 1.00 060 093 092 070 078 057 000 024 0.18 —0.04
2. Mdn 060 100 077 0.76 003 007 022 -0.15 -0.58 —0.53 —0.11
3. Harm M 093 077 1.00 098 042 052 043 —-0.09 005 0.03 —0.10
4. TrimM 092 076 098 1.00 039 054 055 -0.16 0.06 007 -0.14
5. 8D 069 003 042 039 100 089 046 046 044 037 035
6. Mdev 078 007 052 054 089 100 070 007 058 048 —0.00
7. Quartdev 057 022 043 054 045 069 100 -0.18 029 037 -0.14
8. Skew 000 -0.15 -0.09 -0.16 046 0.07 —-0.18 1.00 —0.04 007 0096
9. Pearson 2 024 —0.58 005 006 044 058 029 —-0.04 100 089 —0.10
10. Quartskew  0.18 —0.53 0.03 0.07 0.37 048 038 007 08 1.00 0.04
t1. Kurtosis —0.04 -0.11 -0.10 —0.14 035 -0.00 —-0.15 096 —0.10 005 1.00

Note. Har M = harmonic mean; trim M = trimmed mean; M dev = mean deviation; quart dev = quartile
deviation; Pearson 2 = Pearson’s second measure of skewness; quart skew = quartile skewness.

of the distribution (especially when outliers are possible). Thus,
Pearson’s 2 measure is the most useful measure of skew of the
distribution.

Fitting Explicit Distributions

The first two sections of this article were concerned with is-
sues that could be addressed without knowledge of the precise
form of the reaction time distribution (although explicit distri-
butions were used for the simulations). Even the statistics de-
scribing distribution location, spread, and shape were not fo-
cused on the form of the distribution. In the third section, the
specific form of the distribution becomes important; the mean
and standard deviation of an empirical distribution of response
times are recovered by fitting a model of the distribution to the
data and using the parameters of the model as estimates of the
empirical parameters.

Methods for Curve Fitting

Empirical distributions of response times can be evaluated
and compared with each other by fitting explicit theoretical

Table 4

functions to them. The theoretical functions also can be used
to estimate statistics of the empirical distributions by deriving
estimates from the parameters of the theoretical functions. The
usual way of fitting a distribution to data is the maximum like-
lihood method. For each data point, the probability of that
point occurring given the specific theoretical function is calcu-
lated (by finding f{¢) given a reaction time ¢}, and the probabili-
ties for all the data points are multiplied. The parameters of the
theoretical function are then adjusted to find the maximum of
this product (or, in many computer coded routines, the mini-
mum of the product’s negative value). In Mathematica, the pro-
gram can be as small as three lines of code but it is very slow; for
fitting one set of data this might be acceptable, but for multiple
simulations, much faster FORTRAN or C code (seconds or less)
is required.

The maximum likelihood method of estimation has a num-
ber of nice properties; for example, the parameter estimates it
yields have the lowest asymptotic standard deviations of any pa-
rameter estimates (i.e., maximum likelihood is the most accu-
rate estimation method) and the asymptotic distribution of es-
timates for a given parameter is normal, so that standard z tests

Correlations Between the Different Measures of Location, Spread, and Shape
Jor the Case of No Outliers and a 1,000-ms Cutoff

Statistic 1 2 3 4 5 6 7 8 9 10 11
1. M 1.00 086 098 099 042 049 049 -0.67 -0.32 -0.18 —0.65
2. Mdn 0.86 100 087 088 0.17 023 037 -076 —-0.76 —0.61 —-0.58
3. Harm M 098 087 100 099 025 033 040 —-0.66 —0.34 —0.20 —0.59
4. Trim M 099 088 099 1.00 030 040 048 -0.74 —0.37 —0.21 —-0.68
5. SD 042 0.17 025 0.31 1.00 095 0.58 —-0.14 009 0.06 -0.44
6. Mdev 049 024 033 040 095 100 075 —-032 007 0.08 —0.64
7. Quart dev 050 038 040 048 058 075 1.00 -0.56 —0.13 —0.02 -0.78
8. Skew -0.67 -0.76 -0.66 ~0.74 -0.13 -0.32 —0.55 1.00 0.55 0.36 0.84
9. Pearson2 —0.33 -0.76 —-0.35 -0.37 0.09 007 -0.13 056 1.00 090 0.28
10. Quartskew —0.19 -0.61 -0.20 -0.21 006 0.08 —-0.02 0.37 090 1.00 0.13
t1. Kurtosis -0.65 —-0.58 —0.59 —0.68 -0.44 -0.64 —0.77 0.84 027 0.13 100
Note. Har M = harmonic mean; trim M = trimmed mean; M dev = mean deviation; quart dev = quartile

deviation; Pearson 2 = Pearson’s second measure of skewness; quart skew = quartile skewness.
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Figure 9. Scatter plots of the values for the measures of location, spread, and shape for the 100 simulated
distributions. (Har mean = harmonic mean; trim mean = trimmed mean; mean dev = mean deviation;
quart dev = quartile deviation; mom = moment; Pearson 2 = Pearson’s second measure of skewness; quart

skew = quartile skewness.)

