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Group Reaction Time Distributions
and an Analysis of Distribution Statistics

Roger Ratcliff
Dartmouth College

A method of obtaining an average reaction time distribution for a group of
subjects is described. The method is particularly useful for cases in which data
from many subjects are available but there are only 10-20 reaction time ob-
servations per subject cell. Essentially, reaction times for each subject are
organized in ascending order, and quantiles are calculated. The quantiles are
then averaged over subjects to give group quantiles (cf. Vincent learning
curves). From the group quantiles, a group reaction time distribution can be
constructed. It is shown that this method of averaging is exact for certain
distributions (i.e., the resulting distribution belongs to the same family as the
individual distributions). Furthermore, Monte Carlo studies and application of
the method to the combined data from three large experiments provide evidence
that properties derived from the group reaction time distribution are much the
same as average properties derived from the data of individual subjects. This
article also examines how to quantitatively describe the shape of reaction time
distributions. The use of moments and cumulants as sources of information
about distribution shape is evaluated and rejected because of extreme depen-
dence on long, outlier reaction times. As an alternative, the use of explicit
distribution functions as approximations to reaction time distributions is con-
sidered.

Despite the recent popularity of reaction
time research, the use of reaction time dis-
tributions for both model testing and model
development has been largely ignored. This
is surprising in view of the fact that proper-
ties of distributions can prove decisive in
discriminating among models i(Sternberg,
Note 1) and can falsify models that quite
adequately describe the behavior of mean re-
action time (Ratcliff & Murdock, 1976).

Two methods have been used to obtain
distributional or shape information. One
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method, advocated by Sternberg (1969;
Sternberg, Note 2), is to use moments and
cumulants to describe distribution shape
without assuming any particular reaction
time distribution function. A second method,
used by Ratcliff and Murdock, is to assume
an explicit distribution function and use the
parameters of this distribution to provide
information about shape. Both these methods
are unattractive because they require 5 to 10
times the number of observations usually
collected in an experiment. For example, to
fit an explicit function such as a gamma dis-
tribution to experimentally obtained reaction
times, a minimum of about 100 observations
per subject per condition are required for re-
liable convergence of fitting procedures and
stability of parameter estimates. Similarly,
to obtain stable estimates of higher moments,
several thousand observations per condition
are typically required. The necessity for a
large number of observations becomes a par-
ticular problem in experimental endeavors in
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which the test materials used require a great
deal of time and effort for construction (e.g.,
paragraphs; Kintsch, 1974). For such re-
search programs, it would take years to con-
struct enough materials to allow application
of either of the two distributional methods.

In the first part of this article, I present
a method for combining data from individual
subjects to produce group reaction time dis-
tributions based on as few as 10 observations
per subject cell. To form group distributions,
reaction times for each subject are organized
in ascending order, and quantiles are calcu-
lated. The quantiles are then averaged over
subjects to give group quantiles (Vincent
averaging; Vincent, 1912). From the group
quantiles, a group reaction time distribution
can be constructed. This group distribution
method averages over individual subjects'
data in a way that retains shape information,
and this is demonstrated in three ways:
First, it is shown that for certain distribu-
tional forms (exponential, Weibull, and logis-
tic), Vincent averaging of individual distri-
butions of a particular form with different
parameters results in a group distribution of
the same functional form. Second, a distribu-
tion that has been used to describe reaction
time data (Ratcliff & Murdock, 1976) was
used in Monte Carlo studies to generate re-
action times that were then combined accord-
ing to Vincent's method. With 20 reaction
times per pseudosubject, the group distribu-
tions generated by this method have the
same form as the distribution used to gen-
erate the data. Third, the method was applied
to the combined data from three large recog-
nition memory experiments that used the
study-test procedure (Ratcliff & Murdock,
1976), with about 120,000 observations in
total. It is shown that parameters derived
from fitting a distribution function (used by
Ratcliff & Murdock, 1976) to the group dis-
tribution are the same as averages of the
parameters derived from fitting the function
to individual distributions.

In the second part of the article, I criti-
cally examine the use of moments and cumu-
lants for describing distribution shape. The
stability of moment and cumulant estimates
is examined first by calculating sampling

standard deviations and second by observing
the stability of estimates when outlier re-
action times are trimmed from the distribu-
tion. In addition, the use of empirical dis-
tribution functions to provide information
about distribution shape is examined.

The notion of shape can be defined in dif-
ferent ways. Mosteller and Tukey (1977,
chap. 1) denned shape as what is left when
location (position of the distribution on
the abscissa) and scale (the scale on the
abscissa) are given up. They showed that
shape cannot be defined in terms of the
mathematical form of the distribution func-
tion. For example, the family of beta density
functions have the same functional form,
but differ widely in shape (Mosteller &
Tukey, 1977, p. 9). However, one of the
most striking properties of reaction time dis-
tributions is that in the main they all have
roughly the same shape, being skewed to
the right. (Occasionally normality is claimed
for simple reaction time distributions, but
this is probably not true [Mosteller, & Tu-
key, 1977, p. 11].) The group distribution
method is concerned with averaging over sub-
jects while preserving distribution shape,
which for distribution functions shaped like
reaction time distributions often turns out
to be much the same as preserving the func-
tional form, as is shown later.

