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As people age, their response times in cognitive tasks
slow. The degree to which their responses slow is often
graphed as a Brinley plot (Brinley, 1965; Salthouse &
Somberg, 1982). A Brinley plot is constructed either by
computing the mean response times for older subjects and
young subjects separately for each condition of an experi-
ment and then plotting the means against each other or by
plotting the mean response times for individual subjects
against each other, with the fastest older subject’s mean re-
sponse time plotted against the fastest young subject’s
mean response time, the next fastest older subject’s mean
response time against the next fastest young subject’s mean
response time, and so on. Either way they are constructed,
Brinley plots show a striking regularity: Across a wide range
of response times and types of experiments, the function is
always approximately a straight line with a slope of around
1.5 (ranging from 1 to 3.0). In other words, response times
for older subjects can be predicted from response times for
young subjects by a simple linear transformation.

The traditional avenue to interpretation and understand-
ing of the Brinley regularity is to take the linear function

as the central datum to be explained, and efforts are di-
rected toward understanding how response time and cog-
nition in general change with age. We review two models
of this type: a linear model proposed by Cerella (1985)
and the information loss model proposed by Myerson,
Hale, Wagstaff, Poon, and Smith (1990). Both models in-
stantiate the effect of aging on response time as a general
slowing effect: All the components of processing in an ex-
perimental task are assumed to be slower for older people
than for young people, by the constant factor that is the
slope of the Brinley plot.

Although it has been argued recently that the regular-
ities in Brinley plots (their linearity and the similarity of
the values of their slopes) provide only weak constraints on
possible models of the effects of aging on response time
(Cerella, 1994; Fisk & Fisher, 1994; Myerson, Wagstaff,
& Hale, 1994; Perfect, 1994), the Brinley plot still serves
as a benchmark, in that experimental data are expected to
exhibit linear Brinley functions and theories of cognitive
processing are expected to produce them.

In this article, we present a new insight into Brinley
plots. We point out that Brinley plots are quantile–quantile
plots (Q–Q plots), which are well studied in statistics (see
Chambers, Cleveland, Kleiner, & Tukey, 1983; Thomas
& Ross, 1980) and for which there is a substantial body
of theory. Looking at Brinley plots as Q–Q plots leads to
a new interpretation of their linearity and their slope. In
brief, the value of the slope is determined by the ratio of
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Research into the effects of aging on response time has focused on Brinley plots. Brinley plots are
constructed by plotting mean response times for older subjects against those for young subjects for a
set of experimental conditions. The typical result is a straight line with a slope greater than 1 and a neg-
ative intercept. This linear function has been interpreted as showing that aging leads to a general slow-
ing of cognitive processes. In this article, we show that the slope of the Brinley plot is actually a mea-
sure of the relative standard deviations of older versus young subjects’ response times; it is not a
measure of general slowing. We examine current models of the effects of aging on mean response time
and show how they might be reinterpreted. We also show how a more comprehensive model, Ratcliff’s
diffusion model (1978), can account for Brinley plot regularities and, at the same time, provide an ac-
count of accuracy rates, the shapes of response time distributions, and the relative speeds of error and
correct response times, aspects of the data about which models designed to account for Brinley plots
are mute. We conclude by endorsing a research approach that applies explicit models to response time
data in aging in order to use the parameters of the model to interpret the effects of aging.
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the standard deviation of older subjects’ response times to
the standard deviation of young subjects’ response times.
The slope cannot be interpreted as a general slowing fac-
tor. The feature of a Brinley plot that captures the fact that
older subjects are typically slower than young subjects is
the function’s intercept.

Reinterpretation of the Brinley plot requires a new ap-
proach to modeling. The key finding that a model must
explain is not that older subjects are slowed by a constant
factor, relative to young subjects, but rather that the dis-
tribution of response times for older subjects is wider. We
argue that, in order to accomplish this, a model must iden-
tify the component processes that are involved in a cogni-
tive task and then show how one or another of those pro-
cesses can be affected by aging in such a way as to produce
the appropriate distributions of response times. In the later
sections of this article, we use simulations to illustrate how
one model, Ratcliff ’s diffusion model for simple two-
choice decisions (Ratcliff, 1978; Ratcliff & Rouder, 1998,
2000; Ratcliff, Van Zandt, & McKoon, 1999), can do
this. An important conclusion that follows from the sim-
ulations is that Brinley plots provide only weak con-
straints on theory. Any theory that appropriately scales the
difficulty of an experimental task onto response times
(such as the diffusion model or competing models; e.g.,
P. L. Smith & Vickers, 1988) will produce a Brinley plot
with appropriate characteristics. A much fuller consid-
eration of response time data—including, for example,
accuracy rates, error response times, and the shapes of
response time distributions—will be needed to constrain
models.

We begin below with an explanation of Q–Q theory and
how it applies to Brinley plots. Then we review the earlier
models (Cerella, 1985; Myerson et al., 1990) and their
reinterpretations in terms of Q–Q theory. Last, we illus-
trate the variety of ways in which the diffusion model, a
model that identifies components of processing, can sim-
ulate Brinley plot data.

QUANTILE–QUANTILE PLOTS 

There is one major mystery about Brinley plots: Why
are they almost always linear? There also is a second
puzzling regularity, that the intercept of the Brinley plot
is negative when the slope of the Brinley plot is greater
than 1 and the larger the slope, the more negative is the
intercept. The theory of Q–Q plots provides a framework
for understanding these regularities. Consider the distrib-
utions of mean response times from the conditions of an
experiment, one distribution of condition means for
older subjects and one for young subjects. What Q–Q the-
ory shows is that when the condition means for the older
and the young subjects are plotted against each other, the
slope of the function is the ratio of the standard deviations
of the distributions, and when the distributions have the
same shape, the function is automatically linear. Also,
from the Q–Q analysis, it is to be expected that the inter-
cept is negative and becomes more negative as the slope

increases. Thus, the issue of explaining the shape of the
Brinley plot is translated into an issue of explaining the
shapes of the distributions of mean response times. It is
the shapes of these distributions that should be the target
of models of processing: If a model produces similarly
shaped distributions of response times for older and
younger subjects across conditions, the model will auto-
matically produce linear Brinley plots.

Linear Brinley Plots 
Brinley plots are most often constructed by plotting

the mean response time for older subjects in each condi-
tion of an experiment against the mean response time for
young subjects in each condition. The plot then has as
many points as there are conditions in the experiment
(conditions in an experiment may be different values of
word frequency, stimulus onset asynchrony, list length,
study time, stimulus discriminability, etc.). The values of
mean response times form a distribution across condi-
tions, one distribution for older subjects’ means and one
for young subjects’ means.

Given that the mean for an experimental condition is a
point from a distribution of means, each mean is actually
a quantile of the distribution. The quantiles of a distrib-
ution are the points that divide the total frequency in the
distribution into parts. For example, the median point di-
vides the distribution into halves (.5 quantiles), the three
quartile points divide the distribution into quarters (.25
quantiles), and so on. A Q–Q plot simply plots the quan-
tile points of one distribution against the quantile points of
another distribution. So, for example, the score at the .1
quantile for one distribution is plotted against the score
at the .1 quantile for the other distribution, and so on. The
means plotted on a Brinley function are quantiles for the
distributions of condition means in the experiment, and so
a Brinley plot is a specific instance of a Q–Q plot.

If the distributions on which a Q–Q plot is based are
normal, the Q–Q plot is a straight line. The slope of the
Q–Q plot is the ratio of the standard deviations of the
distributions, and the intercept is a function of the means
of the two distributions and their standard deviations. To
understand why this is so, consider, first, two normal dis-
tributions, each with a mean of 0 and a standard deviation
of 1; that is, each is the standard normal distribution.
Plotting quantiles from these two distributions against
each other [e.g., 10%, Q(.1) = �1.28; 20%, Q(.2) = �0.84;
30%, Q(.3) = �0.52; etc.] gives a straight line [in stan-
dard z tables, this would correspond to Q(α) = z(α)]. If
the response time scores of older and young subjects come
from normal distributions, their quantiles are the quantiles
of the standard N(0,1) normal [e.g., Q(.1) = �1.28] mul-
tiplied by the standard deviation of their distribution (σo
for the older subjects and σy for the young subjects) and
added to the mean of their distribution (µo and µy, respec-
tively). The quantiles in our response time setting repre-
sent different levels of difficulty of the experimental task
(x), and so the transformations from the quantiles for the
standard normal to the older subjects’ distribution is Qo =
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σo x + µ o , and the transformation to the young subjects’
distribution is Q y = σy x + µ y. Eliminating difficulty x,
we obtain a straight line with slope = σo /σy and intercept =
µo � µyσo /σy. The full equation for a point on the Q–Q
(Brinley) plot is

Qo = (σo /σy )Qy + µo � µyσo /σy. (1)

These results and the equation hold if the two distrib-
utions from which the Q–Q plots are derived are not nor-
mal but, rather, logistic, Cauchy, gamma (with a fixed
“number” parameter), exponential, Weibull (with fixed
exponent), uniform, or ex-Gaussian (with the parameter
of the exponential component being a constant times the
standard deviation of the normal component; Ratcliff &
Murdock, 1976). These distributions all have the form that
their quantiles can be derived from the standard form by
multiplying by a constant and adding a constant. Thomas
and Ross (1980) provide a detailed discussion of the
properties that give rise to linearity for these distributions,
and Chambers et al. (1983, chap. 6) provide a more intro-
ductory discussion of Q–Q plots, along with a list of the
properties of Q–Q plots for several of these distributions.

