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Statistical mimicking issues involving reaction time measures are introduced and discussed in this
article. Often, discussions of mimicking have concerned the question of the serial versus parallel pro-
cessing of inputs to the cognitive system. We will demonstrate that there are several alternative struc-
tures that mimic various existing models in the literature. In particular, single-process models have
been neglected in this area. When parameter variability is incorporated into single-process models,
resulting in discrete or continuous mixtures of reaction time distributions, the observed reaction
time distribution alone is no longer as useful in allowing inferences to be made about the architec-
ture of the process that produced it. Many of the issues are raised explicitly in examination of four
different case studies of mimicking. Rather than casting a shadow over the use of quantitative meth-
ods in testing models of cognitive processes, these examples emphasize the importance of examin-
ing reaction time data armed with the tools of quantitative analysis, the importance of collecting data
from the context of specific process models, and the importance of expanding the database to in-

clude other dependent measures.

Since the publication of Donders’s (1868/1969) essay,
“On the speed of mental processes,” psychologists have
measured the time required by experimental subjects to
perform various tasks. These reaction times (RTs) and
the changes in RT under different experimental manipu-
lations have been used as evidence for or against models
of mental architecture—the arrangement of the mental
processes underlying the subject’s performance (Stern-
berg, 1969; Townsend & Ashby, 1983; Woodworth, 1938,
chapter 14). RT data have played an important role in dis-
tinguishing between models and in testing hypotheses
about processes and structures. Consequently, consider-
able effort has been devoted to the refinement of RT
measures, from techniques to optimize the accuracy of
subsequent statistical analyses of RT summary statistics
(Ratcliff, 1993; Townsend, 1990b; Ulrich & Miller,
1994) to the estimation of RT distributions and RT haz-
ard functions (Burbeck & Luce, 1982; Luce, 1986; Rat-
cliff & Murdock, 1976). The concentration on the RT
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distributions can be seen as an advance from the use of
less informative summary statistics such as the mean or
median. In the distributional approach, the density or
distribution functions predicted by various models are
fit to the usually unimodal, positively skewed RT densi-
ties or distributions produced by experimental subjects
(e.g., Green & Luce, 1971; Heathcote, Popiel, & Mewhort,
1991; Hockley, 1984; Hohle, 1965; McGill & Gibbon,
1965; Ratcliff, 1978, 1979, 1988; Ratcliff & Murdock,
1976). The success or failure of the fitting process indi-
cates the appropriateness of a particular model for the
task at hand.

In this paper, we wish to address the issue of statisti-
cal mimicking of RT data—that is, the ability of very dif-
ferent kinds of models to produce similar patterns of mean
RTs and RT distributions. Highly dissimilar mental ar-
chitectures often can produce RTs that are indistinguish-
able from each other, at least in the sense that appropri-
ate statistical analyses applied to the data cannot determine
any differences between the RT distributions. The exis-
tence of such statistical mimics to various models of per-
formance raises concerns about the way that various tests
proposed for RT analyses are performed, especially when
these tests are applied without the constraints of proces-
sing models. In the first half of the paper, we will discuss
several such tests and examine how they are able to dis-
tinguish between data generated by different kinds of
models. In the second half of the paper, we will consider
two models of RT performance that rely on multiple stages



of processing and demonstrate that a very different kind
of model that does not rely on multiple processes can also
fit the RT data. In so doing, we emphasize that analyses
of RT alone are not sufficient to distinguish between
these types of models. Additional measures, such as ac-
curacy or confidence judgments and the observations of
the behavior of RT distributions over a range of experi-
mental conditions, are needed to determine the adequacy
of these models of performance.

We must emphasize that the issue of model identifia-
bility is not limited to the RT paradigms that we discuss
here or to the area of cognitive psychology in general.
This problem will arise across the different disciplines
and is worst for those areas that have not benefited, as
cognitive psychology has, from concentrated attempts to
quantify psychological findings. Demonstrating that this
issue is still a concern for cognitive psychology under-
scores the problem for those other areas. As cognitive psy-
chologists, we work in the areas with which we are most
familiar, but this should not be taken as a signal that other
areas of experimental psychology are exempt from the is-
sues we raise.

We will begin by outlining the mimicking problem and
a solution that has been proposed to circumvent it. We will
then discuss the issue of parameter variability, which
undermines the utility of that solution. Later in the paper,
these topics will be addressed concretely with four case
studies, two concerning model free tests of processing
and two concerning specific multiprocess models. In
each of these case studies, we will present an alternative
single-process model that either passes the test for a multi-
process model or accounts for RT data as well as the
multiprocess model. Under no circumstances should these
findings be interpreted as a demonstration of weakness
in the tests. Rather, they demonstrate that there is a right
way and a wrong way to apply them.

Mimicking

RT data have been collected for a wide variety of ex-
perimental paradigms. These data have been used to ad-
dress questions concerning the serial or parallel opera-
tion of the processes involved in the task of interest, the
nature of information transmission from one process to
the next, and the hierarchical organization of the pro-
cesses. The issue of serial versus parallel arrangement of
the processes in memory retrieval initially received a
great deal of attention (e.g., Sternberg, 1966; Townsend,
1972, 1974; Townsend & Ashby, 1983). This was due in
part to the nature of the paradigms and stimulus materi-
als used in memory “search” experiments. For instance,
an experiment designed to test some hypothesis about
memory function typically has subjects learn a list of
words or other items and then presents them with a test
item to which they should answer “old” or “new.” A nat-
ural first question concerning the way the memory pro-
cess operates is whether the list items in memory are
compared with the test item serially (one at a time) or in
parallel (simultaneously). Unfortunately, RTs do not
readily distinguish between these two types of architec-
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tures. When a single independent variable is manipu-
lated, such as list length, both serial and parallel models
can produce identical patterns of RT. For example, for
every model in which subprocesses operate in parallel
and the time required to complete each subprocess has
no influence on (is independent from) the amount of
time required by any other subprocess, there exists a
mathematically equivalent model, not discriminable
from the parallel model, in which all subprocesses oper-
ate in series. The RTs produced by the independent par-
allel model and its equivalent serial representation will
be identical in every way. Townsend’s (1972) careful
enunciation of this theoretical pitfall discouraged further
research that relied on the premise that mean RT data
alone could discriminate between serial and parallel
processes in these kinds of tasks.

The existence of serial mimics to parallel processes
is probably the most well-known example of an identifi-
ability problem in cognitive modeling. The serial/paral-
lel question itself is very specific, easily operational-
ized, and seemingly tractable, and so, at first blush, it
appears to be just the type of question that cognitive psy-
chology should devote itself to answering. Townsend
(1990a) argues that the serial/parallel issue is indeed ex-
actly the kind of problem that should be resolved, but,
unfortunately, it has not been. Despite a growing body of
theoretical work outlining how RT can be used to distin-
guish between serial and parallel processing (e.g.,
Roberts & Sternberg, 1994; Schweickert, 1980; Schwe-
ickert & Townsend, 1989; Sternberg, 1969; Townsend &
Ashby, 1983; Townsend & Schweickert, 1989), empiri-
cal resolution of the serial/parallel issue seems to have
fallen by the wayside. Some researchers might say that
the reason for this is the question itself: since all physi-
ological evidence suggests that processing is parallel at
some level anyway, it might seem pointless to invest the
effort required to debunk the serial “straw man.” Also,
the paradigms that addressed the question were some-
what limited, usually involving memory or visual search
(although richer paradigms have since been proposed;
cf. Schweickert & Townsend, 1989). The RT methodol-
ogy is now applied to other, perhaps more interesting,
questions for which the problem of model identifiability
does not (yet) exist, such as attentional control (e.g., Treis-
man, Vieira, & Hayes, 1992; Wolfe, Cave, & Franzel,
1989), the nature of information flow through the system
(e.g., McClelland, 1979; Miller, 1988, 1993), the acqui-
sition of skill (e.g., Carlson & Schneider, 1989; Logan,
1988, 1992), and so on. However, the way that RTs are
employed to test hypotheses in other areas is often little
changed from the way that they were applied to the serial/
parallel question. Other performance variables are often
ignored, and rigorously defined models of the processes
of interest are often lacking. Therefore, these areas may
also be prone to the problem of mimicking between var-
ious types of models.

The serial/parallel processing issue is one of exact
mathematical equivalence of two models: the RTs that
they predict can be identical, although the structures of
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the models are very different. Even if exactly equivalent
serial representations of independent parallel models did
not exist, however, the RTs produced by the serial and
parallel models might still be ambiguous. As several re-
searchers have noted (e.g., Luce, 1986; Ratcliff, 1988),
the unimodal and positively skewed RT density can eas-
ily be fit by a number of distributions. For example, the
gamma, inverse-normal, and Ex-Gaussian distributions
have all been shown to fit RT data to a greater or lesser
degree (Ratcliff & Murdock, 1976). Because the shape
of the distributions are highly similar, this “statistical
mimicking” of RT data is still a concern even when math-
ematically equivalent relationships, such as those that
arise in the serial/parallel case, do not exist. We now
discuss issues of statistical power and the number of ob-
servations needed to discriminate between models that
predict similar RT distributions, after which we will dem-
onstrate how the hazard function can be used to provide
finer discrimination between models and how parameter
variability (leading to mixtures of distributions) reduces
statistical power and the diagnosticity of the hazard
function.

Statistical Power

Consider the two density functions shown in Figure 1.
It is very difficult to distinguish between them because
they are so similar. Nonetheless, the two curves arise from
very different functions (both have been proposed as
models of the RT distribution). One density is a gamma
(the solid line), and the other is an inverse normal (the
dashed line). The gamma density might arise from a
model in which several stages of processing must be
completed, and each stage finishes with a time that is ex-
ponentially distributed. The inverse-normal distribution
might arise from a diffusion model with a single response
boundary. The analyses performed on RTs produced by
the multiple-process model (the gamma) would not per-
mit the experimenter to rule against a single-process
model in which the RTs were inverse-normally distrib-
uted, because there are not enough differences between
the two distributions. It might be argued that this is sim-
ply a problem of statistical power; with a sufficient num-
ber of RTs, differences between the gamma and the
inverse normal will become evident. This is true: statis-
tical mimicking is in part a problem of statistical power.
If there is enough power in the test or comparison to be
performed, then different hypotheses may be discrimi-
nated and the problem of mimicking is a problem no
longer. At what point, however, does a lack of statistical
power become an insurmountable obstacle, resulting in
a problem of identifiability equivalent to that observed
when two different models are mathematically indistin-
guishable?

Consider again the densities in Figure 1. We simulated
eight sets of data, each set containing a number of ob-
servations from both distributions shown. We then cal-
culated the asymptotic Kolmogorov-Smirnov and Kuiper
statistics for each data set. (Both the Kolmogorov-
Smirnov and Kuiper tests are nonparametric tests of the
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Figure 1. Statistical mimicking of a gamma density function with
a rate of .01, a shape parameter of 4, and a base time parameter of
200 msec by an inverse-normal density with a mean of 597 msec and
A parameter of 5,244 msec (see Luce, 1986, p. 509).

hypothesis that two independent samples were drawn
from the same population.) The results of these analyses
are presented in Table 1, along with the sample sizes from
each set. Not until the sample sizes exceeded 40,000 ob-
servations from each distribution did the small differ-
ences between the distributions become statistically re-
liable. This suggests that, if we assume that a subject is
able to perform 48 trials per minute in a 1-h session
(1,250 msec for the total trial time including the inter-
trial interval, and no rest breaks allowed within the ses-
sion—a tall order), and the subject’s RTs were generated
by a process producing gamma-distributed RTs, an ex-
perimenter would require at least 15 sessions from the
subject to be able to reject the hypothesis that the RTs
were generated by a process with inverse-normal finish-
ing times. This also assumes that the parameters of the
process remained constant across all trials and sessions:
no fatigue, practice, or time-of-day effects, for example,
and no effect of differing stimuli.

The only study of which we are aware that even ap-
proached this magnitude is that of Green and Luce (1971),
who collected over 10,000 observations from their sub-
jects. The study resolving the stage versus random walk
issue above would be at least four times larger. It must
be emphasized again that each of the resulting 40,000
observations must be identically distributed. The stimu-
lus must be the same on every trial, the data must be free
of any repetition effects, the subject’s attention cannot at
any point waver from the task, and so on. If it is believed
that these requirements can be fulfilled, then the issue of
statistical mimicking is irrelevant. However, while we
agree that it might be theoretically possible to avoid the
problem of statistical mimicking by simply collecting
enough data points, in practice it may not be feasible.

To attempt to circumvent the necessity of collecting
extraordinarily large numbers of observations, many re-
searchers have advocated the use of the hazard function
(the ratio of the density to one minus the distribution
function) to discriminate between different distributions
(e.g., Balakrishnan & Ashby, 1992; Bloxom, 1984, 1985;
Burbeck & Luce, 1982; Luce, 1986). The hazard func-
tion gives the likelihood that, for a particular point in



Table 1
Results of the Nonparametric Kolmogorov-Smirnov and Kuiper
Tests to Determine the Discriminability of the
Two Variables Pictured in Figure 1

Statistic
Sample Size Kolmogorov-Smirnov Kuiper
100 495 919
1,000 872 1.342
10,000 792 1.478
20,000 1.145 1.410
30,000 1.196 1.474
40,000 1.389%* 1.630
50,000 1.755% 2.0087
60,000 1.897% 2.275%
*p<.05. fp<.0l. ip<.005.

time, an event occurs given that it has not occurred up to
that point. Luce (1986) presented a demonstration of
how different the shapes of hazard functions of different
random variables can be, even though their density func-
tions are very similar. Thus, the shapes of the hazard
functions might be a useful way to discriminate between
the inverse-normal and gamma densities in Figure 1.
The hazard functions of the gamma and inverse-normal
densities pictured in Figure 1 are shown in Figure 2. Al-
though the hazard functions of these variables are also
quite similar, the divergence in the tails of the functions
is much clearer than the small differences between the
densities. Note that the asymptotic behavior of the haz-
ard functions is usually very difficult to observe, because
it is determined by the last few percentage points of the
data. Therefore, the tail of an empirical hazard function
is generally quite unstable. The number of observations
required to make the estimates of these tails stable is an-
other question that we will not address here (but see
Bloxom, 1984, 1985).

A Limitation of the Hazard Function

Consider the following example of statistical mim-
icking. In a diffusion model (e.g., Ratcliff, 1978) of re-
sponse selection, a central processor keeps track of the
level of “evidence” growing, or drifting, toward alterna-
tive responses. On average, depending on a particular
trial, the evidence drifts in either a positive or a negative
direction. A response is selected when the level of evi-
dence is sufficiently positive or sufficiently negative,
and this event is represented by the evidence level cross-
ing a boundary. Usually there are two boundaries, one
positive and one negative, corresponding to the two re-
sponse alternatives in a two-choice task. Ratcliff (1988)
has demonstrated that the diffusion model can closely
mimic RT results produced by a multiple-subprocess
model, in which the manipulation of some experimental
variable results in the insertion of an additional serial
subprocess with exponentially distributed processing
time. (We will discuss this model in some detail in the
following section.) The diffusion model was fit to ex-
perimental data, and the finishing times of the diffusion
process were found to mimic the slowing of a serial
process by the additional exponentially distributed sub-

STATISTICAL MIMICKING 23

process. The diffusion RTs were not distributed exactly
as the serial multiple-subprocess RTs, but the difference
failed to exceed statistical criteria. Thus, in a statistical
sense, the two models could not be distinguished.

The next question is whether or not hazard functions
of the diffusion model and the serial model can be used
to discriminate between the two (see, e.g., the gamma
and inverse-normal distribution case presented earlier).
The answer to this question is partly an empirical one.
Most observed RT hazard functions are nonmonotonic:
they increase and then decrease (e.g., Burbeck & Luce,
1982). Note that if the decision boundaries of the diffu-
sion model are asymmetric, the processing-time distri-
bution (defined by the time at which the diffusion pro-
cess crosses the boundary closest to the starting point)
for a given drift rate tends to the inverse normal as the
asymmetry increases. The hazard function of the inverse-
normal distribution is increasing to asymptote or in-
creasing then decreasing over time, as are most empiri-
cal RT hazard functions. The hazard function of the
serial model may assume a number of shapes, and addi-
tional assumptions would need to be made about the
processes to which the serial exponential stage was added
in order to know more. Thus, both models might ac-
commodate the observed RT hazard functions.

Another reason that the hazard functions might not be
diagnostic in this case is because the diffusion model in-
corporates a variable parameter, the drift rate, which is
normally distributed. The variable drift rate has the ef-
fect of producing finishing-time distributions that are
actually mixtures of observations arising from many dif-
ferent distributions, each conditioned on a different value
of the drift rate.! The hazard functions of mixture distri-
butions can look very different from the hazard functions
of the individual distributions composing the mixture. In
particular, mixture hazard functions can be nonmono-
tonic, even if the component hazard functions are, say,
monotonic increasing (see, e.g., Barlow & Proschan,
1975). Only when the component hazard functions are
constant or decreasing (nonincreasing) is the shape of the
mixture hazard function constrained, and then it must
also be nonincreasing. Even if the boundaries of the dif-
fusion process are not asymmetric, the diffusion model
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Figure 2. Hazard functions of the gamma (solid line) and inverse-
normal (dashed line) variables shown in Figure 1.
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predicts nonmonotonic hazard functions similar to the
empirical hazard functions. We will discuss this issue in
more detail later, but the main point is that parameter
variability, which is likely to be present to some extent in
any experimental situation, can rob the hazard function
of its diagnosticity, compounding the problem of statis-
tical mimicking of RT distributions.