Reaction time distributions have been ex-
amined in some detail with respect to specific
mathematical models. McGill (1963) pro-
vided an excellent summary of work prior to
1963 and presented formal theory for a num-
ber of latency models. Green and Luce
(1971) have used transform techniques in
conjunction with a specific decision model
to decompose reaction time distributions into
component distributions, and this method of
decomposition has been used in testing a
neural timing theory (Luce & Green, 1972).
Hohle (196S), Snodgrass (1969), and Snod-
grass, Luce, and Galanter (1967) have fitted
various empirical distributions to choice and
simple reaction time data. None of this
work, however, provides a general approach
to obtaining distributional or shape informa-
tion.
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Before proceeding to a discussion of meth-
ods, I briefly illustrate potential uses of dis-
tributional information by listing predictions
made by four models about distribution
shape. First, serial scanning models of item
recognition that assume independent and
identically distributed comparison stages pre-
dict (by the central limit theorem) that as
the number of comparison stages increases,
the skewness of the reaction time distribu-
tion will decrease, and so the distribution will
become more normal in shape. Second, the
Atkinson and Juola (1973) model of item
recognition predicts bimodal reaction time
distributions. Third, the multiple observa-
tions model for signal detection (Pike, 1973)
predicts that when the count criteria in-
crease, mean latency will increase and skew-
ness will decrease. Fourth, the random walk
model for item recognition (Ratcliff, 1978)
predicts that as the relatedness between probe
item and memory item decreases, the mode
and mean of the reaction time distribution
will diverge. These examples are meant only
to indicate the kinds of predictions that
models produce and thus the kinds of tests
for which distributional analyses prove useful.

Group Reaction Time Distributions

In experimental psychology it is usual to
generalize findings across subjects. Often this
is done by averaging data over subjects and
making inferences based on the group data.
Unfortunately, if raw reaction times from
several subjects were simply combined to
obtain distributional information, then the
group distribution would not reflect the shape
of the individual distributions. As an illus-
tration, consider two subjects' unimodal re-
action time distributions with respective
means of 500 msec and 900 msec, each with
100-msec standard deviations. Simply com-
bining the data would give a bimodal distri-
bution, and this would not reflect the uni-
modal, individual distributions.

If there are enough observations per sub-
ject cell, then the best way to obtain distri-
bution information is to derive distributional
or shape estimates for each subject cell and
then average these estimates over subjects.

TIME

Figure 1. An example of Vincent (1912) averaging
applied to cumulative distribution functions; Fa(t)
is the Vincent average curve of the curves Fi(t)
and F2(t), and i is the average of it and (2.

For example, Ratcliff and Murdock (1976)
have used the function arising from the con-
volution of the normal [Af(/u,,o-)] and ex-
ponential [g(t) = (l/r)e~t/T] distribution
functions, /(/), as an empirical summary of
the shape of individual subjects' reaction
time distributions (see also Hohle, 1965).
Generalization was then accomplished by
finding the average of each convolution pa-
rameter (/M, a, and r) across subjects. The
expression for the convolution is

/«) =

/: (1)

In a similar vein, Sternberg (Note 2)
found four cumulants of distributions for
each subject cell and generalized across sub-
jects by averaging each cumulant across sub-
jects for each cell. However, the usual ex-
periment does not provide the number of
observations required for these methods. Dis-
tribution information can still be obtained by
using the group distribution method.

Group Distribution Method

The method is very similar to the tech-
nique devised by Vincent (1912) for plot-
ting learning curves. In Vincent's procedure,
each individual's learning curve is divided
into equal fractions (number of trials to
10%, 20%, . . .), and performance of sub-
jects at each fraction is summed and then
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averaged. Figure 1 shows an example of this
"Vincentizing" procedure applied to two cu-
mulative reaction time distributions to pro-
duce the average cumulative distribution. In
essence, reaction times at a fixed probability
level (quantile) from the two distributions
are averaged to give the mean quantile re-
action time.

The procedure for estimating the sample
quantiles is carried out as follows: Each sub-
ject's reaction times 7\, . . . , Tn are arranged
in ascending order of magnitude: r(i), T(2),
. . . , r(B), where Tw is the »th order sta-
tistic (David, 1970; Sarhan & Greenberg,
1962). From these ordered reaction times, q
sample quantiles are estimated for each sub-
ject's data (generally with q<n). Each
quantile is then averaged across subjects to
give a mean m% sample quantile. In detail,
suppose there are n observations for the first
subject and one wishes to obtain q quantiles
(q < n). Then for each subject, each ordered
latency T{i) is replaced by q equal latencies,
Tw, thereby forming a list that is the length
of the product of q and n: r(1), Ta), . . . ,
Tai T(Z) T(2) . . . r<2) , r(3), . . . . To

calculate the first quantile, the first » la-
tencies are summed and divided by n; the
second quantile is given by the sum of the
next n latencies divided by n, and so on.
This procedure is equivalent to simple linear
interpolation. For example, if there were 14
responses and deciles were to be calculated,
the first decile would be given by (10/14)
r(D + (4/14)r(2), the second by (6/14)
Tw + (8/14)r(3), the third by (2/14)r(3)

+ (10/14) r(4) + (2/14)T (B)) and so on.
When the quantiles have been calculated for
each subject, each quantile is averaged across
subjects to give group quantiles.

