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A Multinomial Model for Short-Term Priming in Word Identification

Roger Ratcliff and Gail McKoon

Northwestern University

A simple multinomial model for short-term priming in perceptual word identification is presented. In the
experiments to which the model is applied, prime words are presented just prior to a flashed target word,
and subjects must decide which of 2 alternative words matches the target. The model assumes that on
some proportion of trials, confusion among the words leads to the decision being based on 1 of the prime
words instead of the target. In addition, it is assumed that subjects sometimes discount a prime that
matches 1 of the test alternatives and so choose the alternative that does not match. With these
assumptions, the model fits the data from 5 experiments (including 4 used to develop the model known
as ROUSE [responding optimally with unknown sources of evidence]; D. E. Huber, R. Shiffrin, K. Lyle,
& K. Ruys, 2001). The multinomial model fits the data about as well as the ROUSE model and so should
lead to further development and critical testing of both models.

In this critique, we present a multinomial model to explain the
short-term priming effects in word identification that have been
observed by Huber, Shiffrin, Lyle, and Ruys (2001). In the priming
paradigm used by Huber, Shiffrin, Lyle, and Ruys, two prime
words are presented immediately prior to a briefly flashed target
word. After the target, two alternative words are presented, and
subjects must decide which of them matches the flashed target.
The principal finding is that accuracy is reduced when one or both
of the primes is similar in some way to the target. Huber, Shiffrin,
Lyle, and Ruys explained this with the model known as ROUSE
(responding optimally with unknown sources of evidence), an
extension to short-term phenomena of the Bayesian decision
framework developed recently for longer term priming effects (the
model known as REMI {[retrieving effectively from memory, im-
plicit]; Schooler, Shiffrin, & Raaijmakers, 2001). According to the
ROUSE model, the difficulty caused by similar primes comes
about because words in short-term memory are represented as
vectors of features, and features of the target word cannot be kept
completely separate from features of the prime words or from
noise; the mixing up of features leads to errors. In the model, word
identification decisions are made using a Bayesian decision pro-
cess that depends on calculating the likelihoods of features being
from the target word. It is assumed that subjects can estimate the
probability that the source of each feature was a prime word, the
target word, or noise, and so they can discount those features that
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might have come from a prime and not the target. However, they
cannot discount perfectly and so they make errors that reflect
biases either for or against primes.

The multinomial model we present offers a simpler explanation.
Identification of the target is assumed to take place by standard
word identification processes, the same processes that operate in
any situation in which identification of a word is required. Items in
short-term memory are represented as words, not vectors of fea-
tures, and all that happens in the short-term priming paradigm is
that on some proportion of trials, subjects make a simple mistake:
They confuse the primes and target and base their word identifi-
cation decision on one of the prime words instead of on the target.
The multinomial model accounts for Huber, Shiffrin, Lyle, and
Ruys’s (2001) data about as well as ROUSE does. As a competitor
to ROUSE, the multinomial model is designed to provide impetus
for further, theoretically based model testing with the goal of
explaining short-term priming in word identification.

The Data to Be Explained

The experiments to which ROUSE is applied (Huber, Shiffrin,
Lyle, & Ruys, 2001) use a two-alternative forced-choice word
identification procedure. On each trial, the two prime words are
presented simultaneously one above the other, then the target word
is flashed, and then the two test alternative words are presented
simultaneously side by side. One of the test alternatives is the same
word as the target; the other (the “foil”) is a different word.
Subjects are asked to decide which of the two test alternatives
matches the flashed target word. The amount of time for which the
target is flashed is usually set so that performance is about midway
between chance (50% correct) and ceiling (100% correct). This
allows measurement of the effects of the prime words on perfor-
mance, whether they hurt performance or help it.

The main questions of interest in Huber, Shiffrin, Lyle, and
Ruys’s (2001) experiments concemed how performance is affected
by relationships among the primes, the target, and the test alter-
natives. Across Huber, Shiffrin, Lyle, and Ruys’s experiments, the
test alternatives were different words from the primes, the same
words as the primes, or words that were semantically or ortho-
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graphically similar to the primes. One question, for example, was
whether, if one of the prime words was the same word as the
target, subjects would be more likely to choose the test alternative
that matched the target; if so, then performance would show a
benefit. But if one of the prime words was the same as the foil,
then subjects might be more likely to choose the foil instead of the
target, and so there would be a cost to performance.

Other questions in Huber, Shiffrin, Lyle, and Ruys’s (2001)
experiments concerned how the effects of the primes on perfor-
mance vary with the kind of attention subjects give to the primes.
If subjects are induced to actively, as opposed to passively, process
the primes, then they might better be able to discount features of
the primes in their decisions about the test alternatives. For passive
priming, the prime words were simply displayed for 500 ms and
subjects were told they were a warning signal for the flashed target
word. For active processing, the prime words were displayed
twice. On their first presentation, they were displayed simulta-
neously and subjects were asked to make a decision about them
(e.g.. whether both words referred to animate entities, a decision
that took 2-3 s). Immediately following this decision, the prime
words were displayed a second time, for the same 500-ms duration
as was used in the passive priming condition.

Table 1 shows experimental conditions typical of Huber, Shif-
frin, Lyle. and Ruys’s (2001) experiments. The first and second
columns show four priming conditions. In the first condition, the
baseline condition, neither the target nor the foil match either of
the primes; in the second condition, the target matches one of the
primes; in the third condition, the foil but not the target matches
one of the primes; and in the fourth condition, the target and foil
both match primes. The third column shows typical stimuli when
the match relation among primes, target, and test alternatives is
one of exact repetition. The fourth and fifth columns show typical
stimuli for the same four conditions when the relation among the
primes, target, and test alternatives is associative and orthographic,
respectively. The stimuli in the sixth column will be explained
later.

The patterns of data found by Huber, Shiffrin, Lyle, and Ruys
(2001) present an intriguing puzzle for modeling. Consider first
what happens when the four conditions (“neither primed,” “target
primed.” “foil primed.” or “both primed”) are tested with passive

Table 1
Examples of Conditions in the Experiments

processing of the primes (the case in which the primes are dis-
played only once, for 500 ms). As might be expected, there is a
benefit in the target-primed condition (relative to baseline, the
neither condition) and a cost in the foil-primed condition (relative
to baseline). Accuracy is higher in the target-primed condition than
baseline, and accuracy is lower in the foil-primed condition than
baseline. The surprising finding is that there is also a cost in the
both-primed condition, when both the target and the foil are
primes. The finding is surprising because in long-term priming,
when both primes were studied at some earlier time (e.g., tens of
seconds or minutes earlier) in a list of other words, there is no
decrement in performance (e.g., Masson & MacLeod, 1996; Rat-
cliff & McKoon, 1997).

