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The simplest attentional task, detecting a cued stimulus in an otherwise empty visual field, produces
complex patterns of performance. Attentional cues interact with backward masks and with spatial
uncertainty, and there is a dissociation in the effects of these variables on accuracy and on response time.
A computational theory of performance in this task is described. The theory links visual encoding,
masking, spatial attention, visual short-term memory (VSTM), and perceptual decision making in an
integrated dynamic framework. The theory assumes that decisions are made by a diffusion process driven
by a neurally plausible, shunting VSTM. The VSTM trace encodes the transient outputs of early visual
filters in a durable form that is preserved for the time needed to make a decision. Attention increases the
efficiency of VSTM encoding, either by increasing the rate of trace formation or by reducing the delay
before trace formation begins. The theory provides a detailed, quantitative account of attentional effects
in spatial cuing tasks at the level of response accuracy and the response time distributions.
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In 1980, Posner, Snyder, and Davidson reported that detection
of a bright spot of light in an otherwise empty visual field was
faster if it occurred at a location to which attention had been drawn
by a cue. In the same year, Bashinski and Bacharach (1980)
reported a corresponding result for detecting near-threshold
stimuli: Sensitivity to a brief, backwardly masked, luminance
stimulus was higher if it occurred at a cued location. Together,
these findings challenged a theoretical distinction that, in one form
or another, had underpinned much of the research on attention
since the 1950s. This was the idea that the processes involved in
identifying a stimulus can be divided into two classes that differ in
their attentional demands. One is a class of preattentive processes,
which are parallel and unlimited in capacity; the other is a class of
focal attention processes, which are selective and tightly capacity
limited, possibly serial (Broadbent, 1958; Egeth, 1977; Neisser,
1967). According to this distinction, detection—that is, determin-
ing whether a simple, featurally defined stimulus is present in, or
absent from, the visual field—is carried out preattentively and
neither benefits from nor requires attention. Focal attention is
needed only for more complex judgments, such as discrimination
or recognition of form. Clearly, if this were so, there should be

neither a response time (RT) advantage nor a sensitivity advantage
for cued stimuli in detection tasks.

Together, the studies of Posner et al. (1980) and Bashinski and
Bacharach (1980) ushered in a period of research on attention and
visual signal detection that, over the next 25 years, progressively
identified the conditions under which detection does and does not
benefit from attention. The upshot is that we now know that no
simple characterization of the effects of attention in detection is
possible or can be expected. Rather, the effects that are found
depend on the way in which detectability is manipulated and on the
choice of dependent variable: sensitivity (accuracy) or RT. Atten-
tion interacts with a number of variables that affect detectability,
including the use of visual masks (Smith, 2000a), the presence of
external noise in the display (Dosher & Lu, 2000a, 2000b; Smith
& Wolfgang, 2007), and spatial uncertainty (Gould, Wolfgang, &
Smith, 2007). Under some conditions, attention affects detection
sensitivity and RT in equivalent ways; under others, it affects RT
but has no effect on sensitivity (Smith, Ratcliff, & Wolfgang,
2004). These results are inconsistent with any simple form of
attention–preattention dichotomy, but they nevertheless emphasize
the need to distinguish between detection and other kinds of
perceptual judgment, because the effects found in detection may
have no direct counterpart in other tasks.

In this article, we describe a theory of attention and perceptual
decision making that accounts for the pattern of sensitivity and RT
effects found in cued signal-detection tasks. The theory gives rise
to a class of models that make detailed, quantitative predictions
about how attentional cues and other variables jointly affect sen-
sitivity and the distributions of RT. Our theory differs from other
computational models of attention, such as those of Bundesen
(1990), Reeves and Sperling (1986), and Sperling and Weichsel-
gartner (1995), in its emphasis on performance in the simplest
possible visual task, namely, detection of a single stimulus in an
otherwise empty display. It also differs from attentional models
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based on signal-detection theory, such as those of Foley and
Schwarz (1998); Lu and Dosher (1998); Shimozaki, Eckstein, and
Abbey (2003); Palmer, Ames, and Lindsey (1993); and many
others, in that it predicts both RT and accuracy in cued detection
tasks. Despite the simplicity of the experimental task, the patterns
of data it produces are complex and have not yet been captured
satisfactorily in theoretical models. Before describing the theory,
we first provide a description of two key sets of experimental data
to give readers an idea of the phenomena to be explained.

Attentional Cuing Effects in Signal Detection

The data we consider were obtained from experiments on the
detection of Gabor patch stimuli (Gaussian-vignetted sinusoidal
gratings), as shown in Figure 1. Similar results would likely be
obtained using other kinds of stimuli, such as spots of light (e.g.,
Smith, 1995), but we used Gabor patches for the same reasons as
they are favored by many vision researchers, namely, that they are
band-limited and their intensity profiles correspond roughly to the
receptive fields of cells in primary visual cortex (Webster & De
Valois, 1985). This means that the set of visual mechanisms they
stimulate is localized in space and frequency. Although our theo-
retical focus is on detection, the data we describe were actually
obtained from a very easy discrimination task, in which observers
discriminated between horizontally and vertically oriented Gabor
patches in a two-alternative forced-choice design. We follow Lee,
Koch, and Braun (1997) and use this task as a proxy for detection.
The main advantages of the orthogonal discrimination task over
the traditional yes/no task of signal-detection theory are that it is
relatively unbiased, which minimizes criterion effects, and that it
can be represented satisfactorily using an equal-variance signal-
detection model, whereas yes/no tasks typically require an

unequal-variance model (Green & Swets, 1966). These properties
simplify the task of obtaining reliable estimates of sensitivity for
attended and unattended stimuli. A further advantage in the present
setting is that, unlike the yes/no task, the distributions of RT for the
two responses are very similar, which simplifies the task of fitting
our mathematical models.

Treating orthogonal discrimination and yes/no detection as
functionally equivalent is justified empirically by the results of
Thomas and Gille (1979), who showed that contrast thresholds in
the two tasks are indistinguishable: If a stimulus can be detected,
its orientation can be discriminated, and vice versa. This finding
was used by Lee et al. (1997) and by Cameron, Tai, and Carrasco
(2002) as justification for treating the two tasks as equivalent for
the purpose of drawing inferences about attention. In support of
this approach, we have shown that our main experimental findings
on the effects of attention in the orthogonal discrimination task are
also found in yes/no and rating scale tasks (Smith, 2000a; Smith &
Wolfgang, 2004; Smith, Wolfgang, & Sinclair, 2004). These sim-
ilarities support the idea that the two tasks can be treated as
equivalent and interchangeable in studies of attention.

Our experimental task was the Posner (1980) spatial cuing
paradigm, in which a cue is used to draw attention to a particular
location in the visual field. The cue is followed, after a brief delay,
by the stimulus, which can appear either at the cued location or at
some other location, with some probability. In the version of the
task shown in Figure 1, the cue consisted of four pairs of perpen-
dicular lines, which marked the corners of a 1.8° square, located on
the circumference of an imaginary 6.2° diameter circle, surround-
ing a central fixation point. The cue was flashed for 60 ms at a
stimulus onset asynchrony (SOA) of 140 ms before presentation of
the stimulus. The stimulus could appear at any one of three
locations on the circumference of the circle, one cued and two
uncued. On each trial, the angular position of the cue, � (0 � � �
360°), was selected randomly; the uncued locations were at � �
120°. With this configuration, the two uncued locations were
equally distant from the cued location and so, under reasonable
assumptions about the spatial distribution of attention, should have
received similar processing resources. In our studies, the cue-target
SOAs and the stimulus exposures were chosen so that their sum
was 200 ms or less. This ensured that the stimulus could not be
brought into central vision by making a saccadic eye movement
during the course of an experimental trial (Hallett, 1986).

One of the ongoing theoretical challenges in the visual signal-
detection literature has been to distinguish between two mecha-
nisms whereby attention can influence performance. These mech-
anisms have been variously termed signal or stimulus
enhancement and uncertainty or noise reduction (Lu & Dosher,
1998; Shiu and Pashler, 1994; Van der Heijden & Brouwer, 1999).
Signal enhancement is a selective increase in the signal-to-noise
ratio for stimuli at attended locations and is usually thought of as
a perceptual-level phenomenon. Uncertainty reduction is an in-
crease in performance due to foreknowledge of the likely location
of the stimulus in the display, increasing the efficiency with which
it can be segregated from its background or distinguished from
distractors (Palmer, Verghese, & Pavel, 2000; Tanner, 1961).
Uncertainty reduction is usually thought of as a decision-level
phenomenon.

Whereas signal enhancement implies some form of selective,
limited-capacity processing mechanism, uncertainty reduction de-

Figure 1. Examples of the stimulus configurations used by Smith, Rat-
cliff, and Wolfgang (2004). A. Vertically oriented pedestal Gabor patch at
a cued location. B. Horizontally oriented pedestal Gabor patch at a miscued
location. C. Cued patch followed by a checkerboard backward mask.
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scribes changes in the total amount of noise entering the process-
ing system and occurs even in the absence of capacity limitations.
Consequently, signal enhancement can be identified experimen-
tally only when the effects of uncertainty are eliminated or other-
wise controlled (Shaw, 1984). A number of visual search phenom-
ena once thought to reflect limited-capacity processing can be well
described by multichannel signal-detection models that attribute
them to a combination of display noise and spatial uncertainty
(Baldassi & Burr, 2004; Eckstein, Thomas, Palmer, & Shimozaki,
2000; Palmer et al., 1993; Shimozaki et al., 2003; Verghese, 2001).

The effects of uncertainty are likely to be particularly significant
in cued detection tasks in which near-threshold stimuli are pre-
sented against a uniform background at unknown locations. Under
such conditions, the background acts as a field of noise against
which the stimulus must be distinguished. Because manipulations
of attention are usually also manipulations of uncertainty, some
way is needed to decouple the effects of the cue on uncertainty
from its effects on stimulus signal-to-noise ratio. Figure 1 shows
how this can be done experimentally, by ensuring stimuli remain
well localized perceptually, even at very low intensities. Rather
than presenting stimuli directly on a uniform background, they are
presented on top of circular, suprathreshold contrast, luminance
pedestals (Smith, 2000a). Detectability is manipulated by varying
the contrast of the grating relative to the luminance of the pedestal,
but the stimulus itself remains well localized because the pedestal
is kept at a constant, suprathreshold contrast.