Group distribution histograms can be con-
structed by plotting quantiles on the abscissa
and then constructing rectangles between ad-
jacent quantiles such that all the rectangles
have equal areas, as in Figure 2.

Several points about this method need
discussion. First, the group distribution
should be thought of as representing the dis-
tribution of the average subject, just as aver-
age reaction time represents the reaction time
of the average subject. Second, order statis-
tics are biased estimators of quantiles

4-
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Figure 2. Two sample group reaction time distributions for 10% quantiles. (Data are from the
three experiments reported later and represent correct rejections in Output Blocks 1 and 4.)
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(David, 1970, chap. 4). However, if there
are roughly the same number of observations
for each subject cell and if the individual
distributions for each s.ubject cell have ap-
proximately the same shape, then the group
distribution will reflect the same bias as the
individual distributions. Third, it is a gen-
eral problem that the shape of a group curve
may not reflect the shape of individual
curves. This problem was considered in great
detail in the mid-1950s (Bakan, 1954; Estes,
1956; Hayes, 1953; Sidman, 1952; Spence,
1956). The general conclusion reached was
that group curves often do not reflect the
form of individual curves but that if care is
taken group curves can be used to test hy-
potheses about individual curves. The next
two sections examine this problem with re-
spect to the Vincent averaging procedure,
and later sections examine the problem with
respect to Vincent averaging of reaction time
distributions.

Some Exact Results jor Vincentized Curves

Estes (1956) considered the problem of
averaging learning curves and classified some
simple functions into cases in which the
functional form is not changed by averaging
and cases in which the functional form is
changed. Some similar results can be ob-
tained for the Vincentizing procedure. (Note
that distributions that differ only by a trans-
lation that is shifted along the time axis
have the same form under Vincent averag-
ing.) For Vincent averaging, it is necessary
to obtain the following relationship: time as
a function of cumulative probability (see
Figure 1). Consider the exponential distribu-
tion. The cumulative probability distribution
is given by

F(t) = 1 - e-

(2)

Consider the average of two exponential dis-
tributions with parameters T! and TZ'.

i = (k + /,)/2

(TI -f- 72)
= _ c

Thus the "Vincentized" average of n expo-
nential distributions is exponential with pa-
rameter 5"( = i Ti/n. For the Weibull distri-
bution,

F(t) = 1 - e-("*>\

with fixed parameter y; the Vincentized dis-
tribution is also a Weibull distribution, with
parameter 2"( = 1 n/n. Similarly, for the
logistic distribution,

the Vincentized distribution is also logistic,
with parameters a = S"i = j «</» and /? =
2"< = i /?»/«. Although normal distributions
will not give exactly a normal distribution
when Vincentized, the logistic distribution is
a very good approximation to the normal dis-
tribution, so that any differences are prob-
ably very small. It should be noted that the
exponential, Weibull (y > 1), and logistic
distributions have been postulated (or are
very similar to distributions that have been
postulated) to represent the distributions of
processing stages in various models.

Vincentizing the Gamma Distribution

The gamma distribution has often been
used to model reaction time distributions
(McGill, 1963). Consider the gamma dis-
tribution with parameter 2 (i.e., the convolu-
tion of two exponential distributions):

F(t) = 1 - <r'/T(l + t/r). (4)

i [1 - Fffl. (3)

By following an analysis similar to that pre-
sented above (Equations 2 and 3), it can be
shown that Vincentized gamma distributions
are not members of the gamma family. How-
ever, for all practical purposes the differ-
ence is negligible. For example, Vincentizing
two gamma distributions (Equation 4) with
parameters T = 100 msec and r = 300 msec
gives 165, 276, 405, and 599 msec for the
20th, 40th, 60th, and 80th percentile points,
respectively. The gamma distribution with
parameter r = 200 msec has the correspond-
ing points 165, 275, 404, and 599 msec. Thus
Vincentizing gamma distributions produces a
distribution that is very similar in shape to
another gamma distribution.
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The examples so far have all considered
the Vincentizing of combinations of distribu-
tions that differ from one another only in
the parameters that have dimensions of time,
that is, parameters that represent the dura-
tion of some processing stage. There are other
parameters that do not represent durations,
for example, the number of convolved ex-
ponential distributions in the gamma distri-
bution and y in the Weibull distribution.
Vincentizing distributions that vary in these
parameters may not produce a distribution
that is anything like the average subject's
distribution. An extreme example of a dis-
tribution with this problem is the beta dis-
tribution. Mosteller and Tukey (1977, p. 9),
in considering the problems involved in deal-
ing with distribution shape, presented a figure
showing the family of beta distributions to
illustrate that even distributions belonging to
the same family can differ widely in shape.
From the graphs presented in Mosteller and
Tukey, it can be seen that very serious prob-
lems may be involved in averaging across
distributions of widely differing shape. To
decide whether Vincent averaging will work
in cases in which distribution shape varies
widely among individual distributions, it is
probably best to test the method as above or
to perform some Monte Carlo tests as de-
scribed in the next section.