This example also demonstrates that the class of single-
process models, of which the single-process diffusion
model is a member, has been relatively neglected when
issues of mimicking among multiple-process models are
considered. Clearly, some single-process models can
mimic the RT distributions produced by multiple-
process models, at least statistically. The additional con-
cern of parameter variability makes the task of discrim-
inating between the two types of models even more
difficult. We therefore wish to emphasize the impor-
tance of attacking the mimicking problem from within
specific process models, both single and multiple
process, and with the added information provided by de-
pendent measures other than RT. It is not easy to find a
model that captures all aspects of the RT data, but there
are ways to test between different competing models,
evaluating their strengths and weaknesses and evaluat-
ing their performance with respect to a wide range of be-
havioral variables. Post hoc fitting of various probabil-
ity distributions to observed RT data is useful as a way
to summarize data; however, without the benefit of a
more comprehensive process that encompasses other
behavioral variables, such curve fitting will not allow
the researcher to draw firm conclusions about the
processes that may or may not underlie the performance
of a task.

We will now discuss more formally the issue of pa-
rameter variability and how it impacts on our ability to
discriminate between alternative models. We wish to
demonstrate that the analyses of RT data (or any other
single dependent measure) in isolation from a model and
from other dependent measures can sometimes lead to
very different conclusions about the structure of the pro-
cesses in a task and thus to emphasize the importance of
a model-driven approach to data analyses.

Parameter Variability

The RT data collected for a particular experiment can
be examined in a number of different ways, and the ones
that we will focus on are the density, distribution, and
hazard functions. Without the added burden of parame-
ter variability, the hazard functions can be used to dis-
criminate between different models (predicting different
RT distributions), even if the density and distribution
functions are very similar. With parameter variability,
however, the hazard functions lose a great deal of their
diagnosticity.

When we speak of parameter variability, we mean that
the central process responsible for the execution of a
task depends on a set of parameters that may be random
variables. The way that the parameters vary may be sys-
tematic with respect to the experimental variables, or it

may be random. On one trial, the rate at which a process
executes might take on a value that remains fixed through-
out that trial. However, during the next trial, the rate
may be slightly different. Thus, an experimental manip-
ulation need not influence the architecture of the process
itself, but rather it might influence the way the process
parameters vary from trial to trial. For instance, as a sub-
ject becomes more and more practiced at lexical deci-
sions, the rate parameter of the process, say, a random
walk, may systematically increase, leading to a decrease
in processing time. Or the boundaries of the random
walk might be adjusted as the subject becomes more fa-
miliar with the task.

Consider a memory search task. One model of the task
might be that the addition of distractors to a list of items
held in memory increases the number of comparisons
between the memory list and a probe item. Each addi-
tional comparison is represented by a new subprocess re-
quired for each additional distractor item or, equiva-
lently, the successive operations of some single neural
module over the list items. (We make no distinction here
between the serial or parallel nature of the comparison
subprocesses.) An alternative model is one in which the
addition of distractors increases the load on the central
process responsible for recognizing the probe item. The
addition of distractors might simply slow the retrieval
process without requiring the addition of new sub-
processes for each new distractor. For instance, the rec-
ognition process might slow with more distractors be-
cause they make the probe item less salient and, hence,
more difficult to retrieve. As the number of distractors
increases, RTs will increase just as if additional com-
parison processes had been added. This is a single-process
model of memory search, where the addition of distrac-
tors causes a systematic change in a process parameter
(salience), rather than an increase in the number of sub-
processes (comparisons) required to complete the search.
For both models, there may also be some nonsystematic
variation of parameter values from trial to trial.

From within the context of a single experimental con-
dition (say, a memory search procedure with five items),
a question concerning the presence or absence of param-
eter variability or the number of processes involved in
the task cannot be answered. It may be possible to find
examples of several kinds of models that will fit the data
arbitrarily well. Only across several experimental con-
ditions would these issues become interesting and im-
portant. In changing the experimental situation, has the
fundamental structure of the process changed, or has the
value of a process parameter simply changed? The two
memory search examples presented above provide an
example of this type of distinction.

To illustrate this distinction more concretely, consider
again these two memory search examples. In the multiple-
subprocess model, each new comparison takes an addi-
tional amount of time to complete (an additional inter-
completion time, if the comparisons are performed
concurrently) and so is represented by the sum of a num-
ber of random variables. Each new distractor requires a



new random variable to represent its comparison time.
Before new distractors are incorporated into the memory
set, the total processing time is some random variable,
say, T. After a distractor is added, then the total pro-
cessing time is 7+ T}, where T represents the compar-
ison time or intercompletion time for the new item. If the
process is serial, then 7} is the time to process the new
distractor. If the process is parallel and the time for one
comparison does not influence the other comparisons, T
is the time between the end of processing of the old
items and the completion of the new item (the intercom-
pletion time).

In the single-process model, the random variable 7
follows some distribution, F(¢|a), before the addition of
new distractors. The nonvarying parameter a represents
all of those critical aspects of the experimental situation
that influence the processing time and, in particular, the
salience of the probe item. The distribution F is deter-
mined by the architecture of the retrieval process. For
example, if retrieval proceeds via a random walk or dif-
fusion process, then /" would represent the distribution
of first passage times and the parameter « (in this case
representing more than one parameter) would encom-
pass the drift rate, starting point, drift variability, and so
on (Ratcliff, 1978). After the inclusion of an additional
distractor in the memory set, the total finishing time
(still represented as 7') would be distributed as F(#a’),
where the parameter a’ now represents the new experi-
mental situation and, in particular, the decreased sali-
ence of the probe item. In the diffusion model, decreased
probe salience would result in a decrease in d' between
old (familiar) and new (unfamiliar) items. Thus, the like-
lihood of selecting a small drift rate would be increased,
and the RTs would therefore be longer overall.

The parameter « is a constant within a particular ex-
perimental situation and changes only when the experi-
mental conditions change. It is also possible, however, to
conceive of less systematic variations of the parameters.
Momentary lapses of attention caused by unexpected
noises outside the testing room add variability. Subject
boredom or fatigue may lead to both systematic and non-
systematic deviations in the parameters across the course
of an experimental session. The time of day that subjects
are tested in multisession experiments can produce sig-
nificant session effects. It is widely believed that sub-
jects tested at the beginning of an academic semester or
quarter can give very different data from those tested
near the end (but see Langston, Ohnesorge, Kruley, &
Haase, 1994). In the case where parameters change over
blocks of trials, Burbeck and Luce (1982) have dis-
cussed a method whereby blocks with highly deviant pa-
rameters can be eliminated. However, if parameters are
not constant within blocks of trials, there is no post hoc
way to correct for their variability and, therefore, no way
to observe the “pure” RT distribution.

Consider the best possible experimental procedure,
where the best possible subject has performed under op-
timal conditions, the data has been carefully censored,
and Burbeck and Luce’s (1982) procedure for eliminating
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block of trials has been applied. Is parameter variability
still a concern, or can we safely assume that we have
eliminated all possible sources of variation and go on to
examine the densities or hazard functions and draw con-
clusions about possible models? Even if all external
sources of parameter variability have been removed, there
may still remain one source of variability inherent in the
perception of the stimulus. A unique stimulus never gives
rise to exactly the same perceptual effect over the many
times that it is presented. This idea is the foundation of
psychophysics and signal detection theory. It also forms
the cornerstone of most current models of information
processing, perception, and memory. If we wish to pre-
sume that the performance of a task depends in some
way on the percept of the stimulus, then the information
upon which the process operates changes from trial to
trial even if the stimulus remains the same. In this light,
even the most carefully designed and executed experi-
ment is susceptible to a not-insignificant degree of pa-
rameter variability. Over the course of an experiment,
the experimenter collects many RTs arising from many
different parameter values determined by the range of
perceptual effects. Thus, it is quite likely that the data
represent a statistical mixture from the possible RT dis-
tributions based on those perceptual effects.

The idea that RT data arises from some mixture of pro-
cesses is not a new one. There have been several models
that deal with effects in choice RT by assuming that on a
particular trial the subject responds from one of several
possible mental states and that different RT distributions
are associated with each state (Falmagne, 1965; Fal-
magne, Cohen, & Dwivedi, 1975; Ollman, 1966; Yantis,
Meyer, & Smith, 1991; Yellott, 1967, 1971). The observed
distribution of RTs arises from a composite of all the dif-
ferent distributions generated by the separate mental
states. These earlier models used a fixed number of
states. In the two-state model, for example, the subject
was assumed to have either some or no information about
the stimulus presented. With some probability, p, on each
trial, no information was gained and the subject then
guesses; the guessing RTs follow some distribution. With
probability 1 —p, some or all information was gained and
the subject then performs the algorithm appropriate to
the task; these RTs follow some other distribution.

Yantis et al. (1991), motivated as we are by concerns
about parameter variability, have investigated the more
complicated behaviors of multinomial mixtures, focus-
ing specifically on the task of estimating the mixture
probabilities in multinomial mixture models. In a multi-
nomial mixture with N components, a parameter, c, fol-
lows a discrete probability distribution, and the ob-
served RT distribution F(¢) is a weighted average of the
processing-time distribution G(¢|a):

F(t) = p\G(t|ay) + prG(tay) + ...+ pyG(tlay),

where the sum of the mixture probabilities p; + p, + ...
+ py = 1. Our interest is more general, however. What
does the presence of mixtures imply about the RT dis-
tributions? We are also interested in the case where the
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parameters of interest are continuous, such as any pa-
rameter would be that reflected stimulus intensity, for
example. Models that incorporate such parameter vari-
ability produce continuous mixtures. Rather than a proba-
bility distribution defined over a finite number of possi-
ble mental states (e.g., p and 1—p for guessing and
information-based responding, respectively), continu-
ous parameter variability requires the specification of a
continuous probability density function. The observed
distribution F(¢) of the mixture is found by integrating
the distribution G(¢|) of the processing times weighted
by the parameter density A(a):

F(= [G(lah(@)da,
a€A

where A4 indicates the set of possible values the parame-
ter o can take. For example, if a process gives rise to nor-
mally distributed finishing times (G), and the mean
finishing time () of that process is exponentially dis-
tributed, then % represents the exponential density, 4 is
the positive real line, and the observed RTs will be dis-
tributed as ex-Gaussian variables (F).

As we will discuss in the close of this article, one per-
spective on the problem of parameter variability is that
it “reduces to absurdity.” At what point may we stop
worrying about parameter variability? For, indeed, the
density function A( ) will itself require the specification
of a number of parameters, which in turn may vary, and
so on. Nonetheless, parameter variability may be mod-
eled, and potential sources of variability are part and par-
cel of several areas of study in experimental psychology
(e.g., Revelle, 1993). The evaluation of these sources
and the way parameters are influenced by them is subject
to the same constraints as the construction and evalua-
tion of the models of the process under scrutiny.

We will return to this issue later on. For now, we will
argue that tests that have been proposed to discriminate
between different process architectures, such as serial
and parallel processes, must also consider the case of a
single process, possibly with variability in parameter
values. In the discussion to follow, we will work through
several theoretical problems. We will present the most
specific model as a way to introduce some of the theo-
retical issues that will recur later in the paper. In this
model, it is assumed that at least two subprocesses are
operating in series and that the second subprocess gives
rise to exponentially distributed processing times (Ashby
& Townsend, 1980). We will demonstrate that, even in
this most specific case, single-subprocess models with
parameter variability produce results that are indistin-
guishable from the inserted exponential subprocess
model. We will then move to a discussion of the logic of
additive factors, in which it is assumed that at least two
subprocesses are operating in series. We will then con-
sider two established models and demonstrate the exis-
tence of competing models that cannot be distinguished
from their alternatives on the basis of RT data alone.

CASE 1
Testing for the Presence of an
Exponential Serially Inserted Subprocess

Ashby and Townsend (1980) have worked extensively
with one specific, simple multiple-subprocess model of
information processing. Consider an experimental de-
sign in which an independent variable of interest (factor)
takes on some number of levels; for example, in a mem-
ory search paradigm, the factor under study might be the
memory set size. At level k—1 of this factor (k—1 items
held in memory), the RTs follow some distribution,
F,_,. Increasing the level of this factor to & (by adding
another item to the memory set) slows the RTs, now dis-
tributed as F. If this increase to level k caused the in-
sertion of an additional subprocess (for example, an ad-
ditional comparison between the probe and the memory
set), and the duration of this subprocess is exponentially
distributed and independent from the RTs at level k—1,
Ashby and Townsend showed that the RT density at level
k(f,) is proportional to the difference between the dis-
tribution functions at levels k—1 and k. Or

Ji = v (Fimy — Fp). (D

The constant of proportionality v, is the rate of the in-
serted exponential subprocess. This result provides an
empirical test of the exponential stage model. After es-
timating f;, F,_,, and /', from the data, the plot of f; ver-
sus F,_; — F, can be examined for linearity; the slope of
the resulting line gives an estimate of the inserted ex-
ponential processing rate. Or, equivalently, the ratio
Ji!/(Fi—y — F}) can be plotted as a function of time; if the
inserted exponential subprocess (IES) model is true, the
slope of this function will be approximately zero, and the
intercept will give an estimate of the exponential process-
ing rate. This test is particularly advantageous in that no
assumptions are required about the shape of the distrib-
ution F,_;. If an IES model of the task is correct, the
proportional relationship will hold regardless of the
original distribution ;.

Ashby and Townsend (1980) noted, however, that “there
may be models, not formally equivalent to [the IES
model], capable of predicting functions close enough to
being flat and linear that an empirical application of the
[IES test] could not determine that they were not” (p. 101).
In an attempt to determine the statistical power of the
test, they conducted several simulation studies, in which
an additional subprocess was distributed as either an ex-
ponential or some other positive random variable. From
the slopes of the regression lines through £, / (F,_; — F})
observed when the additional subprocess was exponen-
tial versus when it was not, they suggested that a good
criterion for rejecting the IES model might be when the
absolute value of the slope was greater than 1 X 10~4/
millisecond. They estimated the RT density and distri-
bution functions from a published set of rapid memory
search data (Townsend & Roos, 1973). For 3 subjects at
five processing loads each, they found that the data passed



the IES test in most cases. For these data, only 3 of the
12 regression equations had slopes with absolute values
that exceeded 1 X 10~4/millisecond. The results of this
analysis provide support for a multiple-subprocess model
of rapid memory search, in which the addition of a dis-
tractor item to the search set induces an additional, expo-
nentially distributed comparison process. However, as
Ashby and Townsend presaged, other single-process mod-
els can be formulated that pass the IES test. For exam-
ple, Ratcliff (1988) showed that a diffusion model pro-
duces RT distributions that meet the IES criterion using
parameter values derived from fits to empirical data.

We have fit several other models to RT distributions
based on the IES model. First, we generated the curves
for an IES model observed over three “experimental”
conditions. In the condition producing the fastest RTs,
the process was composed of two independent serial
stages, each finishing with times that were exponentially
distributed with equal means. The total processing time
for this condition was then the sum of two independent
and identically distributed exponential variables. In the
second condition, a new exponential stage was added after
the first two stages. This new subprocess was indepen-
dent from the original (multiple) process, but identically
distributed to the original exponential stages, yielding
total processing times that were the sum of three expo-
nential random variables. The RTs from the last condi-
tion resulted from inserting still another independent,
identical exponential stage after the first three, giving
total processing times that were the sum of four expo-
nential variables. Because the second and third condi-
tions resulted from inserting new, independent exponen-
tial subprocesses, it must be the case that (1) the RT
density in the second condition is proportional to the dif-
ference between the cumulative distribution functions
for the first and second conditions, satisfying Equa-
tion 1, and (2) the RT density in the third condition is pro-
portional to the difference between the cumulative dis-
tribution functions for the second and third conditions,
also satisfying Equation 1.

After generating the densities for the IES model, we
then fit the densities predicted by two other single-
process models to the IES densities. The first of these,
suggested by Hohle (1965), was a single exponentially
distributed “decision” stage that slowed across conditions,
with an additional, normally distributed time component
absorbing the times for perception, response execution,
and any other stages not influenced by the experimental
manipulation. The second of these, discussed earlier,
arises from a diffusion process with a single absorbing
boundary, with a drift rate that decreased across condi-
tions. The fits of these models to the IES RT densities are
shown in Figure 3. The top panel shows the fits of the
single exponential stage model (producing ex-Gaussian
densities), and the bottom panel shows the fits of the
single-boundary diffusion model (producing inverse nor-
mal densities).

We subjected the single-process models” RTs to the
IES test. The ratios of the densities to the differences be-
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tween the distribution functions are shown in Figure 4,
along with the ratios for the IES model. Within the usual
observed range of RTs, the single-process models pass
the IES test, even though no additional exponential stages
were added.

These two single-process models used a systematic,
nonrandom shift in the process parameters from one ex-
perimental condition to another to mimic the behavior of
a multiple-process model. Although they pass the IES
test, demonstrating statistical mimicking at the level of
the density and distribution functions, it is possible that
other aspects of the data can be used to distinguish be-
tween them, such as the hazard function. The hazard
functions for each model in each condition are presented
in Figure 5, along with the hazard functions of the IES
model. There are clear differences between the hazard
functions for the single- and multiple-process models, so
the hazard functions might be used to discriminate be-
tween them.

