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The Application of Fourier Deconvolution to Reaction Time Data:
- A Cautionary Note
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The Fourier transform method in conjunction with frequency domain smoothing techniques has
been suggested as a powerful tool for examining components in a serial, additive reaction time model
(P. L. Smith, 1990). Robustness and sensitivity to violations of the assumptions of serial model of
this method are evaluated. When an incorrect distribution was used in recovering an unobserved
component, results gave no information to show that an incorrect distribution was used, and the
results were just as interpretable as those obtained using the correct distribution. These results dem-
onstrate that the assumptions underlying the method cannot be assessed by the result of deconvolu-
tion, and the method cannot show that the purported component is actually from the serial

combination.

The Fourier transform method has a long and distinguished
history in many areas of science ( physics, chemistry, engineer-
ing, biology, etc.), and it has been used in psychology in the
domain of reaction time (as well as in computational vision and
audition). A recent evaluation of the Fourier deconvolution
method was carried out by Smith (1990). He examined possi-
ble reasons for a relative lack of success in previous applications
of the method (e.g., Green & Luce, 1971; Kohfeld, Santee, &
Wallace, 1981) and presented specific ways to overcome the
problems. In particular, he argued that the reason for failure is
because variability or noise in the observed reaction time dis-
tribution is amplified by Fourier decomposition. He presented
the methods for reducing the effect of such variability and con-
cluded that the Fourier transform method in conjunction with
noise reduction methods (filtering) can be a powerful and accu-
rate tool for examining components in a serial additive reaction
time model.

In many experiments, participants were asked to make deci-
sions, and the dependent variable was the time taken to make
those decisions. The total time for a decision was assumed to be
the sum of the times taken by a series of subprocesses required
to reach the decision. It is sometimes theoretically important to
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obtain estimates of the distributions of times taken by the sepa-
rate subprocesses. For example, Green and Luce (1971) esti-
mated the decision component of processing from a theoretical
model and extracted the residual component from the reaction
time distribution. The residual component was then compared
across experimental conditions to test if it was invariant as the
theory predicted. (Parameters of the explicit model of the deci-
sion process could be estimated from the tails of the observed
distributions; see Green & Luce, 1971.) In another study of sim-
ple reaction time to an auditory stimulus, Burbeck and Luce
(1982) used the reaction time distribution at a very high audi-
tory signal intensity as an estimate of the residual distribution
assuming that very little decision time was involved when the
stimulus was intense. They used this residual to deconvolve ob-
served distributions from signals at lower intensities, then used
the extracted estimates to test the fit of a specific model of the
decision times.

In this article, we examine how the distribution of one sub-
process can be obtained from the distribution of another sub-
process and the distribution of the total response time for the
decision ( when the two subprocesses are serially organized ). We
investigate one method of extracting the distribution of a sub-
process, a method that uses Fourier deconvolution. With this
method, if we have the reaction time distribution of the combi-
nation of two subprocesses (i.e., their convolution) as well as
the reaction time distribution of one of them, then Fourier de-
convolution can be used to extract an estimate of the distribu-
tion of the other subprocess (in practice, one subcomponent is
assumed to be a combination of processes, e.g., a residual reac-
tion time component includes encoding and response output
processes). Because many models of human information pro-
cessing either assume or predict response times at the distribu-
tion level, the potential use of the Fourier deconvolution
method is very broad. If the time distribution of an underlying
process can be successfully extracted, then the investigators can
compare not only the means, medians, or modes but also the
distributional shapes in evaluating competing process models.

A major problem that has bedeviled reaction time research
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is the predictions of one model mimicking the predictions of
another. Although one model of a process (e.g., a serial model)
might fit the data well, other models (e.g., a parallel model)
might fit equally well. This makes discriminating between
models difficult, especially when limited data are available (see,
Ratcliff, 1988; Townsend, 1972, 1990; Townsend & Ashby,
1983; Van Zandt & Ratcliff, 1995). The issue of mimicking has
been examined in many domains of reaction time modeling,
and the general conclusion has been that it is often difficult, if
not impossible, to work backward from a small set of reaction
time data (including distributions of reaction times ) to uncover
the architecture responsible for the data. The problem is that
the same set of results can be obtained from a number of differ-
ent architectures (Van Zandt & Ratcliff, 1995).

The aim of this article is to extend evaluation of the Fourier
deconvolution method by examining the degree to which it is
subject to mimicking problems. If an incorrect choice for one
subprocess distribution is made and the resulting distribution
. of the second subprocess appears reasonabile, is there any way
to know that the choice was incorrect? For example, Green and
Luce (1971) found that the recovered densities of the residual
latencies had negative loops, which indicated that the assump-
tions of the model on which they based the deconvolution were
suspect. In this article, we investigate whether and under what
circumstances incorrect choices of distributions for deconvolu-
tion can be detected.

Fourier Deconvolution

Take Donders’s classical idea that the total observed reaction
time is the sum of a number of successive times (Donders,
1969/ 1868-1869 ) and consider the case in which there are only
two such times: the decision latency D and the residual latency
R. It is natural to think of these latencies as distributions be-
cause the time observed in an experimental task is not always
the same. In general, it is also assumed that the two latency dis-
tributions D and R are independent. We focus on the simple
reaction time structure of additive and stochastically indepen-
dent components because the structure forms the basis of much
modeling of reaction times in psychology (see, e.g., Burbeck &
Luce, 1982; Green & Luce, 1971; Kohfeld et al., 1981; Luce,
1986). However, there can be many different reaction time
structures. For example, Dzhafarov (1992 ) compared the sim-
ple structure of sums of independent components with additive
decompositions into a structure with perfectly positive interre-
lated components. Rouder (1993) discussed a nonasymptotic,
distribution-free decomposition of simple reaction time. Rob-
ertsand Sternberg (1993 ) analyzed, in a more elaborate version,
Dzhafarov and Schweickert (1994) structures that contain
components combined by operations other than summation.

A stochastic model explains how long it takes to complete a
task by predicting the shape of the time distributions. To be
useful, a theoretical time distribution must be able to fit the
reaction time measurements obtained from experiments. The
decision time of a task is usually not directly observable. How-
ever, the residual time may be estimated from a simple, isolated
part of the same task. In a discrete serial model, testing the dis-
tributional predictions of a component time becomes possible

if the time distribution of such a component can be extracted
from the measurable total time and can be treated as data.

The method that has gained the most popularity in determin-
ing the distribution of a time component in the above setting is
the Fourier deconvolution technique (Burbeck & Luce, 1982;
Green & Luce, 1971; Smith, 1990). It is also widely used to
address the problem of restoring acoustic signals in audition
and reconstructing images degraded by blurs in vision. Mathe-
matically, the probability density function of the sum of the two
reaction times D and R is the convolution of the density func-
tions, fp and fz . Conveniently, the convolution of /5 and fk cor-
responds to ordinary multiplication of their Fourier transforms,
¢p and ¢r. Thus, one method used to convolve two distribu-
tions is to take Fourier transforms and multiply them to find the
inverse transformation of the product. This is sometimes much
easier than solving the convolution integrals directly, especially
because there are extensive tables available of inverse transfor-
mations (e.g., Oberhettinger, 1973 ). Therefore, from the rela-
tion (and provided that ¢ # 0),
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where ¢ is the transform of T, we obtain the density of D by
inverting the transform ¢p. In symbols,
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In the method used in psychology (Green, 1971; Green & Luce,
1971), the transform and its inversion are based on the fast Fou-
rier transform (FF T) algorithm (Brigham, 1988 ). Because the
FFT routine is efficient and widely available, the FF T deconvo-
lution method has practical advantages over other methods of
extracting a component time process.