Some Monte Carlo Studies Using
the Convolution Model

The distribution that is the convolution of
the normal and the exponential distributions
(Equation 1) has been used as an empirical
model of reaction time distributions (Rat-
cliff, 1978; Ratcliff & Murdock, 1976). The
fits of the convolution to the data are good
enough to make it reasonable to use the
convolution in Monte Carlo studies testing
the Vincentizing procedure. The Monte Carlo
studies are presented to illustrate the use of
the Vincentizing procedure under optimal
conditions in which the form of the individ-
ual distributions is known.

To use the Monte Carlo method it is
necessary to generate a random number from
the convolution of normal and exponential

distributions. This can be accomplished by
simply adding a random number generated
from the normal distribution and a random
number generated from the exponential dis-
tribution. Most computer systems have a
random number generator that will produce
random numbers between 0 and 1 from a rec-
tangular distribution. Equation 2 can be used
to produce exponentially distributed random
numbers (with parameter T) by substituting
rectangularly distributed random numbers
(RND) for F(t). Normally distributed ran-
dom numbers with mean /A and standard de-
viation a can be obtained using the method
proposed by Box and Muller (1958), as
shown in Equation 5:

/ = [-2 ln(RND)J cos (2vRND)a + n. (5)

Each Monte Carlo study consisted of sev-
eral experiments (typically SO to 100). In
each experiment, 20 reaction times were
obtained from each of 40 pseudosubjects.
The 20 reaction times were arranged in as-
cending order and then averaged across sub-
jects to give group 5% quantiles. The con-
volution model was then fitted to the set of
5% quantiles (5%, 10%, 15%, . . .) using
the maximum likelihood method described
in Ratcliff and Murdock '(1976). Note that
the quantile reaction times are derived from
random variables; and so, strictly speaking,
the parameter estimates do not have the nice
properties of maximum likelihood estimators.
However, estimating parameters this way is
no worse than estimating parameters by, say,
the least squares method, because the quan-
tile reaction times are not independent and
the expression being fitted is nonlinear. Re-
sults are shown in Table 1.

In general, the parameters /* and T derived
from fits to the Vincentized distribution are
very close to the input values (used to gen-
erate the pseudodata). However, as T in-
creases (from .05 to .30), the value of a (in-
put value = .04) becomes more and more
underestimated. This suggests that in any
practical use, the value of <r is likely to be
underestimated and less reliable than the
values of /A and T. It is interesting to note
that the values of s^, s f , and ST are very close
to the asymptotic variance estimates for the
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Table 1
Monte Carlo Studies for the Convolution Model

Input parameter

M

.50

.50

.50

.50

.50

a

.04

.04

.04

.10

.04

T

.05

.15

.30

.50
.055-.250b

Fitted parameter and standard error estimate

M

.5005

.4996

.5016

.5002

.4980

sf

.0004

.0004

.0008

.0014

.0006

°

.0371

.0325

.0275

.0749

.0314

s.

.0003

.0004

.0007

.0012

.0006

T

.0486

.1498

.2955

.4994

.1545

s,

.0005

.0006

.0015

.0024

.0012

Mo nf

experiments

65
101

58/109"
98
52

Note, s = the standard error in the mean ([S(A\ - M)*/n(n - !)]»).
a 51 of the 109 experiments terminated with the fitted value of <r equal to zero.
b The 40 pseudosubjects had different TS, ranging from .055 to .250 in steps of .005, M .1525.

convolution model presented in Ratcliff and
Murdock (1976, Table 2). The last series
of Monte Carlo experiments presented in
Table 1 used 40 pseudosubjects with different
T values. The value of the average Vin-
centized T was almost equal to the average
input T. This result shows that the Vincent-
averaging properties of the exponential dis-
tribution carry over to parameter T of the
convolution to a good approximation.

These Monte Carlo studies show that ap-
plication of Vincent's (1912) procedure to
the distribution that is the convolution of
normal and exponential distributions, a dis-
tribution that fits response latency distribu-
tions reasonably well, introduces little bias
into parameter estimates.

Practical Test of the Group
Distribution Method

To provide a stable data base for a practi-
cal examination of the method, three experi-
ments (with four subjects per experiment)
were combined, giving about 120,000 reaction
times in total. The experimental procedure
was the study-test recognition memory para-
digm. The experiments have been reported as
Experiments 2 and 1 in Ratcliff and Mur-
dock (1976) and Experiment 1 in Ratcliff
(1978); they are referred to here as Experi-
ments 1, 2, and 3, respectively. A brief de-
scription of the study-test procedure is pre-
sented here; for further details, consult Rat-
cliff and Murdock.