The important point is that, if the Q–Q plot for a set of
conditions in an experiment is produced from two distri-
butions with approximately the same shape, the slope is
the ratio of the standard deviation of the two distribu-
tions (as long as the range of the points on the plot is sig-
nificantly greater than the variability in each point; see
the Appendix). In other words, any model that produces
distributions of older and young subjects’ mean response
times so that the distributions have the same shape will
automatically produce a linear Q–Q (Brinley) plot with
a slope equal to the ratio of the standard deviations.

The equation does not hold if the distribution of older
subjects’ means is more positively skewed than the distri-
bution of younger subjects’ means (e.g., an exponential
for the older subjects and a normal for young subjects)—
that is, more positively skewed than would be obtained
from two different members of the same distribution
family (e.g., two exponentials with different means). In
this case, the Q–Q plot is positively accelerated (e.g., an
exponential plotted against a normal distribution). That
is, the function is U-shaped, with the left and right tails
of the function lying above a straight line through the
central part of the function. This shape has occasionally
been obtained empirically (Cerella, 1990; Nebes & Mad-
den, 1988; see also Myerson et al., 1990). Even though
the equation does not hold, the slope of the straight line
fitted to the function turns out, in many cases, to be the
ratio of standard deviations, as in Equation 1.

All of the points just made about the relationship be-
tween Q–Q plots and Brinley plots also hold if the Brin-
ley plot is constructed, not by plotting the mean response
times of older versus young subjects for each condition of
an experiment, but by plotting means for individual older
and young subjects against each other.

The important point, that the slope of a Brinley plot is
the ratio of standard deviations of older and young re-
sponse times, is a fundamental reinterpretation of the
Brinley plot: It means that the slope of the Brinley plot
shows nothing about slowing of older subjects relative to
young subjects. What the slope does show is that there is
greater variability across conditions in the mean response
times of older subjects than in the mean response times of
young subjects. Older subjects are typically slower than
young subjects, but it is the intercept, which is a function
of mean response times and their standard deviations, that
shows the slowing.

Figure 1 illustrates this interpretation of the Brinley
plot. The top left panel shows two normal distributions
of response times, one for young subjects with a mean of
600 and a standard deviation of 100 [N(600,100)] and one
for older subjects with a mean of 700 and a standard de-
viation of 150 [N(700,150)]. These distributions give typ-
ical response times for older versus young subjects. Plot-
ting randomly generated scores from these distributions
in a Brinley plot (i.e., a Q–Q plot) shows the typical 1.5
slope that has been interpreted as showing a general slow-
ing. But the slope actually represents the ratio of the stan-
dard deviations of the two distributions (150/100). The
right-hand panels show the same slope obtained from two
distributions in which the older subjects are, on average,
faster than the young subjects. The distribution for young
subjects is N(600,100), and the distribution for older sub-
jects is N(500,150). The slope is still 1.5, but the older
subjects are faster. The points made by these example dis-
tributions apply whether the response times are taken to
be the response times of individual subjects or the mean
response times for experimental conditions.

Figure 2 illustrates the point mentioned above, that the
slope of the Brinley plot is still the ratio of standard de-
viations even when the response times are sampled ran-
domly from nonnormal distributions. The top row of pan-
els shows the Brinley plots, the second row shows the
distributions for young subjects, and the third row shows
the distributions for older subjects. The three distribu-
tions have quite different shapes, and yet, in each case,
the ratio of the older to young standard deviations is
within 1% of the value of the Brinley slope.

The Relation Between a
Brinley Plot’s Slope and Its Intercept 

Another regularity that has emerged in the Brinley
plot literature is that, when the slopes and intercepts of
the Brinley plots from many experiments are plotted
against each other, the result is a straight line, as is shown
in Figure 3. Cerella (1991; see also Maylor & Rabbitt,
1994) and Faust, Balota, Spieler, and Ferraro (1999) pro-
vided tables of the Brinley intercepts and slopes from a
number of experiments. The intercepts varied between
+214 msec and �693 msec, and the slopes varied between
0.96 and 2.63. We plotted each experiment’s intercept
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against its slope (following Cerella, 1991) to produce the
straight-line function with an intercept of 572 msec and
a slope of �441 msec that is shown in Figure 3.

The fact that this function is a straight line follows di-
rectly from the Q–Q analysis, under several reasonable
assumptions about how aging might affect response times.
To show this, we begin with normal distributions of older
and young subjects’ response times and examine a variety
of possible relations between the two distributions (the
distributions could be either distributions of condition
means or distributions of individual subjects’ means).
We fixed the young subjects’ distribution to have a mean
of 600 msec and a standard deviation of 100 msec, varied
the older subjects’ mean from 600 to 750 msec, as is shown
in Table 1, and varied the older subjects’ standard devia-
tion from 100 to 250 msec, as is shown in the first column
of the table. Then, for each pair of young and older stan-
dard deviations, we computed the slope of the Brinley plot
(from Equation 1), and from each pair of young and older
standard deviations and each pair of young and older
means, we computed the intercept of the Brinley plot
(again, from Equation 1). The resulting Brinley slopes and
intercepts are shown in the table.

Before proceeding, two things are worth pointing out
about the values in Table 1. First, as the slope of the Brin-
ley plot increases, the intercept decreases, just as in Fig-
ure 3. Also, the intercept is mostly negative when the slope
is greater than 1. Only a relatively large mean response

time, coupled with a relatively small standard deviation for
the older subjects, produces a positive intercept.

The main question is whether the values in Table 1
produce the linear function in Figure 3. We show that they
do, in three cases that span a range of reasonable as-
sumptions about how older subjects’ response times vary
with respect to young subjects’. In each case, the value of
the slope is negative, and the intercept is positive. (The
values in the table can also be used to evaluate other as-
sumptions about how older subjects’ response times vary
against young subjects’ response times.)

For the first example, we assume that older and young
subjects have the same mean, 600 msec, and that only the
standard deviation for older subjects varies, from 100 to
250 msec. The resulting Brinley slopes are given in the
second row of the table, and the Brinley intercepts in the
third row. Plotting these slopes and intercepts against each
other gives a straight line with a slope of �600 msec and
an intercept of 600 msec.

Second, we assume that both the mean for the older
subjects’ distribution and their standard deviation increase
relative to the young subjects, and for purposes of illus-
tration, we assume that they increase by the same amount,
30 msec, beginning from a standard deviation of 100 msec
and a mean of 600 msec. The resulting Brinley slopes are
again the values in the second column of the table, and
the Brinley intercepts are the values on the diagonal from
top left to bottom right. Plotting these slopes and inter-

Figure 1. Examples of the translation from distributions of mean response times across subjects to Brinley or
quantile–quantile (Q–Q) plots.
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cepts against each other, the function is a straight line with
a slope of �500 msec and an intercept of 500 msec.

Third, we assume that the mean for older subjects is
larger than the mean for young subjects by a constant
amount (90 msec larger for purposes of illustration) and
that the older subjects’ standard deviation varies from 100
to 250 msec. The Brinley slopes are again the values in
the second column of the table, and the Brinley intercepts
are the values in the “690” column of the table. The plot of

these slopes and intercepts is again a straight line, with
a slope of �466 msec and an intercept of 597 msec (very
near the values for the line in Figure 3).

These three cases illustrate three ways older subjects’
response times might vary relative to young subjects’ re-
sponse times. In each case, the plot of the intercepts of the
Brinley plot versus the slopes of the Brinley plot gives a
negative slope and a positive intercept, with the third case
being very close to the observed values in Figure 3. Thus,

Figure 2. Simulated shapes of Brinley (Q–Q) plots derived from exponential, normal, and uniform distributions
of mean response times across subjects. The distributions in the bottom row have larger mean and larger stan-
dard deviation (1.5 times larger) than the distributions in the middle row. The Brinley functions plot the distrib-
utions in the middle row on the x-axis and the distributions in the bottom row on the y-axis.
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from the Q–Q analysis, it follows that any reasonable as-
sumption about how older and young response times dif-
fer will produce the observed relationship between the
slopes and intercepts of the Brinley plots from different
experiments.

Summary 
Brinley plots are Q–Q plots, and this fact gives us in-

sight into multiple aspects of the plots.
1. Brinley plots are linear, because the distribution of

mean response times across experimental conditions for
older subjects has about the same shape as the distribu-
tion of means across conditions for young subjects. If, as
has sometimes been found, the Brinley function is slightly

accelerated upward, the distribution of older subjects’
means has greater skew (i.e., an extra large number of slow
response times) than does the distribution of young sub-
jects’ means.

2. The slope of a Brinley plot is greater than 1, because
older subjects’ mean response times have greater variabil-
ity than young subjects’ means, not because of general
slowing.

3. The intercept of a Brinley plot is negative, because
of the relative placements of the means and standard de-
viations of the older and young subjects’ distributions of
mean response times; older subjects’ means are larger than
younger subjects’ means, but not by too much, relative to
their standard deviations.

Figure 3. Plots of intercepts versus slopes of Brinley plots for 39 experiments
from Cerella (1985) and Faust, Balota, Spieler, and Ferraro (1999).

Table 1
Slopes and Intercepts of Brinley Plots

for Normal Distributions of Response Time

Standard Deviation
in Response Times Mean Response Time for

for Simulated Older Slope of Simulated Older Subjects (msec)

Subjects (msec) Brinley Plot 600 630 660 690 720 750

100 1.0 0 30 60 90 120 150
130 1.3 �180 �150 �120 �90 �60 �30
160 1.6 �360 �330 �300 �270 �240 �210
190 1.9 �540 �510 �480 �450 �420 �390
220 2.2 �720 �690 �660 �630 �600 �570
250 2.5 �900 �870 �840 �810 �780 �750

Note—Mean response time for young subjects is 600 msec; standard deviation in re-
sponse time for young subjects is 100 msec.
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4. The slopes and intercepts of Brinley functions are
negatively correlated (as is shown in Figure 3), because
when the standard deviation of older subjects’ means in-
creases relative to the standard deviation of the young sub-
jects’ means, the slope of the Brinley plot increases and
the intercept decreases (irrespective of whether the older
subjects’ means increase along with their standard devia-
tion), since the ratio of standard deviations appears in both
the slope and the intercept of Equation 1.