Effects of Backward Masking

Probably the best predictor of whether attentional effects will be
found in detection tasks is whether or not stimuli are backwardly
masked. In a review of the literature on visual signal detection,
Smith (2000a) pointed out that most of the detection studies
reporting signal enhancement limited the information from the
stimuli with backward masks (Bashinski & Bacharach, 1980;
Brawn & Snowden, 2000; Downing, 1998; Hawkins et al., 1990;
Luck et al., 1994; Müller & Humphreys, 1991; Smith, 1998),
whereas most of those finding small effects or no effect limited
stimulus information using contrast or exposure duration alone
(Bonnel & Hafter, 1998; Bonnel, Stein, & Bertucci, 1992; Davis,
Kramer, & Graham, 1993; Foley & Schwarz, 1998; Graham,
Kramer, & Haber, 1985; Palmer, 1994; Palmer et al., 1993; Shaw,
1984). This conclusion echoes earlier suggestions that the atten-
tional effects found in other tasks may also depend on the use of
masks (Cheal & Lyon, 1992; Giesbrecht & Di Lollo, 1998; Mor-
gan, Ward, & Castet, 1998; Shiu & Pashler, 1994). It is also
consistent with the attentional dependencies found in masking
paradigms such as metacontrast masking (Ramachandran & Cobb,
1995), object-substitution masking (Enns & Di Lollo, 1997; Fran-
cis, 2000; Tata, 2002), and radial frequency-pattern masking
(Smith, Lee, Wolfgang, & Ratcliff, in press).

In a series of studies comparing masked and unmasked stimuli
in the same experimental task, Smith and colleagues found sys-
tematic cuing effects in detection with masked stimuli but none
with unmasked stimuli. We refer to this as the mask-dependent
cuing effect. As we noted previously, we have found the same
effect using a yes/no task (Smith, 2000a; Smith & Wolfgang,
2004), a rating-scale task (Smith, Wolfgang, & Sinclair, 2004), and
the orthogonal discrimination task (Smith, Ratcliff, & Wolfgang,

2004). Because these studies all used pedestals to localize the
stimuli, the results could be attributed to some form of signal
enhancement, and not to uncertainty reduction. This article pre-
sents a theory of how such enhancement arises.

Figure 2 shows a summary of the data of Smith, Ratcliff, and
Wolfgang (2004), who used the orthogonal discrimination task to
compare the effects of cues for masked and unmasked stimuli. A
novel feature of this study was that accuracy and RT data were
collected from the same task. In one condition of the experiment,
stimuli were flashed for 60 ms and then extinguished; in another,
they were flashed for 60 ms and then followed immediately by a
high-contrast checkerboard mask, as shown in Figure 1. Stimulus
contrast was varied in five steps, using the method of constant
stimuli, to yield psychometric functions ranging from near-chance
to near-perfect performance for each observer. Roughly twice the
stimulus contrast was needed to obtain performance under masked
conditions equal to that under unmasked conditions.

The top panels of Figure 2 show detection sensitivity (signal
detection d�) for masked and unmasked stimuli; the bottom panels
show mean RT. The data in the figure are averaged over five
observers; the individual observer data may be found in the orig-
inal article. Each data point in Figure 2 is based on 400 trials per
observer (2,000 trials per point; 8,000 trials in total per observer).
Perhaps the most striking feature of the data is that there is a
dissociation in the effects of cues on sensitivity and on RT. When
stimuli were masked, detection sensitivity for cued stimuli ex-
ceeded that for miscued stimuli at all levels of contrast. When
stimuli were unmasked, sensitivity to cued and miscued stimuli did
not differ. For RT, the situation is different. Mean RT shows the
usual Piéron’s law (power law) reduction with increasing contrast
(Luce, 1986) but, more important, cues had an unconditional effect
on mean RT. Although the cuing effect in RT was larger for
masked stimuli, mean RTs were shorter for cued than for miscued
stimuli for both masked and unmasked stimuli.

The pattern of data in Figure 2 highlights what has been one of the
longstanding theoretical puzzles in the attention literature. Whereas
many detection studies have found no effect of cues on sensitivity,

Figure 2. Results from Smith, Ratcliff, and Wolfgang (2004). Triangles
are cued stimuli; squares are miscued stimuli. The upper panels show
detection sensitivity (d�) for masked and unmasked stimuli; the lower
panels show mean response time (MRT). Data from five observers.
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shorter RTs to cued stimuli—the so-called Posner effect—are rou-
tinely found. This has led some researchers to suggest a criterion-
setting explanation for the RT effects (Pashler, 1998; Sperling, 1984;
Sperling & Dosher, 1986). According to the criterion-setting account,
observers in RT tasks set lower decision criteria at attended locations
and so base their decisions about attended stimuli on less evidence,
resulting in shorter RTs for attended stimuli. This explanation at-
tributes the RT differences wholly to differences in the observers’
decision strategies and not to any increase in the quality of stimulus
information at attended locations. Clearly, the pattern of data in
Figure 2 is more complex than can be accommodated by a simple
criterion-setting account, which cannot explain the interaction with
backward masking in the sensitivity data. Nevertheless, we agree with
Sperling and Pashler that the relationship between accuracy and RT
found in tasks of this kind implies the involvement of a sequential-
sampling decision mechanism that accumulates noisy information to
a response criterion. Such mechanisms play a fundamental role in the
theory that follows.

The mask dependencies in d� in Figure 2 were obtained using
weakly predictive peripheral cues. Stimuli were presented at the
cued location on 50% of trials and at each of the uncued locations
on 25% of trials. We have found similar mask dependencies using
a number of different cue configurations and a variety of cue
validities, including 80% valid cues (Smith, 2000a) and 100%
valid cues (Smith, Wolfgang, & Sinclair, 2004). The effect thus
does not depend critically on cue validity.

Effects of Spatial Uncertainty

The pattern of sensitivity values shown in Figure 2 is obtained
only with perceptually well-localized stimuli. Two recent studies
by Carrasco and colleagues (Cameron et al., 2002; Carrasco,
Penpeci-Talgar, & Eckstein, 2000) investigated the effects of cues
on detecting and discriminating oriented Gabor patch stimuli. Both
studies included conditions requiring discrimination between pairs
of stimuli of dissimilar orientation (�45° in the Carrasco et al.,
2000, study; �15° in the Cameron et al., 2002, study), which
should have yielded results comparable to detection. Unlike the
studies of Smith and colleagues described previously, these studies
presented stimuli directly against a uniform background. Both
yielded significant cuing effects with unmasked stimuli, which
Carrasco and colleagues attributed to signal enhancement.

We suspected that the reason why we obtained different results
with unmasked stimuli to those of Carrasco and colleagues was
because of the greater perceptual saliency of our stimuli and the
resulting differences in the effects of uncertainty. Whereas our
stimuli were localized perceptually by pedestals, the stimuli used
by Carrasco and colleagues were not. Consequently, performance
in their task may have been influenced by uncertainty.

To test this, Gould et al. (2007) compared performance in an
unmasked, orthogonal discrimination task under differing conditions
of uncertainty. Half of the stimuli were presented directly on a
uniform field, without localizing markers, like the stimuli used by
Carrasco and colleagues. The other half were localized perceptually,
using fiducial crosses (Eckstein, Pham, & Shimozaki, 2004), as
shown in Figure 3. These consisted of four radial lines centered on the
stimulus location, whose onset and offset coincided with that of the
stimulus. The fiducial crosses served the same role as did the pedes-
tals in our earlier studies, namely, to ensure that stimuli were well

localized perceptually, even at very low contrasts. All aspects of the
stimulus display, cue contingencies, and the experimental procedure
were identical to those in the study of Smith, Ratcliff, and Wolfgang
(2004), except that stimuli were presented for 40 ms, rather than 60
ms. As in that study, stimuli were presented on the circumference of
an imaginary circle surrounding a fixation point. Cued stimuli were
presented at randomly chosen angles (�, 0 � � � 360°); uncued
stimuli were presented at � � 120°. Also as in that study, we collected
measures of both accuracy and RT.

Figure 4 summarizes the results of Experiment 1 of Gould et al.
(2007). The upper panels show detection sensitivity for stimuli
presented with and without fiducial crosses; the lower panels show
mean RT. The data in the figure are averages over five observers,
as before. Each data point in the figure is based on 360 trials per
observer (1,800 trials per point; 7,200 trials total per observer).
When no fiducial crosses were used, the results replicated those of
Carrasco and colleagues: Sensitivity was uniformly higher for
cued than for miscued stimuli, even though no backward masks
were used. When stimuli were localized by fiducial crosses, the
results replicated those of Smith and colleagues using pedestals:
Sensitivity for cued and miscued stimuli did not differ.

A similar dissociation appears in the pattern of sensitivity and mean
RT to that found in the masking data of Smith, Ratcliff, and Wolfgang
(2004). As in that study, mean RTs were shorter at higher levels of
contrast, decreasing roughly according to Piéron’s law. Also, as in that
study, mean RTs were shorter for cued than for miscued stimuli,
irrespective of whether fiducial crosses were used and irrespective of
whether a sensitivity effect was obtained. The exception to this was at
the very lowest contrasts in the no-fiducial condition, in which cued
and miscued RTs did not differ. We discuss possible reasons for a
breakdown in the cuing effect in RT at low contrasts subsequently.

The data show that uncertainty is a significant determinant of
attentional effects when a single stimulus is presented without local-
izing information in an otherwise empty display. We refer to the
pattern of results in Figure 4 as the uncertainty-dependent cuing effect,
to emphasize the parallels with the results of Smith, Ratcliff, and
Wolfgang (2004). Researchers have characterized the effects of un-
certainty mathematically using multichannel signal-detection models
(Pelli, 1985; Shaw, 1982; Tanner, 1961). The signal-detection ap-
proach to uncertainty assumes the uniform field on which the stimulus
is presented is coded by a population of noisy spatial frequency and
orientation tuned filters. Detection of a near-threshold target at an
unknown location requires that activity in the filter coding the target
be distinguished from noise in the filters coding the uniform field.