In each of the three experiments, a list
of study words was presented to the sub-

ject at about one word per sec, followed by
a test list containing all the study words
plus an equal number of new words in ran-
dom order. For each word in the test list,
the subject had to respond on a 6-point con-
fidence scale ranging from sure old to sure
new. Study lists were 16 words long, and
test lists were 32 words long, except in Ex-
periment 1 in which the study list contained
15 words and the test list 30 words. The list
words were randomly sampled from the To-
ronto word pool (Okada, 1971). Repetitions
of words were prohibited until at least two
lists had intervened. The test list was self-
paced, and words stayed in view until a re-
sponse was made. In Experiment 1 and Ex-
periment 3 rate of presentation of the study
lists was varied between .5 sec and 2 sec per
item. Effects on mean reaction time were
small, on the order of 40 msec. In the fol-
lowing analyses, data from the different pre-
sentation-rate conditions are combined; this
does not significantly affect distribution
shape.

The experimental data are classified into
eight cells, four output- or test-position
blocks (2-8, 9-16, 17-24, and 25-32) for
high-confidence hits, and the same four out-
put-position blocks for correct rejections.
(The first output position is excluded be-
cause this reaction time is typically several
hundred msec slower than other reaction
times in the test list.) This division of data
gives about 1,200 observations for each of
the 96 subject cells (12 subjects X 8 cells).

It was noted earlier that to test the group
distribution method, properties derived from
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Table 2
Convolution Model Fits to the Group Reaction Time Distributions and the Average Parameter
Values From Fits to Individual Subject Distributions

block

Parameter value averaged
over subjects Group distribution value

Hit: T < 5 sec
1 492
2 498
3 506
4 517

1 517
2 523
3 526
4 524

38
36
37
41

Correct
37
40
41
43

178
200
231
261

rejection: T <

213
236
272
300

488
494
503
507

5 sec

513
519
521
518

36
33
35
37

36
38
38
41

179
196
225
256

216
243
273
302

Hit: T < 2 sec

1 497
2 502
3 513
4 525

1 523
2 530
3 536
4 538

41
38
40
45

Correct
40
43
45
49

158
175
192
210

rejection: T <

185
200
218
225

495
499
510
517

2 sec

520
525
533
532

39
36
39
42

38
41
44
48

157
172
186
205

186
202
223
229

Note. Data are truncated at 5 sec and at 2 sec.

the group distribution must be compared
with the averages of the properties derived
from the individual distributions. The prop-
erties chosen for comparison were the param-
eters of the convolution model, /t, a, and T
(see Equation 1). Estimates of these param-
eters were obtained from the group distribu-
tions (2% quantiles) for each of the eight
cells by fitting the convolution model to the
group quantiles. (See Ratcliff & Murdock,
1976, for the maximum likelihood method of
fitting.) Estimates of the parameters were
obtained from the individual subject dis-
tributions by first fitting the convolution to
each subject's distribution and then averag-
ing the obtained estimates over subjects. The
estimates given by the two procedures can
be compared in Table 2: For two conditions
each, estimates with latencies longer than S
sec eliminated and estimates with latencies

longer than 2 sec eliminated. It can be seen
that the two procedures give almost identical
estimates of the convolution parameters.
This supports the claim made earlier that
the group distribution provides an unbiased
summary of individual data.

Figures 2, 3, and 4 show some sample data.
Figure 2 shows group reaction time distri-
butions for correct rejections in Output Block
1 and in Output Block 4. Figure 4 shows
group reaction time distributions and fits of
the convolution model for hits in all four
output blocks. The Figure 2 distributions are
based on 20% quantiles, the Figure 4 dis-
tributions on 2% quantiles. Figure 3 shows
some sample fits of the convolution model
to reaction time distributions for individual
subjects for hits in Output Block 1. Although
the chi-squares are often significant (because
the large numbers of observations make the
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SUBJECT 1
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SUBJECT 2 SUBJECT 3 SUBJECT 4

15 5 10 15 5 10 1.5 .5 10 1.5

LATENCY (SEC)

Figure 3. Empirical and fitted latency distributions for hits, Output Block 1. (Exp. 1 = Experiment
2, Ratcliff and Murdock, 1976; Exp. 2 - Experiment 1, Ratcliff and Murdock, 1976; Exp. 3 =
Experiment 1, Ratcliff, 1978.)

chi-square a very powerful test), the fits are
actually quite good; certainly the convolu-
tion captures the overall shape of the dis-
tribution. Problems associated with trunca-
tion and outliers are discussed in the section
entitled Moments and Cumulants.

Probability Mixtures of Distributions
and Bimodality

Occasionally a model is developed that
predicts bimodal reaction time distributions
arising from a probability mixture of pro-
cesses (e.g., Atkinson & Juola, 1973). The
question arises as to whether Vincent aver-
aging across bimodal distributions from in-
dividual subjects will produce a bimodal
group distribution. In general, the answer is
only under conditions in which the propor-
tion of responses in each process is approxi-
mately the same across subjects. For ex-
ample, Figure S shows the Vincent average

cumulative distribution function for two dis-
tribution functions, each of which is a prob-
ability mixture of two processes. One dis-
tribution has a 25%-75% combination, and
the other has a 75%-25% combination. The
resulting group distribution is trimodal (i.e.,
has four points of inflection) and certainly
does not reflect the bimodal nature of the
individual distributions. In situations in
which bimodality and probability mixtures
of processes are expected, it is probably best
to collect several hundred latencies per sub-
ject condition and investigate the individual
latency distributions.