However, if parameters are variable from trial to trial,
it may no longer be possible to use the hazard functions
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Figure 3. Mimicking the IES model with single-process models.
The top panel shows three ex-Gaussian densities fitted to three
gamma densities. The gamma densities have a rate of .01 and a base
time component of 200, and shape parameters of 2,3, and 4. The nor-
mal components of the ex-Gaussians have means of 247, 322, and
402 msec, and standard deviations of 52, 78, and 104 msec, and the
exponential components have means of 148, 182, and 203 msec, for
shape parameters 2, 3, and 4, respectively. The bottom panel shows
three inverse normals fitted to the same three gamma densities. These
inverse normals have means of 380, 490, and 597 msec, and A pa-
rameters of (see Luce, 1986, p. 509) 3,610, 4,194 and 5,244 msec for
shape parameters 2, 3, and 4, respectively.
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Figure 4. The results of the IES test for the ex-Gaussian (top panel)
and inverse normal (bottom panel) densities shown in Figure 1. Each
plot shows the value of the IES ratio f,(?)/[F,,_,(t)— F,(t)] over time.
The absolutely flat lines in the figures are the ratios for the IES
(gamma) model. The not-quite-flat lines are the ratios for the mim-
icking models.

in this way. To provide a concrete example of the prob-
lem of parameter variability, we present the following
scenario: Suppose that the time for completion of some
central process of interest is determined by the length of
time that a stimulus remains visible on a computer dis-
play. The central process proceeds in exactly the same
way regardless of the duration of the display, producing
for a given duration a normally distributed finishing
time of some mean and variance. If the duration is very
short, for example, the mean finishing time might be
very long, producing very slow, highly variable RTs.

A researcher is testing an alternative model that as-
sumes that when a stimulus is presented for a short period
of time, the subject performs an additional “rechecking”
procedure, reexamining the evidence that led to the cen-
tral process outcome to make sure that a selected response
is appropriate. When the display is presented for longer
durations, the rechecking procedure is unnecessary, and
so the rechecking subprocess is not executed. He has two
conditions in his experiment, a short and a long stimulus
duration. However, there is a bug in the experiment pro-
gram and the duration of the stimulus is actually very

short, short, long, or very long, with the durations that he
desires lying somewhere between these four actual times.
Because the decision process is producing normally dis-
tributed RTs based on the display duration, for this faulty
program, the collected RTs arise from one of four nor-
mally distributed variables, each with a different mean
and variance corresponding to the different durations. The
duration manipulation, unbeknownst to our researcher,
makes some display durations more likely than others,
but it does not shift the duration from a constant long to a
constant short display as he believes.2

What occurs on each trial is then a sampling procedure,
where a duration is selected at random from one of the
possible four. This results in parameter variability from
trial to trial. In this kind of parameter variability, the dis-
tribution of the parameter is discrete; at any time, the mean
and variance of the process take on a set of values with
some probability, which is equal to the probability of a
particular display duration. The discrete probability dis-
tribution of durations represents the mixture proportions.
When the experimenter increases the display duration,
he changes those mixing proportions and so influences
the parameter distribution, not the structure of the deci-
sion process itself.

Consider the normal distributions presented in the top
panel of Figure 6. From fastest to slowest, these distri-
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Figure 5. The hazard functions of the models shown in Figure 3.
The top panel shows the hazard functions of the ex-Gaussian densi-
ties (dashed lines) superimposed on the gamma hazard functions
(solid lines). The bottom panel shows the hazard functions of the
inverse-normal densities (dashed lines) superimposed on the gamma
hazard functions (solid lines).



butions have means of 400, 500, 600, and 700 msec, and
standard deviations of 50, 150, 200, and 250 msec, re-
spectively. The longest displays result in the fastest RTs,
and the shortest displays result in the slowest RTs. When
the experimenter presents “long” displays to the subject,
the subject observes the slowest displays with a proba-
bility of .43, the next slowest with a probability of .20,
faster displays with a probability of .01, and the fastest
with a probability of .36. When the experimenter “de-
creases” the display duration, no additional rechecking
stage is performed by the subject (i.e., there is no effect
on the central process, which still finishes with the same
normally distributed times as before), but the likelihood
that a subject will be presented with any of the four ac-
tual durations is changed. Suppose now that, in this case,
the subject receives slower, slow, fast, and faster dis-
plays with probabilities of .07, .22, .21, and .50, respec-
tively. The data collected from this subject for “long”
and “brief” displays are shown in the bottom panel of
Figure 6 (which depicts the two mixture densities re-
sulting from a simulation of the two conditions, with
1,000 observations at each level). All observations faster
than 200 msec and slower than 1,200 msec (less than 1%
of the total data points) were eliminated before using a
Gaussian kernel technique (Parzen, 1962) to estimate
the densities. The RT distribution functions were esti-

2 <
0 (=}
c Q
] o

o

o

200 400 600 800 1000 1200
Time (ms)

2
@
3
S 38
el Q
L2 o
«
£
hTR

o

200 400 600 800 1000 1200
Time (ms)

Figure 6. Top panel: The four component normal densities pro-
duced by each of the four actual display durations. The leftmost den-
sity with a mean of 400 msec is of processing times for the longest dis-
plays; decreasing display durations shift the density to the right and
increase the variance. Bottom panel: The two estimated densities ob-
served under the two display-duration conditions, resulting from two
different mixtures of the densities shown in the top panel. The solid line
indicates the observed RT density for the long display duration, and
the dotted line the observed RT density for the brief display duration.
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Figure 7. The IES ratio f,(¢)/[F),_(t) — F(¢)] produced by the mix-
ture densities observed in the “long” [F},_(?)] and “brief” [F,(¢)] con-
ditions.

mated with the cumulative relative frequency distribu-
tions of the observations from both conditions.

To test his hypothesis of a rechecking stage, he plot-
ted the ratio of the short duration density to the differ-
ence between the long- and the short-duration distribu-
tion as a function of time. This plot is shown as the
dashed line in Figure 7. Although there is some vari-
ability in the plot in the extremes of the range, the ratio
appears quite flat. Indeed, his regression analysis of this
function yielded a slope of 1.7 X 10~5—well within
Ashby and Townsend’s (1980) suggested limits of +1 X
10—4. He thus concluded that shortening the duration of
the display induced the subject to perform an additional
rechecking procedure and that this rechecking time is
exponentially distributed with a rate approximately equal
to .006. To verify this estimate, he plotted the linear re-
lationship between the short display density and the dif-
ference between the distributions, and another regres-
sion analysis gave an estimated slope of .008. Observing
that the mean RT was slowed 84 msec by “decreasing”
the display duration, he compared these values with
1/84 = .012 and concluded that they were sufficiently
consistent, putting the estimated processing rate some-
where around .01 or the duration of the rechecking pro-
cedure at around 100 msec.

Let us now compare his results with the results of an-
other simulation in which an IES is present in the short
display duration. In this simulation, the 84-msec mean
increase arose from the addition of an exponential sub-
process with a rate of 1/84. So, the RT distribution col-
lected for the short displays was the result of adding an
exponential variate to the mixture distribution observed
at the long display (a new simulation of the long-display
mixture was performed). The density of the times pro-
duced by the original mixture plus an IES was estimated
as before, and the densities for both the mixture and the
IES models at the short display duration are presented
together in Figure 8. Although the leading edges and the
tails of the two densities are quite similar, there is con-
siderable disparity around the peak. The IES model den-
sity peaks more sharply than does the mixture model
density. Unfortunately, this post hoc observation pro-
vides no way to distinguish between the IES and other
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Figure 8. The estimated mixture density produced by the brief dis-
play duration (dashed line; the mixture model) superimposed on the
estimation of the density produced by the long display duration plus
an additional exponential stage (broken line; the IES model).

models in the course of a real experiment; that is the pur-
pose of the Ashby and Townsend (1980) test.3

The same regression analyses were performed as on
the “experimental” data. The IES ratio was calculated
and is presented in the top panel of Figure 9. Regression
analysis gave an estimated slope of 4.2 X 10~7, well
within Ashby and Townsend’s (1980) prescribed limits
and smaller than that observed for the mixture model.
The exponential rate estimated from the intercept of this
analysis was .017; the slope for the regression analysis
performed on the density and the distribution differ-
ences was .011. The actual exponential rate was .012.
The IES test produces no more consistent estimates for
the exponential processing rate in the case where an IES
was actually present than when it was not, and both mod-
els pass the IES test. The IES ratio for both models are
presented together in the bottom panel of Figure 9.
Clearly, the mixture model ratio is flat and very close to
the ratio produced by the IES model. The tails of the mix-
ture model are noisier than are those of the IES model;
however, over approximately 95% of the range of the
data, the two models are indistinguishable using this test.

Hazard Function Analyses

The preceding discussion has focused on the shape of
the RT densities. As we discussed earlier, because em-
pirical RT distributions have no remarkable characteris-
tics that can aid in the discrimination between different
classes of positive random variables to which RTs might
be assigned, Luce and others have suggested that the RT
hazard functions might give more diagnostic informa-
tion about the class of random variables to which RTs
belong (Bloxom,1984; Burbeck & Luce, 1982; Luce,
1986). The hazard function /(%) is the ratio of the density
function f(#) to one minus the distribution function F(¢):

Q)
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We will use the previous IES example to illustrate some
of the difficulties that arise in the estimation and subse-
quent use of the hazard function. Recall that the four
normal variables arose from a probability distribution
over four possible display durations. When the display

duration was shortened in the faulty experiment pro-
gram, the probability distribution changed to include a
larger proportion of shorter displays. The data from the
experiment passed Ashby and Townsend’s (1980) test
for the inclusion of an exponential serially inserted stage,
the IES model. We now wish to determine if the hazard
functions estimated from the data can be used to dis-
criminate between the mixture distribution and the IES
model. This is a reasonable approach to take: each nor-
mal distribution composing the mixture has a monotonic
increasing hazard function, whereas the exponential
components of the I[ES model have constant hazard func-
tions. We might therefore expect that the shapes of the
hazard functions for these two alternatives might be very
different.

The hazard functions for the short-duration condition,
as collected in the “experiment” (as predicted by the
mixture) and as simulated by the IES model, are pre-
sented in Figure 10. There are differences between the
two curves, especially in their tails. The IES hazard
function appears to increase throughout the range of the
data, whereas the mixture hazard function appears to in-
crease and then decrease. Unfortunately, this difference
in monotonicity is generated from 1% of the data: 6 ob-
servations from the “experiment” and 14 observations
from the simulation. Thus, no conclusions can be drawn
from these hazard functions; the IES model still cannot
be distinguished from the mixture. The hazard-function
estimate for the mixture data is, in fact, in error: the ac-
tual hazard function for this particular normal mixture is
monotonic increasing (see Figure 11). In Figure 11, the
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Figure 9. Top panel: The IES ratio produced by the addition of a
serial exponential subprocess to the mixture process of the long-
display condition: the IES model. Bottom panel: The mixture model
(Figure 7) and IES model (top panel) ratios superimposed.
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Figure 10. The estimated hazard functions of the densities shown
in Figure 8. The mixture model (dashed line) shows a relatively con-
stant increase over time, whereas the IES model (broken line) shows
an early rise to asymptote followed by a later increase.
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Figure 11. The actual hazard functions of the two normal mixtures
presented in Figure 6’s bottom panel. The “long” hazard function is
formed from many fast RTs, whereas the “brief” hazard function
contains many more slow RTs.

STATISTICAL MIMICKING 31

theoretical hazard functions for the two mixtures are
presented. The hazard function for the short-duration
condition is nondecreasing, whereas the hazard function
for the long-duration condition is increasing then de-
creasing. This is typical of RT data (Ashby, Tein, & Bal-
akrishnan, 1993; Balakrishnan & Ashby, 1992; Heath &
Wilcox, 1990). More difficult conditions often show
nondecreasing hazard functions across the range of data;
however, as the stimulus becomes more intense or more
easily detectable, the peak of the hazard function moves
up and to the left (Burbeck & Luce, 1982; Luce, 1986).

Burbeck and Luce (1982) used the generally increasing
then decreasing shape of the hazard function to argue for
a two-component process in auditory detection. The rapid
peak of the function was tied to an early “change” detec-
tor, and the later asymptote to a more slowly operating
“level” detector. The simultaneous operation of these two
detectors, they argued, gave rise to the increasing then de-
creasing hazard. They compared a two-detector model of
auditory detection with a random-walk model (predicting
an inverse normal distribution) and Grice’s (1968) accu-
mulator model. All three of these models predict that the
hazard functions should either increase monotonically to
asymptote or peak and then decrease to asymptote. Com-
paring the hazard function predictions of the three mod-
els with their observed empirical hazard functions, they
found in favor of the two-detector model. As they men-
tioned, and in light of the previous demonstration, an al-
ternative explanation is that their data was formed by a
mixture of processes arising from parameter variability.

Because of the mixture problem, Burbeck and Luce
(1982) gave serious consideration to the question of pa-
rameter variability in the course of their investigation of
the two-detector model, especially as it occurs between
blocks of trials or sessions in a multisession experiment.
They presented a method for discarding blocks of trials
in which the parameter values have clearly drifted be-
yond those of other blocks. They acknowledged, however,
that correcting for parameter variability (mixture distri-
butions) arising within a block of trials is impossible and
that the peaking and then decreasing to asymptote be-
havior of the hazard functions may also arise from a
mixture of distributions within blocks.

The nonmonotonic characteristics of mixture hazard
functions was also discussed at length by Barlow and
Proschan (1975). An example of the way that hazard func-
tion analyses can result in ambiguous conclusions was
provided by Proschan (1963). He examined the pooled
failure times for air-conditioning systems in 13 Boeing
aircraft. He assumed that the failure times were exponen-
tially distributed but noted that the hazard function of the
pooled data decreased. Because the exponential hazard is
constant, he commented briefly that, although a mixture
of exponential rates could have led to this type of hazard
function, perhaps the original assumption of exponen-
tially distributed failure times might be questioned on the
basis of this finding. Dahiya and Gurland (1972) subse-
quently demonstrated that a gamma distribution with the
shape parameter (number of stages) less than one could be
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well fit to the data, suggesting that perhaps the failure
times were gamma-distributed. To reconcile these two
findings, Gleser (1989) noted that a gamma distribution
with a shape parameter less than one can be represented
as a mixture of exponentials with different rates. He
pointed out that the empirical hazard function gives no
basis for ruling out the original exponential assumption,
since mixtures of exponentials can give exactly the kind
of hazard functions that Proschan observed. Thus, the
shape of the hazard function is ambiguous with regard to
the original distribution when a mixture is possible.

Hazard-function analyses are becoming more com-
mon in areas of psychology apart from RT research. For
example, Lewinsohn, Zeiss, and Duncan (1989) tallied
the frequency of episodes of unipolar depression for sev-
eral clinical groups. All groups showed an increasing like-
lihood of experiencing an episode over time, as reflected
in an increasing hazard function; however, they observed
that men with only one prior depressive episode eventu-
ally declined in vulnerability to a second episode (i.e.,
showed an increasing then decreasing hazard function as
time progressed). They then went on to discuss the im-
plications of such a finding, in terms of clinical strate-
gies and theoretical issues. Levinthal and Fichman (1988),
while investigating the likelihood of maintaining an
auditor—client relationship, called the initial rise of the
increasing then decreasing hazard function a “honey-
moon period in the first few years of attachment™ (p. 355).
In short, the increasing then decreasing hazard is ubiq-
uitous; it appears not only in RT data but in almost all
sets of data collapsed across subjects or observations
collected over significant periods of time. This often-
observed increasing then decreasing shape is not neces-
sarily indicative of the underlying process if there is any
possibility that the data results from a mixture, whether
that is a “honeymoon” period, a sudden remission from
clinical depression, simultaneous operation of fast and
slow detectors, or something else. It may indicate that
the data set is composed of a mixture of two or more dis-
tributions or indicate the presence of a parameter vary-
ing across trials.

Balakrishnan and Ashby (1992, p. 82) state that non-
monotonic “empirical estimates of [the hazard function]
unequivocally rule out the traditional candidates for the
RT distribution, including the gamma, log-normal, and
ex-Gaussian.” Each of these “traditional candidates” has
a nondecreasing hazard function. By implication then,
can we rule out all process models that predict gamma,
log-normal, or ex-Gaussian finishing times? We may if
the data could not possibly have arisen from a mixture
process. However, if the data result from observations
from, say, a process producing gamma-distributed fin-
ishing times under several different rates, the resulting
hazard function may indeed be nonmonotonic.

To clearly illustrate how mixtures produce nonmono-
tonic hazard functions, the top panel of Figure 12 shows
the hazard functions of four gamma distributions (solid
lines), each of a different rate but with the same shape
parameter, which are monotonic increasing over the range

presented. Superimposed on these functions is a hazard
function of a mixture of these four distributions (dotted
line). The bottom panel of Figure 12 shows another ex-
ample, using the hazard functions of normal distributions.
Notice that the mixture hazard function is still increas-
ing and then decreasing, even though the component
hazard functions are positively accelerated. The increas-
ing then decreasing pattern is formed from the way that
the hazard of the mixture “tracks” the behavior of the
hazard functions of the distributions from which it is
composed. Early in the process, the mixture hazard
function follows the behavior of the fastest distribution;
later in the process, it follows the slowest. This demon-
strates that the increasing then decreasing hazard does
not in fact rule out models predicting either the gamma
or the normal classes of distributions of processing
times, unless one is willing to suppose that all possible
sources of parameter variability have been eliminated
from one’s paradigm. As we argued earlier, this is highly
unlikely and indeed inconsistent with the use of the the-
oretical tools of signal detection theory or the notion of
perceptual variability.