A strong argument has been made in the literature about
the lack of a need to model task performance in order to
understand the effects of aging on processing time. The
argument goes as follows: Because Brinley functions show
that the effect of aging is a general and linear slowing and
because this slowing appears across a range of tasks, from
tasks that can be performed very quickly to tasks that are
very slow, hypotheses about the reason for general slow-
ing are all that are needed to explain the effects of aging.

However, the analysis in terms of Q–Q plots provides
a different way of viewing the Brinley plot regularities—
namely, that they arise from a larger spread in the distri-
bution of mean response times for older subjects than for
young subjects. This pattern could occur for many reasons
(e.g., older subjects may adopt more conservative response
criteria, or the information they extract from a stimulus
may be of lower quality than that for young subjects),
which we illustrate in the next sections of this article, and
the reasons could be different in different tasks. Distin-
guishing among the different explanations for the larger
spread of older subjects’ distributions will require ex-
amination not just of the mean response times plotted in
Brinley functions, but also of other aspects of the response
time data, such as accuracy, error response times, and the
shapes of response time distributions.

MODELS FOR THE EFFECTS OF
AGING ON MEAN RESPONSE TIMES 

Most of the theoretical work in aging and response
time has focused on the general slowing hypothesis, the
idea that the aging effect is a general slowing effect. The
assumption has been that the Brinley plot shows this slow-
ing, with the slope of the plot giving the factor by which
older subjects slow, relative to young subjects. However,
the Q–Q reinterpretation of the Brinley plot slope indicates
that the aging effect is not a general slowing effect as mea-
sured by the slope of the Brinley function. The models
can be reinterpreted to be consistent with the Q–Q analy-
sis, but at the expense of losing their general slowing ac-
count of aging.

Cerella’s (1985) Linear Model
Cerella (1985) proposed that response times for older

subjects (RTo) are a linear function of response times for
young subjects (RTy ) — that is, RTo = a RTy + b. We de-
scribe his proposal in the slightly generalized form in
which response time is a function of task difficulty (as in

Cerella, 1994, Figure 1). Figure 4 (top left panel) shows
mean response time plotted against difficulty for four
values of a, represented by the lines labeled “1,” “2,” “3,”
and “4,” with the intercept (b) the same for the four func-
tions. Like Cerella’s function, this generalization gives
the Brinley pattern, because response time is a linear
function of task difficulty: 

RT = ax + b, (2) 

where x represents difficulty and b represents the floor on
response time. Then, RTo = aox + bo, and RTy = a y x +
by , and with simple algebra to eliminate x,

RTo = (ao / ay)RTy + bo � by ao /ay. (3)

In other words, response time for older subjects is a linear
function of response time for young subjects (a Brinley
plot), with a slope of ao / a y and an intercept of bo �
by (ao /a y ). In the top left panel of Figure 4, a group of
young subjects might produce, for example, the line
marked with 2s for response time as task difficulty in-
creased. The line for a group of older subjects would be
higher—for example, the line marked with 3s (the lines
have the same intercept, b, but if different intercepts
were assumed, the analysis would carry through in the
same way with the same qualitative conclusions).

The findings just outlined for the assumption of a lin-
ear relationship between difficulty and response time
generalize to other functions that scale difficulty into re-
sponse time:

RT = a f (x) + b, (4)

where f (x) is some transformation of difficulty, the same
transformation for older and young subjects, and where
older and young subjects differ only in parameters a and
b. The top left panel of Figure 4 shows response time as
a linear function of difficulty. For response time as an
exponential function of difficulty—for example, RT = a
exp(x /c) + b—the scaling functions show the same gen-
eral pattern (Figure 4, bottom left panel), and the same de-
rivations as those for the linear model carry through (be-
cause elimination of the term exp(x /c) from the versions
of this equation for young and older subjects gives Equa-
tion 3). Thus, the form of the function relating difficulty
to response time does not have to be linear; rather, it has
to be of the form f (x), where x is difficulty, so that when
f (x) is eliminated from the equations for young and older
subjects’ response times, the resulting relationship be-
tween young and older subjects’ response times is linear.

The expressions for the slope and intercept for Cerella’s
(1985) model and our generalizations (Equation 3) look
very much like those for a Q–Q plot (Equation 1); a and
b in Equation 1 correspond to σ and µ , respectively, in
Equation 3. The Q–Q analysis is more general than Cerel-
la’s model and accommodates nonlinear Brinley func-
tions. Here, we show how to relate the Q–Q analysis and
Cerella’s model by using three different examples. First,
suppose that the conditions of an experiment are equally
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spaced as a function of difficulty. Then, for Cerella’s
model, with a linear transformation from difficulty to re-
sponse time, response times for older and young subjects
will both have uniform distributions (e.g., the rightmost
panels of the middle and bottom rows of the panels in Fig-
ure 2), and the Brinley function will be linear (as in the
top row, rightmost panel of Figure 2). For the Q–Q analy-
sis, with the distributions of response time uniform (both
having the same shape), the Q–Q (Brinley) plot will be
linear, with a slope that is the ratio of the standard devi-
ations of the distributions. Second, suppose that the rela-
tionship between the difficulty of the conditions of an ex-
periment and response time is exponential (e.g., RT = a
exp(x /c) + b, leftmost panels in the middle and bottom
rows of Figure 2) rather than linear and that conditions
are equally spaced as a function of difficulty. Then, the
Brinley plot from a Cerella-type model will be linear, but
with a greater density of points in the bottom left corner
of the function than in the top right corner (Figure 2, top
row, leftmost panel). For the Q–Q analysis, the distribu-

tions of response times would be exponential (leftmost
panels of the middle and bottom rows in Figure 2), and
the slope of the Q–Q function would be the ratio of their
standard deviations. Third, the distributions of response
times across conditions could have a nonuniform distrib-
ution with a linear relationship between difficulty and re-
sponse time. This could arise if the range of difficulty is
not sampled uniformly—for example, the .1, .2, .4, and
.8 quantiles in the range of difficulty might be sampled,
rather than there being uniform sampling. This would lead
to a distribution of points with more points from easy
conditions than from difficult conditions. Then, the dis-
tributions of condition means might look like the distri-
butions shown in the leftmost panels of the middle and
bottom rows in Figure 2, and the resulting Brinley plot
would be like that in the top row, leftmost panel. This ex-
ample would be indistinguishable (in Brinley plot analy-
ses) from the case in which the mapping from difficulty to
response time was exponential (the second point above).
In sum, for any reasonable ways of sampling, values from

Figure 4. Plots of mean response time against number of stages of difficulty or drift rate for four response
time models: A linear model (Cerella, 1985); the Myerson, Hale, Wagstaff, Poon, and Smith (1990) informa-
tion loss model; an exponential model; and the diffusion model (Ratcliff, 1978).
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the difficulty dimension (with distributions for older and
younger subjects from the same families) will lead to re-
sponse times that are consistent with Cerella’s model.

However, there is one limitation: If the function relating
difficulty to response time is not the same for older and
young subjects—that is, if the response times for older
subjects come from a different kind of distribution than
the young subjects’ response times (e.g., older subjects’
from an exponential distribution and young subjects’
from a uniform distribution)—Brinley plots will be ac-
celerated upward (if the old distribution is more skewed
than the young distribution), and Cerella’s (1985) linear
model will not fit the data. The Q–Q analysis, on the
other hand, is still consistent with an upward accelerated
function.

Myerson et al.’s (1990) Information Loss Model
Myerson et al.’s (1990) model describes performance

on cognitive tasks as resulting from a series of process-
ing stages, where the stages are not further specified, so
that the model can apply across a variety of tasks. Total
response time is assumed to be the sum of the process-
ing times for each stage, RT = ΣTk , and the time for each
stage k is inversely related to the amount of information
available at that stage: Tk = D / Ik , where D is a constant.
The information at stage k is Ik = I (1 � p) k, where I and
p are constants, p determining the amount of informa-
tion lost at each stage. This model is called an informa-
tion loss model, because Ik decreases as the number of
stages increases. With the assumption that aging princi-
pally affects the parameter p, this model approximates
linear Brinley plots well (the model produces approxi-
mately a power function), at least as well as the linear
model (cf. Cerella, 1985).

The top right panel of Figure 4 shows mean response
time as a function of number of stages in the model for
four values of p. Just as with the linear and exponential
functions, the effect of aging is a scaling effect: Increas-
ing the number of processing stages required by a task in-
creases response time more for older subjects than it does
for young subjects, because the value of p is larger for older
subjects.

For Myerson et al.’s (1990) model, if either a uniform
or a nonuniform distribution of values of difficulty were
selected in an experiment, the distribution of mean re-
sponse times across conditions for older subjects would
be slightly more skewed than that for young subjects, and
the Brinley (Q–Q) plot would be accelerated upward
slightly. The slope of the linear approximation to this func-
tion would be nearly the same as the ratio of standard de-
viations of the distributions. Data with this nonlinear
function would be interpreted as different shaped distri-
butions across conditions or subjects for young and older
subjects in a Q–Q analysis.