can be used to evaluate differences among the values of a given
parameter for different samples. Both of these properties hold
for asymptotic or large sample sizes (see Hogg & Craig, 1965).
For a specific theoretical function and an empirical distribu-
tion of response times, the maximum likelihood procedure
yields the parameters of the function that best describe the em-
pirical distribution. However, this is not enough: The standard
deviations of these parameter estimates may also be needed for
comparisons among experimental conditions. There exist theo-
retical methods for finding these standard deviations, but they
can be tedious and numerically intense (see, e.g., Ratcliff &
Murdock, 1976). Fortunately, there are also computationally
simple Monte Carlo methods (see, €.g., Press, Flannery, Teukol-
sky, & Vetterling, 1986, Chapter 14). The Monte Carlo methods
use the theoretical function with its parameters set to give the
best fit of the function to the data. From the function and these
parameters, random numbers are generated; these numbers
have the same statistical properties as the original data. Then
the theoretical function is fit to the new pseudo data, yielding a
new, slightly different set of parameter estimates. This process
of generating pseudo data and refitting the model is repeated a
number of times, each time yielding a set of parameter esti-
mates. Then, from these sets of parameter estimates, the stan-

dard deviation in a particular parameter can be estimated. The
covariances among the parameters can also be estimated, and
these can be important for understanding the shape of the pa-
rameter space: For example, if one parameter has a higher than
average value in a particular fit of the function to data, then
another parameter might be lower than average to compensate.
If the two parameters show such a pattern consistently, then the
covariance or correlation between them will be negative.

As an aside, it should be mentioned that Monte Carlo meth-
ods can be used to estimate the power needed to discriminate
between different candidate functions for describing a distribu-
tion of reaction times. For example, for a certain sample size,
pseudo data can be generated from one of the two competing
functions and both functions fitted to the data. This can be re-
peated many times for the first and then the second function.
For 1,000 replications, it is possible to see how many times
Function 1 fits better than Function 2 on Function 1’s data and
vice versa. This leads to a straightforward power estimate.

Recovering the Mean and Standard Deviation of a
Distribution

Fitting a theoretical function to an empirical response time
distribution can yield information about the functional charac-
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teristics of the distribution (see Ratcliff, 1979; Ratcliff & Mur-
dock, 1976), and it can also provide estimates of the mean and
standard deviation of the empirical distribution. With simula-
tions, the accuracy of the recovered estimates of mean and stan-
dard deviation generated from a theoretical function can be
evaluated. To do this, a response time distribution can be gen-
erated from a specific, known theoretical function, so that the
true mean and standard deviation of that distribution are
known. Then one or more theoretical functions can be fit to the
generated distribution, and the parameters of the fitted func-
tions can be used to estimate the mean and standard deviation,
and these estimates can be compared with the true values. The
comparison can be done under several conditions: The response
time distribution can be generated with and without outliers,
and the function can be fit either to all the response times or to
only those response times faster than some cutoff value.

When a theoretical distribution function is fit to real reaction
time data, some of the slow reaction times are usually elimi-
nated before fitting to eliminate outliers. For example, Ratcliff
(1979) used a cutoff value to eliminate slow reaction times,
turning the distribution of response times into a truncated dis-
tribution. Ratcliff (1979) fit this truncated distribution with a
function that assumed a complete, untruncated distribution.
However, it is easy to fit a truncated distribution to the trun-
cated data (this method is also used by Ulrich & Miller, 1992).
For example, if the distribution is f{¢) and has a range from zero
to “cut,” then the truncated distribution has a density function:

SO/ [y,

that is, the untruncated density function divided (normalized)
by the density remaining below the cutoff. This modified den-
sity function can be used to estimate parameter values in the
same way as the complete density function would be used.