Summary

This section has addressed a particular model of infor-
mation processing, the IES model. This model makes no
presumptions about the initial structure of a process;
however, upon the manipulation of some variable of in-
terest, it assumes that an additional subprocess is added,
leaving the original process unchanged, and that the fin-
ishing time of this new subprocess is exponentially dis-
tributed. The new finishing time is then distributed like
the old finishing time plus an exponential random variable.
This model makes a very specific prediction concerning
the relationship between the pre- and postmanipulation
RT distributions, and this prediction provides a strong
test for the IES model. Because this model assumes very
definite structural changes across conditions, and be-
cause the relationship between the distributions must
therefore be very constrained, it may at first seem un-
likely that there are models other than the IES model that
would satisfy the distributional conditions. Also, the IES
test is bidirectional: the finding of a flat IES ratio is log-
ically equivalent to the insertion of a serial exponential
stage. Thus, it is true that no other type of model could
produce a truly flat ratio. Nonetheless, there are several
types of distributions that can be statistically indistin-
guishable from those predicted by the IES model.

In some instances, when the parameters of the process
are constant, the RT hazard functions can be used to dis-
criminate between the different models. However, when
parameter variability is introduced, producing mixture
distributions of RTs, this is no longer the case. We showed
that mixture distributions can also produce the flat IES
ratio and, furthermore, that the hazard functions are no
longer very useful for testing between the models.

The IES model makes the assumption of exponentially
distributed processing times primarily for mathematical
tractability and not from specific process considera-
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Figure 12. Top panel: The hazard function of a mixture of four gamma densities. The
component hazard functions are shown as solid lines, and the mixture hazard function is
shown as a dotted line. Bottom panel: The hazard function of a mixture (dotted line) of four

normal densities (solid lines).

tions. This is by no means a shortcoming: tractability is
a significant concern, and even if it was not, there are a
number of other grounds on which such an assumption
could be justified. However, we have shown that there
exist other structures that do not include exponential
subprocesses that behave in the same way as the IES
model. To a large extent, the reason for this is that we are
only considering RTs. The IES model and most of the al-
ternative models considered make only RT predictions,
so we cannot compare the predictions of the alternative
models and the IES model for other behavioral variables.

Ashby and Townsend (1980) also have considered a
more general model, in which two critical stages of pro-
cessing operate during the performance of a task. This is
the classic serial stage model, around which Sternberg
(1969) developed the additive factors logic. The as-

sumption is that manipulating the levels of certain ex-
perimental factors serves to extend the processing time for
separate stages, and, therefore, the arrangement of those
stages can be determined from the resulting pattern of
mean RTs. Ashby and Townsend extended the additive-
factors logic to the entire RT distribution and suggested a
mathematical test for the presence of serial stages. Roberts
and Sternberg (1994) recently developed an empirical ver-
sion of this test and applied it to several sets of data. We
will now turn to a discussion of additive factors and the
Ashby and Townsend test to investigate the problem of sta-
tistical mimicking for this larger class of models.

CASE2
Additive-Factors Method and Its
Extension to RT Distributions
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Sternberg (1969) presented what has come to be
known as the additive-factors approach to testing cogni-
tive models. Given some presumed number of subpro-
cesses involved in a task, and some assumptions about
which experimental manipulations affect those sub-
processes, Sternberg proposed that the interactions in
mean RT data could provide information about how the
processes were arranged. In particular, if two factors
have additive effects on mean RT, if they do not interact,
and if we have reason to believe that the two factors are
influencing two different stages of processing, we might
assume that the two stages were arranged serially: one
stage completes before the other begins.

In an illustration of this logic, Sternberg (1967) per-
formed an experiment in which he manipulated two fac-
tors in a memory search task. Each factor was assumed
to affect one and only one stage of processing—that is,
the factors had selective influence. The first factor was
the visual integrity of the probe item (e.g., masked or un-
masked), which was assumed to affect only the stage of
stimulus encoding and leave the subsequent memory
search process unchanged. The second factor was the
number of elements in the memory search set, which
was assumed to influence the comparison stage between
the probe item and memory but leave the stimulus en-
coding stage unchanged. He used two levels of probe in-
tegrity (high and low), combined with several memory
loads. If the subprocesses of stimulus encoding and
memory search are arranged serially, so that the search
process cannot begin until the probe is encoded (and if
the durations of these two stages are stochastically inde-
pendent), then the mean RTs should not have interacted
for integrity and load. That is, the means should have
been additive: the increase in mean RT under low in-
tegrity, high load should have equalled the sum of the
mean RT increases when only integrity was decreased
and when only load was increased. Indeed, Sternberg ob-
served an additive pattern of mean RTs over three mem-
ory loads, thus providing evidence consistent with the
hypothesis that the processes of encoding and search
were arranged serially.

The use of additive mean RTs as support for a serial
arrangement of subprocesses depends heavily on the as-
sumption of selective influence of the factors manipu-
lated. If the manipulations of interest influence a com-
mon subprocess, or if a third factor exists that influences
both subprocesses simultaneously, additivity of the
mean RTs may not hold even if serial subprocesses are
present (see Townsend & Ashby, 1983, for a discussion).
If a third subprocess operates concurrently with the two
processes of interest, even more complicated patterns of
mean RT can be observed (e.g., Schweickert, 1978, 1980,
1983). Furthermore, Townsend and Ashby (1983) have
outlined classes of parallel models that also produce ad-
ditivity. Townsend and Thomas (1994) have also pre-
sented many implications of the failure of selective in-
fluence on different processing structures. In sum, the
additive-factors method applied to mean RTs alone does

not provide unambiguous information about the arrange-
ment of subprocesses in a task.

So far, we have discussed statistical mimicking at the
level of the RT distributions. Thus, the comparisons be-
tween means, medians, standard deviations, and so on
all followed as a function of the goodness of match be-
tween the distributions predicted by the different mod-
els. Statistical mimicking at the level of the means is
much easier to accomplish. Indeed, it usually is not nec-
essary to even specify the distributions from which the
means are measured (see, e.g., Townsend & Ashby, 1983;
see also Appendix A). Under quite general conditions,
and in the absence of other variables, there exists a large
number of reasonable alternative models that will pro-
duce a given pattern of mean RT data. Therefore, the ad-
ditivity or lack thereof in a particular set of mean RT
data does not rule out the possibility that some other
kind of model that does not have serial subprocesses was
acting to produce the RTs.

Ashby and Townsend (1980) presented a more rigor-
ous test for the presence of serial subprocesses by ex-
tending the additive-factors logic to the level of the RT
distribution functions. Suppose there are two critical
subprocesses of a task (a and b), such as the stimulus en-
coding and memory search processes discussed above.
Suppose also that we can find two experimental factors
(4 and B) that have selective influence on subprocesses
a and b, respectively, such as the visual integrity and
memory load manipulated in Sternberg’s (1967) experi-
ment. If the subprocesses a and b are arranged serially,
then the total processing time (not including the time for
processes that remain unchanged throughout the exper-
iment) can be expressed as the sum of two random vari-
ables, T,; + T}, representing the separate durations for
subprocesses a and b, respectively, when factor A4 is at
level i and factor B is at level j. Notice that this notation
restricts the influence of factor 4 to 7, and factor B to 7,
selective influence.

If factors 4 and B each have two levels, then a factor-
ial experimental design gives four random variables for
the processing times in each condition: 7, 75, T,,, and
T,,, where T}; indicates the processing time when fac-
tor A4 is at level i and factor B is at level j. If @ and b are
arranged serially, each 7;; can be broken down as a sum
of its component subprocessing times (for example,
T,,=T,, + T,,). Examining this decomposition for each
T; shows, for the 2 X 2 factorial design, it must be the
case that 7,, + T,, = T}, + T,,. Therefore, as Ashby
and Townsend (1980) noted, the distributions of two
random variables defined by the sum of the times ob-
served in the 11 and 22 conditions and the sum of the
times observed in the 12 and 21 conditions should be
equal if selective influence and seriality hold. That is,

Fryvry, O =Fr, ¢ 1,(0. ()

Roberts and Sternberg (1994) developed a straight-
forward empirical application of this condition. By
adding each RT collected in the 11 condition to each RT



collected in the 22 condition, and similarly for the 12
and 21 conditions, samples drawn from the distributions
of T, + T, and T}, + T, are formed. The distribution
functions of these variables can then be estimated, and
the truth or falsity of Equation 2 can be checked. Roberts
and Sternberg called this procedure the summation test.

Roberts and Sternberg (1994) also presented a distri-
butional test for two-component mixtures: in particular,
the alternate-pathways model. In the alternate-pathways
model, subprocesses a and b are arranged in such a way
that, on some proportion of the trials, process a is per-
formed and, on the remainder, b is performed. Unlike
the mixture models we have discussed to this point, the
mixing proportions (probabilities of performing a or b)
do not change from one condition to the next. The dis-
tribution function F;(¢), the distribution of the RTs in
condition ij, must equal pF,;(¢) + (1—p)F,(7), where p
is the probability of executing process a, or taking
path a, and F,(7) and F;(7) are the processing-time dis-
tributions for each path under condition ij. The value of
p does not change with the level of either 4 or B. Instead,
as for the serial stage model, factors 4 and B selectively
influence a and b such that if 4 is increased, process a
slows, and if B is increased, process b slows. For this
model, the distribution functions for the separate condi-
tions must satisfy

SIFL® + Fy®) = 3 1P + o0l )

The distribution functions for the conditions can be es-
timated and averaged in pairs to form the left and right
hand sides of Equation 3. The truth or falsity of this
mixture test can then be determined.

Roberts and Sternberg (1994) noted that mathemati-
cally, no set of distributions could satisfy both the mix-
ture and the summation tests. Thus, a set of data that
passes the summation test logically must fail the mixture
test, and vice versa. They performed many analyses on
both the distributions and the distribution statistics from
five data sets and found that the summation test held
throughout much of the data, whereas the mixture test
failed. They also examined the distributional predictions
of the cascade model (Ashby, 1982; McClelland, 1979).
Because the data did not pass the mixture test or fulfill
the predictions of the cascade model, their analyses pro-
vide evidence consistent with serial stage models of the
various tasks that they investigated.

The most attractive feature of the summation and the
mixture tests is that they are not tied to any particular
specification of the distributions of the random vari-
ables involved. Just as the IES test is, these tests are dis-
tribution-free. If the RTs were generated by a serial stage
or alternate-pathways model, either Equation 2 or Equa-
tion 3 must hold regardless of the shape of the functions
F};(7) or the value of the pathway probability p. Theoret-
ically, one should be able to apply these tests to the data
and be able to draw conclusions about basic cognitive ar-
chitecture (such as the serial arrangement of processes)
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without an elaborate model of the subprocesses in-
volved. However, consider the summation test from a
different perspective. Notice that a model that will pass
the summation test is one where the sums of 7, and T,
and of T, and T, are equal in distribution. It is not nec-
essary to assume that each of those four random vari-
ables are themselves composed of sums of identical ran-
dom variables.

Suppose, for example, that all 7;s are independent
and normally distributed. 7, has a mean of 350 msec and
variance of 1,000 msec?, 7}, has a mean of 450 msec
and variance of 2,000 msec?, T, has a mean of 550 msec
and variance of 3,000 msec?, and 7,, has a mean of
650 msec and variance of 4,000 msec2. Then, because
sums of normal random variables are normally distrib-
uted, 7'}, + T,, and T, + T,, are equal in distribution:
both sums are normally distributed with a mean of
1,000 msec and variance of 5,000 msec2. Therefore,
these distributions will demonstrate mean and variance
additivity and pass the summation test. Each normally
distributed variable can of course be broken down into
sums of two other normal variables in such a way that the
T, = T,; + T, representation is sensible. For example, if
T, had a mean of 200 msec and variance of 500 msec?, 7,,
had a mean of 400 msec and variance of 2,500 msec?, 7},
had a mean of 150 msec and variance of 500 msec2, and
T}, had a mean of 250 msec and variance of 1,500 msec?,
then their sums would produce the distributions given
above. In the absence of a model, the utility of such a de-
composition is minimal, however. It should be easy to
see that there exists a large number of RT-type distribu-
tions for the variables 7}; that will pass the summation
test without assuming seriality of components or selec-
tive influence. (For example, one need only add expo-
nential deviates of equal rate to each normal distribution
T}; to see that the same argument holds for the resulting
ex-Gaussians.)

Roberts and Sternberg (1994) also noted that the pres-
ence of a third factor, C, that influences both process 4
and B will not affect the outcome of the mixture test, but
might possibly cause the summation test to fail. In two
of the data sets they investigated, they observed such an
interaction. For example, in one experiment, which we
will simulate here, the stimulus materials interacted sig-
nificantly with the critical factors 4 and B. Therefore,
they performed a rescaling of the distribution functions
of the sums for each level of the interacting factor C
(stimulus) for the summation test, but not for the mixture
test. These rescaled distributions were then averaged
over the level of the factor. This rescaling equates the
means of the first, second, and third quartiles of the dis-
tributions on the left and the right side of the summation
test equation. Distribution functions can be highly simi-
lar, regardless of their actual shapes, due to their limited
domain and monotonicity. Thus, it was not clear to us
whether the success of the serial model was due to the
rescaling procedure. This turned out not to be the case,
as we will demonstrate.
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First, to determine the effect that statistical mimicking
might have on the summation test and to investigate the
potential problem with the rescaling procedure, we sim-
ulated the alternate-pathways model mentioned above
using binary mixtures of ex-Gaussians. Recall that the
alternate-pathways model is a binary mixture of two
processes, and the effect of the experimental conditions
was to lengthen the duration of one or both processes,
but the mixing proportions were unchanged. Second, we
examined the behavior of a mixture process (similar to
the one discussed during the examination of the IES
model) in which five normal distributions contributed to
the observed processing time, and the effect of the ex-
perimental conditions was to change the proportion of
observations observed from each one. For each model,
we simulated conditions ina 2 X 2 factorial experiment.
The effect of each factor was to decrease the rate pa-
rameters of the exponential portion of the distributions
in the alternate pathways model and to change the mix-
ing proportions in the mixture model. For the mixture
model, it was assumed that the underlying process gave
rise to normally distributed processing times, and the
mean and variance of these times varied from trial to
trial. The effect of increasing the levels of factors 4 and
B was a change in the distributions of the mean and vari-
ance (see Table 2). For this model, factor 4 produced a
main effect of 408 msec, and factor B produced a main
effect of 202 msec. This model predicts a small under-
additive interaction effect of —41 msec. This interaction
should be sufficient to cause the summation test to fail,
but it is small relative to the main effects. It is of inter-
est to determine if the summation test is sensitive to it.

Figure 13 shows the ex-Gaussian densities of the sub-
process completion times for the alternate-pathways
model (solid lines). The mixture densities produced by
the alternate-pathways model are shown with a dotted
line. In each panel, the alternate-pathways density was
produced by combining .427 of the 4 density and .573 of
the B density. The effect of increasing the level of fac-
tor 4 was to increase the exponential mean from 300 to
400. The effect of increasing the level of factor B was to

Table 2
Mixing Proportions of the Mixture Model
Under the Four Conditions in a 2 X 2 Factorial Experiment

Normal
Parameters Condition
M SD A4=0,B=0 A=0,B=1 A=1,B=0 A=1,B=1
400 150 545 .074 .005 .005
600 180 .195 426 129 .005
800 230 232 140 268 .089
1,000 300 .023 327 423 536
1,500 400 .005 .032 174 365
Model RTs
M 551 773 979 1,160
SD 184 240 291 334

Note—Means (Ms) and standard deviations (SDs) are given in milli-
seconds.
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Figure 13. The processing-time densities of the alternate-pathways
variables. The densities for each level of factors 4 and B are presented
as solid lines, and the mixtures are presented as dotted lines. As fac-
tors selectively prolong paths a and b, the exponential component of
the ex-Gaussian distribution increases. This is seen as an increase in
the variance and a decrease in skew for variables 7, and 7,,.

increase the exponential mean from 100 to 200. For all
ex-Gaussians, the normal component was held constant
with a mean of 100 and a standard deviation of 100. The
additivity of the mean RTs are preserved with these pa-
rameter values; factor 4 produced a main effect of
43 msec, and factor B produced a main effect of 57 msec.

For both models, we simulated the effects of a third
interacting factor, C. Toward this end, for each of 5 sub-
jects, 40 observations were simulated for each response
condition in each of eight levels of C. A normal deviate
of mean 100 and a standard deviation of 100 was gener-
ated and added to all observations at one level of C. Be-
tween-subjects variation was also simulated by adding,
for each of 5 subjects, a normal deviate of mean of 600
and a standard deviation of 100. The number of subjects,
levels of C, and the number of observations in each level
closely replicated the conditions of one of the experi-
ments that Roberts and Sternberg (1994) examined (Stern-
berg, 1969, Experiment V). Summing the observations
in the appropriate combinations for each condition thus
yielded 1,600 observations on each side of the equation
for the summation test for each stimulus and subject.
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Figure 14. The results of the summation test applied to the alternate-

pathway variables shown in Figure 13. Pictured are the average dis-

tributions of the sums for the left (solid line) and right (dotted line)

sides of the summation test equation.

Analyses of variance (ANOVAs) performed on the sim-
ulations of both models showed no significant interac-
tion effects on either the means or the variances, so both
simulations could possibly pass the summation test.

Following Roberts and Sternberg’s (1994) procedure,
the observations were rescaled. The medians and in-
terquartile ranges of the left and right sides of the sum-
mation equation were calculated for each stimulus and
subject. These were then averaged over the left and right
sides of the equation. These averages were then averaged
over stimulus and subject. Using the resulting within-
and across-stimulus and within- and across-subject av-
erages, all observations were then subjected to the linear
transformation presented by Roberts and Sternberg,
which equates the means of the medians and interquar-
tile ranges over all conditions on each side of the sum-
mation equation. Analyses were then performed on the
quantiles and percentiles of the distributions, using the
variation between subjects as an estimate of standard
error. As an example of the resulting mean distributions,
the average summation distribution functions (from
Equation 2) for the alternate-pathways model is shown
in Figure 14. The agreement between the left and right
sides of the summation equation is very good.