Moments and Cumulants

Moments have been used for many years
to determine the shape of frequency curves
either through skewness and kurtosis indices
or by explicitly determining the frequency
curve within Pearson's (cited in Elderton,
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1906; Elderton & Johnson, 1969) system.
Recently moments and cumulants have been
used in the additive factor method for analy-
sis of stage models (Sternberg, 1969; Stern-
berg, Note 2) . In this section, three related
problems in the use of moments and cumu-
lants as sources of shape information are dis-
cussed. These problems are first that the
variance associated with estimates of these
measures is extremely large, second that the
measures are very sensitive to outliers, and
third that the measures give information
about a part of the frequency curve that is
of little theoretical interest. •

To investigate the variability of moments
and cumulants, expressions for moments and

cumulants and their standard deviations must
be derived. These expressions are derived for
an explicit distribution function to allow es-
timation of numerical values. The convolu-
tion of normal and exponential distributions
is chosen because it approximates the shape
of reaction time distributions.

Moments are denned as follows (Kendall
& Stuart, 1969):

/A = / tf(t)dl;
J-x

m = (t- n.'iYf(f)dt, for » > 1.
J-*

UJ 4
to

to

CD
<
CO

a 2

OUTPUT BLOCK 1

OUTPUT BLOCK 2

OUTPUT BLOCK 3

OUTPUT BLOCK 4

.8 .9 1.0 I.I

TIME (SEC )
1.2 1.3 \.1 1.5

Figure 4. Group reaction time distributions for 2% quantiles for hits together with fits of the
convolution model to the group distributions.
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TIME

Figure 5. An example of group averaging of two
bimodal distributions; Fi(t) has 75% of the proba-
bility density in the first peak of the density func-
tion, Fn(t) has 25% of the probability density in
the first peak, and the resulting Vincent (.1912)
average distribution Fa(t) is trimodal.

Cumulants are expressed by

Ki = m, for i < 3 ;

The sampling variances of the k statistics kt
(unbiased estimates of the cumulants ««) are
given by Kendall and Stuart (1969):

var
K6 . 9*4*2

= -- -- r H
w n — 1 » — 1

1 („-!)(„-2)'

Kg . 16/C6«2 48/C6K3

, 34(c4
2 12«/c4K2

2

w- 1 ' (»- l ) («-2)

^ (n-!)(»-2)(»-3) '

Expected values and variances of the k sta-
tistics for the convolution of normal and ex-
ponential distribution can now be calculated.
For the normal distribution, «i = //,, «2 = a2,
and (q = 0, for i > 2; and for the exponen-
tial distribution, «4 = r*(« — 1 ) 1 To convolve
two distributions cumulants are added; so

for the convolution of normal and exponen-
tial distributions, *i = p. + T, x2 = o-2 + r2,
KS = 2r3, and *4 = 6r*. To estimate numeri-
cal values for cumulants and sampling vari-
ances of cumulants, values in the range of
those found in Table 2 are used: /* = .5 sec,
<r = .03 sec, and T = .2 sec. Also, o-2 « r2,
so that to an accuracy of \% or 2% it is
possible to neglect terms in o compared with
terms in r. Now some numerical values can
be calculated: For n = 100, x2 =.040 ± .011,
«3 = .016±.012, and *4 = .0096 ± .0174;
for n = 1,000, «2 = .040 ± .004, KB = .016
± .004, and «4 = .0096 ± .0055. From these
values of cumulants and their estimated sam-
pling standard errors, it can be seen that
stability in the third and fourth cumulants
is not achieved unless tens of thousands of
observations contribute to the estimates. The
same kind of instability can be seen in mo-
ments if corresponding sampling variances
for moments are calculated (Kendall & Stu-
art, 1969).

The second problem with moments and
cumulants is their sensitivity to outliers.
There is a practical problem with outlier
reaction times in that a proportion of these
responses may be spurious, that is, they do
not arise from the process under examination.
For example, suppose distributional informa-
tion is being used to evaluate a model that
postulates a single retrieval process. Then
an eyeblink, a moment's inattention, or a
deliberate rest by the subject must be con-
sidered spurious for evaluation of the model.
The sensitivity of moments and cumulants to
these spurious outliers can be demonstrated
by examining the effect of truncation on esti-
mates of moments. Table 3 shows values of
ra'i, m%, ms, and #z4, estimates of moments
for the latency data used earlier (in obtain-
ing group reaction time distributions). The
effects of truncation are particularly striking.
When 1% to 4% of the slower responses (2
sec < T < 5 sec) are eliminated, mean la-
tency changes by between 20 and 50 msec,
variance by a factor of two, and the third
and fourth moments by an order of magni-
tude. Thus, excluding outliers three or more
standard deviations above the mean (m\ +
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Table 3
Moments for Latency Data Truncated at 5 sec and 2 sec