The first goal of fitting theoretical functions to data is to esti-
mate the parameters of the function that best describe the data.
In attempting to accomplish this with truncated distributions,
there are two issues. The first is whether fitting the truncated
distribution to truncated data allows recovery of the parameter
values of the untruncated distribution, and the second is what
is the effect of outliers on estimation of the parameters as the
truncation value is reduced. It might be that the estimates fol-
low the parameters of the contaminated distribution or it might
be that they recover the parameters of the untruncated distri-
bution with greater accuracy as more and more of the tail (and
hence outliers) is eliminated. It may also be that as the cutoff is
reduced, the estimates converge on the population values (i.e.,
become more unbiased) but at the same time, become more and
more variable.

To address these issues, simulation studies examined param-
eter estimates for truncated distributions, generated from both
ex-Gaussian and inverse Gaussian functions, with and without
outliers. The truncation point was varied and recovery of the
mean and standard deviation of the original distribution was
examined. For the ex-Gaussian, three experimental conditions
were simulated, each one varying from the next by 50-ms incre-
ments in 7. For the inverse Gaussian, two conditions were sim-
ulated, differing in the X parameter. The two distribution func-

tions were used so that the effect of fitting the wrong distribution
function to the data could be examined. In other words, the idea
was to generate data from one of the distribution functions (ex-
Gaussian or inverse Gaussian) and fit the data with both trun-
cated distribution functions to investigate the effect of getting
the exact form of the distribution wrong.

Note that this method of recovering means and standard de-
viations from fitting distributions assumes that the distributions
fit adequately. If the theoretical distributions do not fit, then the
computed means and standard deviations may be meaningless.
In the cases presented here, this is not a problem because the
ex-Gaussian and the inverse Gaussian do mimic each other rea-
sonably well.

Results

Tables S, 6, 7, and 8 show the results for distributions with
and without outliers generated from the ex-Gaussian and the
inverse Gaussian functions fitted by the truncated ex-Gaussian
and truncated inverse Gaussian. The outlier assumption was
the same as in earlier simulations: For 10% of responses, a ran-
dom time between 0 and 2,000 ms was added to the time from
the parent distribution. Figure 10 shows that reducing the cutoff
value for outliers eliminates more and more outliers until the
1,000-ms cutoff, at which point the parent distribution begins
to dominate the outlier distribution. Thus, we should expect to
see estimates of the mean and standard deviation converge to
their true values (the values for the distributions that were used
to generate the simulated data) at the lower cutoffs. Each mean
and standard deviation in the tables is based on 100 simulations,
each using 1,000 simulated reaction times. In the discussion of
the results that follow, I examine bias in the estimates of the
means and standard deviations first and then discuss variability
in those estimates.

For the distributions without outliers, the results in the tables
show that the mean and standard deviation of the parent distri-
bution are recovered quite well from the fitted functions at all
cutoffs. For data generated from the ex-Gaussian, fitting the
truncated ex-Gaussian recovers the mean and standard devia-
tion of the ex-Gaussian accurately, whereas fitting the truncated
inverse Gaussian recovers the mean and standard deviation of
the ex-Gaussian reasonably well except at the 1,000-ms cutoff
where the inverse Gaussian underestimates both the mean and
standard deviation (Table 5). The effect is symmetric: The trun-
cated ex-Gaussian and inverse Gaussian recover the mean and
standard deviation accurately for data generated from the in-
verse Gaussian except that the ex-Gaussian overestimates the
mean and standard deviation at the 1,000-ms cutoff (Table 6).

For the distributions that include 10% outliers, the recovered
estimates for the mean and standard deviation at the shortest
cutoff are reasonably close to those of the uncontaminated par-
ent distribution (except for the over- and underestimation when
the ex-Gaussian is fitted by the inverse Gaussian and vice versa).
At the longer cutoffs, the mean and standard deviations are
larger than the uncontaminated distribution values and de-
crease as the cutoff is reduced.

For the ex-Gaussian simulations, three different parent dis-
tributions were used, differing from each other in steps of 50 ms
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Table 5
Means and Standard Deviations Recovered From the Ex-Gaussian

Generating Cutoff

distribution Theoretical

ExG value 2,500 ms 2,000 ms 1,500 ms 1,000 ms
Fitting
M o T distribution M SD M SD M SD M SD M SD

400 50 200 ExG 600 206 600 200 597 206 600 207 601 207
400 50 250 ExG 650 255 650 248 647 254 649 255 650 255
400 50 300 ExG 700 304 699 297 697 304 699 305 705 310
400 50 200 IG 600 205 601 199 600 199 599 196 586 179
400 50 250 IG 650 255 651 247 650 247 647 243 630 219
400 50 300 IG 700 304 701 299 700 299 697 293 667 254