For the quantile analyses, we followed Roberts and
Sternberg’s procedure by examining the quantiles at p val-
ues of .05, .10, .25, .50, .75, .90, and .95, as well as the
interquartile ranges (/QORs), a measure of skewness (7 o5
+ 145 — 2t 50), and a measure of kurtosis [10(7 g5 — 7 o5 —
IOR)]. We performed two-tailed ¢ tests on the differ-
ences between each quantile measure on the left and
right side of Equation 2 for each subject individually
and on the grouped data. The variance across stimuli
was used as a measure of standard error for the individ-
ual analyses, and the variance across subject means was
used for the grouped data. For the alternate-pathways
model, there were no significant differences between any
measure between or within subjects. One subject showed
marginal differences for the quantiles at high p values,
but none reached significance (all ps > .03). For the mix-
ture model, the only significant difference between the
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two distributions was in their skewness [#(4) = —2.92,
p < .01]. One subject also showed a significant differ-
ence in skew [#(7) = —3.02, p <.02].

For the analysis of the percentiles, we performed ¢ tests
on the differences between the mean distribution func-
tions within and across subjects at 10-msec points along
the time axis. Several hundred ¢ tests were performed for
each subject. For the alternate-pathways model, only 1
subject showed a single significant deviation between
the two distributions. Across subjects, the grouped data
showed two significant differences among 298 points.
For the mixture model, approximately 350 ¢ tests were
performed for each subject. No significant differences
were observed. Across subjects, the grouped data showed
one significant difference among 360 ¢ tests.

We plotted the average differences between the distri-
bution functions for both models (the alternate-pathways
model distributions are shown in Figure 14). These dif-
ferences, plus and minus one standard error, are shown
in Figure 15. The top panel shows the residuals for the
alternate-pathways model, and the bottom panel shows
the residuals for the mixture model. Both models have
passed the summation test quite well. The alternate-
pathways model, after rescaling and averaging over sub-
jects and the effects of a confounding variable, passes
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Figure 15. The results of the summation test applied to the distri-
butions of the alternate-pathways model shown in Figure 13 and the
mixture model of Table 2. The differences between the average dis-
tribution functions for the left and right side of the summation test
equation are plotted along with the standard error based on between-
subject variation. The central line is the residual, centered between +1
and — 1 standard error for the alternate-pathways model (top panel)
and the mixture model (bottom panel).
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the test for additivity that logically excludes mixture pro-
cesses. The mixture model, which predicted a small neg-
ative interaction, also passed the summation test despite
the absence of serial stages. However, the success of
these models is not due to the rescaling procedure. When
the data were not rescaled, but were subjected again to
the same sequence of ¢ tests on the quantiles and per-
centiles, the results of the analyses were unchanged from
when the rescaling was performed. What we have ob-
served, then, are simply instances of statistical mimick-
ing. The rescaling procedure (for these data) does not
have the effect of increasing the similarity between the
summation distributions.

We also subjected the two sets of data to the mixture
test, to compare the results with those of the summation
test. We expected the data from the alternate-pathways
model to pass the mixture test as well as or better than
they passed the additivity test. The generation of data from
the mixture model violated most of the conditions re-
quired for the mixture test to hold, so we were fairly cer-
tain that these data would not pass the mixture test. The
data from both simulations were rescaled in a fashion
similar to that for the additivity test, to equate the aver-
age medians and interquartile ranges across the left and
right sides of the mixture test equation for all subjects,
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Figure 16. The results of the mixture test applied to the distributions
of the alternate-pathways model shown in Figure 13 and the mixture
model of Table 2. The differences between the average distribution
functions for the left and right side of the mixture test equation are
plotted along with the standard error based on between-subject vari-
ation. The central line is the residual, centered between +1 and —1
standard error for the alternate-pathways model (top panel) and the
mixture model (bottom panel).

but the data were collapsed across stimulus without
rescaling and were averaged over subjects.

Analyses of the quantiles for the alternate-pathways
model showed no significant differences between any of
the quantile measures we examined. For the mixture
model, however, all quantiles were significantly differ-
ent (largest p < .005), except for the estimate of kurto-
sis. For the analyses of the percentiles, multiple ¢ tests
performed on the differences between the left and right
sides of Equation 3 at each 10-msec interval along the
time axis showed 7 significant differences among 355
t tests for the alternate-pathways model, and 155 signif-
icant differences out of 381 7 tests for the mixture model.
The residuals of the mixture test are presented in Fig-
ure 16 for the alternate-pathways and the mixture mod-
els. The top panel shows the difference between the left
and right sides of the mixture test equation for the
alternate-pathways model, and the bottom panel shows
the residuals for the mixture model. The standard error
bars are calculated from the variation between subjects.
The alternate-pathways model has passed the mixture
test as well as it passed the summation test, whereas the
mixture model has failed the mixture test in both the
quantile and the percentile analyses.

For the summation test to be passed, the data must show
additivity for both the means and the variances. Stern-
berg (personal communication, December 1993) has
pointed out that one reason for the inability of the sum-
mation test to fail for the alternate-pathways model may
lie in the relative sizes of the variance to the mean main
effects. The alternate-pathways model predicts a variance
interaction that is proportional to the product of the mean
main effects. Because the model’s variance is quite large
(88,710 msec?, calculated as an average across the four
conditions) and the mean main effects are small (43 and
57 msec for factors 4 and B, respectively), the expected
variance interaction was dwarfed; indeed, the variance
interaction was not significant in the ANOVA. Thus, the
alternate-pathways model shows the mean and variance
additivity necessary (but not sufficient) for the summa-
tion test to be passed. However, this difficulty is not en-
countered for the mixture model. The mixture model’s
variance (70,482 msec?) is actually smaller than the
product of the mean main effects (408 and 202 msec for
factors 4 and B, respectively). If the summation test was
passed by the data from the alternate-pathways model
because of the small relative size of the mean main ef-
fects, the ability of the mixture model to pass the sum-
mation test must be due to some other factor.

Summary

The additive-factors approach to testing hypotheses in
psychology has had a powerful influence on the way that
cognitive research is conducted. Its extension to the RT
distributions in the form of the summation test provides
an even more rigorous way to search for serial stages of
processing in cognitive tasks. However, just as with the
additive-factors approach to the analysis of mean RT, the
summation test for serial stages must be applied with



care. It is a valuable tool, but it may be dangerous to use
it as a distribution-free test for the presence of serial sub-
processes without considering other performance vari-
ables and other aspects of the task under study. We have
constructed several process architectures unlike the ser-
ial subprocess model that can pass the summation test
quite well. The important issue for use of this method is
power. Will it be easy to produce alternative models of
the sort presented above, or will each result supporting
a serial model be fit only by a different idiosyncratic
model? Our limited experience suggests that the truth
lies somewhere in the middle of these two extremes.

The problem of statistical mimicking of the IES and
summation tests arises due to post hoc interpretation of
data and a lack of processing considerations. If we knew
why the additional subprocessing time in the IES model
was exponentially distributed, or if we knew more about
what was happening inside the serial processes proposed
for the summation test, perhaps predictions concerning
accuracies, confidence, and so on could be made and
used to distinguish between the different models. This is
not a shortcoming of these tests, but a shortcoming of
the way they were applied. So, we again stress the im-
portance of using tests such as these from within the con-
fines of explicitly defined models of the processes of
interest, rather than using them to make post hoc assump-
tions about cognitive structure.

In the next section, we will examine a model of per-
formance that makes distributional predictions about RT
that fall naturally from the hypothesized structure of the
process. We will demonstrate that the RT predictions can
be statistically mimicked by a single-process model;
however, because of the clearly defined structure of the
model, this is not as great a problem as it is for the IES
or the serial stage models.

CASE 3
Instance Theory

With practice, a subject’s performance of a task, such
as lexical decision, memory search, and so on, becomes
“automatic.” There are conflicting assumptions pro-
posed by various researchers outlining exactly what is
meant by automatic, but, in general, an automatic
process is one that requires little or no mental resource
for its performance. The task becomes relatively effort-
less; RTs descend to floor and accuracies are very high.
Often, the task is performed without conscious aware-
ness or in a mandatory fashion (Posner, 1982; Schneider
& Shiffrin, 1977; Strayer & Kramer, 1990). To explain
the acquisition of automatic performance, Logan (1988)
has proposed an “instance-based” theory of automatiza-
tion. He theorized that, over the course of practice with
a task, performance gradually shifts from a reliance on
the algorithmic solution of the task to the retrieval of the
memories for specific instances of a problem and its re-
quired solution.

For example, in a memory search task, a particular
probe item may require a negative (“not present”) re-
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sponse. A subject might search the memory set for this
probe item at the first few presentations of it; however,
after that, if that item always appears as a probe and
never a distractor, the memory for the negative response
given to that probe should be sufficient to perform the
task. The process that Logan proposes to underlie the
shift from algorithm to memory is a race. Each presen-
tation of the probe lays down a separate and independent
trace in memory. The retrieval of these traces races with
the execution of the algorithm, and the RT is determined
by the time taken by the shortest of these processes. As
more and more instances are encountered, the likelihood
that one of those instances is retrieved before the algo-
rithm is completed becomes higher and higher. The sta-
tistics of the race take over; the additional members of
the race represented by each new instance cause the win-
ning time to become smaller and smaller. This increase
in speed captures the qualitative aspects of automatic per-
formance observed in experiments on skill acquisition,
and also the shift from effortful algorithmic problem
solving to effortless retrieval of a solution from memory.

Logan (1988) discussed at some length the character-
istics of the RT means and standard deviations as func-
tions of the number of presentations of a stimulus. The
“power law of practice” is well known (e.g., Newell &
Rosenbloom, 1981); it describes the decrease in mean
RT and the RT standard deviations as power functions
(b + a N=¢) of the number of trials or exposures to a stim-
ulus (V). The parameters a, b, and c are positive; b usu-
ally represents the contribution of perceptual and/or re-
sponse execution processes, and ¢ determines the rate of
improvement. Instance theory nicely predicts these rela-
tionships as an outcome of the race process. The out-
come of the race is modeled as a minimum statistic—
that is, the smallest of NV random variables is observed.
Under general conditions (which simply assure that each
instance of a stimulus is similar to the ones that have
been laid down earlier; see Fisher & Tippett, 1928), if
these observations are positive (as RT data are), then as
N grows, the minimum statistic converges in distribution
to a Weibull random variable (cf. Colonius, 1993). As
the number of instances (N) increases, the number of
runners in the race increases, and the observed RT's will
tend to be distributed as Weibull random variables, with
distribution function

F(N)=1- exp{— [N”" (ﬂ) ]} 4)

a

The mean, standard deviation, and quantiles of the
Weibull distribution decrease as a power function of the
number of instances, N.

Thus, instance theory predicts that after some number
of trials with a particular stimulus—response combina-
tion, the distribution of RTs to that combination should
be approximately Weibull. Furthermore, the means and
standard deviations should follow the power law of prac-
tice, with the same exponent, 1/c. Logan (1988) fit power
functions with identical exponents to the RT means and
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standard deviations, providing support for instance the-
ory. He also demonstrated, in the course of several ex-
periments, that performance of lexical decision, alpha-
bet arithmetic, and pronunciation decision tasks appears
to be item-based—that is, performance depended on
whether a particular stimulus—response combination had
been encountered before, and transfer to new stimulus—
response pairs was poor. Furthermore, transfer to a final
frequency judgment task produced stimulus-frequency
judgments that were independent of the consistency of
the stimulus—response mapping, supporting the notion
that each stimulus presentation lays down a new trace in
memory.

Because instance theory also predicts that the RT dis-
tribution should be asymptotically Weibull and its quan-
tiles decreasing as a power function of the number of
stimulus presentations, Logan (1992) examined the entire
RT distribution. Using the same exponential constant
used to fit power functions to the means and standard de-
viations, he showed that the Weibull could be well fit to
the RT distributions from several tasks. The quantiles of
these distributions decreased as N increased. Thus, his
RT data are consistent with those predicted by instance
theory even at the level of the RT distributions.

However, the Weibull distribution is not the only dis-
tribution that predicts a power function decrease in the
RT quantiles, means, and standard deviations. In fact,
any random variable 7 that decreases over the course of
an experiment by N—¢ (T = N~ <X for some positive ran-
dom variable X) will also predict a power function de-
crease with exponent ¢ in mean, standard deviations, and
quantiles (see Appendix B). It need not be the case that
the RTs are Weibull-distributed; hence, the assumption
of'a race process may not be necessary. Because the Wei-
bull is one of very many positive, unimodal and posi-
tively skewed distributions, its nice fits to RT distributions
are not surprising. Many other unimodal and positively
skewed distributions might fit as well and exhibit the
same power-function decrease in means, standard devi-
ations, and quantiles.

Consider, as an alternative to instance theory, a model
in which mean algorithmic solution time for a stimulus
decreases as the number of stimulus presentations in-
creases. The algorithm does not change over different lev-
els of practice; it simply gets faster. To construct this
model, we can eliminate the laying down of traces (and,
hence, the “race” from instance theory) and presume
that each stimulus presentation causes the mean pro-
cessing rate of the algorithm to increase. At the second
presentation of a stimulus, the operation of the algo-
rithm is greatly speeded relative to the first presentation.
However, at the third and fourth presentations, the
amount of relative speed-up is not as great. Eventually,
the rate of processing asymptotes at the point where the
algorithmic process reaches its physical limitations.

The algorithm might proceed by delivering units of
“information” to a response selection process. For a lex-
ical decision task, this information could take the form
of the number of connections recovered in semantic mem-

ory. Units arrive from the algorithm in exponentially dis-
tributed time intervals, and the response selection
process waits until some predetermined number of units
has accumulated. The time to initiate a response is then
distributed as a gamma random variable with a shape pa-
rameter equal to the number of units necessary for re-
sponse initiation and a rate parameter equal to the rate at
which the algorithm delivers information to the response
process.* As the frequency of a particular stimulus in-
creases, the rate at which the algorithm can find and de-
liver information increases. This might arise because the
previously discovered connections are primed or strength-
ened. Suppose that this rate parameter is also a random
variable, varying according to the momentary demands
on the algorithmic process and the residual effects of pre-
vious stimuli. Let the distribution of the rate parameter
also be gamma, with fixed shape parameter and a rate
equal to a power function of the number of stimulus pre-
sentations. Across trials, as the number of stimulus pre-
sentations increases, this model produces observed RTs
that are continuous mixtures of gammas, with RT means,
standard deviations, and quantiles that decrease as a power
function of the number of stimuli with the same expo-
nent (see Appendix C). This model also predicts posi-
tively skewed unimodal densities typical of RT data.
We fit this model to some of the data presented by
Logan (1992, see his Figure 9) involving an alphabet
arithmetic task. In alphabet arithmetic, a subject is pre-
sented with a problem such as 4 + 5 = F, and the task
is to determine if the letter F'is five positions past the let-
ter 4 in the alphabet. The equation 4 + 5 = F would re-
quire a “true” response, whereas B + 3 = D would re-
quire a “false” response. We used two conditions of the
alphabet arithmetic data, where the addend equaled 2 or
4; we chose these conditions because instance theory fit
the addend = 2 case best and the addend = 4 case worst.
For each addend condition, Logan used a single set of
parameters for all distributions. There were six levels of
practice across the experiment, and the stimuli were pre-
sented six times at each level. To fit the mixture model,

Table 3
Parameters and Goodness-of-Fit Values for the
Mixture Model and Logan’s (1992) Instance Theory

Correct Goodness of Fit Parameters
Addend Response rmse 12 a b c k j
Mixture
2 True 90 .994 2,743 562 1.528 10.113 4.773
False 94 995 5,390 416 1.759 8.520 7.025
4 True 51 999 6,612 69 1.644 14.536 9.240
False 113 .996 8,566 0 1.701 13.124 10.562

Instance Theory

2 True 119 979 4909 656 1.766 — —
False 135 979 5,534 575 1984 — —
4 True 174 979 7,164 394 1.993 — —

False 214 971 7,426 276 2.123 — —

Note—Parameters & and j represent shape parameters for the processing-
time distribution and the rate distribution, respectively.
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Figure 17. Fits of the mixture model to Logan’s (1988) alphabet arithmetic data. The quintiles of each distribution are shown as the open
circles at each level of practice. The curves are the predictions of the mixture model. The two left panels show the fits to the case where the ad-
dend equaled two, and the two right panels show the fits to the case where the addend equaled four. The top panels show the RTs for the case
where the correct response was “true,” and the bottom panels show the RTs for the case where the correct response was “false.”

five parameters were estimated for both the true and the
false conditions and for each addend. These included the
three parameters appearing in the power law, including
the time intercept and the exponent ¢ as well as the con-
stant a, and the two shape parameters required for the
mixture model. The mean rate of information accrual at
level of practice N is expressed as a N~1/c; for these data,
N =6, 12, 18, 24, 30, and 36. All parameter values are
presented in Table 3. Goodness-of-fit measures 2 and
root mean squared error (rmse) are also presented in
Table 3. The fits of the mixture model to the RT quintiles
presented by Logan are shown in Figure 17. The top pan-
els show the RTs for alphabet arithmetic equations that
were true, and the bottom panels for those that were
false. The left panels show the RTs for addend = 2 con-
ditions and the right panels for addend = 4.