A third model, similar to Myerson et al.’s (1990), should
be mentioned, and that is Cerella’s (1990) neural network.
The idea is that cognitive tasks are performed by neural
networks. It is similar to Myerson et al.’s in that processing

in a task is assumed to be composed of a series of stages.
The stages are abstract and not tied to the specific task
being performed. Aging produces breaks in the links
(stages) of the network, and these breaks require the cre-
ation of new links (stages), which results in longer neural
pathways among the nodes in the network. These longer
pathways lead to longer response times. The probability of
breaking a link is assumed to be an exponential function
of age. With auxiliary assumptions, this model can account
for several different patterns of the data showing aging
effects on response times. An analysis similar to that for
the Myerson et al. model can be carried out to relate this
model to Q–Q plots.

Summary 
The Cerella (1985) and the Myerson et al. (1990) mod-

els translate (scale) task difficulty into response times for
young and older subjects. The models can be reinter-
preted into Q–Q plot terms, and for Cerella’s model, the
mathematical equation relating response times for older
and young subjects can even be mapped directly onto the
Q–Q equation. But the reinterpretation is a radical one:
The original idea of the models, that aging is a general
slowing reflected in the slope of the Brinley plot, has to be
given up and replaced with the understanding that what
the slope actually shows is that older subjects differ from
young subjects in terms of the standard deviations of their
response time distributions across conditions.

SCALING ISSUES 

Scaling is at the heart of the issue of how subjects slow
with age. The linear, exponential, and stage models il-
lustrated in Figure 4, all general slowing models, show
scaling: Response times for older subjects are scaled as
a function of task difficulty, so that each next level of dif-
ficulty (or number of stages) slows them more than it does
the response times for young subjects. In other words, the
young subjects follow one function (e.g., the “1” func-
tion), and older subjects follow another function (e.g., the
“3” function).

However, so far we have not considered a critical as-
pect of performance: interactions between speed and ac-
curacy, and how speed–accuracy criteria might differ be-
tween older and young subjects. If speed–accuracy
criteria do differ between older and young subjects, the
increasing differences in response times as a function of
task difficulty might be due to older subjects’ setting more
conservative criteria. Consider what young subjects typ-
ically do when faced with moving from an experimental
condition of less difficulty to one of greater difficulty:
They slow their responses but they do not slow them
enough to maintain their same level of accuracy; instead,
they allow their accuracy to decrease. Older subjects might
try not to allow their accuracy to decrease and, in doing
so, might slow more than the young subjects. This idea,
that older subjects sacrifice speed for gains in accuracy,
has been suggested frequently (e.g., Basowitz & Kor-
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chin, 1957; Silverman, 1963; Strayer & Kramer, 1994;
Thorndike, Bregman, Tilton, & Woodyard, 1928). In fact,
for some tasks, older adults may make fewer errors than
young adults (e.g., Stroop and flanker tasks; Spieler,
Balota, & Faust, 1996, in press). What we stress here is
that the ability to trade speed for accuracy might explain
why the difference in response times between two con-
ditions is greater for older than for young subjects; ac-
cording to this explanation, increasing task difficulty
does not affect older subjects more than young subjects in
any way other than in the accuracy criteria they set.

The scaling that results from speed versus accuracy
instructions was demonstrated in an experiment by Rat-
cliff and Rouder (1998, Experiment 1), using young sub-
jects. Subjects were asked to judge whether squares pre-
sented on a PC screen were bright or dark. The squares
were made up of 64 � 64 pixels—some pixels black,
some white, and some a neutral gray—and the bright
squares had more white pixels than did the dark squares.
Hard conditions were those in which the numbers of
white and black pixels were about the same; easy condi-
tions were those in which there were many more pixels of
one kind than of the other. When subjects were instructed
to respond as fast as possible, overall, their correct re-
sponse times averaged about 350 msec, and the difference
between hard and easy conditions averaged less than
50 msec. But when they were instructed to respond as ac-
curately as possible, their correct response times averaged
about 700 msec, and the difference between hard and easy
conditions averaged about 200 msec. In other words,
when response times were fast overall, the difference be-
tween conditions was dramatically smaller than when re-
sponse times were slow overall. What is important to ap-
preciate is that this scaling is not related to the scaling by
difficulty that is shown for the linear, exponential, and
stage models in Figure 4. For the subjects in Ratcliff and
Rouder’s (1998) experiment, the difficulty of the bright /
dark decision was not greater at short response times than
at longer ones; rather, the reason that the difference be-
tween easy and hard conditions was larger at long than at
short response times was the scaling of response times
onto different points on a speed–accuracy tradeoff func-
tion. We could plot a Brinley function for the young sub-
jects’ response times in the accuracy conditions against
their response times in the speed conditions; the slope
would be 2.82 and the intercept would be �282 msec,
exactly in the range of typical Brinley values for older ver-
sus young subjects, but the slope would have nothing to
do with differences in difficulty. (The largest differences
in accuracy between the speed and the accuracy condi-
tions in Ratcliff and Rouder’s (1998) Experiment 1 were
only about 5%. This means that small differences in ac-
curacy between older and young subjects cannot be taken
to mean that there are no speed–accuracy criterion dif-
ferences between them.) This exercise shows that differ-
ences in speed–accuracy criteria settings could be largely
responsible for the typical Brinley plots of older versus
young subjects’ response times.

The Ratcliff and Rouder (1998) data also illustrate an-
other important point about response times—namely, the
nonlinearity of response time differences (cf. Pachella,
1974). At relatively short response times, the variance in
response times is small, and the differences among exper-
imental conditions are small. Differences among condi-
tions are smallest when response time approaches floor,
where the floor for a given task and an individual subject
is the fastest response time at which accuracy begins to
rise above chance in response signal paradigms (see, e.g.,
Dosher, 1984; Ratcliff, 1978; Reed, 1973, 1976; Wick-
elgren, 1977). At longer response times, both the variance
and the differences among experimental conditions be-
come larger.

The points just elaborated show the complexity involved
in response time scaling. Greater differences among ex-
perimental conditions for older than for young subjects
may be due to speed–accuracy tradeoff differences, to the
greater effect of difficulty on older subjects’ responses, or
to some mixture of these. Also, there might be other fac-
tors, such as older and young subjects’ operating at dif-
ferent levels of difficulty on the difficulty–response time
function, differences in encoding and response output
times, increased variability in processing, or differences
in the likelihood of subjects’ rejecting the first decision
on some proportion of trials and engaging in a second de-
cision process. Current models like Cerella’s (1985) and
Myerson et al.’s (1990) offer no way to sort out the differ-
ent factors. There is no way, for example, to use the mod-
els to evaluate the possibility of speed–accuracy trade-
offs. What is needed is a model that elucidates the various
possibilities. We believe that any such model will neces-
sarily be a model the lays out the components of process-
ing in the tasks to which it is applied. In the next section,
we show how the diffusion model accomplishes these
goals.

THE DIFFUSION MODEL 

Ratcliff ’s diffusion model (Ratcliff, 1978, 1981, 1985,
1988; Ratcliff & Rouder, 1998, 2000; Ratcliff et al., 1999)
is designed to account for response time and accuracy in
experimental paradigms in which subjects are asked to
make two-choice decisions. The heart of the model is a
decision process in which two components of process-
ing are separated: The information from the stimulus is
separated from the response criteria according to which a
decision is made. The model has been successful in deal-
ing with data from a range of experimental paradigms
but has not yet been applied to the effects of aging on re-
sponse time. Here, we show how this could be done.

The diffusion model assumes that decisions are made
by a noisy process that accumulates information over time
toward one of two response criteria (or boundaries; see
Figure 5, top panel). When one of the criteria is reached, a
response is initiated. The mean rate of accumulation of in-
formation is called the drift rate, and it is determined by
the quality of the information driving the decision process.
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For example, in recognition memory, a well-remembered
item would have a large value of drift rate. In a visual per-
ception task, an item that was easy to see would have a
larger drift rate than an item that was not so easy to see.
As is shown in Figure 5, top panel, there is variability
around the mean as information is accumulated. The fig-
ure shows three processes, each with the same (positive)
drift rate. Variability causes one of them to reach the upper
boundary quickly, one to reach the upper boundary more
slowly, and the third to reach the lower boundary in error.

If the boundaries were moved nearer the starting point
(the dotted horizontal lines), the processes would termi-
nate at the points marked T—that is, two of them would
end in errors. Moving the boundary positions is the way
the model accounts for speed–accuracy tradeoffs: The
closer the boundaries to the starting point, the faster are
responses, and the more likely are errors. The model pro-
duces accurate quantitative predictions for mean response
times for correct responses and error responses and for
the probabilities of correct and error responses. The model

Figure 5. Top panel: An illustration of the diffusion model showing sample paths from a dis-
crete approximation (i.e., small steps instead of a continuous process). The dotted lines repre-
sent the case in which criteria are moved close to the starting point so that the three paths ter-
minate at the points marked T. Bottom panel: An illustration of scaling in the diffusion model,
with two different boundary positions (a1 and a2) and three different drift rates (v, v + ∆ , and
v + 2∆).
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also automatically and accurately generates positively
skewed response time distributions (Ratcliff, 1978; Rat-
cliff & Rouder, 1998; Ratcliff et al., 1999).