Note. All times are in ms. ExG = ex-Gaussian; IG = inverse Gaussian. The number of observations eliminated at the 2,500-ms cutoff was less than
0.1%, the percentage eliminated at the 1,000-ms cutoff was 5% for = = 200, 10% for r = 250, and 15% for = = 300. The standard error (across
replications) in the mean calculated from the distribution parameters was about twice the standard error in the untrimmed mean at the 1,000-ms
cutoff (the two were about the same at the 2,500-ms cutoff). The values ranged from 6 to 10 for 7 = 200, from 7 to 14 for r = 250, and from 10te 25
for + = 300. For the standard error in the standard deviation, the values ranged from 7 to 12 for = 200, from 8 to 19 for r = 250, and from 10 to 27
for = = 300.

in 7. The results from the fit of the truncated ex-Gaussian show YN, where N is the number of observations in the distribution

that these differences in means were captured reasonably accu- (this is because the influence of variability in the normal distri-
rately. The differences down the columns in Table 7 for the fitted bution is small because the standard deviation for 7 = 200 ms
distributions with a 1,000-cutoff are 56 ms and 50 ms, corre-  and ¢ = 50 ms is V(o® + 77) = 206.2). For the simulations pre-
sponding well to the theoretical difference of 50 msin 7. sented in Tables 5 through 8, where N = 1,000, the theoretical

As an aside, the mean recovered from fitting the distribution values of the standard deviation in the mean are 6.5 ms, 8.1
tends to the mean of the parent distribution, and the mean com- ms, and 9.7 ms for 7 values of 200 ms, 250 ms, and 300 ms,
puted from the raw response times underestimates the true respectively, and these can be considered lower bounds on the
mean by as much as 100 ms at the 1,000-ms cutoff (approxi- estimates of the standard deviations in the mean and in the stan-

mately 30 ms, 60 ms, and 90 ms for + = 200 ms, 250 ms, 300 dard deviation of the sample distribution. Standard deviations
ms, respectively). Thus, fitting the truncated distributions does in the means and standard deviations of the distributions were
more than just eliminate the long reaction times, it allows the calculated from the simulations (over the 100 replications) and

mean of the parent distribution to be more accurately esti- are shown in the footnotes to the tables. The estimates are
mated. roughly the same as the lower bound theoretical values for the

The variability in the estimates of the mean and standard de- 2,500-ms cutoff but rise to 2 to 3 times the theoretical values at
viation can be compared with the expected standard deviation the 1,000-ms cutoff. This shows that the lower the cutoff, the
in the mean and standard deviation of the untrimmed distribu- more observations are excluded and the more variable are the
tion with no outhiers. The variability in the estimates would estimates of the mean and standard deviation. So, even though
have to be at least as large as this expected standard deviation. the estimates are approximately unbiased, that is, the average

The expected standard deviation for both is approximately r/ of the 100 replications closely matches the mean and standard

Table 6
Means and Standard Deviations Recovered From the Inverse Gaussian

Generating Cutoff

distribution Theoretical

1G value 2,500 ms 2,000 ms 1,500 ms 1,000 ms
Fitting
9 A T.. distribution M SD M SD M SD M SD M SD

400 1,000 200 ExG 600 253 571 261 601 259 602 260 618 280
400 2,000 200 ExG 600 179 599 189 591 199 601 191 618 212
400 1,000 200 1G 600 253 601 252 601 254 602 256 605 261
400 2,000 200 IG 600 179 599 179 600 178 600 179 600 179

Note. All times are in ms. ExG = ex-Gaussian; IG = inverse Gaussian. At the 2,500-ms cutoff, about 3% of data are cut out and at the 1,000-ms
cutoff, about 7% of the data are removed. Standard errors in the means rise as a function of cutoff: For A = 1,000, the standard error ranges from 8
to 23 starting with slightly higher values for the fit of the ExG and for A = 2,000, the range is 6 to 12. For the standard deviation, the patterns are the
same but the ranges are from 11 to 31 and 6 to 17, respectively.
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Table 7
Means and Standard Deviations Recovered From the Ex-Gaussian With 10% Noise

Generating Theoretical Cutoff

distribution value no

ExG outliers 2,500 ms 2,000 ms 1,500 ms 1,000 ms
Fitting
i a T distribution M SD M SD M SD M SD M SD

400 50 200 ExG 600 206 689 304 636 271 623 238 609 217
400 50 250 ExG 650 255 736 345 690 316 675 285 665 271
400 50 300 ExG 700 304 784 390 745 363 727 333 715 318
400 50 200 IG 600 205 693 343 653 275 624 229 595 188
400 50 250 1G 650 255 745 390 707 327 675 277 633 220
400 50 300 1G 700 304 800 452 762 387 728 335 681 270