Green (1971) and Smith (1990) discussed the Fourier
transform technique and its applications to reaction time data
extensively. Smith applied the method to real data (with time
samples in the thousands) and found the results satisfactory. It
was suggested by Smith that the method is a powerful tool for
examining distribution of a component time in a serial, additive
model. In this article, we examine issues that raise potential
problems and limitations for the application of the method.
They are the performance of the method in the presence of
noise (or bad data) and the problem of mimicking. It turns out
that the method is reasonably robust against noisy data. How-
ever, the problem of mimicking is serious. We show that if in-
correct (but reasonable, i.e., right-skewed) distributional as-
sumptions are made about one of the components of the con-
volution, then the deconvolved results are still interpretable,
and the method gives few if any clues that the assumptions were
wrong. Many investigators (e.g., Luce, 1986; Ratcliff, 1988;
Townsend, 1972, 1990) have examined mimicking problems
in reaction time research. The consequences of mimicking in
model testing, however, have not been addressed in the discus-
sion of deconvolution, most likely because the major focus has
been to make the method a usable tool. Nevertheless, we should
not forget that the FFT method does not validate the additive
and independent assumptions under which it is licensed to op-
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erate. Neither can it resolve on its own the different models of
reaction times. The major advantage of the method actually lies
in its efficiency as a data-processing tool and its independence
to prior model assumptions (Bendat & Piersol, 1971). Until
more sophisticated diagnostic techniques are developed for de-
convolution, the use of the method in research should primarily
be for exploratory analysis.

Noise and Mimicking

In this section, we examine the sources of noise in the reac-
tion time data and show why mimicking is inherent in the de-
convolution method.

In most experimental situations, the data collected are not
free from uncontrollable measurement errors or noise. This im-
plies that the densities fr and fx are only known to within some
experimental error. Under such circumstances, the solution to
the convolution integral

A= [ o= (3)

cannot be obtained in the manner shown in Equation 2
(Turchin, Kozlov, & Malkevickz, 1971). The solution may be
neither unique nor stable. To counter it, we can do our best to
ensure that spurious responses do not contaminate our data.
Real data are discrete samples of finite values, and on a digital
computer the transforms in Equation 2 have to be implemented
by their discrete counterparts. Naturally, the quality of the out-
put depends on the sampling rate and the sampling range of
the input. In the signal processing literature, there is extensive
discussion on how to obtain reasonable deconvolution results
using the discrete Fourier transform (see, e.g., Silverman &
Pearson, 1973). Most methods have relied on filtering to im-
prove the quality of the results because the presence of the noise
has reduced the power of the signal. In particular, noise corrupts
the accuracies of the high-frequency components in the FFT
estimates of the densities, which, in turn, lead to large spurious,
oscillatory components in the estimates of f(¢). To obtain bet-
ter estimates, Green ( 1971 ) introduced the use of the Hamming
window for smoothing the data. Smith ( 1990) emphasized the
importance of conditioning the values of the transformed esti-
mates through filtering in the frequency domain and presented
comparative results for a number of different smoothing and
filtering techniques.

The filtering techniques either remove or attenuate the contri-
bution of the high-frequency samples to the recovered time densi-
ties. This produces a problem when one wants to fit a predicted
time distribution to the deconvolved results because sufficiently
close functions have sufficiently close Fourier transforms and vice
versa. Provided that a sufficient number of low-frequency compo-
nents are the same and the rest is smoothed away by the filtering,
two different time densities may pass through the FFT deconvolu-
tion procedure and come out resembling one another quite closely.
In other words, we encounter a mimicking problem created by the
deconvolution method.!

Basically, mimicking is a problem of uniqueness that occurs
in different forms. On the one hand, there is mimicking within
the same family of distribution models. Consider, for example,

a gamma distribution with parameters r and e, in which ris a
positive integer and « > 0 is a scale parameter, as the predicted
reaction time distribution. For r = 5, the gamma density func-
tion can be either a convolution of a two-stage gamma density
and a three-stage gamma density (with the same scale
parameter) or a convolution of a four-stage gamma density and
a one-stage gamma density. On the other hand, there can be a
statistical mimicking problem between two different classes of
models. Ratcliff (1988) showed that predictions of the one-
boundary diffusion model (Ratcliff, 1978) pass the tests for
pure insertion in a serial model (Ashby, 1982; Ashby & Town-
send, 1980), even though the models are incompatible. The
mimicking problem in the deconvolution method is one of res-
olution—the ability of the method to sort distinct input into
distinct output.
. The previous discussion warns us that, without strong empir-
ical support for the assumption regarding the shape of reaction
time distributions, the FFT deconvolution method cannot be
used to obtain the true density function describing the unob-
servable decision time. At present, we do not know if the prob-
lems of statistical mimicking would disappear or appear in a
different form if Fourier transformations were replaced by other
techniques of deconvolution. Thus, the same cautionary re-
mark would apply to two other methods for estimating unob-
served components of a serial model: the spline method used
by Bloxom (1979) and the linear system approach adopted by
Kohfeld et al. (1981). It should, perhaps, be emphasized that
our work in the present article addresses only the mimicking
problem induced by the Fourier approximation in practice.
Because the accuracy of the deconvolved results cannot be
determined without a theoretically “correct” distribution, we
study the problem of mimicking by simulation. More specifi-
cally, we examine the outcome of deconvolving a combination
of times with an “incorrect” distribution for one of the compo-
nent times. The questions are (a) whether something interpret-
able could result from such manipulation, that is, whether the
recovered distribution is interpretable as the “true” unobserved
distribution; and ( b) whether the result gives any indication that
the assumptions may be wrong. Of course, the quality of the
deconvolved estimates cannot be evaluated without studying
the impact of noise on the method first. Most of the results re-
garding the problem of noise are found in Smith (1990). One
exception is that he did not investigate how the size of the sam-
ple used to estimate the latencies will affect the outcomes of
deconvolution. This is important because the experimenter
may not always be able to collect thousands of measurements.
Also undocumented is how poor (or good) the result will be if
the density to be extracted is not smooth everywhere, such as a
peaked exponential density. The interest is to learn about how
the method behaves in a simple case. These two questions are
investigated first in the simulation. In the next section, we dis-
cuss the implementation and evaluation of the deconvolution

! McCullagh (1994 ) showed, by an example, that two visibly distinct
distributions can have almost identical moment-generating functions
(transforms). Conceivably, a similar example involving Fourier
transforms might also be found. In such a case, the mimicking problem,
numerical or theoretical, has nothing to do with the deconvolution
method.
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method, followed by a synopsis of the two reaction time
distributions.

FFT Deconvolution Method

The FFT deconvolution method consists of the following ba-
sic steps:

1. The reaction time densities are grouped into a finite num-
ber of time samples in the form of a histogram. Keeping the rate
and the range of sampling the same, the residual densities are
estimated similarly.