The fits of the mixture model are excellent. There are
no systematic deviations of the data from the predicted
curves. Each curve in each panel was generated by vary-
ing N only. The 72 statistics are higher for the mixture
model than for instance theory, and the rmse statistics
are considerably smaller for the mixture model than for
instance theory. This is perhaps not surprising, since
there are two additional parameters (k and ;) for the mix-
ture model. It could potentially be difficult to distin-
guish between these two models—one that assumes a
single process that gets faster and another that assumes
a race between many processes—on the basis of their
fits to RT data.

However, there are two aspects of the RT data that in-
stance theory cannot accommodate. The first of these is
the behavior of the parameter b, which is assumed to en-
compass the time required by perceptual and motor
processes. Logan demonstrated that the parameter b also
decreases as a power function of practice. An examina-
tion of Equation 4 shows that there is nothing in the as-
sumptions of instance theory that could explain this de-
crease. Instance theory, which produces the N /¢ term in
the equation, predicts only an effect on the scale pa-
rameter a, and the addition of more traces should leave
the shift parameter b unaffected. As Logan mentions, it
may be reasonable to assume that the residual processes
embodied in b also speed up as a power function of prac-
tice. The second aspect of the data involves the hazard
functions. Because instance theory predicts Weibull-
distributed RTs, it also predicts that the RT hazard func-
tions should be monotonic increasing (since the parame-
ter ¢ is greater than one). As we mentioned earlier, RT
data usually exhibit monotonic increasing or increasing
then decreasing hazard functions. As performance im-
proves, the hazard functions should pull up and to the
left, becoming nonmonotonic. Instance theory cannot
predict this behavior. Because the mixture model is a mix-
ture, however, it can produce the nonmonotonic increas-
ing then decreasing hazard functions typical of RT data
(see Figure 18).

As Logan states, the important aspect of his analyses
is not that they demonstrate that the Weibull distribution
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Figure 18. The hazard functions predicted by the mixture model
for the addend = 2 condition. The solid line is the “true” RT hazard
function, and the dotted line is the “false” RT hazard function.

fits the data but rather that the instance theory naturally
predicts the Weibull as a result of its processing assump-
tions. The same cannot be said of the single-process
mixture model. Several assumptions were selected arbi-
trarily for the single-process model to demonstrate a
distribution-level mimicking problem. How can instance
theory be modified to produce the decrease in b and a
potentially nonmonotonic hazard function? The most
straightforward solution is, as Logan himself suggested,
to assume that b is a random variable that systematically
decreases with practice. Accounting for the variability in
b produces a mixture and thus opens the way for in-
stance theory to produce a nonmonotonic hazard func-
tion. The hazard function of a mixture of the distribution
used to fit the alphabet arithmetic data for addend = 2,
N = 6 with a varying shift parameter (with exponent
equal to .5 and rate equal to .33) is shown in Figure 19.
If the rate parameter of the shift distribution is an in-
creasing function of practice, then the mean of the shift
parameter will decrease with increasing practice.

‘We must emphasize again that the single-process model
presented here is not intended as a serious competitor to
instance theory. The fact that it fits the RT data is in-
consequential when considered in light of the lack of
foundation for the original distributional assumptions.
For instance, why should the rate parameter be gamma
distributed? Logan’s (1988,1992) approach to modeling
automaticity is an instantiation of (in our opinion) how
RT data should be used to test models. RT predictions
are, first and foremost, model driven; only by assuming
the race between traces does the Weibull prediction
arise. The race also specifies the behavior of the means
and standard deviations over practice, as well as the
change in the Weibull rate parameter. Instance theory
also makes predictions about other aspects of perfor-
mance—namely, frequency judgments—and the single-
process model does not. The only shortcoming of in-
stance theory that the preceding exercise revealed was
that the behavior of the Weibull hazard functions was not
consistent with that of typical RT hazard functions. How-
ever, this problem can be circumvented by introducing
variability into the shift parameter.

If the Weibull distribution had been chosen arbitrar-
ily to represent the finishing-time distribution of a pro-
cess too vaguely defined to require something else, then
the demonstration that the single-process model could
also produce the same patterns in the RT data, and fit the
data better, would have been a serious blow.

We have concentrated on the entire RT distribution
for this example. We will now examine a model of mean
RT data and demonstrate that the problem of statistical
mimicking is quite serious.

CASE 4
The Guided Visual Search Model and Mean RTs

In a visual search task, an observer is provided with an
item, or farget, and then is presented with a visual array
consisting of several items. The observer’s task is to re-
spond positively if the target is present in the visual array
and to respond negatively otherwise. It has become
common to use stimuli that can be described by values
on particular stimulus dimensions, such as color, shape,
and size. Suppose, for instance, that an observer is look-
ing for a red X in an array that might contain red and
green Xs and Os. If all of the nontargets in the array are
green or Os, the observer can respond very quickly as to
the presence or absence of the target. However, if the dis-
tractors are red Os and green Xs, the observer’s response
is much slower and much more error-prone. This type of
search task is called conjunction search, since the ob-
server must discriminate between combinations of val-
ues on the two possible stimulus dimensions. Treisman
and Gelade (1980) proposed a two-stage model of visual
search, in which a fast parallel preattentive stage could
sort stimuli in the array on the basis of the stimulus di-
mensions. If the target is red, for example, and all non-
target items in the display are green, the preattentive
stage can quickly classify all the display items by color,
and the response can be executed immediately. If the tar-
get is a conjunction of the stimulus dimensions, the
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Figure 19. The hazard function predicted by instance theory with
a Weibull-distributed shift parameter. Parameter values are given in
the text.



preattentive process fails, and a slower serial search is
executed, in which each item in the display is examined.

Wolfe et al. (1989) presented results that seemed to be
inconsistent with Treisman and Gelade’s (1980) two-stage
model of visual search in that information from the pre-
attentive stage of processing appeared to be eliminating
distractors for comparison during the subsequent search
stage. Using easily discriminable feature values for each di-
mension, they found that RTs to conjunction targets were
much faster than those reported by Treisman and Gelade
and that the slopes of the RTs as a function of display size
were much shallower. Thus, the “serial” process that they
observed did not appear to be as “serial” as that observed
by Treisman and Gelade. Moreover, they showed that
when three stimulus dimensions were involved, triple
conjunction targets were easier to discriminate than were
simple conjunction targets— a finding to which Treis-
man’s feature integration model cannot speak.

Wolfe et al. (1989) theorized that the parallel stage of
processing produces a spatiotopic attention map of the
visual display. Activation is directed to each location in
the attention map that corresponds to the feature value of
the target. Thus, more activation is given to the locations
where features conjoin. Using these activation levels as
guides, a serial search ensues, where attention is drawn
to the highest activation levels in the map first, and the
search terminates when the target is found. The guided
search model predicts that multiple conjunctions will be
easier to detect than will simple conjunctions among
distractors that share one feature with the target, because
the additional feature dimension will increase the acti-
vation level of a particular display location over that of
simple conjunction stimuli. When the distractors are
themselves conjunctions, sharing two features with the
target, then triple conjunctions should be slowed again
as in regular conjunction search.

Wolfe (1994) has recently elaborated the theory be-
hind the construction of the attention map, which now
allows the guided search model to account for perceptual
grouping phenomena, among other things. This expanded
theory allows changes in the peaks of activation in the at-
tention map based on the organization of the visual dis-
play and the observer’s expectancies. Once the map is
constructed, however, search of the display ensues as be-
fore, using the activation levels as guides.

The attention map actually contains a great deal of in-
formation, and this information may be sufficient for the
selection of a response (Pavel, 1990). If one location has
a much higher activation level than the others, it is very
likely that a target is located in that position. Thus, target
displays will have higher average activation levels than
nontarget displays. A search process is not actually nec-
essary, since the response could be based on this per-
ceived level of overall activation. To demonstrate this, the
subprocesses responsible for search can be eliminated
and the “present” or “absent” judgment can be made on the
basis of the activation levels alone (e.g., Pavel, 1990).
After a little practice with the task, an observer gets a feel
for the average activation level across the surface of the

STATISTICAL MIMICKING 43

attention map when a target is present versus when a tar-
get is not present. The observer sets a criterion along the
continuum of mean activation that is perceived and tends
to respond negatively when the perceived mean activa-
tion is less than the criterion and positively otherwise.

More rigorously, for a given level of stimulus clarity,
target discriminability, and so on, each stimulus con-
tributes a random amount of activation to its position in
the attention map for each feature that it shares with the
target. For each dimension and each stimulus the
amounts contributed are independent and identically dis-
tributed with some mean, u. If there are two stimulus di-
mensions for a simple conjunction search, in which the
distractors each share one feature with the target, and N
locations in the attention map, then the average activa-
tion level for each position will be u for nontarget trials
and [(N+1)/N]u for target trials. The measure of dis-
criminability d' (under the assumption of equal variance
for the target and nontarget activation distributions) is
proportional to [(N+1)/N]u — u = u/N for these trials.
For triple conjunction search among nontargets that
share a single feature with the target, the nontarget dis-
tribution of perceived activation is unchanged, but the
target distribution then has a mean of [(N+2)/N]u, and
d' doubles, being now proportional to 2u/N.

For the condition where the distractors of a triple con-
junction search share two features with the target, the
noise distribution is then shifted upward to have a mean
of 2u, and d' again drops to the level of simple conjunc-
tion search. For each of these conditions, simple con-
junction, triple conjunction, and triple conjunction with
conjunction distractors, the observer sets an appropriate
criterion level. In the triple conjunction case where non-
targets share only a single feature with the target, per-
ceived levels of activation fall, on average, farther from
the criterion because of the increased distance between
the target and nontarget distributions. Thus, triple con-
junctions should be faster and less error-prone than sim-
ple conjunctions. When nontargets share two features
with the target, d' is equal to that of the single conjunc-
tion case; therefore, little performance difference should
be observed.

For all three cases, d' is a decreasing function of N.
Therefore, as the array size increases, activation levels
will tend to be selected closer and closer to the criterion
and RTs will increase. If stimuli are made less discrim-
inable, then the mean amount of activation contributed
by each dimension u decreases, decreasing d’ and again
slowing RTs. It is not necessary to suppose that activa-
tion is allocated in the same way for all feature dimen-
sions, but, for the purposes of this discussion, that con-
sideration would provide an unwelcome complication.
The constant mean activation model will prove suffi-
cient for now.

It is not necessary to specify the distribution of fin-
ishing times produced by the model, since we can always
find a system of distributions that can produce the
means. To derive predictions for mean RT, however, we
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have assumed that RT is a function of the distance from
criterion (c¢) that an activation level (a) is sampled. In
particular, we have assumed that

E[RT}|a,c] = ye~Mla=c+b,

where the subscript j indicates the asymmetry between
positive and negative responses. This function gives a
reasonable approximation of the decrease in mean RT as
stimulus intensity falls farther and farther from criterion
(e.g., Ashby, Boynton, & Lee, 1994; Baddeley & Ecob,
1973; Gescheider, Wright, Weber, Kirchner, & Milligan,
1969; Murdock, 1985). The derivation of the mean RTs
based on this assumption are presented in Appendix D.

We made several additional assumptions to reduce the
number of free parameters of this model. First, we as-
sumed that the mean activation added by a single feature
was one and that its standard deviation was equal to
.0075. This standard deviation was selected so that the
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Figure 20. The density of mean activation levels as predicted by the
single-process visual search model. The vertical lines in each panel are
the unbiased criteria for the N =8, 16, and 32 set sizes moving from
right to left. The top panel shows the densities for simple conjunction
search. The center panel shows the densities for triple conjunction
search where the target and distractors share a single feature. The
bottom panel shows the densities for triple conjunction search where
the target and distractors share two features. Accuracy should be
nearly perfect in the Triple (1) condition, because there is very little
overlap between the densities. Accuracy in the Triple (2) condition
should be less than in the simple condition, because overlap is greater
(notice the difference in scales).
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Figure 21. Mean RTs as a function of the distance that a perceived
activation level falls from the criterion for the simple, Triple (1) and
Triple (2) conditions.

error rate in the most difficult condition (N = 32, triple
conjunction sharing 2 features) was around 5%. Second,
the amounts of activation contributed by each stimulus
dimension to a single location were independent with
equal mean and variance. Third, we assumed that the ob-
server was unbiased. These assumptions allowed us to
calculate the variance of the activation distributions and
the criteria as functions of the set size (see Appendix D),
and reduce the parameters to the base times in each con-
dition (b in the equation given above), the decay rates
(A, and A_), and y—a total of six parameters.

The distributions of mean activation under these as-
sumptions are presented in Figure 20 for all conditions
of the conjunction search experiment. The vertical lines
in each panel are the unbiased criteria for Set Sizes 8, 16,
and 32 moving from right to left along the activation
scale. The mean RTs as a function of perceived activa-
tion and the six estimated parameters are presented in
Figure 21. The only difference between the six functions
in Figure 21 is in the base times, the smallest of which is
for the triple conjunction condition where distractors
share only one dimension with the target [Triple (1)].
The fits of the single-process means to Wolfe et al.’s (1989)
data is presented in Figure 22. The model has captured
the patterns of mean RT over the different conditions quite
well, accounting for 93% of the variance and producing
a rmse of 31 msec. The error bars, as estimated from a
simulation of the single-process model, are superim-
posed on the predicted means. The standard deviation of
the mean decreases as set size decreases because the
RTs are at or near floor for N = 8. There are two short-
comings in the fits: first, the N = 8§ base times are too
high, resulting in an overestimation of the target-present
RT; second, the negative slope in the triple conjunction
condition is too large (5 msec) relative to the positive
slope (0.3 msec) and the observed slope (1.2 msec). The
predictions of the original guided search model are not
explicit; therefore, despite these small deviations of the
single-process model from the data, comparisons be-
tween the two models are not possible.
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The single-process model makes a number of other pre-
dictions. The predicted accuracies, for instance, can be
explicitly calculated. Furthermore, because of the steady
increase in activation variance with increasing set size,
although the RT predictions for the simple and triple
conjunction search with two shared dimensions may be
very similar, the accuracy for the triple condition must
be less than the accuracy for the simple condition. This
can be seen as a greater overlap between the activation
densities in Figure 16 (bottom panel). The model also
predicts that the accuracy should be greatest in the triple
conjunction condition where only one dimension is
shared by the target and the distractors. This demonstra-
tion illustrates the importance of considering other vari-
ables along with mean RT. Because there exist any num-
ber of models that can replicate a given pattern of mean
RT data, the observation that, say, mean RT increases
with some independent variable does not provide strong
support for a model of the process that produced the mean
RTs. Also, the RT—distance assumption predicts that
error reaction time distributions are negatively skewed,
which is inconsistent with RT data, whereas the serial
search model is mute on the subject. Observations of this
type provide additional tests of the models. They also pro-
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vide sources of converging evidence, but they are only con-
vincing when the larger patterns of behavior are observed.

In the case of the original guided search model, the
mechanisms by which the attention map is formed and the
subsequent visual search is carried out were not specified
in enough detail to rule out the operation of alternative
models in which no search is performed at all. The more
recent version of guided search (Wolfe, 1994) is a positive
step toward deeper understanding of the processes in-
volved in the performance of visual search tasks. Because
Guided Search 2 has made accuracy performance contin-
gent upon the search process, it can be contrasted to mod-
els, such as the one presented here, that do not involve
search per se. Of course, some structure must give rise to
the mean RT—distance function, and “search” may or may
not be as good as any other theory. A resolution of the
issue will require collecting data with experiments de-
signed to test specific points of the two models.

GENERAL DISCUSSION
AND CONCLUSIONS

In this paper, we have examined specific distributional
and mean RT predictions made by various established
models of performance and shown that, for each of these
models, there exist one or more alternative models that
also make these predictions. We concentrated on RT dis-
tributions. We have shown that even very powerful tests
of cognitive architecture based on RT can be passed, or
statistically mimicked, by allowing the parameters of the
models to vary. This suggests that these tests cannot be
applied in a post hoc way and should be applied to a richer
constellation of data, of which RT is only a subset.

We began with Ashby and Townsend’s (1980) test for
the presence of an inserted serial exponential stage of
processing, the IES model. This test was passed by sev-
eral single-process models that did not include a serial
exponential stage by changing the parameter values in
reasonable ways across experimental conditions. We
also presented a model that predicted normally distrib-
uted RTs, with randomness in the mean and variance
from trial to trial, and that passed the IES test. The RTs
produced by this model were mixtures of normal distri-
butions, and the mixture properties rendered the hazard
functions ineffectual for distinguishing between the dif-
ferent models. By virtue of the restricted nature of the
IES test, it was the most rigorous proving ground for
the alternative models. The IES model should have been
the most difficult to mimic, but it turned out to be rela-
tively easy to do so. Thus, our ability to mimic other (per-
haps more complicated but less rigorously specified) mod-
els with alternative representations was almost assured.

We turned from the IES model to the more general se-
rial stage model. The existence of serial stages in men-
tal processing has been addressed using additive-factors
logic (Sternberg, 1969). The idea that patterns of inter-
action between different experimental conditions pro-
vides information about the processes underlying the
performance of a task has had a tremendous impact on
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the way that hypotheses are constructed and tested in
psychology and has led to important work on more com-
plicated mental structures (e.g., Fisher & Goldstein,
1983; Schweickert, 1978). Additive-factors logic was ex-
panded from mean RT to the scope of the RT distribu-
tions by Ashby and Townsend (1980) and was subse-
quently applied to a large collection of data sets by Roberts
and Sternberg (1994) in the form of the summation test.
We presented data simulated from two models that passed
the summation test for the presence of serial stages, al-
though neither model included serial stages.