Note.  All times are in ms. ExG = ex-Gaussian; IG = inverse Gaussian. The number of observations eliminated at the 2,500-ms cutoff was about
1%, the percentage eliminated at the 1,000-ms cutoff was 13% for r = 200, 17% for 7 = 250, and 20% for = = 300. The standard error (across
replications) in the mean calculated from the distribution parameters was about twice the standard error in the untrimmed mean at the 1,000-ms
cutoff (the two were about the same at the 2,500-ms cutoff). The values ranged from 8 to 17 for = 200, from 12 to 20 for 7 = 250, and from 15 to
29 for 7 = 300. For the standard error in the standard deviation, the values ranged from 13 to 23 for 7 = 200, from 12 to 34 for 7 = 250, and from 15
to 36 for r = 300. The standard errors showed U-shaped functions with the long and short cutoff having larger standard errors.

deviation of the parent distribution at low cutoffs (or ap- covered from fitting the function and the sample mean is 0.5 ms
proaches them if the distribution includes outliers), the esti- (compared with a standard deviation of 6 ms in the recovered
mates increase in variability at low cutoffs. mean) and the correlation is 0.995. This means that the mean

This variability in the recovered mean and standard deviation ~ of the sample and the recovered mean are in close relative
comes from two sources: One is the different means and stan-  agreement (when one is higher than the population value, so is

dard deviations that sample distributions generated from the  the other). For the 1,000-ms cutoff, the standard error in the
same parent distribution will have and the other is the variabil-  difference between the sample mean and recovered mean is 6
ity in the estimates that results from fitting a function to the ~ ™S (compared with a standard error of 10 ms in the recovered
sample distribution. From the simulations it is possible to de- mean) and the correlation between the sample and the recov-

. - . d mean across replications is 0.91. For the parameter values
termine how accurately fitting a truncated function recovers the ere . . -
mean of that particular sample. For the results in Tables 5-8, 400, 50, and 300 with a 0.1 probability of outliers (Table 7), for

Lo the 2,500-ms cutoff, the standard error in the difference be-
100 replications for each set of parameter values were per-

" 4. and f h of th 100 : h b tween sample and recovered means is 2 ms and the correlation
ormed, and for each o these samples, the mean can be is 0.996 (compared with a standard error of {5 ms in the recov-
calculated. Using these means and the means estimated from

X ) - . . ered mean). For the 1,000-ms cutoff, the standard error in the
the parameters of the b.est. ﬁttfng func'tlons, it is possible to esti- difference between sample and recovered means is 26 ms (com-
mate the standard deviation in the difference between the two pared with a standard error of 29 ms in the recovered mean)

values and the correlation between the two. So, for example, in and a correlation of 0.84. This change to a low correlation is

Table 5 for the ex-Gaussian fitting the ex-Gaussian with param-  sharp because at the 1,500-ms cutoff, the standard error in the
eters 400, 50, and 200 with no outliers, for the 2,500-ms cutoff, difference is 8 ms (compared with 16 msin the recovered mean)
the standard deviation in the difference between the mean re- and the correlation is 0.96.
Table 8
Means and Standard Deviations Recovered From the Inverse Gaussian With 10% Outliers

Generating Cutoff

distribution Theoretical

IG value 2,500 ms 2,000 ms 1,500 ms 1,000 ms
Fitting
[ A T, distribution M SD M SD M SD M SD M SD

400 1,000 200 ExG 600 253 662 353 656 320 632 295 633 297
400 2,000 200 ExG 600 179 690 295 650 255 626 221 626 220
400 1,000 200 1G 600 253 701 422 660 345 634 301 620 280
400 2,000 200 IG 600 179 695 328 655 260 625 210 612 190

Note.  All times are in ms. ExG = ex-Gaussian, IG = inverse Gaussian. At the 2,500-ms cutoff, about 6% of data are cut out and at the 1,000-ms
cutoff, about 13% of the data are removed. Standard errors in the mearis fall and rise: For A = 1,000, the standard error ranges from 10 to 23 starting
at 15 and for A = 2,000, the range is 9 to 15 starting at 13. For the standard deviation, the patterns are the same but the ranges are from 10 to 38 and
9to 17, respectively.



REACTION TIME OUTLIERS 529

InverseGaussian and Noise (unnormalized) Distributions
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Figure 10. An inverse-Gaussian distribution with the noise distribu-
tion derived by shifting the inverse-Gaussian by a random time between
0 and 2,000 ms.