2. The histogram estimates of the total and the residual laten-
cies are transformed into frequencies samples using an FFT
subroutine.

3. The power spectrum ( the relative amplitude of the individ-
ual frequency components) of the total densities is examined to
determine a suitable cutoff frequency for filtering. Filtering is
performed by multiplying each value of frequency samples of
the transformed total densities by the corresponding value of
the window function at the same frequency.

4. The Fourier transform of the decision time is obtained
point by point by the complex division of the filtered transform
of the total densities (numerator) by the transform of the resid-
ual density estimates (denominator).

5. Theinverse FFT subroutine is used to obtain the estimated
decision densities in the time domain.

A few brief comments on these basic steps are in order. Smith
(1990) recommended that all numbers be calculated with dou-
ble precision accuracy to prevent rounding errors from becom-
ing a source of high-frequency noise. The sampling range
should be sufficiently long to include enough tail regions of a
density function. Depending on the particular FFT algorithm
used, proper arrangement of the data string is required before it
can be processed. The FFT programs usually require that the
number of input points equal some power of 2. Also note that
some routines produce results that are correct in waveform but
differ from the expected results by a scaling constant in ampli-
tude. In the complex division of Step 4, it is important to take
precautionary programming steps to avoid the division-by-zero
situation at some data points.

Choosing and implementing filters is a large and important
topic in signal processing. A full discussion of digital filtering
can be found in Hamming ( 1983). In our article, we selectively
use three different filters: the parabolic window function, the
Hanning filter (Brigham, 1988), and the rectangular filter.
Their functional forms are listed in this order for ease of refer-
ence. The first two functions are commonly used filters with
good properties (Brigham, 1988; Press, Flannery, Teukolsky, &
Vetterling, 1992). The rectangular filter is chosen because it has
quite different filter characteristics from the other two. Smith
(1990) gave both time and frequency profiles of these functions,
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between the zero component and ¢{,, the upper bound of the
filter’s pass band. Essentially, the first two functions smooth out
all frequency components beyond the pass band and attenuate
the low-frequency of components according to their position
between the zero component and the pass band. The rectangu-
lar filter, however, admits all frequency components smaller
than ¢, and sets all higher frequency components to zero. The
experimenter usually varies the value of the parameter {, until
a satisfactory result is obtained. A simple rule to choose the
initial value of ¢, is to observe that the power spectrum of the
convolution density estimates falls steeply to a minimum before
rising. The frequency at the first minimum is often a good
choice (Shaffer, Shaughnessy, & Jones, 1984 ).

Evaluating the Deconvolution Results

As mentioned in previous discussion, the deconvolved esti-
mates usually contain oscillatory components signifying nega-
tive densities that are not possible. Another common error is
that the peak value of the density is often underestimated. It
is also typical to have deconvolved density estimates of a time
distribution not to add up to one, thus violating the definition
of a probability density function. (In contrast, Bloxom’s, 1979,
constrained cubic spline method produces an estimate that is a
proper density.) To circumvent these difficulties, Burbeck and
Luce (1982) proposed a procedure that eliminates the negative
weights of the deconvolved estimates and treats the remaining
coefficients as resulting from a censored distribution. In this
article, we take the deconvolved result as is and examine the fit
(or lack of it) between the estimate and true density by two
error measures: the integrated square error (ISE) and the total
variation ( TV). These two measures are chosen to facilitate the
comparison of our results with Smith’s ( 1990) results. By defi-
nition, ISE is the sum of all squared differences between the
estimated and true densities over the entire sample multiplied
by the sample interval. In symbols,

N—-1
AT T [ft) - f(t))?, (7)
k=0

where f(t) denotes the filtered estimate of f(¢), AT is the sam-
pling interval of time, and A is the number of time samples. A
large ISE value indicates a poor match between the true and
deconvolved densities. Keeping all other things equal, the ISE
value decreases as the number of observations in a simulation
increases. On the other hand, TV is defined as the sum of the
absolute difference between successive terms of the estimated
density over the entire sample. In symbols,

N-1 )
2 ) = -l (8)
k=1

A density estimate may be said to achieve a certain smoothness
criterion when it has a small enough TV value (relative to the
pertinent theoretical distribution ). In other words, the criterion
of smoothness depends on the sampling intervals, as well as the
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type and variance of the distribution we wish to estimate. For
example, holding the sampling interval and the variance con-
stant, an estimate of an 8-stage gamma distribution, on average,
should have a smaller TV value than a 2-stage gamma distribu-
tion {with the same scale parameter). The requirement of a
small TV value guarantees that the deconvolved result looks
like a density function generated by the usual reaction time
models. A large TV value in deconvolution is often caused by
the oscillatory components at the tail of the estimate. In some
cases the TV might be small, but there may be systematic devi-
ations of the deconvolved distribution from the target distribu-
tion. This would result in a large ISE.

Two Reaction Time Distributions

The family of gamma distributions is often postulated to be
the latency component of a serial model (see, e.g., Luce, 1986,
for discussions) for the following reasons: (a) A sum of inde-
pendent, identically distributed exponential random variables
is gamma distributed; (b) an exponential distribution has been
argued to be a component process of serial stage models
(Townsend & Ashby, 1983)2; and (c) the family of gamma den-
sities is closed under convolution. The gamma density we con-
sider has the following form:

artr~l e—al

TEET t>0,
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where r is a positive integer and « is a scale parameter. The den-
sities vanish for negative values of . Its characteristic function

is given by
w5
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The gamma distribution arises as the waiting time until the occur-
rence of the rth event when one observes a sequence of events
occurring at the rate of « events per unit time in accordance with a
Poisson distribution (Feller, 1966). However, different theoretical
considerations can lead to different distributions as models for re-
action times. In contrast to the serial model, Ratcliff (1978) ar-
gued that the inverse Gaussian, being the distribution of the first
passage time derived from a one-boundary diffusion process, is a
good model for decision latency. Another reason for considering
the inverse Gaussian distribution is that its hazard function can
account for the general qualitative shape—peaked followed by
constant asymptote—of empirical hazard functions such as sim-
ple reaction times to the offset of a weak, pure tone masked by
wide-band noise (Burbeck & Luce, 1982). In practice, with a ju-
dicious choice of parameter values, any reasonably skewed distri-
bution can fit the reaction time data. We used both inverse
Gaussian and gamma distributions as models of decision latency
in our simulation studies. Next, we briefly summarize some useful
facts about the inverse Gaussian distribution.

The form of an inverse Gaussian probability density function is

1/2 _ 2
S N)= (ﬁ) exp(—)\(z—")—),

2u’t

(10)

t>0, pu>0, x>0, (1)

and the densities vanish for negative values of ¢. The parameter
u is the mean of the distribution, and X is a scale parameter. The
characteristic function is

1/2 172
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The maximum likelihood estimator (MLE) of x is the sample
mean . The variance of the distribution is 3/ X. An unbiased
estimator of the variance is a modified MLE given by [n/(n —
DR/ N). The MLE of the scale parameter X is

1],
n E—_—_T s
[i=1Xi u}

where X; fori= 1,2, ..., nisarandom sample from the inverse
Gaussian distribution. To generate random observations of an
inverse Gaussian distribution, we used the method of transfor-
mation with multiple roots (Michael, Schucany, & Haas,
1976). The procedure is described in Chhikara and Folks
(1989).