Although the pattern of data with passive priming alone pro-
vides a puzzle for modeling, the data obtained with active pro-
cessing of the prime words add more constraints. When subjects
actively process the primes (the case in which subjects make some
decision about the two prime words), the benefit in the target-
primed condition disappears (and in some experiments turns into a
cost) and the cost in the foil-primed condition disappears (and
sometimes turns into a benefit), but the cost of priming both the
target and the foil does not disappear. A simple hypothesis would
be that with active priming, subjects attempt to eliminate any
effects of the primes on their decisions. This would explain the
disappearance of the benefit from priming the target and the
disappearance of the cost from priming the foil, but it would not
explain why the cost from priming both test alternatives does not
disappear. Something more is required.

The ROUSE Model

According to the ROUSE model, in the decision process for the
short-term priming paradigm, words are represented as vectors.
The vector for a word is made up of a series of lexical-semantic
features—20 features in Huber, Shiffrin, Lyle, and Ruys’s (2001)
applications of the model. For the prime words and the test
alternatives, display time is sufficient for all 20 of their features to
be encoded. For the flashed target, display time is cut short and so
only a subset of its features is perceived. It is assumed that the
representation of a word is always the same. For example, if a

Associative similarity

Repetition with similar

Orthographic similarity test alternatives

Priming condition Stimulus sequence® Repetition

Neither primed primel prime2 chet acre
target shoe

target foil shoe frog

Target primed target prime2 shoe acre
target shoe

target foil shoe frog

Foil primed primel foil chef frog
target shoe

target foil shoe frog

Both primed target foil shoe frog
target shoe

target foil shoe frog

chef acre pier colt pier colt
shoe hale hale
shoe frog hale duel hale hail
sock acre hail colt hale colt
shoe hale hale
shoe frog hale duel hale hail
chef toad pier dual pier hail
shoe hale hale
shoe frog hale duel hale hail
sock toad hail dual hale hail
shoe hale hale
shoe frog hale duel hale hail

“ Stimulus sequence for each priming condition: primes, flashed target, and test alternatives.
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word is presented as both a prime and a test alternative, the
same 20 features are encoded in both cases. If two words are
similar to each other, either orthographically or semantically, then
they have some features in common, and words that are defined in
the experiments as being dissimilar to each other are assumed to
have no features in common.

The features of the test alternatives are assigned values, which
provide the basis for the decision. The initial value of all the
features is 0, and the value of a feature is switched to 1 if the
feature is the same as any of the lexical-semantic features that
were encoded as features of the target word. Because of confusion
and noise, not all the features that are encoded as features of a
target actually come from the target itself. A feature that is en-
coded as a feature of a target word can come from any of three
sources: It could have been a genuine feature of the target, it could
have been a feature of a prime that was confused with the target,
or it could have been generated by noise in the system. A genuine
feature of the target word is encoded with probability B, a feature
of a prime word is encoded as a feature of the target with proba-
bility «, and the probability of a feature being encoded into the
target from noise is y. No matter what the source of a target
feature, the value of any test alternative feature that matches a
target feature is set to 1.

Once the feature values for the test alternatives’ vectors are set,
a Bayesian decision rule is used to decide which of them should be
the response. The idea is to determine whether the patterns of
feature values in the vectors are more likely given that Alternative
A was the flashed target or given that Alternative B was the
flashed target.

To determine the overall likelihoods of the patterns in the
vectors for the two test alternatives, the likelihoods are calculated
for each of the individual features in the vectors. For each feature,
the conditional probability of the feature’s value is calculated
given that the feature is a feature of the target word and given that
it is not a feature of the target word. If the system had perfect
knowledge of a, B, and v, and if ROUSE made no further assump-
tions, the probabilities of feature values would be straightforward
to lay out. For example, for a feature that is in a prime word and
the target word, its probability of having the value O in the test
alternative vector would be the probability that the feature was not
encoded as part of the target, not confused between the prime and
the target, and not encoded from noise: (1 — B)Y(1 — a)(1 — y). If
the feature is in the prime word but not in the target word, the
feature could have the value O if it was not confused between the
prime and target and if it was not encoded from noise: (1 — a)
a-m.

However, the decision system does not have perfect knowledge
and ROUSE makes several further assumptions. First, consider the
probabilities «, 3, and vy. The cognitive system cannot have exact
knowledge of these probabilities and so they must be estimated.
The estimates are labeled o', B, and y'. How «, B, and 7 are
estimated is not explained by ROUSE; this process is considered to
be outside ROUSE’s domain. However, ROUSE makes the as-
sumption that 3, the probability a feature of the target word itself
is perceived and encoded, and y, the probability a noise feature is
encoded as part of the target, are accurately estimated. On the other
hand, for «, the probability of a prime feature being encoded as a
target feature, it is assumed that the estimate is not accurate.
Therefore, in the equations for probabilities, 3 can be substituted

for B’ and y can be substituted for ', but « cannot be substituted
for a’.

Second, a crucial mechanism of ROUSE is discounting. If a
feature in a test alternative also occurs in a prime word, then it is
possible that the feature has the value in the test alternative vector
that it does because of the prime word and not the flashed target.
ROUSE is designed to discount feature values that could have
come about from confusion with prime words. This is done with
o’. The assumption is that the estimate of &' is higher when the
amount of discounting is high and lower when the amount of
discounting is low.

Third, discounting should apply to features that a test alternative
shares with a prime and not to features that the test alternative
shares only with the target. To accomplish this, it is assumed that
ROUSE can keep track of which features are shared between
which words. How many features are shared between test alterna-
tives and primes—that is, the probability that a feature is
shared—is a parameter of the model, p. If the prime and test
alternative are the same word, the probability of their sharing
features is 1.00; if they are associatively similar, fits of the model
to data give a probability of .07 or .30 (depending on the experi-
ment); and if they are orthographically similar, fits give a proba-
bility of .70 to .80 (depending on the experiment).