Thus, when the distributions did not include outliers, fitting
the truncated distribution recovered the mean and standard de-
viation of the sample quite accurately (i.e., unbiased), to within
a millisecond or two in these simulations, but at the shorter cut-
offs, the standard deviation in the estimates increased and the
standard deviation in the difference between the sample mean
and the recovered mean approached the overall standard devia-
tion in the mean. The same outcomes apply when the distribu-
tions include outliers.

These conclusions indicate that recovering means and stan-
dard deviations by fitting explicit theoretical functions will be
useful when there are either few outliers or the outliers reside in
the extreme tail. With either few outliers or most of the outliers
in the extreme tail, a relatively long cutoff will not leave so many
outlier response times in the truncated distribution, so that es-
timates of the mean and standard deviation will be relatively
accurate. In addition, the standard deviation in the estimates
will be low. If there are relatively few outliers, the means and
standard deviations will be near the population values as a func-
tion of cutoff as shown in Tables 5 and 6, and if the outliers are
mainly in the extreme tails, the means and standard deviations
will converge to the population values as shown in Tables 7 and
8. Of course, recovery of the mean and standard deviation is not
the only product of such fitting: The fitted distribution provides
an estimate of distribution shape through the distribution pa-
rameters (see Ratcliff, 1979; Ratcliff & Murdock, 1976).

Note the scope of what I have examined here. I have been
primarily concerned with recovery of the mean and standard
deviation of the distribution. If measures of distribution shape
are also required, then fitting a distribution such as the ex-
Gaussian or the inverse Gaussian provides information that
may be more valuable than that provided by other measures
(e.g., skewness). Fitting a distribution provides estimates of the
parameters of the model and the residuals (the differences be-
tween the reaction time distribution and the fitted distribution
as a function of time). This allows the use of the distribution

parameters as descriptions of distribution shape, and it also al-
lows deviations from the theoretical distribution to be used if
they are substantial or needed theoretically (e.g., a model may
be fitted and its deviations checked against the deviations from
the fit of the summary distribution). Note that Ulrich and Mil-
ler (1992) have performed similar studies and their conclusions
should also be examined.

Recommendation

The mean and standard deviation of a distribution contami-
nated with outliers can be recovered from fitting a theoretical
function to the data if there are not too many outliers, if most
of the outliers are in the extreme right tail of the distribution, or
both. This method can only be used with any accuracy when
there are several hundred or more observations and should be
used when the shape of the distribution is also under evaluation.
By reducing the cutoff of the distribution and by examining the
estimates of the mean and standard deviation as a function of
cutoff, the parameters can be examined to see whether they con-
verge on single values; convergence would support those values
as estimates of the population mean and standard deviation. If
the distribution is not a perfectly accurate model of the empiri-
cal distribution, systematic biases can occur, but Monte Carlo
studies can be used to identify what these are likely to be. If the
fitted distribution cannot fit the data adequately, then it should
not be used.

Other Considerations

Because this article has been concerned with practical issues
about the use of reaction time data, it is worth commenting on
some other potential problems, misinterpretations, and misun-
derstandings that are sometimes found in reports of reaction
time data. None of the points that follow are original, but some
of them have not been explicitly discussed in the reaction time
literature (although others are presented in a classic article by
Pachella, 1974).

The first issue concerns lack of information about error rates.
It is often suggested that “error rates can be ignored because
they were so low.” This means that error rates are so low that
the experimenter has no information about them and so does
not know whether they are changing in any significant way
across conditions. A small change in error rates near ceiling or
floor can mean a change in sensitivity (d’) just as great as for
larger changes in error rates in the middle of the accuracy range
(see also Luce, 1986, p. 240; Pachella, 1974). For example, con-
sider what a change in positive and negative error rates from 1%
to 2% would correspond to in terms of d’. The d’ value for a
0.99 hit rate and 0.1 false alarm rate is 3.61; the ¢’ value for a
0.98 hit rate is 3.35, a difference of 0.26. To see how large this
difference is lower in the d’ scale, consider a hit rate of 0.80,
much nearer the middle of the accuracy range (with a false
alarm rate of 0.2). For this hit rate, ¢’ is 1.68, and to lower 4’ by
0.26, the hit rate has to fall to 0.72. Thus to argue that differ-
ences in error rates under 5% (or 2% in this example) are so
small that they can be neglected is equivalent to saying that
differences in the 5 to 10% range (or even more) in the middle
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of the accuracy range can be ignored. The lesson here is that
whenever possible, conditions should be chosen so that error
rates are enough above floor that error rate differences are de-
tectable and measurable.