Simulation Studies

We report four simulation studies. The first simulation exam-
ines the effect of sample size on the goodness of fit between the
reconstructed and the expected density. The second simulation
assesses the quality of a recovered exponential density using two
different filters and varying the cutoff frequency. The third and
fourth simulations investigate the validity of the method as a
tool for testing distributional predictions of stage models. We
provide two scenarios in which the total density is deconvolved
by a theoretically incompatible component density.

Simulation 1. The quality of several deconvolved gamma
densities based on 5,000 trials has been documented by Smith
(1990). He used five different filters at various cutoff frequen-
cies. To complement his results, we evaluated the effect of sam-
ple size on the deconvolved estimates of inverse Gaussian den-
sities. We ran our simulation on the basis of four sample sizes:
512, 1,028, 2,056, and 4,096. It is useful to know how much the
results can be improved by increasing the size of the observa-
tions. The method is not practical if the number of observations
required to ensure a satisfactory result exceeds what can be
achieved in an experimental setting,

We assumed that the total latency distribution (numerator)
is a convolution of an inverse Gaussian distribution with A =
300 ms and SD = 100 ms and a normal distribution with A
= 300 ms and SD = 60 ms. The residual latency distribution
(denominator) is independent and identically distributed as the
normal component in the convolution. Thus, the deconvolved
results can be checked against the expected density of an inverse
Gaussian distribution with M = 300 ms and SD = 100 ms. At
each sample size, random observations are obtained from the
total and residual latency distributions. We then constructed
histograms for each distribution by grouping and normalizing

2 Townsend and Ashby (1983) also pointed out that an exponential
stage can implicate an intercompletion time associated with an expo-
nential parallel model.



290

the observations into 256 bins, each having a width of 10 ms.
For simplicity, we used a histogram to estimate the true density
because other density estimates do not seem to improve the re-
sults of deconvolution (Smith, 1990). Each pair of total and
residual histograms was then processed by the FF T deconvolu-
tion technique described earlier. After some experimentation,
we set the value of the upper bound of the parabolic filter’s pass
band at 15, which yields consistent results.

The deconvolution was repeated 25 times, and the mean and
standard deviation of the ISE and TV values are calculated. Ta-
ble | summarizes the results for each sample size. As expected,
the overall quality of the fit improves as the sample size in-
creases. The average ISE value (based on 4,096 trials) of the
deconvolved inverse Gaussian density estimates is comparable
to Smith’s (1990) results of an 8-stage gamma density (based
on 5,000 trials). Moreover, the average TV value of the decon-
volved estimates is almost identical to the true TV value of the
expected inverse Gaussian density. This similarity suggests that
the extracted density is as smooth as the expected density. This
is confirmed by Figure 1 in which examples of deconvolved
densities are shown.

To evaluate the deconvolved estimates of the inverse
Gaussian density, we list in Table 1 the values (in parentheses)
of ISE and TV measures for the corresponding histogram esti-
mates. Not only are the deconvolved density estimates
smoother than the histogram estimates but they also have
smaller ISE values. This is due to the filtering operation (which
produces smoothing) in the deconvolution. The discrepancies
become smaller as the histogram estimates become smoother
(and more accurate) as the sample size increases. This can be
observed by noting that an eightfold increase in the number of
trials yields only about a twofold reduction in the ISE value of
the deconvolved estimates. In contrast, there is about a seven-
fold reduction of ISE in the histogram estimates.

Figure 1 shows deconvolved estimates at different sample
sizes superimposed on the inverse Gaussian density. We note
that around the peak the values of the density estimates are

Table |
Effect of Sample Size on the ISE and TV Characteristics of the
Deconvolved Estimates

N ISE TV
512 056 =.036 7.984 + 1.047
(.191 +.038) (39.984 = 3.999)
1,024 037 = .017 7.034 +0.484
(.098 £ .019) (30.258 + 3.052)
2,048 032+.013 7.004 +0.365
(.054 £.010) (22.273 + 1.986)
4,096 .024 + .006 6.820 +0.206
(.027 +.006) (16.324 £ 1.422)

Note. At each sample size, 25 deconvolutions are simulated. The re-
sults are evaluated by the integrated squared error (ISE) and the total
variation (TV). Values of the mean and standard deviation (M + SD) of
the two error measures are shown X 1,000. The upper bound of the
filter’s pass band is 15. The expected density is an inverse Gaussian den-
sity with M = 300 ms and SD = 100 ms. (The TV value of this density
is 6.799.) Entries in parentheses are the mean and standard deviation of
the corresponding ISE and TV values of the 25 histogram estimates of
the inverse Gaussian density.
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lower than those of the true density and that there are oscillatory
components at both tails of the estimates. As the sample size
increases, the match of the values around the peak gets better
and the osciilations dampen. In the frequency domain, increas-
ing sample size translates to more agreement between the esti-
mated and the exact spectrum. The significant improvement
comes at the initial portion (low-frequency components). The
effect is easier to see in a plot of amplitude ( power) against fre-
quency sample. In Figure 2 we show a sample of power spectra
of the total time densities obtained at each of the four sample
sizes. Note the rapid decrease of magnitude in power with in-
creasing frequency. Power spectra like Figure 2 are used to de-
termine how many frequency components can be retained in
the deconvolution procedure without bringing in a large in-
crease in the TV value.

We conclude that the FF T deconvolution can successfully ex-
tract the decision density. estimates from a convolution of nor-
mal residual density and an inverse Gaussian density. The re-
sults are quite satisfactory when the number of observations
reaches a couple of thousand and beyond.

Simulation 2.  Smith (1990) found that when a 2-stage gamma
distribution was extracted from a 6-stage gamma distribution, the
FFT deconvolution method does not yield very satisfactory re-
sults. It follows that if one tries to extract an exponential density,
the quality of the deconvolved estimate can only be worse. The
reason is that the exponential density has a sharp peak; the more
sharply peaked a distribution in the time domain, the more fre-
quency components in its discrete Fourier representation must be
retained to assure the same level of accuracy. Thus, it makes a
good case to demonstrate how the value of the upper bound of the
filter affects the results in the FF T deconvolution. In addition, the
exponential distribution is the single-stage time process predicted
by Ashby and Townsend (1980) and Ashby (1982) in their serial
model for reaction time. It is important, theoretically as well as
technically, to know how well this distribution can be extracted by
deconvolution.

In this simulation, we set the number of trials to be 4,096 and
varied the value of the upper bound of the pass band from 7 to
21 with a step size of 2. Smith’s (1990) Figure 7 showed that the
rectangular filter provided a better fit than the parabolic fiiter
to the abrupt peaking of the 2-stage gamma distribution. To
compare results, both the parabolic and rectangular filters are
applied to the same set of random observations. Overall, there
are 8 (values of filter parameter) X 2 (number of filters) = 16
conditions. In each condition, the deconvolution is iterated 50
times.