Figure 3. Examples of the stimuli used by Gould, Wolfgang, and Smith
(2007). Low-contrast Gabor patches were presented directly on a uniform
field without localizing markers (left), or were localized perceptually by
fiducial crosses (right). The display configuration was the same as that used
in the study of Smith, Ratcliff, and Wolfgang (2004), shown in Figure 1.
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Information about the probable target location allows perceptual ac-
tivity at other display locations either to be excluded from the observ-
er’s decision, or for its effects to be attenuated. This leads to a
reduction in the amount of noise entering the decision process, in-
creasing signal-to-noise ratio, and thus improving sensitivity. Because
knowledge of the target location leads to a reduction in decision noise,
researchers typically regard “noise reduction” and “uncertainty reduc-
tion” as synonyms.1

Signal-detection theory has proven to be a powerful tool for
understanding the relationship between stimulus uncertainty and
attentional effects in a variety of perceptual tasks (Baldassi & Burr,
2004; Dosher & Lu, 2000a, 2000b; Eckstein et al., 2000; Foley &
Schwarz, 1998; Lu & Dosher, 1998; Palmer et al, 1993; Palmer et
al., 2000; Shaw, 1980, 1982, 1984; Shaw, Mulligan, & Stone, 1983;
Shimozaki et al., 2003; Smith, 1998; Verghese, 2001). However, one
of its limitations is that it is a static (i.e., a random variable) theory,
and so offers little insight into the time course of uncertainty reduc-
tion. Our theory seeks to extend signal-detection theory to give a
characterization of the dynamic nature of uncertainty reduction. Fol-
lowing Pelli (1985), we assume that uncertainty changes the shape of
the visual contrast response function that relates the detectability of a
stimulus to its contrast. The effect of an increase in uncertainty is to
make low contrast stimuli less detectable than they would be
otherwise. In our theory, uncertainty and attention jointly deter-
mine the efficiency with which a durable representation of the
stimulus is formed in visual short-term memory (VSTM). This
representation serves as the basis of the observer’s decision.

The Elements of the Theory

We claim that an adequate account of the mask-dependent cuing
effect in sensitivity, and of the relationship between RT and accuracy
in Figures 2 and 4, requires a theory that links visual encoding,
masking, attention, VSTM, and decision making in an integrated
dynamic framework. Figure 5 shows the elements of such a theory.

The theory assumes that decisions are made by a sequential-sampling
mechanism that accumulates successive samples of noisy stimulus
information to a response criterion. The criterion that is reached
determines the response that is made; the time taken to reach it
determines the RT. We assume that evidence accumulates continu-
ously in time and that the accumulating evidence state is itself con-
tinuously distributed. This leads to a representation of the decision
stage as a diffusion process of some kind (Busemeyer & Townsend,
1993; Ratcliff, 1978; Ratcliff & Smith, 2004; Smith, 1995, 2000b).
We consider two decision mechanisms based on diffusion processes
in more detail subsequently.

The rate at which evidence accumulates in the decision
stage—the so-called drift of the diffusion process— depends on
the quality, or the strength, of a representation of the stimulus in
VSTM. Strong VSTM traces lead to a high rate of evidence
accumulation, resulting in high accuracy and short RTs. The
strength of the VSTM trace depends, in turn, on stimulus contrast
and on the properties of the early spatiotemporal filters that encode
the stimulus, interacting with any masking stimulus that may be
present, under the control of spatial attention. The role ascribed to
attention in our theory is that it controls the formation of a
representation of the stimulus in VSTM. This is, of course, a
classical notion, with a long pedigree in the psychological litera-
ture. It was first proposed by Sperling (1960) in his pioneering
study of iconic memory and has been developed by him and his
coworkers in a number of articles subsequently (e.g., Reeves &

1 Lu and Dosher (1998) use a similar term, “noise exclusion,” in a sense
that is unrelated to uncertainty reduction. They use it to describe an
attention-dependent mechanism that helps distinguish signal from noise at
a single, specified display location. The action of this mechanism is
unrelated to changes in an observer’s uncertainty that result from knowl-
edge of the target location. Lu and Dosher’s theory is discussed in more
detail later in this article.

Figure 4. Results from Gould, Wolfgang, and Smith (2007). Triangles
are cued stimuli; squares are miscued stimuli. The upper panels show
detection sensitivity (d�) for stimuli presented with fiducial crosses (FID)
or without fiducial crosses (no FID); the lower panels show mean response
time (MRT). Data from five observers.

Figure 5. System model of attention and decision making. The sensory re-
sponse function, �(t), describes the visual response to a briefly flashed stimulus.
The information in the sensory response function is encoded in a durable form in
visual short-term memory (VSTM) under the control of spatial attention, �(t). The
VSTM trace is subject to moment-by-moment perturbations by broad-spectrum,
Gaussian noise (the noise at the top). Successive samples of the noise-perturbed
VSTM trace are accumulated over time by a diffusion process to make a decision.
The noise source at the bottom represents the effects of trial-to-trial variation on the
quality of the encoded stimulus information. Its effect in the model is to introduce
variability in the strength of the VSTM trace.
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Sperling, 1986; Sperling & Weichselgartner, 1995), as well as by
many others. The same idea is instantiated dynamically in our
theory.

Perceptual Encoding and Visual Masking

We assume stimuli are encoded by perceptual analyzers that, to
a first approximation, act as linear spatiotemporal filters (Graham,
1989). The filters are low-pass in the sense that they remove fast
transients, or high temporal frequencies, from the stimuli they
encode. The effect of filtering is to transform brief, rectangular
pulse stimuli into smooth time-varying functions, like those shown
in Figure 6. We model the response of a filter to a step-onset, unit
increase in contrast using a gamma function

�	t;
,n� � 1 � e�
t�
j0

n�1
	
t�j

j!
. (1)

In probabilistic settings, Equation 1 describes the distribution of a
sum of n exponentially distributed random variables. In linear
filtering settings, Equation 1 describes the deterministic response
of a filter comprising n identical resistance-capacitance stages in
cascade to a unit-step function stimulus. (The unit-step function is
defined to be zero for all times t � 0 and unity thereafter.) The
exponential rate constant, 
, determines the filter’s temporal re-
sponse characteristics. Smaller values of 
 lead to a slower tem-
poral response, resulting in greater attenuation of the high temporal
frequencies in the filter’s output. Models based on linear filters,
which generalize and extend Equation 1 in various ways, have
been widely used in studies of visual temporal sensitivity (Watson,
1986).

The information an observer extracts from a stimulus depends
on the temporal response of the filter that encodes it and on the
effects of any masking stimulus that is present. The assumptions
we make about visual masking are the simplest ones possible. We
assume that the effect of a backward, pattern mask, like the one
shown in Figure 1, is to limit the time for which stimulus infor-

mation is available to later processing stages. In Coltheart’s (1980)
terms, masks limit the informational persistence of the stimulus.
When stimuli are unmasked, informational persistence is long.
They are encoded and are then subject to slow iconic decay, so the
information they contain is available to later processing stages for
a relatively long time. When they are masked, informational per-
sistence is short. They are encoded and are then rapidly suppressed
by the mask, so the information they contain is available for a
limited time only. The difference in the informational persistence
of masked and unmasked stimuli is fundamental to the theory’s
ability to predict mask-dependent cuing effects.

In our theory, the time course of stimulus processing is de-
scribed by a sensory response function, �(t), as shown in the box
on the left of Figure 5. To model the different sensory response
characteristics of masked and unmasked stimuli we use an ex-
tended linear filter representation of the form

�	t� � ��	t;
on, n��1 � �	t � d; 
off, n��, (2)

where the function �(t; 
, n) is defined by Equation 1. This
equation was introduced by Smith and Wolfgang (2004) in a
precursor to the present theory. Equation 2 describes the sensory
response of the visual system to a rectangular pulsed stimulus of
amplitude �, and duration d. It extends the usual linear filter
representation by allowing the filter rise (onset) time and fall
(offset) time to be different. The onset and offset times are char-
acterized, respectively, by the rate constants 
on and 
off. When
stimuli are unmasked, we assume that 
off � 
on; when they are
masked, we assume the converse.

Examples of the sensory response functions yielded by Equation
2 for masked and unmasked stimuli are shown in Figure 6. When
d � 0 and 
off � 
on, Equation 2 becomes indistinguishable from
the simpler, additive representation

�	t� � ���	t;
on, n� � �	t � d; 
off, n��, (3)

at least for values of stimulus duration and onset and offset times
of the kind that would be encountered experimentally.2 Equation 3
is a straightforward generalization of the symmetrical linear filter
model, in which 
off  
on, that has been used by many authors
(e.g., Busey & Loftus, 1994; Sperling & Weichselgartner, 1995).
When 
off � 
on, Equation 2 may instead be interpreted as
representing rapid, multiplicative suppression of the stimulus by
the mask. Equation 2 thus allows us to model the theoretical
sensory response characteristics of masked and unmasked stimuli
in a flexible way using a single equation.

In adopting Equation 2 as a model of perceptual encoding, we
assume that backward, pattern masks act as interruption masks
(Kahneman, 1968). The distinction between interruption masks

2 The extended linear filter representation in Equation 2 is well approx-
imated by the additive representation in Equation 3 whenever n/
on �� d,
that is, when the mean of the onset term, �(t; 
on, n), is small relative to
the stimulus duration. Then �(t; 
on, n) � 1, for t � d. This means that the
onset term will be close to asymptote for all times at which the offset term,
�(t � d; 
off, n), is nonzero. Under these circumstances, the product �(t;

on, n)�(t � d; 
off, n) in Equation 2 is approximately equal to �(t � d;

off, n), which reduces Equation 2 to the additive representation. Note that
in these equations, and in Equations 2 and 3 in the text, �(t; 
, n)  0 for
t � 0.
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Figure 6. Sensory response functions for masked and unmasked stimuli.
When stimuli are unmasked, they are encoded and then undergo slow
iconic decay. When stimuli are masked, they are rapidly suppressed by the
mask.
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and integration masks is one of several distinctions made in the
literature between masking mechanisms of different kinds (Breit-
meyer, 1984). In interruption masking, a trailing mask terminates
stimulus processing prematurely, before it has been completed. In
integration masking, the stimulus and mask fuse to form a percep-
tual composite, whose signal-to-noise ratio is lower than that of the
stimulus in isolation. The magnitude of integration masking is the
same for forward (leading) and backward (trailing) masks, and it is
maximal when target and mask are simultaneous. Interruption
masking is found only with backward masks, and its effects are
maximal when the mask trails the target after a critical delay,
usually of the order 60–100 ms. By comparing the functions
obtained with dichoptic and monoptic masks, Turvey (1973) was
able to show that integration masking mainly occurs peripherally,
in retina, primary afferent pathways, or lateral geniculate body,
whereas interruption masking occurs centrally, in visual cortex.
Although there is some cortical integration of targets and masks,
the effect decreases sharply with increasing temporal separation
and is virtually nonexistent by 60 ms (Michaels & Turvey, 1979).