In the past, response time models had considerable dif-
ficulty in dealing with the relative speeds of correct ver-
sus error responses. Empirically, response times for errors
are sometimes longer than response times for correct re-
sponses, sometimes shorter, and sometimes the relation-
ship between error and correct response times varies for
an individual subject across the conditions of an experi-
ment (see Ratcliff & Rouder, 1998; Ratcliff et al., 1999;
P. L. Smith & Vickers, 1988). The diffusion model can ac-
count for these varying patterns. Errors slower than cor-
rect responses are caused by the drift rate’s varying not
only within a trial (as is shown in Figure 5, top panel), but
also across trials. In other words, it is assumed that osten-
sibly equivalent stimuli are not always encoded equally
well from one trial to another. Without across-trial vari-
ability, the model (like any random walk or diffusion
model with constant mean drift rate across trials) predicts
that error response times are the same as correct response
times. For error responses faster than correct responses,
the diffusion model assumes variability across trials in the
starting point (as was first proposed by Laming, 1968;
see also Ratcliff, 1981). With these two sources of vari-
ability, the crossover patterns of error versus correct re-
sponse times that appear in some data are exactly predicted
by the model (errors faster than correct responses when
accuracy is high, errors slower than correct responses
when accuracy is low). Currently, no other model is capa-
ble of producing these patterns of results (see Ratcliff &
Rouder, 1998; Ratcliff et al., 1999).

The diffusion model is meant to apply to two-choice
decisions that are relatively fast and composed of a single-
stage decision process—that is, to many tasks that we
perform in real life many times an hour. This can be con-
trasted with multiple-stage decision processes that might
be involved in, for example, reasoning tasks, card sorting
tasks, and so forth; for such tasks, other modeling tech-
niques are available (e.g., Fisher & Glaser, 1996). As a
rule of thumb, we would not want to apply the diffusion
model to experiments in which mean response times are
much longer than 1–1.5 sec (although this is a rough
guideline, rather than an absolute rule). With a multistage
decision process, the diffusion process could be assumed
to be the decision process used in each of the individual
stages.

The parameters of the diffusion model correspond to
the components of the decision process as follows: The
starting point of the accumulation of evidence is z, the
upper boundary is a, and the lower boundary is set to 0. For
the simulations described in this article, the boundaries
were assumed to be symmetric about the starting point,
and so, z = a /2. The amount of variability in the mean
drift rate across trials is assumed to be normally distrib-
uted, with a standard deviation of η, and the amount of
variability in starting point is assumed to have a uniform
distribution, with a standard deviation of sz. For each dif-
ferent stimulus condition in an experiment, it is assumed
that the rate of accumulation of evidence is different, and
so, there is a different value of drift, v, for each condition.
Finally, there is a parameter Ter that represents the non-
decisional components of response time. Within trial vari-
ability, s was kept constant in all the simulations, because

Figure 6. Examples of how normal distributions of drift rate for older and young subjects map into skewed
distributions of response time, with greater standard deviations for older than for young subjects.
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it is a scale parameter for the diffusion process (i.e., if it
were doubled, other parameters could be multiplied or
divided by two to produce exactly the same fits of the
model to the data).

The components of the model that are the most likely
candidates for explaining age-related differences in re-
sponse times are drift rate, boundary position, and Ter.
Older subjects might extract less information from the
stimulus, and so, their drift rates might be lower than those
for young subjects. They might also set boundary posi-
tions wider to make accurate performance more likely. Or
they might be slower in the nondecisional components
of processing. Across-trial variability might also differ
between young and old, and this would have only a small
effect on correct response times but would have a large
effect on error response times. However, because error re-
sponse times are rarely included in reports of response
time data, we did not investigate the possible interactions
of across-trial variability and aging in the simulations con-
ducted for this article.

Illustrations of Scaling and the Diffusion Model 
The diffusion model can produce the linear slope and

negative intercept of a typical Brinley plot under any of
a variety of possible assumptions about differences in
processing between older and young subjects. We begin
by illustrating this point with two examples.

First, we illustrate what happens in the diffusion model
when older subjects are operating over a different part of
the response time–difficulty function than young subjects.
In other words, an increase in difficulty from one condi-
tion to another hurts performance for older subjects more
than for young subjects, because the task is, overall, more
difficult for the older subjects. Figure 5 (bottom panel)
shows how difficulty, which corresponds to drift rate, maps

to response time. As difficulty increases from one condi-
tion to a second condition, older subjects’ drift rates might
move from v + ∆ to v, and young subjects’ drift rates
from v + 2∆ to v + ∆ (i.e., the same difference ∆ in diffi-
culty). The change in response times for older subjects
(b2 , with boundary position a1) would be much greater
than the change for young subjects (b1, with boundary
position a1). The same point is illustrated in the bottom
right panel of Figure 4: Older subjects might move from
a drift rate of .3 in an easy condition to .2 in a hard con-
dition, and younger subjects might move from a drift rate
of .4 to .3. Assuming the same boundary positions (e.g.,
a = .16, the line marked with 3s) for the older and young
subjects, the change in response times between the easy
and the hard conditions would be greater for older than
for young subjects.

The lefthand panel of Figure 6, which expands a part
of the bottom right panel of Figure 4, shows the distrib-
utions of response times that would result under this
assumption—that is, the assumption that an increase in dif-
ficulty from one condition to another hurts performance
for older subjects more than for young subjects. The dis-
tribution of drift rates across older subjects is centered at
a lower value of drift rate than is the distribution of drift
rates for young subjects, and this results in the distribu-
tions of response times shown in the figure on the left-
hand axis. Both distributions of response times are skewed
to the right, and the older subjects’ response times are gen-
erally slower, and their distribution of response times is
more spread out than that for the young subjects.

Second, we illustrate what happens in the diffusion
model if the drift rate is the same for older and young
subjects but older subjects set more conservative decision
criteria—that is, the older subjects set wider response
boundaries. In Figure 5, bottom panel, drift rates might be

Table 2
Slopes and Intercepts of Brinley Plots From Diffusion Model Simulations

Minimum Maximum Mean
Subject Boundary Boundary Boundary Minimum Maximum Mean
Type Parameter (a) Parameter (a) Parameter (a) Drift Rate (v) Drift Rate (v) Drift Rate (v) Intercept (s) Slope

Young .14 .14 .14 .3 .7 .5 – –
Old .14 .14 .14 .25 .65 .45 �0.053 1.17
Old .14 .14 .14 .2 .6 .4 �0.082 1.27
Old .14 .14 .14 .1 .5 .3 �0.191 1.62
Old .14 .14 .14 .15 .65 .4 �0.269 1.67
Old .14 .14 .14 .1 .6 .35 �0.348 1.94
Old .14 .14 .14 .0 .5 .25 �0.402 2.18
Old .14 .14 .14 .0 .6 .3 �0.464 2.22
Young .08 .12 .1 .3 .3 .3 – –
Old .12 .16 .14 .3 .3 .3 0.073 1.03
Old .10 .16 .13 .3 .3 .3 �0.147 1.45
Old .14 .20 .17 .3 .3 .3 �0.085 1.53
Old .08 .16 .12 .3 .3 .3 �0.374 1.92
Old .10 .18 .14 .3 .3 .3 �0.401 2.08
Old .08 .18 .13 .3 .3 .3 �0.671 2.62
Old .08 .20 .14 .3 .3 .3 �0.813 2.99

Note—The other parameters of the diffusion model were z = a / 2, η = .12, Ter = 0.3 sec, and s = .1.
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v + 2∆ for an easy condition and v + ∆ for a hard condition
for both older and young subjects. If the boundary for
the young subjects was a2 and the boundary for the older
subjects was a1, the response time difference between
the conditions would be c1 for young subjects and b1 for
older subjects. Illustrating the same point in the bottom
right panel of Figure 4, drift rate might be .4 for the easy
condition and .3 for the hard condition for both young and
older subjects, but the older subjects might be operating
with boundary position a = .16, and the young with bound-
ary position a = .12.

The right-hand panel of Figure 6 shows the distribu-
tions of response times that would result under this 
assumption—that is, the assumption that older subjects
set wider boundaries. Again, the older subjects’ response
times are generally slower, and their distribution of re-
sponse times is more spread out than that for the young
subjects.

It should be mentioned here that changes in boundary
positions have only modest effects on error rates if ac-

curacy is reasonably high (e.g., 90% or better), effects
that may not be detectable empirically. Looking for em-
pirical differences in error rates to determine whether
there are criterion shifts cannot be done in the absence of
a model of processing, because, in some cases, large cri-
terion shifts that produce a 100-msec or greater effect on
response times may have little observable effect on accu-
racy, whereas in other cases there can be large (10%) ef-
fects on error rates (cf. Ratcliff & Rouder, 1998, Exper-
iment 1).

Under both assumptions about how older subjects differ
from young subjects, the distributions of response times
shown in Figure 6 have about the same shape for older as
for young subjects. Because the distributions have ap-
proximately the same shape, the resulting Brinley (Q–Q)
plots will be approximately linear. Also, because the dis-
tribution is more spread out for the older subjects, the
slope of the Brinley plot will be greater than 1. In other
words, under both assumptions, the diffusion model makes
predictions that are consistent with results from Brinley
plot analyses.

The two illustrations we have given here are not the
only possible differences between older and young sub-
jects in drift rate and boundary positions. For example, a
combination of drift and boundary position changes from
young to older subjects would provide response time dis-
tributions similar to those in Figure 6. Also, the range of
the nondecision component of response time (Ter ) might
be larger for older subjects than for young subjects, and
the variability parameters might be larger for older subjects
than for young subjects. In the framework of the diffu-
sion model, there are multiple possible explanations for
aging effects on response time, and which of these pro-
vides the best explanation can only be discovered by fit-
ting the model to the data.

SIMULATIONS USING
THE DIFFUSION MODEL 

The illustrations of how the effect of aging on response
time might be viewed through the diffusion model have,
up to this point, been illustrations of how the model works
qualitatively. In this section, we show the results from sim-
ulations of the model.