The models that we examined as alternatives to the
IES and serial stage models were fit to distributions that
we knew would pass the IES and summation tests. In
most cases, the parameters of these models were selected
in such a way as to minimize the sums of squared error
between the distribution functions of the models and
gamma distributions. Because the gamma distributions
were composed of additive exponential stages, the abil-
ity of these models to mimic the various tests was a func-
tion of their goodness of fit to the gamma distributions.
Although it was not difficult to achieve these fits, we are
unable to specify more general conditions under which
alternative models will pass or fail the tests. However,
Ratcliff (1988) fit the diffusion model to several sets of
data and, using those parameter values, the resulting RT
distributions passed the IES test for the presence of a se-
rial exponential stage. This suggests that the mimicking
problems encountered with post hoc application of these
tests could be widespread in the context of nontrivial
processing models.

Our findings do not indicate any weaknesses in the [ES
and summation tests. The problem of mimicking by other
nonserial models arises only as a result of the way that
the tests were applied. If we were dealing with an explicit
model of the processes involved in the separate stages,
we could derive predictions for the finishing times of
those stages and perhaps examine also the predictions of
other variables, such as accuracy or confidence, and their
behaviors as a function of other independent variables.
Fits of the predicted distributions under the appropriate
parameter restrictions, together with the IES and sum-
mation tests, would provide strong evidence that, for ex-
ample, the encoding process and the comparison process
in memory search were arranged serially. Other facets of
the data could also be examined, and strong empirical
manipulations could be made to reveal the limitations of
the model under scrutiny. Working backward from the
RT data, showing that the IES or summation test is
passed, without specifying from a model how the sub-
processing times are distributed or how these times inter-
act with other variables, is not convincing by itself since
many sets of distributions can pass these tests (at least
statistically) without serial components.

As an example of the constraints that an explicit model
imposes, we discussed Logan’s (1988) instance theory of
automaticity. Instance theory accounts for the acquisi-
tion of automatic performance of a task via a qualitative
shift in processing strategy from the algorithmic solu-

tion of a task to a reliance on the memory of its solution.
We showed that an alternative model that assumed only
that the algorithmic performance got faster with practice
could account for the RT distributions as well as or bet-
ter than instance theory. It was not necessary to suppose
that multiple processes were invoked by the memory
system or that new memory traces were constructed with
every exposure to a problem to account for the RT distri-
butions. As we emphasized, however, the single-process
model that we constructed is actually quite inadequate
since it accounts only for RTs and only by way of some
unfounded assumptions about the algorithm. Instance
theory predicts other aspects of skill acquisition, and its
prediction of Weibull-distributed RTs is derived from
the structure of the model.

Perhaps there are some ad hoc assumptions that could
be made with respect to the single-process model to allow
it to accommodate other aspects of the data, such as ac-
curacy or frequency judgments; however, without a bet-
ter model of how the algorithm improves efficiency, in-
stance theory will remain the more attractive option. The
RT predictions of instance theory are a direct conse-
quence of the presumed structure of the cognitive sys-
tem involved, not a collection of convenient mathemat-
ical assumptions, as is the single-process model. The
point is that, if only RT is considered, these two models
are indistinguishable even if the entire RT distribution is
examined.

We examined another model that makes predictions
about mean RTs in visual search. The potential for sta-
tistical mimicking is even greater in the case of mean RT
data because there exist any number of models that can
produce a set of mean RT data, and it is not even neces-
sary to specify the distribution function of the process
producing the data. We emphasized this point by using a
signal detection model of visual search, fitting the data
that Wolfe et al. (1988) used as support for a multiple-
process model of visual search.

Single-Process Models

In many instances, the alternative models that we pro-
posed contained processing architectures that did not
change across experimental conditions. Instead, the ef-
fect of a change in the experimental situation was to change
some aspect of the distribution of a parameter. This is in
contrast to the competing models that often rely upon a
change in the structure of the central process to account
for the RTs: the IES model constructs a new exponen-
tially distributed subprocess, Logan’s (1988) instance the-
ory assumes an elaborate memory structure that changes
with every new stimulus presentation, and Wolfe et al.’s
(1988) visual search model relies upon a multistage search
process following the construction of the attention map.
What this illustrates is that single-process models have
often been neglected when various multiple-process mod-
els have been tested against each other.

We can pose the distinction between a multiple- and a
single-subprocess model in mathematical terms. Does a
change in the experimental situation require either the



specification of a new random variable to represent the
duration of a new subprocess or stage (the multiple-
subprocess case) or a change in the parameters that de-
termine the finishing time (the single-subprocess case)?
It should be clear that it will be very difficult to deter-
mine (on the basis of RT data alone) whether an experi-
mental manipulation creates a new subprocess or merely
changes the preexisting parameter values of the old sub-
process. There will not always be a testable dichotomy
between single- and multiple-subprocess models; in
some cases, the dichotomy may be purely descriptive.
Consider the fact that sums of normal deviates are them-
selves normally distributed. Thus, a model that assumes
several serial subprocesses, each one producing normally
distributed processing times, will predict normally dis-
tributed finishing times. A change in the mean and vari-
ance of a normal distribution from one experimental
condition to another is consistent with both a shift in the
mean and variance and the addition of one or more stages
with normally distributed processing times.

More generally, Townsend and Schweickert (1989,
Theorem 1) have pointed out that any experimental ma-
nipulation that orders the distributions of pre- and post-
manipulation RT is also consistent with the addition of
a positive random variable to the premanipulation RT. In
other words, if, for every point in time ¢, the probability
of observing an RT smaller than 7 is always greatest in
the premanipulation condition (so the RTs in the prema-
nipulation condition are more likely to be smaller than
those in the postmanipulation condition), then we can
express the postmanipulation time as the premanipula-
tion time plus some positive random variable (that is not
independent of the others). Therefore, any manipulation
that (for example) decreases the scale parameter of a
single-process model (which is equivalent to making the
times longer) can also be mimicked perfectly by a mul-
tiple-process model in which an additional (dependent)
stage of processing is added (see Appendix E).

What, then, is the point of making the distinction be-
tween multiple- and single-process models? Our goal as
researchers relying heavily on the observation of RTs is
to learn about the fundamental architecture of cognition.
It is therefore very important to determine whether
changes in RTs across experimental conditions can allow
us to infer changes in the structure of the processes in a
task. We have shown in this paper that RTs alone cannot
be used to make this distinction in a post hoc way. This
is because single- and multiple-process models can sta-
tistically mimic each other. If we allow for parameter
variability, the mimicking problem becomes worse.

One might also ask, in the same spirit, what is the point
of making the distinction between serial and parallel
processing models, since there exist equivalent serial mod-
els to a large number of parallel models? First, it must be
realized that there also exist classes of serial and paral-
lel models that do not mimic each other, just as there
exist single-process models that do not mimic multiple-
process models. We can distinguish between serial and
parallel models, as we can distinguish between multiple-
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and single-process models, by generating a priori pre-
dictions about RT and other behavioral variables within
different modeling schemes. We can also use more elab-
orate experimental paradigms that vary several factors
and thus observe a far wider range of effects in the data
(e.g., Schweikert & Townsend, 1989). This is our reso-
lution to the issue of this paper: testing between differ-
ent cognitive architectures requires the generation of
a priori predictions within a modeling context. The tests
that we have discussed are very powerful within the
framework of testing the explicitly defined serial mod-
els, but single-process models must also be considered.

The single-process model has also been the subject of
intense scrutiny recently, and attention has been drawn
to the ability of certain single-subprocess models to mimic
each other. The models in question are generally classi-
fied as accumulator models, in which the response—
selection process is guided by the actions of “counters,”
or neural mechanisms that keep track of the information
accruing toward each response. The issue of interest
with this type of model is the relationships between the
counters. The random-walk model, for instance, can be
represented as an accumulator mechanism with counters
that are perfectly and negatively correlated; a positive
amount of information toward one response decrements
an equal amount of information away from all others.
Another representation assumes that the counters are in-
dependent from each other and that a response is se-
lected as soon as the level on that response’s counter ex-
ceeds a certain predefined level. Such representations
are usually called race models, since the counter that ex-
ceeds criterion first “wins” and determines the response.

There has been considerable discussion on the relative
merits of the correlated and independent representa-
tions, particularly with respect to the kinds of data that
each can accommodate (Ratcliff, 1978; Smith & Vick-
ers, 1988; St. James & Eriksen, 1991; Van Zandt, Colo-
nius, & Proctor, 1995; Vickers, 1979; Vickers, Caudrey,
& Willson, 1971). For instance, Marley and Colonius
(1992) addressed the issue of counter independence di-
rectly and showed that any single set of choice RT and
accuracy data could be represented by a race between in-
dependent counters. In particular, they proved that an
equivalent race model exists for any model with coun-
ters correlated to an arbitrary degree. Thus, Marley and
Colonius assured the existence of statistical, if not exact,
race model mimics to random-walk models for choice
RT tasks. Dzhafarov (1993) has recently expanded on
these results. He demonstrated that any set of RT data
can be modeled using what he has termed a “Grice rep-
resentation.” Grice (1968, 1972) presented an accumu-
lator model in which a deterministic counter accumu-
lated evidence toward a random criterion. As with the
race model where the task is to select from among sev-
eral alternative responses, in Grice’s model one or more
deterministic counter levels race toward variable criteria.
Dzhafarov first proved the mathematical equivalence be-
tween Grice’s model and the stochastic accumulation and
deterministic criterion of the race model. Under condi-
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tions so general that most RT modelers need not worry
about them, he then proved that Grice’s model is so flex-
ible as to be “a descriptive language, not an empirically
testable model.”

Perhaps the best way to understand Dzhafarov’s (1993)
result is to consider the nature of the distribution func-
tions involved in the Grice model. Define F(#) to be the
distribution function of the RTs or the probability that an
RT is less than some time ¢#: P(RT < t). Also define G(c)
to be the distribution function of the criterion or the prob-
ability that the criterion value is less than c¢: P(C < ¢).
The activation level of the counter at any time ¢ is given
by the monotonic nondecreasing function A(¢). It should
be clear, then, that the event { RT' <t} is equivalent to the
event {C < A(t)}. Therefore, the probability that an RT
is less than 7 (F(#)) is equal to the probability that the cri-
terion is less than the value of the activation function at
time 7, or A(t) (G[A(?)]). The question at hand is can we
find an 4(#) and G(c) such that the Grice model can pro-
duce a particular observed distribution F(¢) = G[A(¢)]?
The answer is yes, as Dzhafarov has shown. The rela-
tionship between F(¢) and G(c) is roughly equivalent to
the relationship between a random variable’s distribution
function and its density function. The behavior of the
variable can be characterized using either the distribu-
tion or the density (in the case where both exist), and
choosing a particular distribution determines the den-
sity, and vice versa. For some RT distribution F(¢), the
choice of criterion distribution G(c) determines the ac-
tivation function A(7).

Any single set of choice RT data can be modeled
using the Grice representation. By inference, any single
set of choice RT data can be modeled using a race model
or independent counter representation, since Dzhafarov
(1993) demonstrated the mathematical equivalence of
these types of models. Furthermore, the Marley and Colo-
nius (1992) results guarantee the existence of statistical
mimics between independent counter and random-walk
models for any realizable set of choice RT and accuracy
data collected in a single experimental condition.

The Grice-representability result is different from the
serial/parallel equivalence result presented by Townsend
(1972). The serial and parallel models specify the struc-
ture of the processes underlying RTs, whereas Grice rep-
resentability is independent from any structural as-
sumptions. Rewriting the RT distribution predicted by a
particular process model as a Grice accumulation pro-
cess does not add to or elaborate upon the predictions of
the model. For instance, the standard serial model pre-
dicts RTs that are asymptotically normal as the number
of serial components increases. Conversely, the inde-
pendent parallel model predicts RTs that are asymptoti-
cally Weibull, if the fastest of the underlying compo-
nents determines RT. No such dichotomy of predictions
need exist for a model and its equivalent Grice repre-
sentation, because that representation need not be the
same over different experimental conditions.

As we stated earlier in this article, questions concern-
ing the presence or absence of parameter variability or

the number of processes involved in performing a task
cannot be answered within the context of a single exper-
imental condition. This is also the case for accumulator
models. Across different experimental conditions, the
race model mimics to the random-walk models, and the
Grice representations of the RTs under each condition
are not constrained to have parameters that are changing
in meaningful ways. The parameters required for each
representation may not be tied to any reasonable psycho-
logical variables, and, hence, the way that they change in
order to fit the data may not be readily interpretable. To
distinguish between these different classes of models,
the parameters must be tied to other performance vari-
ables, such as accuracy, confidence, and so on, as well as
specific aspects of a well-defined model of a cognitive
system. Given such a system, the relationships between
the parameters of the equations and the behavior of the
process are obvious, and the model can then be tested.
Given such a system, dependent variables other than RT
manifest themselves, providing alternative ways to test
the model. Without such a model, even if equations exist
that completely capture the behavior of the RT distribu-
tions, those equations may not provide the desired in-
formation about the underlying process.

Parameter Variability

We have paid some attention to the notion that exper-
imental data arise from mixtures of processes condi-
tioned on variable parameters. This idea is important be-
cause, for a number of reasons, parameters vary over the
course of an experiment. At the very least, because the
presentation of a stimulus evokes a random perceived ef-
fect, the information upon which a cognitive process op-
erates is slightly different for each trial, even if the stim-
ulus presented is the same. As another example, in a
memory paradigm, all items encoded into memory are
not likely to have the same “strength,” so that some vari-
ability across items is necessary. Ratcliff (1978) in-
cluded this assumption into the diffusion model of mem-
ory retrieval by specifying the average drift rate as a
random variable with a mean held constant within a trial,
but variable (with standard deviation 77) between trials.
In terms of experimental data, in choice RT paradigms
there are strong sequential effects that arise as a function
of the prior response and stimulus. This means that re-
sponse time and accuracy averaged across a block of tri-
als incorporate some degree of parameter variability.

The presence of parameter variability implies that RT
data are to some extent composed of mixtures of distri-
butions, which render the RT hazard functions more am-
biguous than was previously thought. The shapes of the
hazard functions of mixture distributions are not con-
strained by the shapes of the hazard functions of the in-
dividual distributions of the mixture (unless the individ-
ual hazard functions are all nonincreasing), so typical
RT hazard functions (both increasing and increasing
then decreasing) can easily arise from different mixtures
of the same processes. For example, although the hazard
functions of the gamma and inverse-normal distributions



look very different and so could be used as a basis for dis-
criminating between them in the absence of parameter
variability, mixtures of gammas and mixtures of inverse-
normals can have very similar hazard functions. In sum,
the situations where mimicking of RT data by alternative
models is a significant concern may be more numerous
than it appears.

Conclusions

Suppose that we discover, for a particular task, that
RTs follow some distribution F. The distribution F is
not merely a statistical estimate of the distribution, but
“truth.” This knowledge may not allow us to infer as much
as we would like about the underlying process in the ab-
sence of a model, because there are an infinite number
of models that incorporate parameter variability that
would produce exactly the observed distribution (see
Appendix F). Dzhafarov, a reviewer of this paper, noted
quite correctly that this leads one into a situation of in-
finite regress. If RTs follow some distribution F(z|4),
and the parameter 4 follows some other distribution
G(alb), then the model is complete. The RTs depend on
the invariant parameter b, and the problem of variability
disappears. However, the parameter » need not be in-
variant; perhaps it too is a random variable. And so on ad
infinitum. Thus, we can always insist that the failure of
a model is due not to any shortcoming of the model but
rather to some unexplained source of parameter variabil-
ity. We could potentially justify even the most unlikely
model by appealing to enough varying parameters.

Given that subjects adjust criteria, vary their process-
ing rates, or tire of the task over the trials of an experi-
ment, how can we deal with this issue practically from a
modeling perspective? The experimental data and the
theory must work together to provide an evaluation of
the assumptions needed to fit the data. For instance, with
the diffusion model, the size of the effects due to param-
eter variability can be determined systematically. First,
blocks of trials can be examined within experimental ses-
sions. As Burbeck and Luce (1982) have outlined, this is
one way that the extent of parameter drift (or the range
of parameter variability) can be determined between
blocks. In several sets of RT data that we have examined,
mean RT differences between sessions could be as large
as three standard deviations of the mean within sessions.
This provides a way to estimate the necessary variance
in the mean drift rate. Next, an examination of sequen-
tial effects in the data can also indicate the possible ex-
tent of criterion variation. In sum, we can attack system-
atically the problem of parameter variability in the same
way that we attack the problem of statistical mimicking:
diagnostics that are carried out on thoughtfully con-
structed model structures and reasoned acknowledg-
ments of sources of parameter variability. Parameter vari-
ability is an aspect of modeling that needs to be addressed,
and, in the absence of constraints, there is the problem
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of infinite regress. However, with constraints provided
by the data and the theory, the issue is tractable.

In addition, one can find solutions to the problem in
the statistical literature. Once a model of the process is
specified that predicts the distribution of RTs, then there
are several ways available to determine if the observed
RT distribution is or is not consistent with that model. For
instance, assuming that the model predicts the same
family of distributions as that observed, parameter vari-
ability can be investigated by looking at the differences
between the model and the observed distributions. If the
data arises from a mixture of the distributions produced
by the model, then the tails of the empirical density func-
tion will, in general, be higher than those of the theoret-
ical density function. This observation forms the basis of
a test for the presence of mixtures based on the residual
differences between empirical and theoretical density
functions (e.g., Lindsay & Roeder, 1992).