Two pieces of evidence support our claim that the cuing effects
in Figure 2 depend on an interaction between attention and an
interruption masking mechanism. The first comes from a recent
study by Smith and Wolfgang (2007) that compared the magnitude

of the cuing effect in the orthogonal discrimination task with
simultaneous masks and with backward masks that trailed the
target by 60–90 ms. In all five of the experiments reported in the
article, there were large cuing effects with backward masks,
whereas the cuing effects with simultaneous masks were weak or
absent. This is consistent with the idea that the cuing effect arises
when the mask terminates stimulus processing prematurely.

The second piece of evidence comes from a study by Smith and
Wolfgang (2004), the results of which are summarized in Figure 7.
This study investigated the effects of attentional cues in yes/no
detection using pedestal Gabor stimuli under dichoptically
masked, monoptically masked, or unmasked conditions. The de-
sign compared detection sensitivity for cued and miscued stimuli
to sensitivity with a neutral cue, which provided no information
about the likely target location. When stimuli were unmasked,
there was no evidence of a cuing effect of any kind, a result
replicating that of Smith, Ratcliff, and Wolfgang (2004; see our
Figure 2). However, there were systematic cuing effects for all
observers with both monoptic and dichoptic masks. Indeed, as
Figure 7 shows, the dichoptic effect was actually slightly larger
than the monoptic effect. This is consistent with the view that
cuing effects in detection occur when the mask interrupts stimulus
processing, because interruption masking should be maximized by

Figure 7. Results of Smith and Wolfgang (2004). Stimuli were dichoptically masked (targets and masks to
different eyes), monoptically masked (targets and masks to the same eye), or unmasked. The inset at the upper
left shows the sequence of stimulus events in the three conditions. The white rectangles are stimulus events; the
black rectangles are occlusions. The inset at the upper right shows the anatomical pathways stimulated by targets
and masks in the dichoptic presentation condition. A target and mask are presented at the same spatial location
in the visual field to the temporal hemiretina of the left eye and nasal hemiretina of the right eye, respectively.
They travel via different afferent pathways to area V1 in the left cerebral hemisphere. The panels at the bottom
show detection sensitivity (d�) for cued stimuli (Cue), neutrally cued stimuli (Neut.), and miscued stimuli (Mis.)
in the three masking conditions. Data from five observers. Stimulus contrasts were set individually to try to
ensure average performance of d�  2.0 for each observer in each condition.

289ATTENTION AND DECISION MAKING



dichoptic viewing. Interruption masking is thought to arise when
two competing pattern stimuli arrive in close succession in visual
cortex. These effects are largest when stimuli have no opportunity
to fuse in primary afferent pathways (Turvey, 1973).

Visual Short-Term Memory

In the second stage of processing, the information in the stim-
ulus is encoded in a durable form in VSTM under the control of
spatial attention. We denote the strength of the VSTM trace as a
function of time by �(t). As shown in Figure 5, following stimulus
presentation, the VSTM trace grows smoothly to an asymptote
whose value depends on the contrast and duration of the stimulus
and on whether it appears at an attended or an unattended location.
The idea that there exists a relatively durable, posticonic, precat-
egorical form of VSTM is well established—the classic study
being that by Phillips (1974). VSTM is “posticonic” in the sense
that it is able to survive visual masking; it is “precategorical” in the
sense that the stimulus information it contains has not been cate-
gorized or identified. Recently, Vogel, Woodman, and Luck
(2006) showed that the VSTM trace is formed within the first 200
or 300 ms of stimulus onset, consistent with the estimates we
report here. Our recognition of the need for an explicit VSTM
stage was in response to these findings and to the results of Ratcliff
and Rouder (2000), who showed that the information in a transient
stimulus event is preserved without decaying for the time needed
to make a decision.

We modeled the growth of VSTM mathematically using a
particular kind of differential equation called a shunting equation.
The distinguishing feature of shunting equations is that the input to
the system—the so-called forcing function, which describes the
information in the stimulus—enters into the equation multiplica-
tively, rather than additively, as occurs in the usual linear system
formulation. This gives shunting equations desirable characteris-
tics in models of short-term memory, as we discuss subsequently.

A number of authors have proposed shunting equations as
models of biological computation, the most comprehensive theo-
retical treatment being that of Grossberg and colleagues (e.g.,
Grossberg, 1987, 1988). The first use of shunting equations in a
psychophysical setting was by Sperling and Sondhi (1968) in a
model of flicker perception. However, the application closest in
spirit to our own is that of Loftus and colleagues (Busey & Loftus,
1994), who, like us, used a shunting equation to model the encod-
ing of stimulus information in VSTM. Unlike ours, their model is
a functional model, which uses a shunting equation to describe the
growth of the proportion of correct responses over time. Our model
is a process model, which uses a shunting equation to describe the
psychological processes that underlie the observed performance,
rather than the observed performance itself. The advantage of the
process model approach over the functional approach is that it
provides an account of both RT and accuracy, whereas the func-
tional approach provides an account of accuracy only.

To ensure the VSTM trace grows to an asymptote and does not
saturate at long stimulus exposures, we assume it arises as the
result of an opponent channels, or excitatory-inhibitory, coding
process. Denoting the intensity of the stimulus by �I and the
intensity of the background by I0, we assume that the growth of
VSTM is described by the differential equation

dv

dt
� �I�	t��� � v	t�� � I0�	t�v	t�. (4)

Two features of this equation are noteworthy. First, as men-
tioned previously, the information in the stimulus, �(t), enters
into the equation multiplicatively, rather than additively. This
means that when the stimulus is removed—that is, when �(t) 
0 —the derivative d�/dt goes to zero and the trace stops chang-
ing. Shunting equations thus provide a natural way to model the
formation of a durable VSTM trace in response to a transient
stimulus. Second, assuming an initial condition of �(0)  0, the
VSTM trace remains bounded in the interval [0, �], regardless
of the intensity or duration of the stimulus. This allows such
equations to, in effect, retune their sensitivity in response to
changes in the dynamic range of the input, allowing them to
circumvent what Grossberg referred to as the “noise-saturation
dilemma” (Grossberg, 1987).

Using standard techniques for solving first-order, linear differ-
ential equations (see Appendix A), it is straightforward to show
that the solution of Equation 4 is

v	t� � �� �I

�I � I0�� 1 � exp�� 	�I � I0��
0

t

�	s�ds� � . (5)

This equation states that, asymptotically, the VSTM trace grows to
a value proportional to �I/(I0 � �I), the modified Weber contrast
of the stimulus. We use the term “modified” Weber contrast
because the stimulus increment is divided by the maximum inten-
sity in the display, I0 � �I, rather than by the background intensity,
I0, as in the usual definition of Weber contrast. The modified
Weber contrast has been advocated by some authors (e.g., Burr,
Ross, & Morrone, 1985) as a measure of stimulus intensity that
reflects that action of early gain control mechanisms. We subse-
quently denote the asymptotic trace strength in Equation 5 as �(�).
This notation expresses the property that the asymptotic trace
strength is the value to which �(t) converges if the stimulus is
prolonged indefinitely.

Because shunting equations rescale luminances into contrasts
(i.e., absolute intensities into relative intensities), the model of
Equations 4 and 5 is indifferent to whether �I is expressed in
luminance or contrast units. We have used the neutral term “in-
tensity” to reflect this fact. Physiological evidence suggests that
gain control mechanisms transform luminance into contrast fairly
early in visual processing and probably prior to the formation of
the VSTM trace (Walraven, Enroth-Cugell, Hood, MacLeod, &
Schnapf, 1990). Under these circumstances, we would interpret �I

as a contrast increment and assume that I0  1. In fitting our
models to data, we assume that stimulus intensities are scaled in
this way.

The rate of approach to the asymptote �(�) in Equation 5
depends on the exponential rate constant, I0 � �I. For small values
of the increment, �I, the rate depends only weakly on the stimulus
intensity and is approximately equal to the intensity of the back-
ground, I0. The approach to asymptote is controlled by the area
under the sensory response function, �(t). When stimulus persis-
tence is long, the area under �(t) is large and VSTM trace strength
closely approaches its theoretical maximum. When stimulus per-
sistence is short, the area under �(t) is reduced and the maximum
is not attained. This property is central to our theory’s ability to
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predict the mask-dependent cuing effect. The constant � in Equa-
tions 4 and 5 is a scaling parameter that could be set equal to unity
without loss of generality, but we retain it in our equations to
represent the mapping of stimulus contrast into VSTM trace
strength.

In adopting Equation 5 as a model of VSTM trace formation, we
are not assuming that contrast transduction in the visual system is
linear. We know, rather, that the contrast response of the visual
system is a saturating, nonlinear function of contrast, which is
often modeled mathematically using a Naka-Rushton function,

r	�I� �
�I

�

�I
� � Iin

. (6)

The constant Iin in the denominator of Equation 6 is referred to as
a divisive inhibition term and determines the horizontal position of
the function on a log contrast scale (Boynton, 2005). The exponent
� determines the shape of the nonlinearity and typically takes a
value of around 2.0. For these values of �, the Naka-Rushton
function has a sigmoid form.3

It is possible to incorporate transduction nonlinearities like that
in Equation 6 into the VSTM growth equation by making an
appropriate choice of coefficients, writing it as

dv

dt
� �I

��	t��� � v	t�� � Iin�	t�v	t�. (7)

The solution to Equation 7 is

v	t� � � �I
�

�I
� � Iin�� 1 � exp�� 	�I

� � Iin��
0

t

�	s�ds� � . (8)

This equation can be viewed as a dynamic counterpart of the
divisive inhibition models that have been widely used to model
cortical gain control in physiological and psychophysical settings
(e.g., Boynton, 2005; Heeger, 1991; Foley, 1994; Wilson & Kim,
1998).