Across the different simulations described below, we
tested a number of plausible assumptions that might be
made about how older subjects differ from young sub-
jects in terms of the components of processing defined
by the diffusion model. In each case, older subjects were
assumed to differ from young subjects in their values of
one or more of the parameters of the model. Variability
was introduced into the parameter values to reflect vari-
ability across subjects. For example, the drift rate in an ex-
perimental condition might be chosen from a uniform dis-
tribution of drift rate values between, say, .2 and .6. For
most of the simulations, the distributions of values of a

Figure 7. Simulated Brinley plots with drift rate alone varying
between older and young subjects (top panel) or boundary posi-
tions alone changing between older and young subjects (bottom
panel).
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parameter for older and young subjects were wide enough
that they overlapped, with the consequence that fast
older subjects could have faster response times than slow
young subjects, just as in real data. Exact numerical so-
lutions for predictions of response probability, mean re-
sponse time, response time distributions, and so on are
available for the diffusion model (see Ratcliff, 1978; Rat-
cliff et al., 1999). Given these solutions, exact values can
be produced for the mean response time for a subject in
an experimental condition, given the parameter values
input to the model. Random variability arises from the
random choices from the ranges of parameter values that
represent the individual subjects, and it is these random
choices that provide random variability in the simulations.

We describe the results of the simulations in terms of
how the diffusion model produces linear Brinley plots

with values of slope and intercept that match those that
have been found in empirical data. For every simulation
reported below, the slope was within 5% of the ratio of
the standard deviation of older subjects’ response times to
the standard deviation of younger subjects’ response times.
The standard deviations were computed from the re-
sponse times that were used to construct the Brinley plot,
the response times for individual subjects in the first series
of simulations, and the mean response times for experi-
mental conditions in the second series of simulations.

A Single Experimental Condition 
We begin with simulations that model individual sub-

jects’ mean response times for just one experimental con-
dition. First, it was assumed that older and young subjects
set the same boundary positions (a = .16) but are differ-

Figure 8. Simulated Brinley plot for older and young subjects with boundary positions,
drift rates, and the nondecision component of response time varying across subjects. The pa-
rameter values are selected from uniform distributions and vary across the ranges shown in
the figure.
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ent in their drift rates. That is, the experimental condition
was more difficult for older subjects than for young sub-
jects. The drift rate for each older subject was chosen ran-
domly from a uniform distribution of drift rates between
.2 and .4, and the drift rate for each young subject was
chosen randomly from a uniform distribution of drift
rates between .3 and .5. (Almost the same results would
be obtained if the distributions of drift rates were normal.)
The response time was then computed for each subject.
The older subjects’ response times were plotted against the
young subjects’ response times in the top panel of Fig-
ure 7, fastest older subject against fastest young subject,
next fastest older subject against next fastest young sub-
ject, and so on (see Maylor & Rabbitt, 1994). The result
shows the typical linear plot, with positive slope and
negative intercept. The distributions of response times
for both the older and the young subjects are symmetric,

with a wider peak and shorter tails than a normal distrib-
ution, and the ratio of their standard deviations is within
5% of the slope of the Brinley plot.

The bottom panel of Figure 7 shows the Brinley plot
when it is assumed that older subjects have the same drift
rate as young subjects but set their response boundaries
differently. For older subjects, the boundary positions were
chosen from a uniform distribution with a range from .10
to .18, and for young subjects, the boundary positions were
chosen from a uniform distribution with a range from .08
to .12. Again, the distributions of response times for both
the older and the young subjects are symmetric, with a
wider peak and shorter tails than a normal distribution.

Table 2 presents a more comprehensive picture of what
happens to the slope and intercept of the Brinley plot as
a function of the means and ranges of drift rates and bound-
ary positions. In these simulations, only one parameter of
the model was allowed to vary between subjects, either the
boundary position or the drift rate. In each simulation, one
mean response time was produced for each subject.

One simulation was conducted with 200 young subjects,
with their drift rates varying between .3 and .7 and their
other parameters as shown in the Table 2. To these young
subjects, we compared seven different groups of older
subjects (200 subjects per group), the groups varying in
the mean and range of the distribution of their drift rates.
The table shows the resulting intercepts and slopes of
Brinley plots. The first three groups of older subjects each
had the same range of drift values, but with increasingly
lower means, and the last four groups had lower drift val-
ues and larger ranges. The resulting Brinley functions
are linear, and the slope of the Brinley plot increases as the
mean drift rate decreases, and as the slope increases, the
intercept decreases.

A second simulation was conducted with 200 young
subjects, with their boundary positions varying between
.08 and .12 and the other parameters fixed as shown in
the table. Again, response times for these young subjects
were compared with response times for seven groups of
older subjects, the older subjects’ boundaries varying in
the mean and range of their distributions. When the range
of boundary positions is the same for older and young
subjects, the Brinley slope is about 1. When the range is
increased for older subjects, the slope increases. Because
boundary position has a minimum value (zero), it is likely
that boundary position becomes more variable as the
boundaries move further apart. Therefore, we assumed
that, as the mean value of the boundary position increased,
the range increased. As is shown in the table, changes in
boundary position produce linear Brinley functions with
increasing slope when the mean boundary position and
range increase; as the slope increases, the intercept de-
creases.

The results of these two sets of simulations show all
the Brinley plot regularities. The Brinley plots are lin-
ear, with slopes and intercepts similar to those found em-

Figure 9. Simulated Brinley plots for older versus young sub-
jects, with differences among conditions modeled by consistent
differences in drift rate (.05 difference between each condition).
The top panel shows the results when older and young subjects
differ only in boundary position, and the bottom panel shows the
results when older and young subjects differ only in drift rate.
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pirically. With either boundary position or drift rate
varying, the results match empirical data. Thus, Brinley
plots do not provide a test of which components of pro-
cessing in the diffusion model would be responsible for
the effects of aging.

In more realistic simulations, several parameters would
vary simultaneously across individual subjects. Figure 8
shows the Brinley plots produced when older subjects are
assumed to have smaller drift rates, wider boundaries,
and larger baseline response times (larger values of Ter)
than young subjects. We chose these three aspects of the
model to vary because they are the ones that most often
vary across individual young subjects (see, e.g., Ratcliff
& Rouder, 1998; Ratcliff et al., 1999; the variability pa-
rameters, variability in drift across trials and variability in
starting point, tend to affect error response times but
have less effect on correct response times). For the sim-

ulations, for each individual subject, a value was chosen
randomly for each of the three parameters from uniform
distributions, using the ranges of values shown in the
figure caption. The response time for the individual was
generated from the model with these parameter values.
The widths of the ranges of the values for all three of the
parameters were assumed to be the same for older and
young subjects, so that the only differences between
older and young subjects were in the means of the param-
eters. The particular ranges chosen were extensions of the
ranges of values found when the diffusion model is fit to
empirical data for young subjects (Ratcliff, 1978; Rat-
cliff & Rouder, 1998; Ratcliff et al., 1999). Figure 8 shows
four replications of the simulation. There are no system-
atic deviations from linearity. In each case, the function is
linear, with a slope around 1.5, and the intercept is slightly
negative or near zero. Thus, varying three of the param-
eters of the model to represent the effects of aging produces
the same results as varying only drift rate or only bound-
ary position. This reinforces the conclusion that Brinley
plots cannot be used to identify what components of pro-
cessing are affected by aging in the diffusion model.

Multiple Experimental Conditions 
The simulations just described show that the diffusion

model produces Brinley plots that mimic experimen-
tal data when individual older subjects’ response times
are plotted against individual young subjects’ response
times, for a single condition of an experiment (i.e., a sin-
gle value of difficulty). The diffusion model can success-
fully account for the empirical Brinley plot under any of
several different assumptions and combinations of as-
sumptions about which components of processing are af-
fected by aging.

The more usual way to construct Brinley plots is to plot
the mean response time for older subjects against the
mean for young subjects, for each of a number of exper-
imental conditions. To simulate these Brinley plots, we
assumed that the experimental conditions differed in drift
rate. This assumption corresponds to a within-subjects
manipulation in which all the parameters of the model are
fixed and only the quality of evidence coming from the
stimulus changes across conditions. This means that sub-
jects would be unable to change their speed–accuracy cri-
teria (boundary positions in the diffusion model) as a
function of stimulus condition. One simulation assumed
that the only difference between older and young subjects
was in boundary position settings, and the other assumed
that the only difference was in drift rates (to parallel the
simulations above).

For each simulation, there were 32 older and 32 young
subjects. The top panel of Figure 9 shows the results when
boundary positions were different for older and young
subjects (with all other parameters set as shown in the fig-
ure). Older subjects’ boundary positions were selected
from a uniform distribution with a range of .08–.18, and
young subjects’ boundary positions were selected from
a uniform distribution with a range of .06–.16. The drift

Figure 10. Simulated Brinley plots for older versus young sub-
jects averaged across conditions, with differences among condi-
tions modeled by differences in drift. The top panel shows the re-
sults from consistent differences in drift across conditions (the
drift rate for each condition is .05 larger than the previous one).
The bottom panel shows the result from adding a random value
in the range from �.025 to .025 to the value of drift for each con-
dition for each subject.
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rate for the easiest experimental condition was selected
from a uniform distribution with a range of .4–.6. The drift
rates for the seven other conditions were successively .05
less than that for the largest drift rate. For each subject,
a mean response time was computed for each condition.
The response times for each condition were then averaged
over subjects, and the condition means were used to con-
struct the Brinley plot. The Brinley plot (Figure 9, top
panel) is linear, with typical values of slope and intercept.