Finally, if the test alternatives are similar to each other, they will
have shared features. If a feature encoded as a feature of the target
word (whether it comes from the target, noise, or confusion with a
prime) is also a feature shared between the test alternatives, then
that feature will have the same value in the two vectors. Therefore,
the values of these shared features can be dropped from the
probability calculations. The probability that a feature is shared
between the two test alternatives is the same parameter p as the
probability that a feature is shared between a prime word and a test
alternative. For orthographically similar words, in Experiments 2
and 3 (Huber, Shiffrin, Lyle, & Ruys, 2001), the value of p for the
probability of a feature being shared between the two test alterna-
tives is the same as the value of the probability of a feature being
shared by a prime and a test alternative. However, in Experiment 4,
for orthographically similar words, the probability that a feature is
shared between a prime and a test alternative is .80, whereas the
probability that a feature is shared between the two test alternatives
is .07. One reason for this large difference may be that in Exper-
iment 4, orthographically similar primes and test alternatives
shared four out of five letters and orthographically similar test
alternatives shared only three out of five letters.

Given all of these assumptions, for each test alternative, the
probability of each of its features’ values can be determined given
that the test alternative matches the target and given that the test
alternative does not match the target, and the ratio of these prob-
abilities can be constructed. In Table 2, the right-hand columns
show the probabilities for a feature that is common to a prime and
a test alternative; the left-hand columns show the probabilities for
a feature that is not. Likelihood ratios are calculated from the
probabilities shown in the table. In each of the four cases, the
numerator of the ratio is the probability in the top row, and the
denominator is the probability directly below in the bottom row.
Suppose, for example, that a feature in the vector for Test Alter-
native A is not in a prime and has the value 0. The numerator of
the ratio expresses the probability that the feature has the value 0
given that Test Alternative A was the flashed target, (1 — y}(1 —
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Table 2
Probability That a Test Alternative’s Feature Has the Value 0 or 1

RATCLIFF AND McKOON

Feature not in a prime

Feature in a prime

Probability Feature value = 0

Feature value = 1

Feature value = 0 Feature value = 1

Probability of feature value given test
alternative = target

Probability of feature value given test
alternative # target

(I =1 -8

-y

L= -y1-p

I-(=-v

A=y -l - o) I ==y -pp—a)

1 -y - a) [ = -9t -a)

B), and the denominator expresses the probability (1 — +y) that the
feature has the value 0 given that Test Alternative A was not the
flashed target.

It is assumed that each feature is an independent source of
evidence, so to determine whether the overall patterns of feature
values (0s and 1s) in the vectors are more likely given that A was
the target or given that B was the target, the odds ratio in Equa-
tion | is calculated

N

p(V{A}A is target)
! p(V{IAHA is foil)

A 1
‘D(E) = : )
= p(V{B}|B is target)

1 p(V{B}[B is foil)

J=1

where V(A)) represents the value of the ith feature of A and N is
the number of features, 20 in Huber, Shiffrin, Lyle, and Ruys’s
(2001) applications. The numerator is the product of the likelihood
ratios for all the feature values in Vector A and the denominator is
the product of the likelihood ratios for all the feature values in
Vector B. If the value of the ratio is greater than 1, then the system
decides in favor of Alternative A; if it is less than 1, the system
decides in favor of Alternative B; and if it is exactly 1, the system
guesses with probability .50 for each alternative.

ROUSE requires significantly large cognitive resources. First, it
is not clear how «, B, and vy could be estimated. Consider 3, the
probability that a feature of the flashed target is perceived and
encoded. To estimate B, features that are genuinely from the
flashed target would have to be kept separate from prime and noise
features, and the genuine target features would have to be counted
across a number of trials. It is not obvious how this could be done.
In fits of ROUSE to data, 3 is usually about .05. This means that,
on average, on each trial of an experiment, only about 1 out of
the 20 features of the target word is encoded. With the 80 trials of
practice typically used by Huber, Shiffrin, Lyle, and Ruys (2001),
the standard deviation in the estimate of 8 would be .005 (assum-
ing 8 = .05). In other words, even with perfect information on
all 80 trials about which features came from the target versus the
primes or noise, the estimated value of 8 after 80 trials would vary
between .04 and .06, and so, contrary to ROUSE’s assumption, an
accurate value of B could not be produced. The same problem
arises in estimating vy and a.

A solution to these problems would be to assume that subjects
set their estimates of the probabilities according to prior experi-
ence, not according to information gained during the experiment.
This has the advantage of being more realistic; certainly, everyday
situations in which information is flashed quickly are not re-

peated 80 times to allow for estimates of probabilities. For each of
B and v, this solution would add a parameter to the ROUSE model
(the model would include parameters for both 8 and 8’ and y and
7v', as well as a and «'). However, the number of parameters could
be minimized by using the same values of 8’ and vy’ across all
experiments (as should be the case if they are set from prior
experience), and it is likely that good fits of ROUSE to data could
be preserved. For « and o/, it could be assumed that prior expe-
rience suggests likely probabilities for discounting—a larger value
for more discounting and a smaller value for less discounting.
Another way in which ROUSE requires significantly large re-
sources is that the decision system must hold full and complete
knowledge of the features of the primes, target, and test alterna-
tives. The rule for switching feature values in the test alternatives
to 1 is that they must be features shared with the encoded repre-
sentation of the target. This requires some process that holds the
encoded target features (the features from the target itself, from
confusion with the primes, and from noise) and identifies corre-
spondences, that is, identifies which of the target features match
which of the features in each of the test alternatives. Moreover, in
calculating the likelihood ratios, the system must perform the
calculations differently according to whether a feature of a test
alternative is shared with a prime or is not shared with a prime (in
the former case, the calculations include o', and in the latter case,
they do not; see Table 2). Finally, the system must keep track of
features shared between the two test alternatives to drop them out
of the probability calculations. Overall, the system must keep track
of the correspondences between all the individual features of all
the pairwise combinations of the primes, target, and test alterna-
tives, properly aligning each feature of each word with its match-
ing features in each of the other words. Feature 3 in a test
alternative, for example, might correspond to Feature 2 in the
target, Feature 13 in one prime, and no feature at all in the other
prime.’ It is possible that some of these problems could be at least
partly solved by moving to more standard lexical-semantic repre-
sentations (e.g., latent semantic analysis; Landauer & Dumais,

! It might seem that the model could assign features to specific positions
so that, for example, the features for the second letters of the prime words
would line up with the features for the second letters of the test alternatives,
but the combinatorial problem is too large. Consider the five 6-letter words
bakery, banker, barber, barker, and darker. At each of the six positions,
there could be 26 different letters. The two words bakery and barker share
five letters and they are quite similar, but of the five letters they share, only
the first two are in the same position. If features were aligned with letter
positions, bakery and barker would be no more similar than bakery and
hungry (which share their last two letters). Also, words vary in their lexical
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1997) in which elements of meaning have fixed places in vectors
so that individual elements line up from one vector to another.
However, this would require significant reparameterization of
ROUSE, and it is not clear if a revised version of ROUSE could fit
the experimental data.