If a model predicts a distribution arising from a dif-
ferent family from the observed distribution, we must be
concerned with the number of ways that a mixture could
be constructed from the model distribution to produce
the data. This is a question of identifiability, addressed
by Tallis (1969). He outlined the conditions under which,
for a given model distribution, a parameter density ex-
ists for the mixture problem. In the case where no solu-
tion exists, the model must be revised. In the case where
a single identifiable solution exists, then that particular
type of parameter variability can be modeled and tested.
However, the conditions under which an infinite number
of solutions exist are quite general, and we are again left
with a problem of indeterminacy. By working from within
the confines of a model, however, various models can be
tested and refined. And, just as we are limited in our
choice of models by the soundness of their structures, so
we are limited in the types of parameter variability with
which we might be faced.

The RT measure is important for hypothesis testing
and an extremely valuable source of converging evidence
for modeling, especially in light of the vast array of di-
agnostic tests developed for RTs by quantitative psy-
chologists over the past several decades. Used in con-
junction with other dependent variables, these tests are
extremely powerful tools. However, they must be ap-
plied with an understanding of how to avoid potential
mimicking by other kinds of models. Using these tools
by working backward from the data, attempting to con-
struct viable models on the basis of the tests that the data
pass or fail, significantly reduces the power of the tests.
Furthermore, no model can be adequately constructed or
tested using only a small set of RT data. A larger range
of independent variables should be manipulated and,
better yet, other behavioral variables should be measured
and predefined models applied to all jointly.

It is a risk, we suppose, that those researchers who al-
ready carry a bias against quantitative methods will read
into our analyses the message that quantitative investi-
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gations are fruitless. This is certainly wrong. Cognitive
psychology has benefited greatly from the concentrated
efforts of quantitative research, research focused on the
identification of cognitive structures through rigorous
analysis of data and application of mathematically pre-
cise logic. If cognitive psychology as a discipline enjoys
amore “hard” scientific standing than other areas of psy-
chology, it is due in large part to these efforts. Certainly
less quantitative areas of experimental psychology suf-
fer, to an even greater extent, from the problems that we
have outlined here, even if the favored dependent mea-
sure in these areas is not RT. Our criticism here is di-
rected toward the study of one dependent measure (RT)
to the exclusion of others and the collection of RT data
without benefit of a model to discipline our thinking.
Working from the perspective of a well-defined model of
the process of interest, collecting data from experiments
designed to test specific points of the model will allow for
real progress toward understanding cognitive architecture.
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NOTES

1. Although the diffusion model assumes that the drift rate changes
during the course of a trial (Ratcliff, 1980), for the purposes of this dis-
cussion we will assume that the drift rate is selected at the beginning of
a trial and fixed and that the distribution of drift rates occurs over trials.

2. One of the reviewers pointed out that our choice of a scenario
makes it appear that mixtures arise only on an artifactual basis. This
was not our intent. An equivalent scenario arises in the case where two
stimuli are presented in a choice RT task, and sequential effects are ob-
served such that the speed of responding depends both on the stimu-
lus presented and on the accuracy of the previous response. Collaps-
ing the data across these conditions produces a mixture. For instance,
in the long display duration, the fastest RTs would arise when the pre-
vious response was correct and the previous stimulus was the same as
the current one. The slowest RTs would result when an error was made
on the previous trial. In the short display durations, errors would in-
crease in frequency, shifting the mixture from faster to slower RT dis-
tributions. Our “researcher” scenario makes for more entertaining
reading, and we hope the reader will indulge us. The potential trivial-
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ity of the mixture produced by careless programming should not be
taken as triviality of the mixture problem.

3. It does, however, suggest that another way to test for a single ex-
ponentially inserted stage might be to simply add exponential deviates
(drawn from a distribution with a mean equal to the mean increase in
RTs observed in the two experimental conditions) to the fast RTs col-
lected in the first condition. Nonparametric tests could then be applied
to the slow RT's collected in the second condition and the fast RTs plus
the exponential deviate to determine if the two data sets were sampled
from the same distribution.

4. Note that, although we have used the gamma distribution to rep-
resent multiple-process models early in the discussion, it represents a
single process in the present model. This is because the number of ex-
ponentials that compose it does not change across experimental con-
ditions but stays the same. In this case, the shape parameter is repre-
senting a threshold that does not vary with the amount of practice. If
the number of exponential “stages” decreased with practice, the
gamma would represent a multiple-process IES model.

APPENDIX A
Mean RT Predictions and the
Existence of Single-Process Mimics

There are an infinite number of models that can predict a given
pattern of mean RTs in the absence of any other constraints.

Suppose that the central process under scrutiny produces
finishing times 7 that are distributed as G(¢|A). The parame-
ter A is also a random variable with some density function
h(A|B) defined over S C 9. Then for some fixed B, an experi-
menter observes a continuous mixture of finishing times dis-
tributed as F(¢|3), where

F(tlﬁ)=fSG(tI?») h(AIB) dA.

For the purposes of this discussion, we call G the base distri-
bution of F and /4 the parameter density of A. In general, G is
specified by an explicit model of the process. If

fz dG (12) < o,

then E;[T|A] is defined. Also, if E;[T|A] is a bounded func-
tion of A and the mean of A is defined, then the mean finish-
ing time is also defined as

Ef[T|B) = [ EGITIATh(2IB) da,

a function of S.

If E;[T|B] is continuous on [a, b] and we observe a set of
mean RTs {u;, Uy, ..., u,} such that all u;, € [Ez[T|a],
E[T|D]], then there exists a set of points {3, 5, ..., f,} con-
tained in [a, b], not necessarily unique, such that u, = E,[T|f3,],
W, = Eg[T|B5], ..., u, = Eg[T|B,]. This is the intermediate
value theorem from elementary calculus. Notice that for a spe-
cific model G and a specific parameter variability problem #4,
there may be many sets of parameters {5, f,, ..., fB,} that
will produce {u,, u,, ..., u,}. This is true, for example, if
E4[T|B] is nonmonotonic on [a, b]. Therefore, there exists a
problem of indeterminacy at the level of the mean RTs even when
the model and parameter variability are completely specified.

Now consider an entirely different model G', with (perhaps)
a completely different parameter density 4'. If the expected
finishing time for this model is defined and is a bounded func-
tion of the varying parameter, and, likewise, the mean of this
parameter is defined, then the observed finishing times have
expected value En[T|B']. All that is required for this com-
pletely different model to perfectly mimic the mean RT pre-
dictions of the previous model is for £,/[7|3'] to be continu-

ouson[a,b]and u, € [Ep[T|al, Ep[T|b]],i = 1,2,...,n. Ap-
plying the intermediate value theorem again assures us that
there exists at least one set of points {f', 5, ..., 3,} con-
tained in [a, b] that will produce {u, ty, ..., U,}-

As a simple example, suppose that G[¢|A) = ®(t—A)/o], the
normal distribution with mean A and standard deviation o. The
mean A varies exponentially with rate 5, where 8> 0. The re-
sulting mixture distribution F(#|3) is then an ex-Gaussian with
mean E;[T|B] =1/p. The function E,[T|f] is continuous on
(0, ), and, a fortiori, any observed mean RT u,; must be con-
tained in the interval (E[T|o], Ez[T|0]). Therefore, this model
can produce any pattern of mean RTs {u,, u,, ..., u,} by set-
ting 8, = 1/u,, B, = 1/u,, and so on. Now notice that the mean
RTs can also be produced by a completely different model,
where F'(/]") = 1 — e~ " and it is assumed that the rate pa-
rameter ' is constant. Because E[T|f] = Ep/[T|p'], setting
B = B, B, = B}, and so on allows no way to discriminate (at
the level of the mean RTs) between the model that presumes
normally distributed finishing times and an exponentially
varying parameter and the model that presumes exponentially
distributed finishing times and no parameter variability.

APPENDIX B
Power Function Decrease of the Mean,
Standard Deviation, and Quantiles of a Variable

Weibull distributed finishing times are not a necessary as-
sumption to observe power function decreases in mean, stan-
dard deviation, and quantiles of the RTs. Suppose that a fin-
ishing time random variable 7 is distributed as F(¢), E[T] = u,
and the standard deviation of 7'is 0. Now consider the random
variable 7, = N~—¢ T. It can easily be seen that E[T),] = N—cu,
the standard deviation of 7y is N~¢0, and, after performing the
change of variables, the distribution function of T} is F(N¢f).
The distribution function F therefore generates a scale param-
eter family of distributions, and the distributions F(N¢t), N =
1,2, ..., are contained in that family. Regardless of the origi-
nal distribution F, the means, standard deviations, and quantiles
of Ty, N =1, 2, ... all decrease as a power function of n with
the same exponent c.

APPENDIX C
Derivation of the Single-Process Model of Automaticity

The accumulator mechanism that drives the response-
selection process receives units of information at exponen-
tially distributed interarrival times. The rate at which units are
received is A, a random variable that follows a gamma distri-
bution with shape parameter j and rate parameter y(N). The
function y(N) is a positive function of N =1, 2, ... defined
over (0,%). A response is initiated after £ units are recorded,
which defines the base distribution of the finishing times also
as a gamma, with shape parameter & and rate parameter A. From
Equation 1, the observed RTs are then distributed as

Fy(ily (V) = G (1AM Al (N)] dA,

or working from the densities,
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Notice that the transformation 7y/(Ty + y(N)) gives a beta
random variable with parameters k and ;.

To find the m™ moment of 7, multiply the above expression
by ¢t and make the change of variable u = ¢/[t + y(N)]. Inte-
grating over u gives

L'tk +m)I'(j-m)
T(Or()

Therefore, the moments of T, are not defined beyond j—1.
Also,

E[Ty"1=7(N)"

k
E[Ty]=y(N)—
j-1

and
(k + Dk , k?
Var[Ty]=y(N)?—— _y(N
ar[Ty]=v( )(j—l)(j—Z) 7( )(j—1)2
k(k+j-1)
—y(NP S
Ty

Define y(N) as a power function of N. Thus, the mean and
standard deviation of T), decrease as a power function of N. In-
serting ¥ (N) =y (1)N ~¢into the equation for the density, it can
be seen that the power function decrease for the quantiles must
hold as well.

APPENDIX D
Deriving Predictions for the
Single-Process Visual Search Model

For stimuli composed of conjunctions of features, such as
color, size, or shape, each feature value (e.g., red) appearing in
the target is assumed to contribute a normally distributed
amount of activation (with mean u and standard deviation s) to
the locations in the attention map corresponding to the display
locations where they are found. These activations are indepen-
dent across display locations and stimulus dimensions, result-
ing in an overall mean activation level and activation variance
that are equal to the sums of the individual means and vari-
ances of the activation distribution. So, in the simple conjunc-
tion case, each nontarget location in the attention map is given
an average activation u with standard deviation s. When no tar-
get is present, the per-location average is then u and the per-
location standard deviation (standard error) is s. When a sin-
gle conjunction target is present, one of the map locations
contains on average a level 2u of activation with variance 252.
A triple conjunction target location has mean activation 3u
and variance 3s2. The per location mean activation level across
all locations in the attention map is therefore u for negative dis-
plays, (N+1)u/N for simple conjunction positive displays, and
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(N+2)u/N for triple conjunction positive displays. For the triple
conjunction condition in which the distractors share two target
features, the mean activation levels are 2u and (2N + 1)u/N for
the negative and positive cases, respectively.

To estimate the per-location activation level variance, we
used the mean of the individual location variances. We also
could have used the standard error of the activation mean by di-
viding each of the mean variances by N. There was no partic-
ular reason that we chose the mean estimate over the standard
error, except perhaps the larger variances allowed a greater range
of'accuracy across N. The standard errors worked equally well,
producing approximately equal 2 and rmse measures for the
fits to the RTs as did the fits using the mean variances. The
mean variances were equal in proportion to the mean activation
levels; for instance, the triple conjunction (one feature shared)
target-present distribution had variance (N+2)s2/N.

An unbiased criterion is set at the point where the probabil-
ity of correctly detecting a target is equal to the probability of
correctly determining that no target is present. Equating the z
scores for the target-present and target-absent activation den-
sities yields the following formula for the criterion:

S_ U, +S U
c=—"T—"=
S_+S,

s

where s;and m; (j = +,—) indicate the standard deviations and
means estimated for the target-present and target-absent acti-
vation densities in each condition.

The s;s, w;s, and criteria were all estimated in this way, set-
ting u equal to one and using a least squares minimization to es-
timate s and the remaining parameters of the mean RT function.

We calculated the mean RTs as follows. First, we assumed
that processing time decreases as a function of the distance of
the activation level a from the criterion c:

E[RT, |a,c]=ye "™ &

b?

where the subscript j indicates the asymmetry between posi-
tive and negative responses. This function gives a reasonable
approximation of the decrease in mean RT as stimulus inten-
sity falls farther and farther from criterion (e.g., Ashby et al.,
1994; Gescheider et al., 1969). The decay rate A is assumed to
be greater for positive responses, capturing the faster RTs
often used as evidence for a self-terminating search. One ra-
tionale for such an assumption is the increased variance of the
positive displays: because more target activation levels fall in
the nontarget region than vice versa, an activation level sam-
pled below criterion is more likely to be in error, requiring
more caution and hence slower RTs.

The sampled activation level a is a normally distributed ran-
dom variable with mean u, or u_, and standard deviation o,
or o_, conditioned on whether a target is present (positive) or
absent (negative) in the display. Averaging across the variable
activation level a, the mean correct RTs predicted by the mix-
ture are

E[RT_|e]= [ (ye ™1+ b)[(l/«’z:ta_ Yo (ame 1202 ]da

2 2
pl(A02)/21-2 (C—u,)q)[

2
14 (c—u_—/l_a_)/a_]er

P(c-u)/o ]

s

for a negative response, where @ is the standard normal distri-
bution function, and similarly
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2 2
ye[(l#ﬁ)/2]—A+(.“+—C)(D[(‘u+ —c— }\.+Uf)/0‘+] N
(I)[(M+ - C)/U+ ]

for a positive response. Notice that this model not only predicts
the mean RTs but also the accuracies via the terms ®[(c—u_)/0_]
and O[(u,—c)/o,].

A total of six free parameters were estimated. These param-
eters generated predictions for 18 mean RTs and 18 accuracies,
leaving 30 degrees of freedom.

E[RT, |c]= b

APPENDIX E
Scale Parameter Families and the
Insertion of a Serial Subprocess

The existence of a number of subprocesses within a larger
cognitive task implies the existence of a sequence of random
variables that represent the duration of each subprocess. As the
task demands are increased, subprocess durations are in-
creased, or additional subprocesses are inserted calling for ad-
ditional random variables to represent them. The case where
additional subprocesses are inserted is considered a multi-
process model.

Townsend and Schweickert (1989, Theorem 1) have shown
that incrementing the duration of a process by adding another
positive random variable to it (the multiprocess model) is log-
ically equivalent to imposing an order on the distribution func-
tions representing the pre- and postincremented finishing-time
distributions. Thus, any sequence of ordered RT distributions
could have been produced by a systematic addition of new (de-
pendent) subprocesses. For example, in a memory search task,
the addition of a distractor might introduce an additional com-
parison subprocess, adding a new random variable to the fin-
ishing time, which in turn orders the RT distributions.

Note, however, that any scale parameter family of distribu-
tions will produce ordered distributions if the experimental
manipulation (incrementing procedure) causes a systematic
increase in the scale parameter. Let the random variable X be
distributed as F, and let oX be distributed as £;. Thus, o >0
is a scale parameter, and F' then generates the family of distri-
butions F, = {F;: 0> 0}. Choose two scale values oand Tsuch
that o < 7. These values define two members of F,, which can
be written in terms of each other:

F,(x) = F.(tx/0).

That this is true can be seen by defining two random vari-
ables Y and Z such that Y= oX and Z = 7.X, which implies that
Y = (o/t)Z. Thus, (0/7)Z must be distributed as F,, which, by
a change of variables, must equal F,(7x/0). If an experimental

manipulation has the effect of increasing the scale parameter,
say, from oto T, the distribution functions of the finishing times
will be ordered, since F,(x) < F,(tx/0) by the monotonic nature
of the distribution function F,. By Townsend and Schweick-
ert’s result, it also implies the existence of another positive ran-
dom variable U = (t — 0)X that, when added to Y, gives the
variable Z. (Note that U is dependent on both Y and Z.) There
are then two equivalent representations of the effect of the ex-
perimental manipulation. The first one is where the manipula-
tion lengthened the scale parameter of the process; the second
one is where a new subprocess of duration U = (t — 0)X was
added to the old process duration Y.

Thus, any single-subprocess model that orders the distribu-
tion functions from one experimental condition to the next by
increasing the rate parameter of the process can be represented
by a (dependent) multiprocess model in which the experimen-
tal manipulations have the effect of increasing the number of
subprocesses.

APPENDIX F
The Existence of a Mixture Representation
for any Density Function

Suppose that a given set of RTs has density function f(7).
Does f(7) then give any information about the process under-
lying the generation of those RTs? If for any density f(z), we
can find an arbitrary mixture representation, given as

f(= f gtla)h(a)da,
a€s

for some densities g and 4, where « takes on values in some fi-
nite interval S C N, then the answer is no. It might be obvious
to some readers that, indeed, for a particular f(7), there are an
infinite number of mixture representations. This follows from
the fact that any function can be expanded as a general Fourier
series using an orthonormal set of basis functions. However, it
is not that obvious that there exist density functions (i.e., pos-
itive and of unit mass) g and 4 that will produce /. In other words,
the expansion of f may not necessarily be based on random
variables that could represent finishing time distributions.

Consider the following. For the given function (), select an
arbitrary parameter o taking on values in the finite interval
[a,b]. (If [a,b] is infinite for some parameter of a particular
distribution, then a suitable transformation of the parameter
can be made.) Now we must construct an arbitrary function
h(a) that satisfies the following three conditions:

1. h(e) > 0 for all o € [a,b].