The second issue is scaling effects (see Townsend, 1992) that
result when baseline reaction times change as a function of ex-
perimental conditions. Reaction time has a minimum but no
maximum value. Suppose that baseline reaction times are
different for different experimental conditions, but all are above
the minimum possible reaction time value, and that each ex-
perimental condition slows responses over its baseline. Then re-
quiring subjects to speed up (or allowing them to speed up on
their own) will decrease the size of the differences between the
experimental conditions and their baselines, as those baselines
come closer to the minimum possible reaction time. In fact,
when the minimum value possible is reached, there will be no
differences among the conditions. Thus, at a baseline of 500
ms, a 40 ms difference between two conditions might be the
equivalent of a 70 ms difference at a baseline of 700 ms. A re-
lated point concerns the way accuracy grows over time. Plotting
a time-accuracy curve with data from a deadline or response
signal procedure often shows that the curves for different con-
ditions begin to rise above chance at the same point in time and
then later diverge from each other. This means that any reaction
time criterion placed across those curves will produce larger
differences between them as the criterion is moved toward
slower reaction times (see Reed, 1973, 1976; also Ratcliff,
1978). For both of these reasons, comparisons of the differences
in reaction times across conditions having different baseline re-
action times must take account of scale differences and without
examination of scale differences, any conclusions should be sus-
pect.

Third, models that use the difference between reaction times
for positive responses and reaction times for negative responses
as a measure of the time required to execute a stage of process-
ing are subject to the argument that the reaction time difference
is simply a consequence of criteria setting. This issue was de-
bated in the literature, and the conclusion was that the existence
of a processing stage could not be demonstrated in the absence
of a specific processing model (Proctor, 1986; Proctor & Rao,
1983; Ratcliff, 1985, 1987; Ratcliff & Hacker, 1981).

Fourth, mean response times are not sufficiently constraining
to test one model of search processes against another. It some-
times seems that the folklore of cognitive psychology holds that
straight line reaction time functions necessarily indicate an un-
derlying serial search mechanism, and that parallel slopes for
positive and negative responses indicate an exhaustive (as op-
posed to self-terminating) search. Townsend (see Townsend,
1990; Townsend & Ashby, 1983) has shown that there is consid-
erable mimicking among models that deal only with mean re-
action time. Even with distributions of reaction times, it is pos-
sible to develop adequate serial and parallel models that mimic
each other. However, some of these models may be bizarre and
implausible. The solution to this problem is mainly theoretical:
Models are developed to provide a coherent account for a range
of different measures (including error rates and time course of
processing) across a range of experimental paradigms, or al-

ternative experimental methods are designed in conjunction
with the models.

Fifth, it has sometimes been argued that subjects can use
differences in processing time to discriminate two conditions.
But if the differences are small, then discrimination is not pos-
sible. A simple simulation illustrates this, with three ex-
Gaussian distributions with g, ¢, and 7, respectively: for Distri-
bution 1, 400, 40, 200; for Distribution 2, 440, 40, 200; and for
Distribution 3, 400, 40, 240. The standard deviations of the
three distributions are a little larger than 200 ms, and there is a
40-ms difference between the Distribution 1 mean and the
means of Distributions 2 and 3. To test for discrimination on
the basis of processing time, that is on the basis of some specific
response time value, 1,000 observations from each distribution
were generated, and the number of times a reaction time from
each distribution was greater than a specific value (600 ms) was
counted. Results showed that the probability of a value from
Distribution | greater than 600 ms was 0.366; for Distribution
2, 0.454; and for Distribution 3, 0.426. The largest of these
differences would correspond to a difference in &’ of less than
0.25, a difference unlikely to be useful in discriminating be-
tween conditions. Even if the difference could be discriminated,
inspection of the reaction time distributions would show trun-
cated distributions for the two responses, one with no responses
lower than the cutoff, and one with no responses higher. There
is a caveat to this argument and that is the subjects may be mak-
ing their decision on the basis of internal timing that does not
have some of the variable components of, for example, motor
output time. In this case, it would be necessary to present a
model of the processing stages and make predictions about the
distributions of finishing times for the two decisions and test
these against data as well as making the model plausible by not
assuming too much accuracy for the internal variables (i.c., the
variability has to come from somewhere).