Output
block

T < 5 sec

W'l Wj m, mt n m',

T < 2 sec

m* m, m< n

Hit

1
2
3
4

1
2
3
4

6.70
6.98
7.37
7.79

7.31
7.59
7.98
8.24

6.98
8.93

12.07
14.89

9.76
11.54
15.36
20.26

.91
1.29
2.01
2.38

1.44
1.69
2.42
3.73

2.11
3.28
5.53
6.36

Correct

3.59
4.15
6.13

10.49

13,754
15,158
14,046
12,400

rejection

13,885
15,118
15,050
13,587

6.54
6.77
7.06
7.36

7.08
7.29
7.53
7.63

3.73
4.40
5.05
5.83

4.75
5.37
6.03
6.49

.18

.21

.25

.28

.24

.28

.30

.33

.18

.20

.25

.28

.23

.27

.29

.33

13,645
15,011
13,852
12,152

13,722
14,890
14,709
13,192

Note. The values for m'\ are in units of 10 msec, for mi in units of 10* msec2, for mi in units of 108 msec3, and
for »»4 in units of 10" msec4; m'i is mean latency, OTJ is variance and mi and m± are the third and fourth
moments, respectively.

3'(w2)* < 2 sec) leads to enormous changes
in higher moments.

The extreme sensitivity of higher moments
to outliers is well-known, and Figure 6 illus-

trates the dependence of moments on tails
of the frequency distribution. In Figure 6 is
plotted the frequency distribution j ( x ) =
x-">e-

1/x/[r(m- 1)] for m= 10.6, together

0-001

% Off,

beyond 0-1 % point
2 5
4 41
6 85

0-3 0-4 0-5

Figure 6. The distribution /(*) = x~m e-l"/[T(m- 1)], for w = 10.6. The lower curves show /(*) =
(*-{)'//»., which are the normalized contributions to the moments M«, as a function of x, where
£ is the mean. (From "Some Problems Arising in Approximating to Probability Distributions,
Using Moments" by E. S. Pearson, Biometrika, 1963, SO, 95-112. Copyright 1963 by the Bio-
metrika Trustees. Reprinted by permission.)
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Table 4
Values of Skewness (b i )% Kurtosis bj, and Pearson's* Measures of Skewness SKO and S/ce for the
Latency Data

block (W

1 4.94
2 4.84
3 4.78
4 4.15

1 4.71
2 4.32
3 4.02
4 4.09

T <

ft.

43.4
41.2
38.0
28.7

37.7
31.2
26.0
25.6

5 sec

SK,

.447

.475

.478

.492

.483

.495

.503

.480

Site

Hit

.744

.820

.836

.903

Correct rejection

.794

.828

.860

.873

(ft.)»

2.55
2.31
2.22
2.01

2.35
2.24
2.05
2.01

T <

bi

12.8
10.4
9.6
8.2

10.3
9.4
8.0
7.8

2 sec

SKo

.533

.577

.596

.605

.587

.600

.623

.608

S«.

.797

.904

.930
1.008

.849

.865

.882

.904

Note. SKO = (mean — mode)/standard deviation, where mean = m'\ from Table 3, standard deviation =
from Table 3, and mode is calculated from the convolution fits for T < 1 sec by setting the first derivative
of the probability density function to zero and estimating t [/'(/) = 0]. SK, = 3 (mean — median)/standard
deviation.
* Cited in Elderton (1906) and Elderton and Johnson (1969).

with the function c(x) = (x —
s = 2,3, ... ,6. Note that

for

- r
J *

where £ is the mean. The figure shows clearly
the third problem with moments—that the
higher moments of an asymmetrical long-
tailed distribution depend on the form of
the frequency function (and thus outliers) in
a region of the tail that may be of no prac-
tical interest (Pearson, 1963).

Third and fourth moments are used as in-
dices of skewness and kurtosis through (/?i)J

= /*3/(/t2)3/2 and fa^fH/itf, respectively.
Pearson has proposed these alternative mea-
sures of skewness: SKO = (mean — mode)/
standard deviation and, to avoid the use of
the mode, SK<, = 3(mean — median)/standard
deviation (Kendall & Stuart, 1969). In Table
4 are shown values of (61)*, 62 (estimates
of (/?i)J and /32), SKO, and SKC for the latency
data used earlier. Note that the estimated
value of the mode is rather unstable unless
a fitted probability density function can be
used to locate the mode (Elderton & John-
son, 1969). Thus, the mode used in the cal-
culation of SKO was obtained from the con-
volution fit to the group data (for T< 2 sec)

by setting the first derivative of the proba-
bility density function to zero. The truncated
distribution (T < 2 sec) was chosen be-
cause inspection of fits of the convolution to
individual subject's histograms indicated that
the empirical histograms and fitted models
did not differ systematically (see Figure 3).