We represent the total latency distribution by the convolution
of a normal distribution with A/ = 300 ms and SD = 60 ms and
an exponential distribution of M = 100 ms (and SD = 100 ms).
For plotting purposes, we add a location shift of 200 ms to the
exponential distribution. The shift is equivalent to adding 200
ms to the expected value of the normal component. The decon-
volution procedure is applied to the histogram estimates of the
time distributions. In parallel, we obtain an average TV value
of 22.850 with an SD = 1.310 from 50 histogram estimates of
the exponential density. This indicates that a sample of 4,096
trials is sufficiently large for the smoothness requirement of the
expected density whose TV value is 20. The ISE values of the
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histogram estimates have an average of 1.029 with an SD =
.007. The deconvolved results are summarized in Table 2.
Unlike the results of the previous simulation, the decon-
volved estimates do not have smaller ISE values relative to their
corresponding histogram estimates. In other words, although
filtering produces smoother density estimates, they are not
more accurate. When the upper bound of the parabolic filter’s
pass band {, = 21, we extracted estimates that are as smooth as
the exponential density according to the TV value, but the re-
sults are the least stable in terms of both ISE and TV measures.
In the case of the rectangular filter, the best match between the
expected TV value and that of the estimates is when the {, is in
the range of 13-15. Consistent with Smith’s (1990) results, the
rectangular filter outperforms the parabolic filter. Figure 3 illus-
trates typical exponential densities extracted using the two

different filters. It is easy to see that both estimates fail to cap-
ture the abrupt peaking of the exponential density at the origin
(shifted). We examined plots with varying values of {, and
found that an improvement of the match near the peak comes
at the cost of introducing large oscillations, that is, sacrificing
the smoothness of the estimates. Figure 3 reveals that the nu-
merical agreement in TV values between the deconvolved esti-
mates and the true density does not translate to closeness in the
shapes of the distributions. The numerical agreement may, in
fact, be an artifact of a large oscillatory component compen-
sated by an overly smoothed estimate. This illustrates the im-
portance of always plotting the deconvolved estimates for
inspection.

The results of the simulation show that increasing the upper
bound of the filter’s pass band does not always improve the qual-
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ity of the deconvolved estimates. Instead, there is a trade-off
between the accuracy at the peak and the overall accuracy of the
shape. The smallest ISE value (based on 4,096 trials) in Table 2
is larger by a factor of 20 than the ISE value based on 512 trials
in Simulation 1. The result cannot be considered satisfactory.
Because the FF T deconvolution performs poorly when the den-
sity to be extracted is not smooth, it cannot validate whether
the single-stage time process of a serial model is exponentially
distributed or not.

Simulation 3. The purpose of this and the next simulation
is to examine the problem of mimicking in the deconvolution
method. The two simulations differ in what the experimenter
believes to be the correct distribution models for the data. The
extent of the mimicking in reaction time observations is manu-
factured by a simple match of the first two central moments
between two candidate distributions. This match is motivated
by observing that the sample mean and variance are often used
to determine the values of parameters of a theoretical distribu-
tion in fitting reaction time data. We should point out that two
different types of distributions with a close match in mean and
variance can have power spectra far apart.

In this simulation, we assume the one-boundary diffusion
model and simulate from it a sample of time observations, We
deconvolve with a component distribution as if we thought the
data came from a two-stage serial model with gamma distribu-
tions. It is interesting to see if the deconvolved estimates are
interpretable in terms of the serial model.

One might ask, beyond large ISE and TV values, what anom-
alous features are there in the deconvolved estimates when the
FFT deconvolution technique is used inappropriately? Unfor-
tunately, the answer depends, among other things, on how

0 -
44
------------- ~ 512 observations
84 1024 observations
§ ------------- 2048 observations
g 424 e 4096 observations
£
wd
-16 1
-20
-24 -
28 y . ' 3.
0 8 16 24 32

Frequency sample

Figure 2. Four sample power spectra of the estimated inverse
Gaussian distribution for times. Only the first 32 frequency samples are
shown. Note the agreement in the initial portions of the spectra and the
divergence beyond the frequency sample 19. Ln = natural logarithm.

Table 2

Effect of Window Functions and Their Pass Band on
the ISE and TV Characteristics of the Deconvolved
Exponential Estimates

$o ISE TV

Rectangular filter

7 1.757 = 0.004 15822+ 0.334

9 1.436 =+ 0.006 17.801 + 0.589
11 1.215+ 0.011 19.445+ 1.041
13 1.060 = 0.020 20110+ 2.402
15 0.969 + 0.049 23.359+  4.295
17 1.021+ 0.175 29.939+ 9.143
19 1.927+ 1.308 58.867 = 30.044
21 12.995 + 33.067 153.070 + 173.050

Parabolic filter

7 2314+ 0.008 7.119+  0.063
9 1.917+ 0.012 8.319+ 0.093
11 1.632 £ 0.016 9.313+  0.127
13 1.419 = 0.021 10.168 = 0.214
15 1.256 + 0.031 10.100 + 0.346
17 [.131 = 0.048 11.927+  0.497
19 1.048 =+ 0.080 13.881 + 1.490
21 1.089 + 0.318 21.397+ 11.328

Note. At each value of ¢, 50 simulations are performed to extract an
exponential density from a convolution of a normal and an exponential
density. Each run is based on 4,096 trials. The mean and standard devi-
ation of integrated squared error (ISE) and total variation (TV) values
from the 50 histogram estimates of the exponential densities are 1.029
+0.007 and 22.850 =+ 1.310, respectively. (The TV value of the density
is 20.)

different the distributions are entering Equation 2, the nature
of the noise, and the filters and their pass band chosen to carry
out the inversion. This is another reason why we resort to a
simulation study. Nevertheless, it is possible to give a few quali-
tative descriptions when the resulting deconvolved estimates are
suspect: (a) The presence of pronounced oscillatory compo-
nents in the tails of the recovered time distribution usually
comes with negative spikes. (b) The shape of the extracted den-
sity deviates noticeably from the expected one. (¢) The mode of
the extracted density does not coincide with that of the expected
density; the mode may be shifted, too low or too high. (d) Sev-
eral modes are present when only one is expected. (e) An iso-
lated hump breaks the pattern of small, oscillatory components
at the tails. It is, of course, assumed in the prior observations
that the expected density is smooth and well behaved. However,
these qualitative differences may easily be smoothed away by the
filtering operation. If not, they could inflate the ISE and TV
values by a substantial amount.’

3 Two questions deserve some attention; one theoretical, another
practical: (a) Let ¢r({) be the characteristic function of an inverse
Gaussian distribution and ¢x be the characteristic function of a gamma
distribution in Equation 1. By inverting the equation in the manner of
Equation 2, would the resulting function ¢p correspond to any distri-
bution function at all? (b) Suppose there is a real qualitative difference
in the deconvolved estimates when no noise is involved. Could the FFT
deconvolution technique as it is usually practiced detect such a differ-
ence when noise is reintroduced? Because the answer to the first ques-
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Figure3. Comparison of deconvolved estimates of an exponential dis-
tribution using the rectangular and parabolic filters. The upper bound
of the filter’s pass band is 13 for the rectangular filter and 21 for the
parabolic. The y-axis scaling is shown X 1,000.

The decision time predicted by the one-boundary diffusion
model follows an inverse Gaussian distribution. We generate a
random sample of observations from such a distribution with
M = 300 ms and SD = 162 ms. Added to the sampled values
(point by point) of the inverse Gaussian variate are values sam-
pled from a normal distribution of M = 300 ms and SD = 60
ms. Thus, the total latency is modeled by a convolution of an
inverse Gaussian distribution and a normal distribution (as re-
sidual latency). These distribution parameters were chosen be-
cause they provide fits of the one-boundary diffusion model to
empirical data. A histogram estimate of the total time is shown
in Figure 4.