Sixth, sometimes experiments generating what has been
called a micro speed-accuracy trade-off function have been used
as an alternative to experiments that generate a regular, macro
speed-accuracy trade-off function, and it has been assumed
that the two procedures provide the same information. The mi-
cro-trade-off function is obtained by partitioning the reaction
times from a single experimental condition into ranges (e.g.,
from 400 to 500 ms and from 500 to 600 ms) and then examin-
ing accuracy within these ranges. Macro-trade-off functions are
obtained by varying speed-accuracy instructions (or by using
deadline or response signal procedures). Pachella (1974) dis-
cussed these two trade-off functions and correctly argued that
the two measures are independent: The micro-trade-off pro-
vides information about the relative positions of the error and
correct reaction time distributions and the macro-trade-off pro-
vides information about the growth of accuracy over time.

General Discussion

The aim of the simulations presented here has been to exam-
ine the effects of outlier response times on hypothesis testing
and on recovering parameters of response time distributions
such as location, dispersion, and shape. The transition between
the three sections can be viewed as a move from empirical con-
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siderations of ANOVA to more detailed empirical plus some
theoretical issues about distribution shape to theoretical issues
concerning fitting specific distributions to data.

The first section examined the effects of different ways of
dealing with outliers on power of ANOVA. Six different methods
were examined including transformations, trimming a certain
percentage of the responses, trimming according to standard
deviations, trimming at cutoff values, and using medians. The
conclusions were that there is always an optimal cutoff, but the
location of the optimal cutoff depends on the way the distribu-
tion shape changes as a function of changes in average reaction
time (spreading or shifting). When variability among subject
means was low relative to the standard deviations in the distri-
butions, the inverse transformation (1/RT) was always close to
the optimal cutoff. When variability among subject means is
high, then standard deviation cutoffs have higher power. I rec-
ommend that either the inverse transformation or standard de-
viation cutoffs (depending on variability in subject means) be
used to confirm more traditional anatyses. It is important to
keep in mind that the main aim of such analyses is to provide
evidence for replicability of the results, and replication or par-
tial replication is important for theoretically important results.

The second section dealt with the behavior of different statis-
tics that describe reaction time distributions. The main results
showed the sensitivity of the different measures to outliers and
cutoffs and how related the various measures were to each other.
To represent location of the distribution, the harmonic mean
and trimmed mean show the smallest deviation across samples
from the same underlying distribution, and the median is least
influenced by outliers and cutoffs. So if an accurate estimate of
the location of the distribution is required and the data might
contain outliers or cutoffs are used, then the median is the best
choice (note the warning by Miller, 1988: If the number of ob-
servations is small and different across conditions, and means
across medians are used in data analysis, then biases may lead
to significant F or ¢ values where there is no real difference). But
for hypothesis testing, variability in the harmonic mean is lower
and so it gives more power than the median, confirming the re-
sults from the first section. The quartile deviation as a measure
of spread and Pearson 2 skewness as a measure of skewness were
the most resistant to outliers and changes in cutoff values. The
measures based on moments (standard deviation, skewness, and
kurtosis) were very sensitive to outliers and cutoffs. Correlations
among the statistics showed that the three means (ordinary,
trimmed, and harmonic) were highly correlated, the mean and
standard deviation were correlated, the skewness and kurtosis
were correlated, and the quartile deviation and Pearson 2 skew-
ness were correlated.

The third section examined the use of fitting explicit distri-
butions to recover the parameters of a response time distribu-
tion. If the theoretical distribution is an accurate representation
of the reaction time distribution, then a range of cutoff values
allow recovery of the parameters of the distribution (with vary-
ing accuracy) when there are no outliers. However, when there
are outliers, recovery is more problematical. If the model is rea-
sonably accurate and most of the outliers are extreme, the mean
and standard deviation will converge on the theoretical values
as the cutoffis reduced, but if the outliers overlap response times

from the real distribution, then overprediction of the means and

standard deviations can result. However, trends in the data will

be preserved. For this technique to work, however, several hun-.
dred or more observations are needed. The use of this method

to recover means and standard deviations is of most value when

the aim is to test the fit of a specific distribution from a specific

model to the data and probably should only be used under these

circumstances.

Although it has been assumed here that many or all long re-
action times are outliers, not from the process under study, this
is by no means certain in all situations. In most experimental
studies with subjects tested for one session, most extra long re-
action times are probably outliers. In relatively uncontrolied
multisession single-subject experiments, many long reaction
times are also probably outliers. But for some models, the shape
of the tail of the distribution might be critical (see Luce, 1986),
and in this circumstance it might be possible to run experi-
ments with motivated subjects using self-reporting to identify
spurious long reaction times. Then genuine long reaction times
might be used in model evaluation.

Finally, I recommend that if the parameters used in this arti-
cle are not close to those of the data the reader is studying, then
simulations similar to those reported here should be performed
with values near those in the data.
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