In its current form, the ROUSE model gives an accurate account
of data from the short-term priming paradigm. The fits of the
model to the data are generally within two standard errors. More-
over, the complete set of data provides new insights into short-term
priming, and the experiments that generated these data would not
have been conducted without the guidance of the model. However,
ROUSE is not the only approach. The multinomial model pre-
sented below offers a simpler account and a different framework
for understanding and interpreting the data, and it fits the data
about as well as ROUSE. Our aim in presenting the multinomial
model is to provide a basis for competitive model testing with the
hope of generating new data and new theoretical insights. The best
position to be in during the evolution of modeling in a domain is
to have competing models. The competition can produce empirical
tests that would not otherwise have been thought of, and because
the multinomial model is so simple, research can focus clearly on
exactly where the more sophisticated representations and calcula-
tions of ROUSE’s Bayesian decision process are needed.

The Multinomial Model: Overview

In the main, the multinomial model is put together from “off-
the-shelf” parts. The model assumes a standard word identification
process for the flashed target. There are a number of models for
word identification, including the logogen model (Morton, 1968,
1970), the counter model (McKoon & Ratcliff, 2001; Ratcliff &
McKoon, 1997, 2000), and REMI (Schooler et al., 2001). For the
purposes of explaining Huber, Shiffrin, Lyle, and Ruys’s (2001)
data, it is not necessary to choose among these models. Each can
produce what the multinomial model requires for the short-term
priming situation, namely some value p that is the probability of
identifying a briefly flashed target word.

Instead of the vectors of features used in ROUSE, the multino-
mial model treats the prime, target, and test alternative items as
unitized words in short-term memory, a common assumption.
Previous theoretical and empirical work (e.g., Lee & Estes, 1977)
has made salient the notion that items in short-term memory are
often confused with each other in terms of their order and identity.
The muitinomial model borrows this notion for the principal
assumption in its explanation of performance in the short-term
priming situation: On some proportion of trials, the flashed target
word is confused with one of the prime words. Instead of the
forced-choice decision being made on the basis of which of the
two test alternatives matches the flashed target, the decision is
made—by mistake—on the basis of which of the two test alter-
natives matches one of the prime words. This assumption is
consistent with standard views of how position and order infor-
mation is lost for recently presented items in short-term memory
(see Neath, 1998, chap. 14).

semantic similarity; for example, banker and barber are both occupations.
Overall, there are many more possible kinds of similarity combinations
than can be represented by 20 aligned feature slots.

Making the decision between the two test alternatives on the
basis of a prime word instead of the target word will sometimes
help performance and sometimes hurt performance. If the prime is
the same word as the target, it will help performance, but if the
prime is not the same as the target—if it is the same as the
foil—then the decision between the test alternatives will be wrong.

According to the multinomial model, confusion can occur be-
tween a prime word and the flashed target both when processing of
the primes is passive and when it is active. The multinomial model
also has a second mechanism that operates only when processing
of the prime is active. This mechanism is similar to the discounting
mechanism in ROUSE. The idea is that, with active processing of
the primes, subjects tend to realize that prime—-target confusions
occur and so they attempt to correct for confusion errors by
“discounting” prime—test alternative matches—that is, they choose
a test alternative that does not match a prime word. It should be
noted that, for ease of explication, we speak of discounting as a
choice subjects make, but we intend no commitment to whether or
not this is a conscious or strategic process.

Overall, the multinomial model gives a simple outline of how
two-alternative forced-choice decisions are affected by prime
words that immediately precede a flashed target word. If neither
prime word matches the target or the foil, the probability of a
correct response is p, a probability that is assumed to be the output
of a word identification model. With passive processing of the
prime words, there are two possibilities: If a prime word matches
a test alternative but there is no confusion, then the probability of
a correct response is still p. If confusion does occur, then the
decision is based on the matching prime by mistake. With active
processing of the prime words, subjects not only can be confused
but also can sometimes choose to vote against prime words that
match a test alternative.

There are several key differences between the multinomial
model and ROUSE. For one, the primes, target, and test alterna-
tives are represented in the multinomial model as words, not as
vectors of features. In ROUSE, confusion can occur between all
pairs of matching features, features in the primes, target, and test
alternatives— 400 possible combinations per pair of words—so all
this information needs to be stored for use in the decision process.
In the multinomial model, there are only two possibilities for
confusion to occur: between each prime word and the target word.
Little information needs to be stored. When a prime and target are
confused, it may be that the prime information has simply over-
written the flashed target information in short-term memory. Al-
though both ROUSE and the multinomial model have discounting,
in ROUSE, discounting is done on a feature-by-feature basis,
whereas in the multinomial model, it is a whole word that is either
discounted or not discounted. Finally, the decision in ROUSE is
based on the calculation of Bayesian probabilities. In the multino-
mial model, the decision is based on the probability that informa-
tion is available from the target combined with the probabilities of
confusion and discounting. ’

The multinomial model does a good job of accounting for
Huber, Shiffrin, Lyle, and Ruys’s (2001) data and for the data of
the new experiment described below. It fits the data quantitatively
about as well as ROUSE does, with about the same number of
parameters. In the sections below, we present the multinomial
model in more detail and then show how it fits the data.
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The Multinomial Model: Details

Figure 1 displays the multinomial model by showing probabil-
ities in trees. Each panel shows one of the four priming conditions.
The dotted lines separate passive priming predictions (on the left)
from active priming predictions (adding the branch on the right to
the branches on the left). Each branch of each tree is independent
of every other branch. This means that the model is neutral to order
of processing, although we prefer to think of the flashed target
processed first, followed by the possibilities of confusion with a
prime word and, in the active priming conditions, discounting. For
those branches that end in I, the decision is to respond with the

target alternative. For those branches that end in 0, the decision is
to respond with the foil alternative.