The convolution histogram is well approximated by the sim-
ulation from a 4-stage gamma distribution with M = 600 ms
and SD = 173 ms. Assuming that the 4-stage gamma density
fits the time data well, the experimenter might proceed to inter-
polate the decision density by deconvolving the total time with
a residual density of a 2-stage gamma density. The expected de-
cision density is another 2-stage gamma density. A total of 20
conditions is generated by factorially combining four sample
sizes (512, 1,024, 2,048, and 4,096) and five values of the filter’s
upper bound (7, 11, 15, 19, and 23). At each condition, a
gamma density is used to deconvolve the convolution histo-
gram of inverse Gaussian and normal densities. There are 50
simulated deconvolutions in each condition. In parallel, we per-
formed 50 correct (in the experimenter’s mind ) deconvolutions
of a 4-stage gamma density by a 2-stage gamma density. The

tion is somewhat technical, we refer the interested readers to the Appen-
dix for a detailed discussion. The answer to the second (in a special case)
is examined in Simulations 3 and 4.

deconvolution is repeated for each of the three window func-
tions described in Equations 4-6. We used the same histogram
estimate of gamma distributions in both correct and incorrect
deconvolutions to facilitate comparison of results. Tables 3 and
4 summarize the findings of this simulation.

The numbers in Table 3 are the number of times (out of 50)
that the ISE (TV) value of the incorrectly extracted estimate is
smaller than the correct estimate. For example, using a Han-
ning filter with ¢, = 23 in the deconvolutions based on 512 time
observations, in 17 out of 50 simulated trials the incorrectly
conceived deconvolution gives a smaller ISE value than the cor-
rectly extracted 2-stage gamma density estimate. Similarly, in
19 trials out of 50, the TV value is smaller for the incorrectly
conceived deconvolutions. The reason for looking at these num-
bers is that an experimenter generally favors a smoother decon-
volved estimate with a small ISE value over an estimate that has
both larger ISE and TV values. Of course, if the experimenters
are guided by the belief that the correct estimate is a 2-stage
gamma density, then they direct their attention to the true TV
value of 8.521 for such a density. Table 4 compares ISE and TV
values at selective {, values. These conditions have the largest
number of time observations, and the correctly extracted 2-
stage gamma estimates are superior to those incorrectly decon-
volved estimates. Still, the ISE and TV values between the two
are quite close. Among the three filters used, the parabolic filter
does best in discriminating the correct estimates from the in-
correct ones.

Figure 5 is a typical plot of a correct 2-stage gamma density
estimate and an incorrect deconvolved estimate. Both estimates

Probability density

0 500 1000 1500 20'00 25'00

Time (ms)

Figure 4. Examples of two hypothetical reaction time distributions.
The solid line shows a histogram density estimate of the convolution of
an inverse Gaussian density and a normal density. The density of a four-
stage gamma random deviate is shown by the dotted line. Each distri-
bution is based on 4,096 simulated observations. The y-axis scaling is
shown X 1,000.
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Table 3
Results of Deconvolving Inverse Gaussian and Normal
Convolutions by Gamma Densities, Part 1

Filter
Hanning Parabolic Rectangular
$o ISE 1% ISE TV ISE TV
N=512
7 46 3 46 4 8 8
11 40 2 22 12 13 22
15 23 8 14 19 17 20
19 14 18 20 19 22 23
23 17 19 20 20 25 24
N=1,024
7 48 1 48 2 6 4
11 47 1 19 S 8 21
15 21 2 7 13 16 27
19 10 8 12 19 22 28
23 10 17 15 23 25 31
N =2,048
7 50 0 50 0 2 2
11 47 0 26 4 3 14
15 30 3 2 7 7 26
19 8 3 4 16 18 34
23 3 13 8 30 22 31
N = 4,096
7 50 0 50 0 0 0
1 50 0 20 0 0 19
15 21 0 0 3 2 29
19 2 0 1 9 9 26
23 0 3 2 17 18 25

Note. The entries are the number of times (out of 50) the integrated
squared error (ISE) (total variation [TV]) value of the deconvolved esti-
mate is smaller than the ISE (TV) value of the deconvolved 2-stage
gamma density.

miss the peak somewhat and have similar negative loops. It is
difficult, however, to make the case that the two estimates shown
are from incompatible distributional assumptions. A misinter-
pretation of the deconvolved results is a real possibility in such
a scenario. Though neither component of the true total latency
is a combination of exponential stages, the experimenter can
still interpret the extracted estimates as rising from a serial
model of reaction time with exponentially distributed compo-
nent processes. Remember that in some uses of the method, the
combination and one component are provided, but there is no
way of determining whether the component is correct, so the
situation in which correct and incorrect decompositions can be
discriminated does not arise.

Simulation 4. This simulation complements Simulation 3
by reversing the correct and incorrect distributions. The true
total times are observations from a gamma distribution. The
experimenter, however, adopts as a model for the reaction time
data a convolution of an inverse Gaussian and a normal density.
Deconvolution of the total reaction time by a normal compo-
nent is subsequently carried out, and the resulting estimate is

checked against the expected inverse Gaussian density. Will the
deviation between the extracted estimate and the expected den-
sity be sufficiently large to alert the experimenter that something
might be amiss with the present model?

Again, we simulate observations from a correct and incorrect
distribution in parallel. A 4-stage gamma distribution with M
= 600 ms and SD = 173 ms has the same mean and variance as
the sum of a normal distribution with A = 300 ms and SD =
60 ms and an inverse Gaussian distribution with M = 300 ms
and SD = 162 ms. We see in Figure 4 that histogram estimates
of the two are not noticeably different. Five values (7, i1, 15,
19, and 21) of the upper bound of the filter’s pass band are com-
bined with four sample sizes (512, 1,024, 2,048, and 4,096) to
create a total of 20 conditions. At each condition, we repeated
50 simulated deconvolutions of a 4-stage gamma density by a
normal density. Each deconvolution is implemented once with
each of the three filters: Hanning, parabolic, and rectangular.
The outcomes are compared with the outcomes from the corre-
sponding correct deconvolutions on the sum of an inverse
Gaussian distribution and a normal distribution deconvolved
by the normal distribution. )

Tables 5 and 6 present a summary of ISE and TV values from
the simulation. The numbers in Table 5 show that no matter

Table 4
Results of Deconvolving Inverse Gaussian and Normal
Convolutions by Gamma Densities, Part 2

$o ISE TV

Rectangular filter

7 282 +.024 13.895 +0.589
(.207 +.003) (11.094 £ 0.623)
11 292 + 068 13.415 + 1.445
(.096 +.020) (12.871 = 1.890)
15 378 +.103 16.359 +£2.726
(.135 =.100) (17.376 + 4.383)
Parabolic filter
11 .187 +.020 8.190 +0.203
(.181 = .015) (7.492 £ 0.182)
15 200 +.042 9.551 £0.363
(.097 = .014) (8.601 + 0.443)
19 .249 + 056 11.441 £0.781
(.081 +.028) (10411 £ 1.135)
Hanning filter

15 189 + 021 7.748 £0.173
(.183 +.015) (6.917 £ 0.165)

19 .189 +.033 8.926 + 0.304
(.115 £.014) (7.797 £ 0.354)

23 216 £.044 10.308 + 0.578
(.090 + .018) (9.801 £ 0.814)

Note. Each entry is the mean and standard deviation (M * SD) of 50
simulations. Each run is a deconvolution by a 2-stage gamma density
of the convolution of an inverse Gaussian and normal density. Each
simulation is based on 4,096 trials. The extracted density estimate is
compared with a 2-stage gamma density extracted from a 4-stage
gamma density shown in parentheses. (The true total variation [TV]
value of the 2-stage gamma density is 8.521.) ISE = integrated squared
error.