Equation 8 is similar to Equation 5, apart from the obvious
addition of the Naka-Rushton exponent, �. However, a more
consequential difference is the difference in the size of the divisive
inhibition terms in the two equations, namely, I0 versus Iin.
Whereas I0 is equal to the background luminance of the display
and is typically large relative to the increment �I, the inhibition
term Iin and the increment �I are typically of similar magnitudes.
The upshot of this is that the rate of growth of VSTM in Equation
5 is relatively independent of stimulus contrast, but the rate in
Equation 8 depends on contrast strongly. As we see subsequently,
the data of Gould et al. (2007) are consistent with intensity-
dependent growth, but the data of Smith, Ratcliff, and Wolfgang
(2004) are not.

Attention

The transient information in the stimulus is encoded in a durable
form in VSTM under the control of spatial attention. In our theory,
attention translates the information in the sensory response func-
tion, �(t), into the VSTM trace, �(t). This idea is expressed
graphically in Figure 5, in which the icon in the box depicting
attention is intended to suggest that it is a dynamic process that
possesses both a spatial and a temporal extent. In previous articles,

we investigated two different models of the translation process,
both with long pedigrees in the attention literature. One is a gain
model (Smith & Wolfgang, 2004); the other is an orienting model
(Smith, Ratcliff, and Wolfgang, 2004). Our current theory is
sufficiently flexible to allow us to represent both gain and orient-
ing models within a unified theoretical framework and to compare
their predictions.

Gain models—in the sense in which we use the term—are
parallel processing models, in which attention affects the rate or
efficiency of stimulus processing. In our theory, attention affects
the rate of VSTM trace formation. Smith (2000a) proposed that
attention affects the rate at which stimulus information becomes
available to later processing mechanisms as an explanation for the
mask-dependent cuing effect. Carrasco and McElree (2001) pro-
vided experimental support for this idea at about the same time.
However, the idea underlying gain models can be traced back
to the capacity theory of Kahneman (1973). Kahneman proposed
that the efficiency of stimulus processing is governed by the
availability of a unitary resource, or “capacity,” that is needed to
activate neural structure. Under focused attention conditions, ca-
pacity is concentrated at a single spatial location, leading to effi-
cient stimulus processing at the attended location and inefficient
processing elsewhere. Under divided attention conditions, capacity
is distributed evenly over a number of locations, leading to inter-
mediate efficiency everywhere. Subsequently, Townsend et al.
showed how the idea of capacity limitations in a parallel process-
ing system could be expressed in a precise and mathematically
rigorous way, by assuming that capacity determines the rates in the
underlying processing channels (Townsend & Ashby, 1978;
Townsend & Wenger, 2004).

We can represent gain models very simply in our theory by
introducing an attentional gain constant, �, into the VSTM equa-
tion, Equation 7:

dv

dt
� �i��I

��	t��� � v	t�� � Iin�	t�v	t��, �i � ��A,�U�. (9)

We write the gain constant with a subscript, i, to express the fact
that gain differs as a function of position in the visual field.
Minimally, we assume that gain has one value, �A, at attended
locations and another value, �U, at unattended locations, with �A �
�U. The solution to Equation 9 is

v	t� � �� �I
�

�I
� � Iin�� 1 � exp� � �i	�I

� � Iin��
0

t

�	s�ds� � . (10)

3 In applications, Iin is often written as a function of the Naka-Rushton
exponent, as I0.5

� . When written in this way, the constant I0.5 is known as the
semisaturation constant—so designated because it is the value at which the
function equals 0.5, which is half its theoretical maximum of 1.0. In our
work, we prefer the representation of Equation 6 because it makes fewer
assumptions about how the exponent and the inhibition term covary across
experimental conditions. To model the data of Gould et al. (2007) we have
assumed that � varies with uncertainty, whereas the inhibitory term remains
fixed. Allowing the inhibition term to vary as I0.5

� leads to a family of
functions with a fixed point at I0.5 (i.e., r(I0.5)  0.5 for all �). Under these
circumstances, increasing � makes low-contrast stimuli less detectable and
high-contrast stimuli more detectable, in a way that does not fit the data.
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The effect of differences in gain on the formation of the VSTM
trace is shown in Figure 8a. When stimuli are at attended locations
the VSTM trace grows rapidly to its asymptote, �(�); when they
are at unattended locations, the trace grows more slowly. Provid-
ing stimulus duration is long enough for the trace formation
process to run to completion, however, the asymptotes for attended
and unattended stimuli are the same.

Orienting models are, in essence, switching models. The defin-
ing characteristic of orienting models is that they assume that a
limited-capacity central mechanism must first be switched to, or
aligned with, the location of the stimulus before stimulus process-
ing can be completed. The most influential expression of this idea
has been Posner’s attentional spotlight formulation (Posner, 1980),
but the idea has its origins in Broadbent’s (1958) filter theory. Like
gain models, orienting models have been extremely influential in
the literature and have been discussed by many authors in a variety
of settings.

We represent orienting models in a similar way to the way we
modeled gain, by introducing the idea of an attention gate or

attention window that opens and transfers the stimulus into VSTM
(Reeves & Sperling, 1986). We again denote the attention gate by
�(t), but we now write it as a function of time. The defining
property of orienting models is that the process of VSTM trace
formation begins only once the attention gate opens. The time at
which this occurs is the orienting time, denoted ti. Minimally,
again, we assume that the orienting time has one value, tA, for
attended stimuli and another value, tU, for unattended stimuli, with
tU � tA. That is, relative to attended stimuli, the opening of the
attentional gate for unattended stimuli is delayed. The VSTM
growth equation for an orienting model is

dv

dt
� �	t � ti���I

��	t��� � v	t�� � Iin�	t�v	t��, ti � �tA, tU�.

(11)

The solution of this equation is

v(t) � �� �I
�

�I
� � Iin� � 1 � exp� � (�I

� � Iin)�
0

t

�(s � ti)�(s)ds��.

(12)

The effect of differences in orienting time for attended and unat-
tended stimuli is depicted in Figure 8b. In orienting models, the
effective stimulus information depends on the product of functions
�(s � ti)�(s). Because the VSTM trace begins to form only when
a stimulus is present and when the gate is open, the area under the
product determines how closely the VSTM trace approaches its
theoretical maximum. As Figure 8b shows, a delay in opening the
attention gate results in the onset of the stimulus being missed,
reducing the effective stimulus information driving the VSTM
trace. The ultimate effect of this on performance depends on the
persistence of the stimulus, which, in turn, depends on whether or
not the stimulus is backwardly masked.

Stimulus energy and stimulus information. There is one further
elaboration needed to complete the VSTM model. Our previous
discussion of the studies of Smith, Ratcliff, and Wolfgang (2004)
and Gould et al. (2007) stressed the similarities between the two
data sets. However, as we noted previously and discuss in detail
later, there is one critical dimension on which they differ. This is
in the shapes of the RT distributions—in particular, in the way the
leading edges of the RT distributions change with stimulus con-
trast. In most RT tasks, most of the change in RT that occurs with
changes in stimulus intensity or discriminability occurs in the tails,
or the upper quantiles, of the distributions (Ratcliff & Smith, 2004;
Ratcliff, Thapar, Smith, & McKoon, 2005). The tails of the dis-
tributions are determined by the slowest responses in each exper-
imental condition. The leading edges of the distributions, which
are determined by the fastest responses in each condition, show
comparatively little change. This pattern is found in a wide variety
of tasks, ranging from low-level perceptual tasks like brightness
discrimination to higher-level cognitive tasks like recognition
memory. This same pattern is also found in the data of Smith,
Ratcliff, and Wolfgang (2004), where the change in the leading
edge between the lowest and highest stimulus contrasts is less than
50 ms. In contrast, the leading edges of the distribution in the data
of Gould et al. (2007) change by around 100 ms. A significant

Figure 8. Gain and orienting models. a. Gain model. The visual short-
term memory (VSTM) trace forms rapidly for stimuli at attended locations
and slowly for stimuli at unattended locations. If stimulus persistence is
sufficient for the trace-formation process to run to completion, the traces
for attended and unattended stimuli grow to the same asymptote. If stim-
ulus persistence is short, attended stimuli have an advantage because of
their higher rate of trace growth. b. Orienting model. VSTM trace forma-
tion begins after the opening of an attention gate or window. The effective
sensory response function equals the proportion of the sensory response
falling within the window. When orienting time (tor) is short, most of the
sensory response falls within the window; when orienting time is long,
much of the sensory response falls outside the window. The effect of
missing the beginning of the stimulus is greater when stimuli are masked
and stimulus persistence is short.
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theoretical challenge for us has been to provide a model that can
simultaneously accommodate both of these patterns of data.

In our theory, the leading edge of the RT distribution depends on
the rate of VSTM trace formation. Delaying the entry of stimuli
into VSTM delays responding and shifts the RT distribution to the
right. If this assumption is correct, it implies that the rate of VSTM
growth in the study of Smith, Ratcliff, and Wolfgang (2004) was
largely independent of stimulus contrast, whereas in the study of
Gould et al. (2007), VSTM growth rate was highly dependent on
it. What is it about the two experimental tasks that would lead to
these different patterns of growth? The answer, clearly, is that the
stimuli used by Smith, Ratcliff, and Wolfgang were presented on
top of suprathreshold contrast luminance pedestals, whereas the
stimuli of Gould et al. were presented directly against a uniform
field. A natural hypothesis, then, is that the rate of VSTM growth
depends on the total power or energy in the stimulus compound.
By “stimulus compound,” we mean the combination of grating and
pedestal. (We remind the reader of the standard engineering def-
initions of power and energy at this point [McGillem & Cooper,
1991, p. 25]. The power in a waveform is equal to the square of its
amplitude; the energy in a waveform is equal to the sum or integral
of its power over time.)