When the target is flashed, information about it becomes avail-
able through the word identification processes of one or another of
the models mentioned above. There are two mathematically equiv-
alent (but psychologically different) ways to think about this. One
is that identification is all or none; either the target is correctly
identified from the stimulus (with some probability p,) or no
information about the target is available (with probability 1 — p,)
and a guess is required. The other possibility is that perceptual
processes produce some probability p that the target was the word
that was flashed; 1 — p is the probability that the foil was the word

P(T) =

Neither Primed

0

Both Primed

Source confusion :

Discounting
p (1- po)? (1- pg)?
Source confusion: 1 No
P(T) = [p(1-Pc)*+0.5(2p-pc2)]
1-p 2pg-Pd’
Dlscountlng ang source confusion:
=[p(1 pc)§+0 5(2pc- pc'})lﬁ -pg)? § Yes
+0.5(2p4-pg?) 0 105
Target Primed 5
Source confusion;  Discounting
P (1- p) (1- pg)
Source confusion: 1 No o
P(T) = [p(1-pc)+pcl
1-p Pd
Discounting and source confusion:
P(T) = [p(1-pc)+Pc)(1-Pg) Yes
0 1 0
Foil Primed ;
Source confusion; Discounting
p (1 - pc) (1 - pd)
Source confusion: 1 No No
P(T) = [p(1-pc)]
1-p Pq
Discounting and source confusion: es
P(T) = [p(1-pc)}(1-pg)+Py 0 o 1

Figure I.  An illustration of the multinomial model showing the four priming conditions. P(T) is the probability
of selecting the target from the two test alternatives, and the numbers 0 and 1 at the ends of the branches of the
trees represent the probability of choosing the target given that the branch was selected.
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flashed. In this latter way of thinking about the model, the system
is never in a state with no information. This fits better with REMI
(Schooler et al., 2001) and the counter model (Ratcliff & McKoon,
1997). Mathematically, p, and p are related by p, = 2(p — 1), so
the multinomial model could use either assumption (although the
two versions of the model would be slightly different because with
the p, assumption, some proportion p; of trials would require a
guess, i.e., the leftmost 0 in each panel of Figure 1 would change
to .5). For the remainder of this article, we adopt the assumption
that word identification processes produce a value of p, that is, a
probability that the target was the flashed word, but all the results
we report would be equivalently consistent with the p; assumption.

In the neither-primed condition (first panel, Figure 1), neither
prime matches either test alternative, so there is no source confu-
sion or discounting, and so the probability of selecting the target is
P(T) = p. In the tree, the branch with probability p ends in 1,
indicating that the target is chosen as the response, and the branch
with 1 — p ends in O, indicating the target is not chosen as the
response.

Panel 3 of Figure 1 shows the target-primed condition. First,
consider passive priming (the branches to the left of the dotted
line). There are two ways that the target can be chosen as the
response: Word identification processes favor the target and there
is no confusion, p(1 — p,), or there is confusion and so the decision
is based on the matching prime (p_). Adding these together, the
total probability of choosing the target with passive priming is
shown at the left of the panel. With active priming, there are two
ways the target can be chosen: (a) No discounting, no confusion,
and word identification processes favor the target, or (b) no dis-
counting and confusion, (1 — p)(1 — pJp + (1 ~ py)p,. Panel 4
of Figure 1 shows the foil-primed condition, and probabilities are
calculated by following the branches of the tree in the same way as
for the target-primed condition.

The case where both primes match test alternatives is more
complicated because there are two potential sources of confusion.
The probability that there is confusion for each of the prime—test
alternative pairs is p., so the total probability of confusion is p, +
P. — P.P.- The probability that there is no confusion for each pair
is 1 — p., so the total probability of no confusion is (1 — P =
1 - (p. + p. — p.p.). For discounting, the probability of dis-
counting for each prime—test alternative pair is pg4, and so the
probability for both is p, + pg — pqpa. The probability that there
is no discounting for each prime-test alternative pair is 1 — pg, so
the total probability of no discounting is (1 — py)*. These expres-
sions, following the branches that end in 1s, lead to the expressions
for P(T) shown at the left of the panel.

When processing of the prime is passive, the word identification
and source confusion mechanisms are the only two mechanisms
needed to fit the data from all four priming conditions, and so the
model has only the two parameters p and p.. The probability of
confusion, p, varies according to whether the relations among the
primes, target, and test alternatives are repetition, associative sim-
ilarity, or orthographic similarity. Confusion is more likely (the
value of p_ is larger) for repetition and orthographic similarity than
for associative similarity. From the equations for P(T), the model’s
predictions for the relative values of probability correct across the
priming conditions for passive priming can be derived: P(T) for
the both-primed condition should be less than p (which is P[T] in
the neither-primed condition), and P(T) for the foil-primed condi-

tion should be less than P(T) for the target-primed condition.
These two predictions are consistent with Huber, Shiffrin, Lyle,
and Ruys’s (2001) data, as we show later. When processing of the
prime is active, the multinomial model needs all three of its
mechanisms to fit the data: word identification, confusion, and
discounting. There are three parameters, the p and p_ parameters
needed for passive priming plus the py parameter for discounting.

Flash-Time Experiment

One empirical question we addressed before fitting the multi-
nomial model to data was whether the probability of confusion (the
value of p.) is a function of the amount of perceptual information
entering the word identification system. Confusion should be less
likely as the amount of perceptual information increases. To ex-
amine this question, we varied the amount of perceptual informa-
tion by varying the flash time for the target. This experiment was
run as a replication of one condition in an experiment by Huber,
Shiffrin, Lyle, and Quach (2001).

The experiment used Huber, Shiffrin, Lyle, and Ruys’s (2001)
four priming conditions: neither primed, both primed, target
primed, and foil primed. Processing of the primes was always
passive. The relation among the primes, target, and test alternatives
was repetition; example stimuli are shown in the third column of
Table 1.

In the multinomial model, with passive priming, the difference
between P(T) for the target-primed condition and P(T) for the
foil-primed condition is p(1 — p.) + p. — p(1 — p.) = p.. Thus,
with passive priming, the difference in probability correct between
the target-primed and foil-primed conditions is a measure of p..
The question for the experiment was whether this difference de-
creased as flash time increased.

Method

Materials. There were 228 quadruples of words. The words of a
quadruple each had the same number of letters and about the same word
frequency (Kucera & Francis, 1967). For each trial, the primes, target, and
foil were chosen randomly from the four words of the quadruple. For 60 of
the quadruples, the Kucera-Francis frequency of the words was 0 or 1. For
the other 168 quadruples, the frequency of the words varied between 4
and 10,601.

Design, procedure, and subjects. The words were displayed on the PC
screen of a Pentium class computer with the refresh rate on the screen set
to 8 ms (Von Brisinski, 1994). Responses were collected on the PC’s
keyboard. Thirty-four students from an introductory psychology class
participated in the experiment for credit in the class.

There were 12 conditions in the experiment: 3 flash times for the target
(8 ms, 16 ms, and 24 ms) crossed with 4 priming conditions. The priming
conditions were neither primed, target primed, foil primed, and both
primed (for examples, see Table 1, column 3). Quadruples were assigned
randomly to each condition with the restriction that there be equal numbers
of quadruples of low-frequency words in each condition and equal numbers
of quadruples of high-frequency words in each condition.