A rather confusing picture of skewness
estimates emerges from Table 4. By using
(61)* as the estimate of skewness, skewness
decreases as output position increases, and
skewness is halved by the elimination of 1%
to 4% of longer reaction times. On the other
hand, by using SKO and SKC as measures of
skewness, skewness increases as output posi-
tion increases, and the elimination of out-
liers results in a change of 10%-20% in SKO

and SKC. From the demonstration in Figure 6
and from the behavior of (61) * and SK, it
must be concluded that the alternative mea-
sures of skewness, (61)* and SK, are con-
cerned with different properties of the dis-
tribution function. Which measure should
be used depends on whether behavior of the
central portion of the distribution function
(indicated by SK) or behavior of the extreme
tail of the distribution function [indicated
by (61)*] is of interest.
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I attempted to fit Pearson's (cited in El-
derton & Johnson, 1969) system of frequency
curves using the moments in Table 3. The
curve belongs to Pearson's Type VI class,
but the system of frequency curves is not
flexible enough to encompass the distribu-
tions used in Table 3. The start of a Type
VI distribution is at some value, a > 0 (El-
derton & Johnson, 1969). Calculating the
value of a for one set of data in Table 3
gave a value of a around 6 sec, which is be-
yond the distribution cutoff value. Thus it
seems that Pearson's system of frequency
curves may not be as flexible as is generally
thought (see Patel, Kapadia, & Owen, 1976,
for a list of those distributions that belong
to Pearson's system and those that do not).

To summarize, moments and cumulants
higher than variance have little to offer as
sources of shape information about reaction
time distributions because of their extreme
variability and because they provide infor-
mation about the extreme tails of the dis-
tribution that is of little practical interest.
More reasonable sources of shape informa-
tion are mean, mode, median and standard
deviation, together with Pearson's SKO and
SK« measures of skewness.

A Further Alternative to Moments
and Cumulants

Another way to obtain shape information
from reaction time distributions is to fit an
explicit distribution function and use the
parameters of this distribution as a summary
of shape. Ratcliff and Murdock (1976) have
used the distribution resulting from the con-
volution of normal and exponential distribu-
tions (Equation 1) as an empirical summary
of reaction time distributions in memory re-
trieval paradigms. For simple and choice re-
action time paradigms, Snodgrass et al.
(1967) have shown that distributions with
a rounded mode and exponential tail (e.g.,
the gamma and so probably the convolution
of normal and exponential distributions) are
inadequate as descriptions of distribution
shape. The distribution they find to give the
best fits to their data is the double mono-
mial distribution.

Presenting information about reaction
time distributions by providing the param-
eters of an explicit distribution function (that
fits adequately) has the great advantage that
it is easy for anyone to reconstruct a dis-
tribution (from the formula) that has nearly
the same shape as the raw data. This may
prove extremely valuable for mathematical
modelers who may not wish to invest a large
amount of time in obtaining raw data until
some initial checks have been carried out.
Further examples and discussion of the use
of explicit distribution functions as approxi-
mations to reaction time distributions can be
found in Ratcliff (1978) and Ratcliff and
Murdock (1976).

Conclusions and Summary

Information about reaction time distribu-
tions can prove very useful in model con-
struction and model testing, but there are
few methods available for analysis of dis-
tributions. In this article I have presented
a method for obtaining group reaction time
distributions from experiments in which there
are as few as 10 observations per subject cell.
The method essentially involves estimating
latency quantiles for each subject and then
averaging these over the group of subjects.
Several distributions were shown to average
to give another distribution of the same
family with parameters that were the mean
of the parameters of the individual member
distributions. Several Monte Carlo studies
were performed using the distribution that is
the convolution of a normal and an exponen-
tial distribution, a distribution used to fit
reaction time distributions. These studies
showed that the parameters derived from
the group distributions were the same as the
parameters used to generate the individual
pseudosubject distributions. Fits of the con-
volution model to group distributions derived
from data combined from three large experi-
ments gave parameters that were almost iden-
tical to average parameters from fits to the
distributions of individual subjects. The close
correspondence between these methods of es-
timating group averages shows that group
distributions provide an excellent summary of
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distributional information for the group and
do not introduce any systematic bias into
the estimate of shape.

Methods of deriving shape information
that use moments and cumulants were evalu-
ated, and three major problems were pointed
out. First, estimates of the higher moments
and cumulants have large standard devia-
tions; for example, 10,000 observations may
be needed before the standard deviation on
the fourth cumulant is as low as 10% of the
size of the fourth cumulant. Second, esti-
mates of moments from data are extremely
sensitive to outlier reaction times; the addi-
tion of 1% slow responses can change the
fourth moment by a power of 10. This prob-
lem is particularly severe if an unknown
proportion of the slow latencies are spurious,
that is, if they are not a result of processes
under examination. Third, Figure 6 shows
that the third and fourth moments tell one
about portions of the distribution that may
be of no theoretical interest. It is suggested
that the mean and standard deviation to-
gether with estimates of median, mode, and
Pearson's skewness measures (S/c0 and SK<>)
provide better information about distribu-
tion shape. These statistics are adequate, but
may not be the most convenient statistics for
conceptualizing the distribution or for fitting
the distribution to more complex theoretical
models. It is further argued that fitting ade-
quate, explicit probability density functions
to the observed reaction time distributions
may provide more useful summaries of dis-
tributional information for researchers in-
volved in mathematical modeling.

Reference Notes

1. Stern'berg, S. Evidence against self-terminating
memory search from properties of RT distribu-
tions. Paper presented at the meeting of the
Psychonomic Society, St. Louis, Mo. November
1973.

2. Sternberg, S. Estimating the distribution of addi-
tive reaction time components. Paper presented
at the meeting of the Psychometric Society,
Niagara Falls, Canada, October 1964.
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