For a zero-mean stimulus like a grating patch, the power in the
compound equals the sum of the power in the pedestal and the
power in the patch. Denoting the power in the patch and the power
in the pedestal by �I

2 and IP
2, respectively, the power in the

compound equals IP
2 � �I

2. Expressed in amplitude rather than
power units, the intensities of the patch and the compound equal
the square roots of their powers, that is, �I and 	�I

2 � IP
2, respec-

tively. The latter quantity is closely related to the root-mean-square
measure of stimulus contrast, which has been advocated as a
measure of contrast in natural scenes and random dot images by
Moulden, Kingdom, and Gatley (1990) and others.

To represent the way in which the rate of VSTM growth
depends on the power in the pedestal and the patch, we use a
somewhat more general formulation of stimulus power, in which
the intensities in the pedestal and patch are subject to separate,
nonlinear transduction before being combined. We denote the
square root of the summed powers of the transduced components
in the compound by IC:

IC � 	�I
2� � IP

2�.

The content of this equation is as follows. Psychophysically, the
pedestal is a small region of uniform luminance, which acts as a
background for the patch in exactly the same way as the surround-
ing uniform field does for the pedestal. The equation states that the
transduction of the patch relative to the pedestal is described by
the same power law, with exponent �, as is the transduction of the
pedestal relative to the uniform field. The quantity IC is the square
root of the summed power of the transduced contrasts of the patch
and pedestal, expressed in amplitude units. When no pedestal is
present and IP � 0, IC reduces to �I

�, as it should. There is an
obvious, alternative model, which assumes a single, nonlinear
transduction operation is applied to the power in the compound,
but the resulting representation of the power in the compound,
		�I

2 � IP
2��, does not fit our data well. Further discussion of the

relationship between different measures of stimulus intensity can
be found in Appendix B.

In the study of Smith, Ratcliff, and Wolfgang (2004), the power
in the stimulus compound was dominated by the pedestal. Direct
calculation (cf. Appendix B) shows that at the highest stimulus
contrast the power in the pedestal was around nine times the power
in the patch. Consequently, the rate of VSTM growth should have
been largely independent of stimulus contrast. This differs from
the study by Gould et al. (2007), in which no pedestal was used. In
this situation, the stimulus power was contained entirely in the
patch, so the rate of VSTM growth should have increased system-
atically with stimulus contrast. (We assume that the fiducial cross
is not part of the stimulus compound and does not affect the rate
of VSTM formation in the same way as does the pedestal.)
Assuming a gain model, the shunting equation for a pedestal Gabor is

dv

dt
� �i�IC�	t��� � v	t�� � Iin�	t�v	t��, (13)

the solution of which is

v	t� � �� IC

IC � Iin��1 � exp�� �i	IC � Iin��
0

t

�	s�ds� � . (14)

The equation for an orienting model is obtained in a similar way,
by an obvious modification of Equation 11.

Equation 14 describes the growth of a representation of the
stimulus compound in VSTM. Unlike Equation 8, the trace in
Equation 14 comprises the power in both the pedestal and the
patch, but only the latter carries information used to make a
perceptual decision. If we wish to interpret Equation 13 as describ-
ing the growth of discriminative information in VSTM over time,
we need to modify the asymptote in Equation 14 so that it depends
only on the power in the patch and not on the power in the
compound. An equation that possesses this property is

v	t� � �� �I
�

�I
� � Iin��1 � exp�� �i	IC � Iin��

0

t

�	s�ds� � . (15)

In this equation, asymptotic VSTM trace strength has a Naka-
Rushton-like functional dependency on the power in the patch,
whereas the rate of trace growth depends on the power in the
compound. When a pedestal is present, the rate of growth depends
predominantly on the power in the pedestal; when no pedestal is
present, it depends solely on the power in the patch. Equation 15
can be obtained as the solution of the shunting equation

dv

dt
� �i	IC � Iin��r	�I��	t��� � v	t�� � �1 � r	�I���	t�v	t��,

(16)

where r(�I) is the transduced stimulus increment of Equation 6.
This equation can be viewed as expressing a form of fixed-
activation property, in which the sum of the excitatory and inhib-
itory effects produced by a stimulus is constant. Further discussion
of such equations can be found in Appendix A.

The decoupling of asymptotic trace strength from the rate of
trace growth in Equation 15 is needed to account for the differ-
ences in the shapes of the RT distributions in Smith, Ratcliff, and
Wolfgang (2004) and in Gould et al. (2007). However, this de-
coupling comes at the cost of introducing an additional, contrast-
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dependent rate term into the differential equation, Equation 16. To
obtain the additional generality in a theoretically principled way,
we need to consider a process of VSTM trace formation that is
somewhat more complex than the simple, single-channel process
of Equation 16. We describe a neurally plausible computational
model of trace formation that can provide this generality later in
the article.

Decision Making

We assume that �(t), the VSTM trace, is subject to moment-by-
moment perturbation by noise. The noise may be inherent in the
trace itself or may be injected from elsewhere in the processing
system. Successive samples of the noisy VSTM trace are accumu-
lated over time to a response criterion to make a decision. We
assume that the noise is broad-spectrum Gaussian noise, or white
noise. This leads to a representation of the accumulating informa-
tion as a diffusion process, which we denote by X(t). The process
of information accumulation can be described by a stochastic
differential equation (SDE) of the form

dX	t� � ��	t� � �X	t��dt � �	t�dW	t�, (17)

(Brown, Ratcliff, & Smith, 2006; Smith, 1995, 2000b). In this
equation, the term W(t) is a white noise process, which is the
(formal) derivative of the Brownian motion, or Wiener, diffusion
process. SDEs are usually written in differential form, as in Equa-
tion 17, rather than in the more familiar form involving derivatives
(e.g., Equation 4), because the highly irregular sample paths of
diffusion processes mean that they do not possess derivatives in
the same way as smooth functions do.

The quantity dX(t) on the left of Equation 17 can be interpreted
as the change in decision stage activation occurring during a small
time interval, dt. This change is the sum of two parts, a determin-
istic part and a stochastic part. The deterministic part, or drift, is
equal to [�(t) � �X(t)]; the stochastic part is equal to �(t)dW(t). In
any interval, dt, the stochastic part is normally distributed with
mean zero and variance �2(t)dt and is independent of the change in
any other, nonoverlapping interval. The drift itself is also a sum of
two terms: a time-varying function, �(t), which depends on the
strength of the VSTM trace, and a passive, state-dependent decay
term, �X(t). When �  0, the process X(t) is a Brownian motion,
or Wiener, diffusion process (Ratcliff, 1978, 1980). When � � 0,
the process X(t) is an Ornstein-Uhlenbeck (OU) diffusion process
(Busemeyer & Townsend, 1993; Diederich, 1997; Heath, 1992;
Smith, 1995, 2000b; Usher & McClelland, 2001). The Wiener
process can be viewed as a perfect stochastic integrator, which
accumulates noisy information over time without loss or decay.
The OU process can, in contrast, be viewed as an imperfect, or
“leaky” integrator, which loses information at a rate that depends
on the decay constant, �.

We consider two decision models in this article, both based on
diffusion processes. One is the (Wiener) diffusion model of Rat-
cliff (1978, 1988). The other is a model that Ratcliff and Smith
(2004) called the “leaky accumulator” and Ratcliff, Hasegawa,
Hasegawa, Smith, and Segraves (2007) subsequently termed the
“dual diffusion” model. Smith (2000b) proposed this model as a
way to combine the properties of accumulator models—like that of
Vickers (1970, 1979; Smith & Vickers, 1988) and others—and
random walk or diffusion models in a simple way. Ratcliff

and Smith (2004) subsequently developed the model theoretically
and Ratcliff et al. (2007) applied it to neural firing data recorded
from the superior colliculi of monkeys performing an eye-
movement decision task. In that article, we showed the model
could simultaneously account for the observed choice probabilities
and distributions of RT and for the patterns of neural firing in
build-up cells in the colliculus in the interval preceding the re-
sponse.

We chose to investigate two decision models in this article to
ensure that our inferences about attention and VSTM were robust
to changes in our assumptions about the decision mechanism. As
we show, the single and dual diffusion models produced only very
minor differences in fit, consistent with this expectation. The two
decision models we considered, the single, Wiener, diffusion
model and the dual diffusion model, were chosen because they
have been shown to provide a satisfactory account of performance
in a wide variety of simple decision tasks. We did not consider
models that have been shown to be unsatisfactory on other
grounds. The Usher and McClelland (2001) model would likely
provide a similarly good account of performance on the tasks we
consider here, but it is relatively less tractable analytically.

The Wiener diffusion model. Figure 9 depicts the main ele-
ments of the Wiener diffusion model. The model in the figure is
the same as the diffusion model of Ratcliff (1978), except that both
the drift and diffusion coefficient depend on time. Diffusion pro-
cesses with time-varying coefficients are called time inhomoge-
neous processes in the literature. The time inhomogeneity in the
model arises because the decision process is driven by the VSTM
trace, �(t), which depends on time. We obtained predicted RT
distributions and choice probabilities for the model using numer-
ical integral equation methods described by Smith (2000b). These
methods are sufficiently general to allow one to obtain predictions
for a wide class of diffusions with time-varying coefficients.
Ratcliff and Smith (2004, Appendix) give a summary of these
methods.
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Figure 9. Wiener diffusion model. Decision making is modeled as dif-
fusion on a line between absorbing boundaries located at a and �a. The
boundaries represent the criteria for vertical (V) and horizontal (H) re-
sponses. The rate of information accumulation, or drift, is proportional to
the visual short-term memory trace, which makes the process time inho-
mogeneous. The drift is normally distributed, with a mean proportional to
the visual short-term memory trace strength, �(t), and an asymptotic
standard deviation, �, that depends on the trial-to-trial quality of the
stimulus encoding. The irregular paths represent the accumulating stimulus
information on two different experimental trials. The response that is made
depends on the first boundary (upper or lower) crossed by the process; the
response time depends on the time at which the first boundary crossing
occurs.
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The model represents decision making as diffusion between a
pair of absorbing boundaries located at a1 and –a2. The boundaries
represent the evidence criteria used to make the two responses. A
process starting at X(0)  0 drifts in either an upward or a
downward direction, depending on the stimulus, until it reaches
one or other of the absorbing boundaries. The first boundary
crossed by the process determines the response. If the boundary is
the upper boundary the observer responds (say) “vertical”; if it is
the lower boundary the observer responds “horizontal.”