There were 228 trials in the experiment (preceded by 35 practice trials
with 16- and 24-ms flash times and 5 initial practice trials with 120-, 80-,
and 40-ms flash times to orient subjects to the sequence of events). Items
in the 12 experimental conditions were presented in random order. The
sequence of events for each trial was (a) a warning signal (a row of +
symbols) for 240 ms, (b) a 500-ms delay, (c) the two prime words side by
side for 248 ms, (d) the target word flashed for 8, 16, or 24 ms, (e) a mask
(made up of random line segments about the same length as line segments
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in the fonts used for the words) for 200 ms, and then (f) the two alternatives
side by side. The alternatives remained on the screen until the subject
responded, pressing the “?/” key to indicate the right-hand alternative and
the “z” key to indicate the left-hand alternative. A correct response was
followed by the word CORRECT presented for 160 ms and an error
response was followed by the word ERROR presented for 160 ms followed
by a 500-ms delay. The right versus left positions of the primes and test
alternatives were chosen randomly.

Results

Table 3 shows the data. The effects of flash time and priming
condition were significant, F(2,66) = 15932, and F(3,
99) = 13.16, p < .05, respectively, and the interaction of the two
was significant, F(6, 198) = 5.81, p < .05. The standard error of
the means was .0177.

The main result is that the difference between the probabilities
correct in the target-primed and foil-primed conditions (the value
of p.) decreased as flash time increased. With the shortest flash
time, the probability of confusion was .219. The probability de-
creased to .112 for the 16-ms flash time and .031 for the 24-ms
flash time. This confirms our expectation about the multinomial
model’s confusion mechanism: The probability of confusion de-
creases as flash time increases. In fitting the multinomial model to
the data from this experiment, described below, we assumed that
p. decreases linearly from a maximum value of p,, when the
probability of correct identification of the target is at chance (p =
.5) to a value of 0 when the probability of correct identification
is 1.0.

Fitting the Multinomial Model to Empirical Data

In the Huber, Shiffrin, Lyle, and Ruys (2001) article, data from
four experiments were presented. Across the experiments, primes
matched test alternatives by exact repetition, by orthographic sim-
ilarity, or by associative relationship. Table 1 shows examples of
the stimuli.

Experiment 1, Huber, Shiffrin, Lyle, and Ruys (2001). The 18
priming conditions are shown in Table 4. In one of the two mixed
conditions, one of the primes was the target word and the other
prime was associatively related to the foil, and in the other mixed
condition, one of the primes was associatively related to the target
and the other prime was the foil word. The same pool of words was
used for all the conditions. Passive versus active priming was a
between-subjects variable, as it was in all four of the Huber,
Shiffrin, Lyle, and Ruys experiments discussed here.

Table 3

RATCLIFF AND McKOON

We point out important aspects of the data using the repetition
conditions as examples. First, with passive priming, probability
correct is .69 in the neither-primed (baseline) condition, and prob-
ability correct goes up in the target-primed condition (to .77) and
down in the foil-primed condition (to .57). Probability correct in
the both-primed condition also goes down relative to the baseline
condition (to .63). With active priming, the pattern of data for two
of the conditions reverses: Probability correct in the target-primed
condition decreases relative to the baseline, and probability correct
in the foil-primed condition increases (slightly) relative to the
baseline. However, for the both-primed condition, probability cor-
rect is still lower than the baseline.

The multinomial model has three parameters to fit the data from
the nine passive priming conditions: The probability that word
identification processing favors the target, p; the probability of
confusion in the repetition conditions, one value of p_; and the
probability of confusion in the associative conditions, a different
value of p_. To fit the additional nine active priming conditions, the
model adds one parameter for the probability of discounting, p,.
The best fits of the data were obtained when discounting was
assumed to occur only in the repetition conditions, with no dis-
counting in the associative conditions. The model was fit to the
data using a general SIMPLEX (Nelder & Mead, 1965) minimi-
zation routine that adjusts the parameters of the model to find the
parameters that give the minimum sum of squared differences
between the data and the theoretical predictions of the model.

The results from fitting the model to the data are shown in
Table 4 and the parameter values are shown in Table 5. The fits to
the data are good, all within two standard errors of the data (see
Huber, Shiffrin, Lyle, & Ruys, 2001, for a table containing the
standard errors). In three cases in the active priming conditions, the
model misses the data by about 4%, but these are still within two
standard errors of the data. Comparing the multinomial model to
ROUSE, chi-square goodness-of-fit values are 11.05 for ROUSE
and 14.35 for the multinomial model, a reasonably small differ-
ence in quality of fits. The total number of parameter values,
seven, was the same for ROUSE and the multinomial model.

Experiment 2, Huber, Shiffrin, Lyle, and Ruys (2001). For
Experiment 2, primes matched test alternatives either exactly (rep-
etition priming) or in terms of orthographic similarity (see Table
1). Different target items were used for the repetition conditions
than the orthographic similarity conditions.

The fits of the multinomial model to the data were generally
good (see Table 6), with only one point missing by more than two

Probability Correct: Data and Fits of the Multinomial Model for the Flash-Time Experiment

Priming conditions

Data and fits from

Flash time (ms) the multinomial model  Neither primed  Both primed  Target primed  Foil primed
24 Theory .890 .843 .896 .835
Data .859 .829 909 .864
16 Theory .810 749 .830 725
Data 812 733 .843 731
8 Theory 627 .580 704 498
Data 611 .610 11 492
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Probability Correct: Data and Fits of the Multinomial Model for Experiment 1, Huber, Shiffrin, Lyle, and Ruys (2001)

Mixed repetition and

Repetition Associatively similar associative
Data and fits from muitinomial model Neither Both Target Foil Both Target Foil Repeat target Repeat foil
Passive processing of primes
Theory .692 637 740 .584 .686 697 .681 745 573
Data .692 626 770 567 671 733 .670 712 .594
Active processing of primes
Theory 787 688 .688 738 180 .789 177 .690 730
Data .760 .647 716 781 793 790 776 686 120

standard errors. Because there were different items in the repetition
and orthographic similarity conditions, there were different values
of p, p., and p, for these conditions (see Table 5).

Experiment 4, Huber, Shiffrin, Lyle, and Ruys (2001). In this
experiment, there was only one prime word instead of two. The
match between test alternatives and prime was either orthographic
or associative, different items in the two cases. The design required
that the test alternative pairs be different across conditions. For
example, with associative matches for the target Aappy, the prime,
target, and test alternatives in each condition were, respectively:
Both—smile, happy, happy frown; Neither—table, happy, happy
frown; Target match—smile, happy, happy above; Foil match—
below, happy, happy above.