The bottom panel of Figure 9 shows the results with
drift rate varying between young and older subjects. The
drift rates for the easiest experimental condition were se-
lected from uniform distributions with ranges of .4–.6
for older subjects and .6–.8 for younger subjects. The drift
rates for the seven other conditions were successively .05
less than that for the largest drift rate. Again, the Brinley
plot is linear, with typical slope and intercept.

Figure 10 shows the results of two simulations with
drift rate, boundary position, and residual response time
(Ter ) all varying simultaneously between young and
older subjects. The drift rate was assumed to change sys-
tematically across conditions, as above. Again, the slope
and intercept (top panel of the figure) have typical val-
ues. For the simulation shown in the bottom panel, vari-
ability was added to the differences in drift rates for each
condition. Instead of a consistent difference of .05 be-
tween the drift rates for each successive condition, a ran-
dom number between �.025 and +.025 was added to the
consistent drift value. The result (bottom panel of Fig-
ure 10) shows that the regular spacing of points in Figure 9

and Figure 10 (top panel) is a consequence of the regular
spacing of drift rates; random variability makes that
spacing less regular.

Summary 
Across all the simulations, the diffusion model produced

typical results for the effect of aging on response time:
Brinley plots were linear, with positive slopes and negative
intercepts, and the slopes were equal to the ratio of stan-
dard deviations for the older and young subjects’ response
times. The main conclusion is that aging differences can
come from any of the several components of processing
identified by the diffusion model or from combinations of
the components. It would be easy to adjust the parameter
values in any of the simulations to produce a specific value
of slope—say, 1.5. In other words, the Brinley plot charac-
teristics provide only weak constraints on modeling.

OTHER EMPIRICAL RESULTS IN THE
AGING AND RESPONSE TIME DOMAIN 

Besides the Brinley plot regularities for mean response
time for older versus young subjects, a number of other
characteristics of response time data have received atten-
tion. In the following sections, we show that the diffusion
model is consistent with these experimental results.

Response Time Distributions
G. A. Smith and Brewer (1995) found that average re-

sponse time distributions (for correct responses) for older

Figure 11. Average response time distributions for older and young subjects.
The solid line is a transformation of the young subject response time distribu-
tion via the function 2.59RTy + .600.
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subjects slowed and spread, relative to those for young
subjects (for a single experimental condition); that is, the
older subjects’ distribution could be produced from the
young subjects’ distribution by a transformation: RTo =
1.12RTy + 14 msec. The average distributions over sub-
jects were produced by Vincent averaging (see Ratcliff,
1979). The distributions had almost the same shape when
scaled by the transformation and lay almost on top of
each other.

We generated response time distributions with the dif-
fusion model to check whether the distributions would fit
the pattern G. A. Smith and Brewer (1995) found. The dis-
tributions G. A. Smith and Brewer examined had only rel-
atively small differences in mean and spread of response
times between young and older subjects. To more strin-
gently test the diffusion model, we used parameter values
that would give larger differences in mean and spread.

We generated distributions of response times, one dis-
tribution per subject, for 60 older subjects and 60 young
subjects, using parameter values in the ranges shown in
Figure 11, with older subjects having a larger boundary
separation, a lower drift rate, and a larger nondecision
component of response time. To average the response
time distributions over subjects, quantile response times

were computed for the response times for each subject,
and these were averaged over subjects (just as in G. A.
Smith & Brewer, 1995; see Ratcliff, 1979; Thomas &
Ross, 1980). Figure 11 shows the average cumulative dis-
tributions for the young and older subjects. The solid line
is the transformation (cf. G. A. Smith & Brewer, 1995)
of the function for young subjects (see Figure 11). Just
as in G. A. Smith and Brewer’s study, the older subjects’
distribution and the transformed young subjects’ distrib-
ution lie on top of each other. In other words, the diffusion
model can produce G. A. Smith and Brewer’s empirical
result.

We also examined whether variation in only one or an-
other of the diffusion model parameters would give the
correct predictions for the relative shapes of the young and
older subjects’ distributions. To show whether the distri-
butions were (approximately) linear transformations of
each other, as G. A. Smith and Brewer’s (1995) data say
they should be, we plotted the quantiles of the older and
young response time distributions against each other. If
the distributions are linear transformations of each other,
the result should be a straight line. The leftmost panels
show the results with drift rate alone varying between the
older and the young (a drift rate of .4, in the top panel,

Figure 12. Simulated quantile response times plotted against each other for
changes in a single parameter in the model. (Note that the scales are different
in the different panels, so that the slopes are not the same across panels.) These
plots would correspond to plots of the quantiles in Figure 11 for older and
young subjects against each other.
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plotted against a drift rate of .3, and a drift rate of .2, in the
bottom panel, plotted against .3). The right-hand panels
show the results with variation in boundary positions
(boundary parameter a = .08 plotted against a = .12 in the
top panel, and a = .16 plotted against a = .12 in the bottom
panel). In both cases, the functions are linear. This means
that the diffusion model can predict response time distri-
butions that are linear transformations of each other.

Another regularity in the aging literature is that, when
a particular quantile is plotted over experimental condi-
tions, a straight line is obtained (see, e.g., Myerson et al.,
1990; Smith, Poon, Hale, & Myerson, 1988). Because the
quantiles shown in Figure 12 from the diffusion model
are linear transformations of each other, plotting individ-
ual quantiles across a range of conditions (e.g., different
drift rates) for older versus young subjects will produce
linear functions.

Standard Deviations in the Diffusion Model 
The standard deviation in a single subject’s response

time for a single experimental condition has not been sys-
tematically studied but has occasionally been reported
(e.g., Faust et al., 1999). In the diffusion model, the stan-
dard deviation can vary from changing as fast as mean re-
sponse time changes across conditions to not changing at
all as mean response time changes. Mean response time
increases both when the distribution of response times
shifts and when the distribution spreads. But the stan-
dard deviation increases only when the distribution
spreads. If the distribution shifts only in position, not in

spread, the standard deviation is constant. The behavior
of the standard deviation in response time for the diffusion
model is shown in Figure 13 as a function of boundary
position and drift rate.

Fast Subjects and Slow Subjects
Versus the Group Mean 

Hale and Jansen (1994; Balota & Ferraro, 1992;
Zheng, Myerson, & Hale, 2000) plotted response times
for fast young subjects and for slow young subjects against
the mean response times for the whole group of young
subjects. Specifically, they calculated the mean response
time for the fastest half of the subjects in each condition
of an experiment and plotted these means against the
means for all the subjects in each condition, and they did
the same thing for the mean response times for the slow-
est half of the subjects. The resulting two functions were
both straight lines, with the line for the slow subjects’
means having a larger slope and lower intercept than the
line for the fast subjects’ means. Thus, Brinley plot reg-
ularities can be found not just with differences between
older and young subjects, but also for individual differ-
ences among young subjects. The Brinley plot slope was
interpreted as an index of processing time.

We simulated Hale and Jansen’s (1994) functions with
the diffusion model, using 32 subjects and 16 experimen-
tal conditions. For each subject, the value for each of the
three parameters of the model that were allowed to vary
was selected randomly from a uniform distribution (v =
.3–.55, a = .05–.15, and Ter = .30–.42). To produce sys-

Figure 13. Standard deviations in response time as a function of drift rate
and boundary position in the diffusion model.
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tematic differences among the 16 conditions, four values
of drift rate (base plus .0, .04, .08, and .12) were crossed
with four values of boundary position (base plus 0, .02,
.04, and .06). In addition, variability in each parameter
for each condition was added, the amount of variability
chosen randomly from the range �.04 to .04 for drift and
the range �.03 to .03 for boundary position. The overall
mean for each subject was used to assign the subject to
the fast or the slow group. Then, the mean response times
for each condition for fast subjects and for slow subjects
were plotted against group means, just as Hale and Jansen
did. The results, shown in Figure 14, are straight lines, with
a slope of 0.67 and an intercept of .068 for the fast group
and a slope of 1.27 and an intercept of �.023 for the slow
group (without variability in each condition in each pa-
rameter, the slope was 0.67 and the intercept .083 for the
fast group, and the slope was 1.34 and the intercept �.060
for the slow group). Thus, the diffusion model captures
the same differences Hale and Jansen found with real
data—that is, it captures individual differences within as
well as across groups—and also accommodates hypothe-
ses about Brinley plot slopes, such as the magnification
hypothesis (Zheng et al., 2000).

Slopes Versus Intercepts of Brinley Plots 
Table 2 contains the slopes and intercepts of the Brinley

plots for two sets of simulations of the diffusion model.
Figure 15 graphs these slopes and intercepts against each
other, as was done in Figure 3 for the data from Cerella
(1985) and Faust et al. (1999). The functions in Figure 15

and Figure 3 are similar; they both have a negative slope
and a positive intercept, with the slope being about
100 msec less than the intercept. This demonstrates the
diffusion model’s ability to capture the relationship be-
tween slopes and intercepts of the older/young subject
data described by Cerella (1985) and predicted by the
Q–Q plot analysis presented earlier.

GENERAL DISCUSSION 

Why is a Brinley plot typically linear, and why does it
typically have a slope of about 1.5? In earlier research,
the answer to this question has been that older subjects’
response times are slower, relative to young subjects’ re-
sponse times, by a constant factor, typically about 1.5. In
this article, we have used Q–Q theory to show that this
answer is not correct. Instead, what Q–Q theory makes
clear is that the plot is linear because the distributions of
response times (across subjects or conditions) for older
subjects’ have about the same shape as the distributions
for young subjects and that the slope is equal to the ratio
of standard deviations of the older subjects’ response times
(across subjects or conditions) to the young subjects’ re-
sponse times.