As shown in Figure 5, there are two distinct sources of noise in
the model. The first is diffusion noise, whose cumulative effects
are represented by the irregular sample paths in Figure 9. Such
noise reflects moment-by-moment perturbations in the strength of
the VSTM trace, as we discussed previously. The second is trial-
to-trial variation in the mean of the VSTM trace. We model these
effects as variations in the drift term in Equation 17. In our
presentation of the VSTM model, we described the process of
VSTM trace formation in purely deterministic terms, using ordi-
nary differential equations. In practice, however, we assume that
the encoded stimulus representation is a random variable, just as in
signal-detection theory. Psychologically, this variability represents
trial-to-trial differences in the quality or efficiency of the encoding
by the visual system of nominally equivalent stimuli. Following
Ratcliff (1978) we assume that drift is normally distributed with a
mean equal to the VSTM trace strength, �(t), and a standard
deviation of �. Specifically, we define � to be the standard
deviation of the asymptotic trace strength �(�).

To obtain a well-behaved model with time-varying drift, we
need to assume the diffusion coefficient, �(t) in Equation 17, also
varies with time. This contrasts with Ratcliff’s (1978) model, in
which the diffusion coefficient (denoted s) is constant. Had we
assumed a constant diffusion coefficient, the early part of the
decision process would have been dominated by noise. This would
have resulted in a large number of fast errors and substantially
degraded performance. To avoid this, we assumed that the diffu-
sion coefficient grows in proportion to the drift, that is, �(t) � �(t).
To obtain well-behaved performance across a range of stimulus
contrasts, we needed to assume that the diffusion coefficient grew
to a fixed, constant value while the drift grew to the asymptotic
trace strength, �(�), whose value depended on stimulus contrast.
We also assumed the diffusion coefficient continued to grow after
stimulus offset until it reached asymptote. This ensured that the
asymptotic value of the diffusion coefficient was unaffected by the
use of masks. In Ratcliff’s model, the diffusion coefficient acts as
a scaling constant for the other parameters of the model and is
arbitrarily set to s  0.1. We followed this convention here and
assumed that �(t) grew to an asymptote of 0.1. Physiologically, the
growth of �(t) to a fixed constant might reflect a stimulus-
dependent release from inhibition, as Ratcliff et al. (2007) have
argued.

To complete the decision model, we assume that the predicted
RT is the sum of the decision time and the time required for other
processes not specified in the model. We follow Ratcliff (1978)
and assume that this time is rectangularly distributed with mean Ter

and range st. In Ratcliff’s model, Ter represents all components of
RT, apart from the decision time itself. This includes the central
and peripheral components of stimulus encoding and response
execution. In our model, Ter includes only components of RT not

otherwise identified in the sensory encoding, VSTM, and decision
models.

Ratcliff’s (1978) diffusion model includes one additional source
of variability not included in the models we consider here. This is
variability in the starting point of the diffusion process, denoted z
in Ratcliff’s model. Variability in starting point allows the model
to predict fast errors, which are a feature of many experimental
tasks, as we have just discussed. In the present setting, however, in
which stimuli were near threshold and accuracy of responding was
stressed, errors were uniformly slower than correct responses.
Slow errors arise in our model, as in Ratcliff’s, as the result of
variability in drift across experimental trials (see Ratcliff & Smith,
2004, for a discussion of this property). Because there is little role
for starting-point variability in the tasks we consider here, we
omitted it from the model for the sake of computational efficiency.

The dual diffusion model. Figure 10 depicts the main elements
of the dual diffusion model. Like the single, Wiener, diffusion
model, the dual diffusion model we considered here was time
inhomogeneous. The dual diffusion model represents the decision
process as a race between a pair of independent, parallel diffu-
sions. One process, XV(t), represents evidence for a vertical re-
sponse and the other, XH(t), represents evidence for a horizontal
response. The diffusions take place on a pair of positive half-lines,
XV(t) � 0 and XH(t) � 0, between an upper, absorbing boundary
and a lower, reflecting boundary. The absorbing boundaries are
decision criteria, just as in the single diffusion model. The reflect-
ing boundaries can be thought of physiologically as hyperpolariz-
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Figure 10. Dual diffusion model. Decision making is modeled as a race
between two diffusing evidence totals on the positive half line, between
reflecting and absorbing boundaries. The absorbing boundaries represent
evidence criteria for the two responses. The response that is made depends
on the first process to reach its criterion, and the response time depends on
the time it takes for this to occur. The drifts in the two processes are mirror
images (additive inverses) of each other.
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ing limits, below which the processes cannot be driven (cf. Usher
& McClelland, 2001). Diederich (1995) previously used a single
diffusion process between an absorbing and a reflecting boundary
to model simple RT. In the dual diffusion model, the response that
is made depends on the first process to reach its criterion, and the
decision time is the time taken to reach it. We obtained predicted
choice probabilities and RT distributions for the model using the
matrix method of Diederich and Busemeyer (2003). This method
approximates the continuous-time, continuous-state diffusion pro-
cess by a finite-state Markov chain on a discrete state space, much
like the models proposed by Pike (1966). The method is suffi-
ciently flexible that it can be used with time-inhomogeneous
models with both absorbing and reflecting boundaries.

Unlike the single process model, the accumulation processes in
the dual diffusion model are OU processes. As we noted previ-
ously, the Wiener diffusion is a perfect stochastic integrator,
whereas the OU process is a stochastic integrator with decay. The
OU process can also be viewed as a bounded accumulation pro-
cess. Whereas the average accumulated information in the Wiener
process grows linearly with time, in the OU process, it grows to a
bound that depends on the ratio of the drift and the decay (Smith,
1995). Several authors have argued that the OU process should be
preferred on the grounds of biological plausibility, because bio-
logical accumulation processes must be inherently bounded
(Smith, 1995; Usher & McClelland, 2001).

As shown in Figure 10, we assume the drifts in the two pro-
cesses are mirror images of one another. That is, if the drift in the
vertical accumulator is �, the drift in the horizontal accumulator is
��. This differs from what was assumed by Ratcliff and Smith
(2004) who followed Usher and McClelland (2001) in assuming
the drifts in the two accumulators sum to a constant. For the data
sets we considered here, we found that mirror-image drifts pro-
vided better fits.

We can justify this assumption theoretically by considering the
computations underlying a decision. We assume that the informa-
tion encoded in the developing VSTM trace, �(t), is simulta-
neously and continuously matched against mental representations
of the two stimulus alternatives for the task. We denote the
instantaneous values of the goodness of match of the trace to the
representations of the vertical and horizontal stimuli by �V(t) and
�H(t), respectively. Positive values of the difference �V(t) � �H(t)
are evidence for a vertical response, whereas positive values of the
complementary difference �H(t) � �V(t) are evidence for a hori-
zontal response. We assume it is these two differences that provide
the drifts to the two accumulators.

We also assume that both accumulators start at a value of
X(0)  0, at, or just above, the lower reflecting boundary. This
means that the process in one accumulator drifts toward the upper
boundary, whereas the other tends to remain in the vicinity of its
starting point because it is prevented from drifting in the negative
direction by the reflecting boundary. Although the drift in the
second accumulator is negative, the process does not remain at the
lower boundary uniformly; rather, because of diffusive variability,
it makes random excursions into the positive half-space, X(t) � 0.
Some of these excursions tend to take it away from the lower
boundary, whereas the drift tends to take it back to the lower
boundary. The sample path of a typical process bumps along the
lower boundary, making random excursions into the positive half-
space and then returning to the lower boundary. On some trials,

however, the cumulative effects of diffusive variability are suffi-
cient to take the process above its upper boundary, and an error
results.

The model also has a second mechanism for producing errors.
Because drift is normally distributed, on some trials on which a
vertical stimulus is presented, the drift in the vertical accumulator
is negative and drift in the horizontal accumulator is positive; that
is, the drifts in the accumulators are in the wrong directions.4 On
such trials, the most probable outcome is an incorrect response.
This mechanism is the counterpart of the between-trial variability
in drift in the single diffusion model. We also assume, as in that
model, that the time for other processes is rectangularly distributed
with a mean of Ter and a range st. The two decision models are
therefore exact analogues of one another in the components of
processing they assume and the parameters used to describe them.
The only difference is that the dual diffusion model has one
additional parameter, the OU decay constant, �, that has no coun-
terpart in the single diffusion model.

Model Evaluation

Our approach to model evaluation closely follows that of Rat-
cliff and Smith (2004). The data for which we wish to account are
the choice probabilities (response accuracy) and the distributions
of RT for correct responses and errors. We summarize the infor-
mation in RT distributions using the distribution quantiles. In our
evaluation, we used five quantiles: the .1, .3, .5, .7, and .9 quan-
tiles. The .1 quantile describes the distribution’s leading edge, the
.5 quantile describes its central tendency (the median), and the .9
quantile describes its tail. We chose to use five quantiles because
this number suffices to characterize the shape of the distribution
while being relatively insensitive to outliers.

To evaluate our models we fitted them to quantile-averaged
data. We averaged the five distribution quantiles across observers
to obtain the quantiles of the group RT distribution. We did this for
the distributions of correct responses and errors for each of the five
levels of stimulus contrast in each experimental condition. We also
averaged the choice probabilities across observers. For the data
sets of Smith, Ratcliff, and Wolfgang (2004) and Gould et al.
(2007), this yielded a total of 40 RT distributions (20 distributions
of correct responses and 20 distributions of errors) and 20 choice
probabilities. Ratcliff and colleagues have shown repeatedly that
the parameter estimates obtained by fitting the diffusion model to
quantile-averaged data agree closely with the averages of param-
eter estimates obtained by fitting the model to individual subject
data (e.g., Ratcliff, Thapar, Gomez, & McKoon, 2004; Ratcliff,
Thapar, & McKoon, 2003, 2004; Thapar, Ratcliff, & McKoon,
2003). Smith, Ratcliff, and Wolfgang (2004) found the same thing
in a precursor to the present theory. There is thus no evidence that

4 We abuse terminology here for ease of exposition. Strictly, the drift in
the diffusion process in Equation 17 is the sum of a stimulus-dependent,
excitatory term, �(t), and a state-dependent decay term, ��X(t). When
we refer to “trial-to-trial variability in drift,” we actually mean trial-to-trial
variability in �(t). For the Wiener process, the drift and the excitatory
component of drift are the same; for the OU process, the drift comprises
both excitation and decay. For the OU process, we assume that the
excitatory component varies normally from trial to trial, just as in the
Wiener process, whereas the decay remains constant.
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the picture is materially altered by fitting models to group data. In
the present setting, in which we fitted several hundred different
model variants to our data, this restriction was necessary to make
the overall task of model evaluation manageable.