The fits of the multinomial model were again good with all but
three points falling within two standard errors of the data. There
were three parameters, p, p., and p,, with different values for the
orthographically similar and associatively similar conditions (see
Table 5). The chi-square goodness-of-fit values were 9.33 for
ROUSE and 61.22 for the muitinomial model, with a total of 11

Table 5

different parameter values for ROUSE and 10 for the multinomial
model.

Two of the misses that contributed most to the chi-square value
for the multinomial model occurred with associative primes: Prob-
ability correct was higher, by about 3%, in the both-primed con-
dition than in the neither-primed condition (this is the opposite
pattern for these two conditions from what was found in all the
other experiments). Probability correct being higher in the both-
primed condition with associative primes suggests associative fa-
cilitation (semantic priming), something that has not been incor-
porated into either ROUSE or the multinomial model. However,
the ROUSE model was able to come close to the observed data by
allowing the probability of prime features being confused with
target features to be about three times larger than the value in the
other experiments and the value in the active priming condition
(a = .378) and allowing the probability of features being shared
between primes and test alternatives to be very low (p = .073).
These parameter values allowed ROUSE to produce no difference
between the neither-primed and both-primed conditions but not a

Parameters for the Fits of the Multinomial Model to the Data From Experiments 1, 2, 3, and 4, From Huber, Shiffrin, Lyle, and Ruys

(2001) and the Flash-Time Experiment

Experiment and type of prime processing p P, repetition p. associative p. orthographic Pa
Experiment 1 passive .692 156 015
Experiment 2 passive .832 114
Experiment 2 passive 793 159
Experiment 3 passive (dissimilar test pair) 749 152
Experiment 3 passive (ortho. related test pair) 671 187
Experiment 4 passive 770 .078
Experiment 4 passive .697 147
Experiment 1 active 787 121 012 153
Experiment 2 active 793 127 144
Experiment 2 active .808 114 .097
Experiment 3 active (dissimilar test pair) 799 .080 .072
Experiment 3 active (ortho. related test pair) 709 187 072
Experiment 4 active 765 .040 100
Experiment 4 active 814 .036 .000
Flash-time experiment (8 ms) 628 207
Flash-time experiment (16 ms) 811 105
Flash-time experiment (24 ms) .890 .061

Note.

For the flash-time experiment, the value of p. when p = .5is p,, = 0.278; the values of p in the table are 2(1 — p)p,,,. In the active priming condition

for orthographically related test alternatives there was an extra parameter, p, = .344, which represented the probability of choosing the wrong test alternative

to discount. ortho. = orthographically.



844

Table 6

RATCLIFF AND McKOON

Probability Correct: Data and Fits of the Multinomial Model for Experiments 2, 3, and 4 in Huber, Shiffrin, Lyle, and Ruys (2001)

Prime-test alternative or test alternative relationship Fits from the multinomial model and data Neither Both Target Foil

Experiment 2—passive
Repetition Theory 832 760 .851 737
. Data .833 .699 .860 782
Orthographic Theory 793 707 826 666
Data 766 745 .845 .648

Experiment 2—active
Repetition Theory 793 691 701 736
Data 780 .655 722 765
Orthographic Theory .808 718 749 .743
Data .802 702 759 57

Experiment 3—passive
Repetition: Test choices dissimilar Theory 749 .679 187 635
Data 732 705 797 .624
Repetition: Test choices similar Theory 671 613 733 545
Data .694 .602 717 542

Experiment 3—active
Repetition: Test choices dissimilar Theory 799 735 756 754
Data 793 719 766 768
Repetition: Test choices similar Theory 709 618 133 581
Data 7134 .609 721 568

Experiment 4—passive
Associative Theory 770 731 787 712
Data 738 766 .807 .696
Orthographic Theory 697 643 741 .594
Data 717 591 .739 618

Experiment 4-—active
Associative Theory 814 791 .820 784
Data 811 .805 821 774
Orthographic Theory 765 720 697 761
Data 757 .700 710 779

Note.

priming effect. The prediction of no difference resulted in a much
lower contribution to chi-square compared with the multinomial
model. If a semantic priming mechanism were added to the multi-
nomial model, it could fit the data better, but more comprehensive
experiments would be needed to test such an addition both for the
muitinomial model and for an equivalent addition to ROUSE.

Experiment 3, Huber, Shiffrin, Lyle, and Ruys (2001). 1In this
experiment, the test alternatives were orthographically similar to
each other or dissimilar (Table 1, 6th column). Different items
were used in the two sets of conditions.

ROUSE uses the parameter p to represent the probability that
test alternatives have a feature in common. We took the same tack
for the multinomial model. In general, when subjects are discount-
ing, they discount a test alternative that is similar to a prime word,
so they reduce the difference in performance between the target-
primed and foil-primed conditions. For example, in Experiment 3,
probability correct in the target-primed and foil-primed conditions
(repetition conditions) was .80 versus .62 with passive priming but

The entries in bold are predictions that miss by more than 2 standard errors.

.77 versus .77 with active priming. However, when the test alter-
natives are similar to each other, subjects may sometimes discount
for the wrong test alternative. For example, if the test alternatives
were hail and hale and only hail was a prime, subjects might
choose against hale instead of hail. In this case, discounting would
not reduce the difference in performance between the target-
primed and foil-primed conditions as it usually does. This is what
happens in Experiment 3: The probabilities correct for the target-
primed and foil-primed conditions are .72 and .57, much the same
as with passive priming. Following the reasoning just outlined, and
like ROUSE’s use of the p parameter, we introduced a new
parameter (p,) for the probability of discounting the wrong test
alternative when the two test alternatives are similar to each other.

With dissimilar test alternatives, there were five parameters for
the multinomial model, p and p, for passive priming, p, p., and p4
for active priming (see Table 5). With similar test alternatives,
there were three parameters, a value of p for passive priming
conditions, a different value of p for active priming conditions, and
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one value of p, for both the active and passive priming conditions
(we set this parameter to be the same for these conditions to reduce
the number of free parameters). The value of p, for similar test
alternatives was set to be the same as the value of p, for dissimilar
test alternatives, again to reduce the number of free parameters.
With these parameters, the multinomial model fit the data with no
deviations larger than two standard errors (see Table 6). The
best-fitting value of the parameter p, was .344. (We also fit the
model with p, to the data from the active priming condition with
orthographically similar test items in Experiment 4, and p, was
estimated to be 0. This is similar to Huber, Shiffrin, Lyle, and
Ruys’s [2001] finding that p for orthographically similar test
words was near 0, i.e., .070, in that experiment.)