This reinterpretation makes the Brinley regularities
easier to understand. The range of older subjects’ re-
sponse times is wider than the range of young subjects’
response times. If we believe that older subjects are not
too different in their processing from young subjects, the
older subjects’ range being only about 1.5 times wider is

Figure 14. Simulated Brinley plots for fast and slow groups of subjects, com-
pared with the mean for all subjects (cf. Hale & Jansen, 1994).
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not too surprising. For example, if young subjects’ re-
sponse times ranged from 500 to 800 msec, the Brinley
slope would be 1 if older subjects’ response times also
ranged from 500 to 800 msec (assuming that the distrib-
utions had the same shape). Or, if younger subjects’ times
ranged from 500 to 800 msec and older subjects’ times
ranged from 500 to 1,400 msec, the Brinley slope would
be 3. Thus, instead of asking whether a model can pro-
duce linear Brinley functions, it is only necessary to ask
whether the distribution of mean response times across
older subjects has the same shape as the distribution
across young subjects, and whether and by how much the
spread of the older subjects’ distribution is wider. The
interpretation in terms of distributions provides a simpler
meeting point between models of processing and aging
effects. The connection between standard deviations in re-
sponse times and a model is more easily understood than
the connection between the Brinley function and a model.

Under the Q–Q interpretation of Brinley plots, the tar-
get of modeling is the relative shapes and spreads of the
distribution of mean response time across conditions or
subjects of older versus young groups, not the fact that
the slope typically has a value of about 1.5. In moving at-
tention away from the slope value as the theoretically most
relevant piece of data, the Q–Q analysis agrees with the
general conclusion from a recent debate on the utility of
Brinley plots (Cerella, 1994; Fisk & Fisher, 1994; Myer-
son et al., 1994; Perfect, 1994). The conclusion was that
Brinley plots provide only weak constraints either on
models of processing or on models of the effects of aging.

It was argued that any of a number of assumptions about
changes as a function of aging are probably capable of ex-
plaining the Brinley patterns of results.

The fact that the Brinley plot, whether considered, as
it was in the past, as a measure of general slowing or con-
sidered via Q–Q analysis as a measure of relative distri-
butions, does not constrain models is illustrated by the dif-
fusion model simulations we carried out. For the diffusion
model, wider distributions of response times for older
than for young subjects can come about because drift rates
have a wider range for older subjects, because older sub-
jects set more conservative boundary positions, or because
of some combination of these factors, as well as because
of changes in the nondecisional component of processing.
Moreover, there is no single set of values for any of these
parameters that is required to get a particular Brinley
slope and intercept; many sets of parameters values can fit
any particular Brinley plot. It is almost trivial for the dif-
fusion model to simulate data that have all the usual Brin-
ley regularities.

The critical tests among models will involve aspects
of the data other than the Brinley regularities. For the dif-
fusion model, the critical tests involve the joint behavior
of response time and accuracy, the way the shape of the
response time distributions changes as a function of drift
rate or boundary position, and the relative speeds of correct
and error responses (see Ratcliff & Rouder, 1998, 2000;
Ratcliff et al., 1999). Because the model is forced to fit
all these measures simultaneously, the model is severely
constrained. Jointly fitting all these dependent variables

Figure 15. Intercepts plotted against slopes from the diffusion model simu-
lations shown in Table 2.
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can cause the model to fail. But if it succeeds in fitting the
data adequately, the behavior of the parameters of the
model can be used to interpret the effects of aging.

This approach offers the potential of being able to dis-
criminate older from young subjects in multiple ways.
One question is whether the quality of the information that
drives the decision process (drift rate) is different or more
variable across trials for older subjects than for young sub-
jects. Another question is whether older subjects set their
decision criteria (speed–accuracy criteria) more conser-
vatively than do young subjects, and how variable are the
criteria across trials. Another possibility is that the non-
decisional component of response time is longer for older
subjects. Increases in task difficulty might affect older
subjects more than young subjects, and this might show up
in any or all of the components of processing just listed.

The agenda set by this type of processing model is to
examine performance of older versus young subjects
across a range of different kinds of cognitive tasks. The
interesting questions are what components of processing
are affected differentially for the older subjects by the
changes in task and what components hold constant. For
example, if an individual older subject is more conserva-
tive in criteria setting than the average older subject in one
task, is he/she more conservative in other tasks? If the
quality of information extracted from the stimulus (drift
rate) is lower in one task, is it also lower in other tasks,
and in what kinds of other tasks? This approach will not
only be able to identify differences between older and
young groups but will also be able to examine consistency
of components of processing within and across individ-
uals within a group.

In sum, it is our hope that the theoretically based ap-
proach to the study of aging offered by the diffusion model
and other such models will lead to a qualitatively deeper
understanding of the effects of aging on response time.
The earlier, more descriptive models have pointed out
regularities in the data, and we think the stage is set for
theory-based examinations of the effects of aging on re-
sponse time.
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An issue that should be considered is the extent to which
variability in both the x and the y values in linear regression ap-
plied to the Brinley plot affects the estimate of the slope. In a
typical Brinley plot, we would expect the ordering of mean re-
sponse times across experimental conditions to be the same for
young and for older adults. To test what happens when vari-
ability is added to the x and y values, we assumed that the or-
ders were the same for older and for young subjects and that
the underlying distributions were the same (uniform) and then
added random variability to both the x and the y values.

Table A1 shows the assumed ranges of response times and the
results of adding variability. In the top half of the table, the older
subjects’ mean response times for 10 experimental conditions
range from 475 to 1,150 msec, with 475 msec the mean for the
fastest condition, 1,150 msec the mean for the slowest condi-
tion, and the other means located at equally spaced steps of
50 msec. The young subjects’ means range from 450 to 900 msec
in steps of 75 msec. To each of the means, noise was added in
the form of a a random number chosen from a normal distrib-
ution, with the mean of zero and the standard deviation shown
in the third column of the table. The resulting ratios of standard
deviations and Brinley slopes are shown in the fourth and sixth
columns. As long as the added variability is less than 50 msec,
the ratio and slope are not affected, to within standard error es-
timates. This corresponds to a correlation between x and y val-
ues (r2) of .9 or greater. When the amount of noise is very large,
the condition means become uncorrelated, the Brinley slope
goes to zero, and the ratio of standard deviations becomes 1. In
real data, the correlation between the condition means is usu-
ally above .9, so the effect of variability in the x and y values
does not affect the estimate of slope significantly. The slope
was also not affected when the Brinley slope was set to 2.0,
shown in the bottom half of Table A1.

The results in Table A1 show an interesting pattern of bias.
In the top half of the table, the true ratio of standard deviations
is 1.5, but the Brinley slope estimated from linear regression
falls to around 1.1 as 100 msec of noise is added to the true val-
ues. The ratio of standard deviations is less biased, but still falls
to around 1.4. The bottom half of the table, with a true slope of
2.0, shows the same effect, the Brinley slope falling to 1.44 and
the ratio of standard deviations falling to 1.85.

This bias away from the true value is a topic of some research
in statistics. The problem is that the model for linear regression
is y = a + bx + εi (which is the standard expression) and vari-
ability is assumed to only occur in the y value. But, when there
is also variability in the x value, x = X + ξ i , where X is the true
x value, the estimate of slope from the linear regression is bi-
ased. A number of different approaches to this problem have
been proposed, and which approach is best depends on whether
the two sources of variability are independent, correlated, con-
stant, or vary as a function of their values, and so on. For exam-
ple, Draper and Smith (1981, p. 124) list conditions under which
the usual linear regression is adequate and present a method for
other situations (we tried that method, and it was not superior to
linear regression in our examples from Table A1).

The conclusion is that when there is a moderate amount of
variability in both the x and the y values (corresponding to a cor-
relation coefficient less than .9), the slope estimated from linear
regression is likely to be biased away from the true slope. Thus,
when any hypotheses are tested about equality of slopes across
conditions, it is possible to obtain differences in the estimates
when, in fact, there are no true differences in variability in the
conditions. One solution that reduces the bias (but does not elim-
inate it) is to use the ratio of standard deviations in the y and x
scores to estimate the slope when the distributions appear to
come from approximately the same family.

APPENDIX
Linear Regression With Variability in Both the x and the y Values 
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Table A1
Simulations for Values of the Ratio of Standard Deviations in Scores, Slope

of the Brinley Plot, and Correlation Between Young and Old Reaction Times (RTs)

SD of Ratio of SE in
Range of Range of Noise SDs of Old SE in Ratio Slope of Slope of SE in
Old RTs Young RTs Added to Young RTs of SDs Brinley Plot Brinley Plot Correlation Correlation

475–1,150 450–900 0 1.50 0 1.50 0 1.00 0
475–1,150 450–900 25 1.52 0.10 1.50 0.10 .97 .02
475–1,150 450–900 50 1.47 0.19 1.38 0.19 .89 .05
475–1,150 450–900 75 1.48 0.26 1.27 0.24 .75 .11
475–1,150 450–900 100 1.39 0.29 1.09 0.27 .63 .17
500–1,400 450–900 0 2.00 0 2.00 0 1.00 0
500–1,400 450–900 25 1.98 0.12 1.94 0.12 .97 .01
500–1,400 450–900 50 1.96 0.23 1.84 0.22 .88 .06
500–1,400 450–900 75 1.91 0.27 1.68 0.22 .77 .10
500–1,400 450–900 100 1.85 0.42 1.44 0.39 .63 .16

Note—Ten steps between the limits in the ranges, linear steps. The standard deviation in the young RTs is 151, and the standard de-
viation in the old RTs is 227 for the 475–1,150 range and 303 for the 500–1,400 range. The noise added is a normally distributed
random variable with standard deviation in column 3.

(Manuscript received May 21, 1998;
revision accepted for publication April 21, 1999.)