FOURIER DECONVOLUTION AND REACTION TIME 295

Probability density

- —

0 5(')0 10'00 1500 2000 2500

Time (ms)

Figure 5. Comparison of the deconvolved estimates of the decision
time distribution. The solid line is the expected 2-stage gamma density.
The dotted line shows the extracted 2-stage gamma density under a cor-
rect deconvolution procedure. The triangular symbols trace out the ex-
tracted density estimate under the diffusion model assumption.

which filter is used, the extracted estimates of a gamma density
by a normal density are smoother than the correct estimates.
Moreover, there is a tendency for the rectangular filter to un-
dersmooth and for the Hanning filter to oversmooth the ex-
tracted estimates at the range of cutoff frequencies used. This
can be observed by comparing the TV value of the inverse
Gaussian density (6.799) with the TV values in Table 6. In gen-
eral, the correctly extracted estimates have smaller ISE values
than the incorrectly extracted estimates. There can be up to a
factor of 4 magnitude of difference in ISE value between the two
extracted estimates. For example, using a parabolic filter with
{, = 15, the extracted inverse Gaussian density estimates seem
alot better than the extracted estimates of a gamma distribution
by a normal density based on the same sample size. It is impor-
tant to find out where the discrepancy lies and whether the two
extracted estimates are qualitatively different. Figure 6 shows a
typical graph of the two density estimates plotted against time.
We added the density function of the inverse Gaussian density
for comparison. The shape and the peak location of the inverse
Gaussian density are well captured by both estimates. The only
obvious gap is the low peak of the incorrect deconvolved
estimates.

However, a low peak is not uncommon in deconvolved esti-
mates. We are aware of the true cause of this deviation because
we have an exact alternative with which to compare the results.
In fact, the ISE values of the incorrect deconvolutions are even
slightly better than the results of extracting a 2-stage gamma
density from a 4-stage gamma density (see the ISE values in the
parenthesis of Table 4). The question is not which deconvolu-
tion gives the smallest ISE, but are there ways to do diagnostics
on the extracted results? From the results of the simulation, it is
not clear what would alert the experimenter to reconsider the
assumptions of a one-boundary diffusion model.

Table 5
Results of Deconvolving Gamma Densities by Normal
Densities, Part 1

Filter
Hanning Parabolic Rectangular
o ISE TV ISE TV ISE TV
N=512
7 4 44 4 46 9 43
11 4 45 2 46 12 31
15 4 45 2 46 18 20
19 5 34 11 24 22 23
23 10 25 23 24 27 26
N=1,024
7 1 49 0 49 0 46
11 0 49 1 48 4 32
15 0 49 2 40 20 28
19 2 47 1 29 24 26
23 9 27 20 26 25 27
N=2048
7 0 50 0 - 50 0 50
11 0 50 0 50 0 37
15 0 50 0 47 10 27
19 0 46 4 23 22 28
23 5 27 17 22 19 20
N=4,096
7 0 50 0 50 0 50
11 0 50 0 50 0 35
15 0 50 0 48 | 16
19 0 48 0 22 19 19
23 1 28 14 20 20 23
Note. The number of times (out of 50) the integrated squared error

(ISE) (total variation [TV]) value of the deconvolved estimate is smaller
than the ISE (TV) value of the extracted inverse Gaussian density.

One might argue that if experimenters found the preponder-
ance of evidence for Model A (e.g., a serial model ) over Model
B (e.g., a diffusion model) at different pass bands of various
filters and at different sample sizes, then they might be tracking
down the correct model. The trouble with this approach is that
both models may be wrong. The situation is analogous to using
only the coefficient of determination to choose among compet-
ing regression models. In Simulations 3 and 4, we are able to
create problems for interpreting deconvolved estimates by sim-
ply choosing two different distributions and matching their first
two central moments approximately. Presumably, there are
more sophisticated ways to choose distributions that are close
in some other sense.*

The findings of Simulations 3 and 4 suggest that the experi-
menter must obtain independent, corroborative evidence about
the shape of the reaction time distributions to avoid misinter-
preting the FF T deconvolution results, but at the moment we

* For example, one could try to produce a match in the initial por-
tions of the Fourier transforms with two different distributions.
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cannot see what form this evidence would take. Perhaps this is
a major challenge to any researcher who wishes to decompose a
reaction time data set. For the time being, we propose that one
should run several deconvolutions on the same data set. Each
deconvolution procedure assumes different plausible shapes
about the time distributions. The same data set can be boot-
strapped to yield sample observations of different sizes. The
best distribution can then be selected on the basis of ISE and
TV criteria. If the deconvolution procedure is operating under
correct -assumptions, the ISE value should decrease in an or-
derly manner as sample size increases. The width of the filter
should be varied systematically (within the boundary deter-
mined by the power spectrum) until a minimum TV value is
reached or the width is close to some value of a theoretical den-
sity. It is also important to plot the deconvolved estimates
against the competing shape assumptions to detect the locations
of the discrepancy between the extracted and expected esti-
mates. This is because the same amount of discrepancy may
appear in different places (globally or locally) under different
shape assumptions. It is not clear which is worse: missing the
peak or having more ripples at the tails.

Conclusion

The FFT deconvolution method is a potentially useful data-
processing tool. If the interest of the study is parameter estima-

Table 6
Results of Deconvolving Gamma Densities by Normal
Densities, Part 2

$o ISE TV

Rectangular filter

7 .093 +.008 7577+ 0.293
(.068 = .001) (8.664 + 0.271)

Il .082 +.020 8.258 = 0.068
(.021 £.006) (8.945+ 0.929)

15 173 £.067 13.663 + 3.623
(.046 £.031) (11.757 = 2.468)

Parabolic filter

11 115 +.011 5647+ 0.100
(.060 % .007) (6.144 = 0.112)

15 094 + 015 6.162+ 0.259
(026 + .007) (6.695 = 0.186)

19 129 +.033 9223+ 2027
(031 .016) (8.901 + 1.464)

Hanning filter

15 125+ .01t 5.258 + 0.105
(.065 £.007) (5.786 + 0.110)
19 106 +.014 5.705 + 0.213
(.036 = .008) (6.271 = 0.197)
23 168 +.277 10.297 + 12.953
(.109 + 478) (11.098 + 16.821)
Note. Each entry is the mean and standard deviation of 50 simulated

deconvolutions of a 4-stage gamma density by a normal density (based
on 4,096 trials). The extracted density is compared with the expected
inverse Gaussian density having a total variation (TV) value of 6.799.
The entries in the parentheses are the corresponding mean and standard
deviation of integrated squared error (ISE) and TV values of the inverse
Gaussian extracted from a convolution of a normal and an inverse
Gaussian density.