For Experiments 2 and 3 combined, the chi-square goodness-
of-fit values were 96.59 for ROUSE and 78.22 for the multinomial
model, with a total of 17 different parameter values for ROUSE
and 19 for the multinomial model.

Flash-time experiment. The experiment showed that p_ de-
creases as a function of flash time. The decrease in p. was roughly
linear with p, so we fit the data using the following equation: p_ =
2(1 = p)p,., where p,, is the maximum value of p_ at p = .5. The
mode] fits the data with all theoretical points falling within two
standard errors of the data points (SEM = .0177; see Table 3 and
the Results section). The values of p, for the three flash times (see
Table 5) were derived from the one value of p_,, and thus the 12
data points are fitted with four free parameters: three values of p
and one value of p,,. We expect that ROUSE could also fit the data
by allowing the probability of encoding features from the target
(B) to vary with flash time.

A test of the multinomial model. The multinomial model pre-
dicts that the average of the probabilities of a correct response for
two of the experimental conditions should be almost equal to the
average of the probabilities of a correct response for two of the
other conditions. Specifically, the average for the both-primed and
neither-primed conditions should be within 1% of the average for
the target-primed and foil-primed conditions. For passive priming,
using the values of P(T) in Figure 1, the average of the neither-
primed condition and the both-primed condition minus the average
of the target-primed condition and the foil-primed condition
is 0.5(p — .5)p2. Using typical values of the parameters from
Table 5, this is about .004; as predicted, less than 1%. For active
priming, the expression for the difference between the averages is
more complicated, but again using typical parameter values, it is
about .006. The prediction is also confirmed when the data from
the experiments and the fits to the data are examined: Across all
four experiments from Huber, Shiffrin, Lyle, and Ruys (2001), for
both passive and active priming conditions combined, the two
averages are .722 and .731, respectively, for the data, and .730 and
.724, respectively, for the fits of the multinomial model to the data,
both differences of less than 1%. Averaging over flash times in the
flash-time experiment, the two averages for the data are .742 and
.758, and for the multinomial model fits, they are .750 and .749;
again, the differences are less than 1%. Thus, at least for this one
test, the multinomial model makes a reasonably strong prediction
and the data are consistent with this prediction.

Discussion

The parameter values for the multinomial model fits to the data
are displayed in Table 5. For most of the experiments, the param-

eters had different values for different groups of subjects and
different groups of items, just as in ROUSE. Stronger tests of the
models, looking for parameter invariances across manipulations,
will require within-items and within-subjects experimental
designs.

The parameters for the multinomial model have sensible values.
The parameter p is simply the probability correct in the neither-
primed condition. The parameter p, is the probability of confusion,
the probability that the decision is based on a prime instead of the
flashed target. When a test alternative repeats a prime word ex-
actly, the values of p, for the various experiments range from .08
to .19. The values of p, are about the same when a prime and test
alternative are orthographically similar. This is not surprising, and
the fits of ROUSE provide the same conclusion. When a prime and
test alternative are associatively similar, the value of p, is smaller,
near 0 in most fits. The discounting parameter, p,, ranges between
about .07 and .15. This is about the same as the range of the
confusion parameter, p,, indicating that subjects are reasonably
accurate at estimating the amount of their confusion and attempt-
ing to compensate for it, although they do not accurately identify
on which trials discounting is needed and which it is not. Again, a
similar conclusion is produced by the ROUSE model.

Overall, for the multinomial model, there were 4 misses out
of 78 data points (see Table 6), near the expected chance level of
.05. Two of these misses are for the facilitation effect with asso-
ciative primes in the both-primed condition in Experiment 3, for
which neither the multinomial model nor ROUSE can account.
The ROUSE model has 3 out of 66 misses, again about the .05
level. In other words, both models account for the data about
equally well and the obtained misses between theory and data are
about what might be expected from chance.

ROUSE, the Multinomial Model, and Long-Term Priming

One of the future aims for ROUSE is to have it explain long-
term priming effects in perceptual identification—that is, the ef-
fects that are observed when prime words precede flashed targets
by delays of several minutes, filled with other words. ROUSE will
then become a competitor to the REMI model (Schooler et al.,
2001) within the Bayesian framework of this class of models, and
it will become a competitor to the counter model (McKoon &
Ratcliff, 2001; Ratcliff & McKoon, 1997). In contrast, the multi-
nomial model simply adds two assumptions to existing models of
perceptual identification, either REMI or the counter model. The
short-term priming effects discussed in the current article are
explained with a standard assumption about the loss of order and
position information for items in short-term memory (Neath, 1998)
and the assumption that subjects sometimes discount confusing
items.

Compound Cue Models

Huber, Shiffrin, Lyle, and Ruys (2001) discuss the relationship
between spreading activation models, compound cue models
(Dosher & Rosedale, 1989; Ratcliff & McKoon, 1988), and the
ROUSE model. ROUSE is not consistent with many spreading
activation models for several reasons. In ROUSE, items are not
kept separate from each other in memory and activation cannot
flow from item to item along association chains.
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The relationship between compound cue models and ROUSE is
interesting. Compound cue models have usually been applied to
paradigms in which two items, a prime and target, are presented in
sequence, and a decision is required about the second item (e.g.,
lexical decision or item recognition). Compound cue models as-
sume that the representations of the prime and target are combined
in short-term memory to form a compound, in much the same way
as features are combined in the test alternative vectors in ROUSE.
In the standard paradigms to which compound cue models have
been applied, information must be retrieved from memory. The
compound formed in short-term memory is the probe to long-term
memory, and the familiarity of the probe determines the decision.
In the paradigm to which ROUSE is applied, retrieval from mem-
ory is not required for the task at hand—that is, to decide between
the two test alternatives. For retrieval from long-term memory, the
compound cue models calculate the familiarity of the probe in such
a way that there is a boost to familiarity when the prime and target
are associatively or semantically related. No such boost is required
in the paradigm under discussion in this article. The decision
between the two test alternatives does not require retrieval from
memory and the data show no boost to performance for associa-
tively related items.

Conclusions

The multinomial model is offered as a simple, commonsense
alternative to the ROUSE model. The aim is to provide a compet-
itor model to guide model testing and theoretical development. The
fact that such a simple model can fit data that were generated to
develop ROUSE suggests that the sophisticated mechanisms of
ROUSE have not been fully exploited. On the one hand, ROUSE
appears to be more flexible than the multinomial model, but on the
other hand, it may turn out that experimental data will be as
constrained as the multinomial model predicts.
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