(3]
N

density

w
L

Probability

-
2

v‘w

-1

[ 500 1000 1500 2000 2500

Time (ms)

Figure 6. Comparison of the deconvolved estimates of the decision
time distribution. The solid line is the expected inverse Gaussian den-
sity. The dotted line shows the extracted inverse Gaussian density under
an appropriate deconvolution procedure. The triangular symbols illus-
trate the result of deconvolving a 4-stage gamma distribution by a nor-
mal distribution.

tion for an assumed serial stage model, then our first two simu-
lations and Smith’s (1990) example show that the method can
work reasonably well, except for the case in which the single-
stage distribution, such as the exponential distribution, has a
sharp peak. However, the main problem is often not how to fita
model but rather which one of the models can be validated. In
this case, our results show that the method alone is not capable
of determining the shape of a time distribution in a serial pro-
cess when the observed time data are statistically consistent
with other theories. In fact, the method is independent of the
prior model assumptions. The method also does not suggest
how one might better analyze a given set of data when the as-
sumed model is wrong. We conclude that the application of the
method is limited. Our simulations demonstrate the impor-
tance of developing adequate tests on the fundamental assump-
tions of stage models, that is, the existence of discrete, nonover-
lapping, additive, independent serial processes. Without them,
the powerful Fourier deconvolution method can give very mis-
leading answers because of the inherent mimicking problem.
Thus, the challenge is to obtain independent evidence for the
validity of the subtractive method.
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Appendix

Responses to Questions Posed in Footnotes

The theoretical question we posed in Footnote 3 is whether the ratio
of the characteristic function of an inverse Gaussian distribution and
the characteristic function of a gamma distribution is or is not a char-
acteristic function. If it is not, then deconvolution in the manner pre-
scribed by Equation 2 results in anything except a proper density func-
tion. This is because a distribution function is uniquely determined by
its characteristic function and vice versa (see, e.g., Feller, 1966). From
Equations 10 and 12, we form a function with argument —o0 < { <
and four parameters: u > 0, A > 0, a > 0, and r is a positive integer,
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It is, in general, difficult to demonstrate if an arbitrary function is or is
not a characteristic function. Our strategy is to choose a particular set
of values for the parameters and check if the modulus of the function
#( ) is less than or equal to one for all values of {. This is a condition
any characteristic function must satisfy (see, e.g., Feller, 1966). We set
p=A=2 a=1,and r = 2. (This corresponds to an inverse Gaussian

distribution with both A/ = 2, SD = 2, and a 2-stage gamma distribution
with M =2and SD = Vi.) Thus, the modulus of ¢( {) simplifies to

lexp[1 —2(1/a = i)'2)(1 — i£)?].

We compute the modulus of the product separately, because the modu-
lus of a product is equat to the product of the modulus of the factors. A
trite calculation shows that the modulus of the first factor reduces to
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Figure Al. For the two deconvolved estimates, the solid line repre-

sents the estimate of a S-stage gamma distribution from deconvolving a
7-stage gamma distribution from a 12-stage gamma distribution, and
the dashed line represents the estimate of a function obtained from de-
convolving a 7-stage gamma distribution from an inverse Gaussian
distribution.
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Figure A2. The same two deconvolved estimates from Figure Al, but
a filter is used before inversion.

whereas the modulus of the second factor becomes (1 + ¢2). Therefore,
1 < |¢(1)] = 1.0971. We conclude {only) that the function obtained
from deconvolving an inverse Gaussian distribution with Af = 2 and SD
= 2 by a 2-stage gamma distribution with M = 2 and SD = V2 is nota
proper density function. (With the gamma distribution mean smaller
than the inverse Gaussian mean, the tails of the ratio of the characteris-
tic function rise after initially decreasing from [ in a W shape.) This
example also shows that the ratio of the characteristic function of an
inverse Gaussian distribution and the characteristic function of a
gamma distribution is not automatically a characteristic function.

In response to the practical question we posed in Footnote 3, we pro-
vide a graphic illustration of how filtering operation in the FFT decon-
volution procedure can remove the possibility of detecting a difference
between the correct and incorrect deconvolved estimates.

Figure Al shows two deconvolved estimates. The solid line is the es-
timate of a 5-stage gamma distribution obtained from deconvolving a
7-stage gamma distribution from a 12-stage gamma distribution (a =
0.02). The dashed line is the estimate of a function obtained from de-
convolving a 7-stage gamma distribution from an inverse Gaussian dis-
tribution whose first two central moments coincide with that of a 12-
stage gamma distribution with a = 0.02. The 256 histogram estimates,
each 10 ms apart, are calculated from the formulas of the corresponding
probability density functions. No filter is used. Notice the salient oscil-
latory components with negative spikes at the origin of the recovered
“incorrect” estimate, a less noticeable one at the right tail, the sharply
peaked mode, and the deviation of the shape from the expected 5-stage
gamma density. ( The vertical axis scaling is shown X 1,000.)

Figure A2 shows the results of the same deconvolution procedures as
in Figure A1, except that a parabolic filter is used before inversion. The
upper bound of the filter’s pass band is 23. Compared with Figure Al,
we observe that as the oscillations at the origin of the incorrect estimate
are smoothed away and are replaced by a negative region, the shape
becomes more similar to the expected 5-stage gamma density. Though
filtering introduces oscillatory components to both correct and incor-
rect estimates, those on the right tail of the incorrect one have a much
larger magnitude. However, these loops are not unusual (see Smith’s,

1990, Figure 7 for comparison ).



FOURIER DECONVOLUTION AND REACTION TIME 299

Figure A3 shows the results of the same deconvolution procedures as
in Figure A2. The same filter is used. However, the 12-stage gamma
distribution and inverse Gaussian distribution are simulated. Each is
based on 4,096 random observations. Histogram estimates were ob-
tained by grouping the observations into 256 bins, each 10 ms wide, and
normalizing. Filtering is performed using the same parabolic window
function (with the same pass band) as before. The noise in random
trials introduces even more pronounced negative loops to the two esti-
mates. Encountering such a deconvolved estimate, the experimenter’s
natural reaction is either to try another filter, to reduce the upper bound
of the filter’s pass band, or both.

8..
Z e
]
=
[
©
4
Fd
=
3
a 27
©
L
a
o-
2 T T : - T
-100 400 900 1400 1900 2400
Time (ms)

Figure A3. The results of the same deconvolution procedures as in
Figure A2 and the same filter are used, but the 12-stage gamma distri-
bution and inverse Gaussian distribution are simulated.
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Figure A4. The results of the same deconvolution estimates as in Fig-
ure A3, but there is no longer any qualitative difference between the two
deconvolution estimates.

Figure A4 shows the results of the same deconvolved estimates as in
Figure A3. The upper bound of the filter’s pass band is reduced from
23 to 15. Compared with Figure A1, there is no longer any qualitative
difference between the two deconvolved estimates. In summary, with
filtering in the frequency domain, the oscillations in the time domain
are dampened and one cannot distinguish from which distribution, in-
verse Gaussian or gamma, the reaction time data is simulated.

Received September 7, 1993
Revision received December 13, 1994
Accepted December 13, 1994 =