Our theory is sufficiently flexible that it allowed us to compare
two different attentional models and two different decision models.
We thus have a total of four model classes in total: single diffusion,
gain; dual diffusion, gain; single diffusion, orienting; and dual
diffusion, orienting. We fitted these models to the quantile-
averaged data by minimizing the likelihood-ratio chi-square sta-
tistic (G2),

G2 � 2�
i1

20

ni�
j1

12

pijlog
pij

�ij
,

using the Matlab implementation of the Nelder-Mead Simplex
algorithm (fminsearch). In this equation, pij and �ij are, respec-
tively, the predicted and observed probabilities (proportions) in the
bins bounded by the quantiles. The inner summation over j extends
over the 12 bins formed by each pair of joint distributions of
correct responses and errors. (There are five quantiles per distri-
bution, resulting in six bins per distribution, or 12 bins in total for
each distribution pair.) The outer summation i extends over the
five stimulus contrasts in each of the four experimental conditions
(20 distribution pairs in all). The quantity ni is the number of
experimental trials in each condition. For the data of Smith,
Ratcliff, and Wolfgang (2004) we set ni  400 and for the data of
Gould et al. (2007) we set ni  360. This is consistent with our
interpretation of the quantile-averaged distributions as the perfor-
mance of an “average observer.” Because G2 computed on the
joint distributions depends on the relative proportions of correct
responses and errors, it characterizes goodness-of-fit to the distri-
bution shapes and the choice probabilities simultaneously.

Effect of Backward Masks (Smith, Ratcliff,
& Wolfgang, 2004)

Before describing the fits of the models to experimental data, we
try to give the reader an intuition of how they predict mask-
dependent cuing effects like those in Figures 2 and 7. Figure 11
shows how gain models predict these effects. In our theory, back-
ward masks reduce the area under the sensory response function,
�(t). This area determines how closely the final VSTM trace
approaches its theoretical maximum, �(�). When stimuli are un-
masked, the area under �(t) is large and the final trace is close to
�(�). When stimuli are masked, the area is small and the maximum
is not attained.

Gain models assume that attention determines the rate at which
the VSTM trace is formed. When stimuli are attended, the trace
grows at rate �A; when they are unattended the trace grows at rate
�U, with �A � �U. Providing stimulus persistence is sufficiently
long, however—that is, providing the area under �(t) is suffi-
ciently large—the two traces grow to the same asymptotic value,
�(�). The rate at which information accumulates in the decision
stage, which is equal to the drift of the diffusion process, is
proportional to the VSTM trace strength, �(t). Because the final
trace strength is the same for attended and unattended stimuli, the
asymptotic rates of information accumulation for attended and

unattended stimuli are equal. Under these circumstances, the
curves that describe the average accumulated information as a
function of time are roughly parallel to one another, as shown on
the right side of Figure 11. This results in an RT difference for
attended and unattended stimuli but little or no sensitivity or
accuracy difference.

For masked stimuli the situation is different. The smaller area
under the sensory response function means the VSTM trace has
not reached its maximum, �(�), when the trace stops growing. In
this situation, attended stimuli have an advantage, because they
produce higher rates of VSTM growth. This means that more of
the trace has formed before the stimulus is suppressed by the mask.
The final trace strength for attended stimuli exceeds that for
unattended stimuli and, consequently, the decision process accu-
mulates information more rapidly for attended than for unattended
stimuli. This means that the curve that describes average accumu-
lated information as a function of time has a steeper slope for
attended than for unattended stimuli, as shown in Figure 11. This
results in both an RT and an accuracy difference. It is this property
that allows the model simultaneously to predict the mask-
dependent cuing effect in accuracy and the unconditional Posner
effect in RT shown in Figure 2.

Orienting models, like the one in Equation 11, also have a
mechanism for producing the mask-dependent cuing effect. Ori-
enting models assume that, relative to attended stimuli, the open-
ing of the attentional gate for unattended stimuli is delayed. Spe-
cifically, we assume that the opening time of the gate is tA for

Figure 11. The mask-dependent cuing effect for gain models. When
stimuli are unmasked and stimulus persistence is long, the visual short-term
memory (VSTM) traces for cued and miscued stimuli grow at different
rates to the same asymptote. The average accumulated stimulus informa-
tion in the decision stage increases asymptotically at the same rate for cued
and miscued stimuli. This results in response time difference but no
accuracy difference. When stimuli are masked and stimulus persistence is
short, cued stimuli have an advantage because they produce faster VSTM
trace growth. This means that more of the trace has formed by the time the
sensory response decays, resulting in different asymptotic trace strengths
for cued and miscued stimuli. The average accumulated stimulus informa-
tion in the decision stage increases asymptotically more rapidly for cued
than for miscued stimuli. This results in a large response time difference
and an accuracy difference.
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attended stimuli and tU for unattended stimuli, with tU � tA. A
delay in opening the gate causes the system to miss the beginning
of the stimulus, reducing the effective stimulus information, as
shown in Figure 8b. The effect of a delay is greater when stimuli
are masked, because the proportional reduction in effective stim-
ulus information is greater when stimuli are masked, as Figure 8b
shows. Thus in orienting models, differences in the time at which
the attention gate opens interact with the differential persistence of
masked and unmasked stimuli to predict the mask-dependent cuing
effect.

Figure 12 shows the fit of one of the four models, the single-
diffusion, gain model, to the data from the masking study of Smith,
Ratcliff, and Wolfgang (2004). The data and fitted values are
shown as a quantile probability plot (Ratcliff & Smith, 2004;
Ratcliff & Tuerlinckx, 2002). In such plots, the quantiles of the RT
distributions are plotted against the choice probabilities for correct
responses and errors in each stimulus condition. These plots pro-
vide a compact way of representing how the RT distributions, the
ordering of mean RTs for correct responses and errors, and re-
sponse accuracy all vary with the intensity or discriminability of
the stimulus.

The five lines in each panel of the figure are, in ascending order,
the .1, .3, .5, .7, and .9 quantiles of the predicted RT distributions;
the symbols are the quantiles of the empirical distributions. For a

given level of stimulus contrast, i, the quantiles of the distribution
of RTs for correct responses are plotted against the probability of
a correct response (say qi), and the quantiles of the distribution of
RTs for errors are plotted against the probability of an error
response (1 – qi). The five distributions on the right of the .5 point
on the x axis are distributions of correct responses and the five on
the left of the .5 point are the corresponding distributions for
errors. The two outermost distributions on the plot are distributions
of correct responses and errors for the easiest stimulus condition
(the highest level of contrast), and the two innermost distributions
are for the most difficult condition.

All the main features of performance on the task are represented
in this plot. First, the RT distributions show the same unimodal,
positively skewed form that is found with RTs to suprathreshold
stimuli. This is shown by the spacing of the quantiles: The tail
quantiles are spaced more widely than are the quantiles at the
leading edge. Second, both the mean and standard deviation of the
RT distributions increase as stimulus contrast is reduced. (Indeed,
the relationship between them is approximately linear, as discussed
by Wagenmakers & Brown, 2007.) Third, most of the change in
RT with changing contrast occurs in the distribution tails (the .7
and .9 quantiles); the leading edges show comparatively little
change. Fourth, error RTs are slower than correct RTs. This
appears as an asymmetry of the plot across its vertical midline. If
distributions of correct and error RTs were the same, the plot
would be left-right symmetrical. In Figure 12, the quantile RTs for
errors are longer than the corresponding RTs for correct responses
at each level of contrast. This ordering is typically found when
discrimination is difficult and accuracy is stressed (Luce, 1986).

Figure 12 shows that the model captures all of the main features
of the data. Within each condition, it correctly characterizes the
way the RT distributions and choice probabilities change with
stimulus contrast and the ordering of RTs for correct responses and
errors. Between conditions, it correctly characterizes the joint
effects of attentional cuing and backward masking. When stimuli
are unmasked, cues affect RT but have no effect on accuracy. This
appears in the quantile probability plot as a systematic upward
shift in the quantiles for miscued stimuli relative to cued stimuli,
with no change in the horizontal extent of the plot. When stimuli
are masked, cues affect both RT and accuracy: There is a (large)
upward shift in the quantiles for miscued stimuli and a reduction in
the horizontal extent of the plot.

The largest discrepancies in the predicted and observed RTs are
in the tail quantiles of the distributions of errors to high-contrast
stimuli (i.e., the cluster of points at the upper left in each panel).
This is not due to any shortcoming of the model but is simply a
reflection of the fact that these quantiles are estimated empirically
with very low accuracy. This is because of the sparseness of points
in the tail and because distributions of error RTs for high-contrast
stimuli are based on only a small number of trials. Consequently,
confidence intervals for a quantile probability plot increase sub-
stantially at the upper left of the plot, as Ratcliff and Tuerlinckx
(2002, Figure 3) have shown.

The fits of the four models are summarized in Table 1, which
shows both G2 values and values of the Bayesian Information
Criterion (BIC) model-selection statistic. The latter is defined as

BIC � G2 � mlogN,

Figure 12. Fit of the single-diffusion, attention-gain model to the re-
sponse time (RT) distributions and choice probabilities for the Smith,
Ratcliff, and Wolfgang (2004) study. The large symbols are the experi-
mental data, and the continuous curves and small circles are the fitted
values. The five lines in each panel are, in ascending order, the .1, .3, .5,
.7, and .9 quantiles of the predicted RT distributions. The corresponding
empirical quantiles are shown as circles, squares, diamonds, inverted
triangles, and upright triangles, respectively. The plot is parameterized by
stimulus contrast. The outermost pair of distributions in each plot (response
probabilities closest to 0 and 1.0) are distributions of errors and correct
responses for the highest contrast stimulus; the innermost pair of distribu-
tions (response probabilities closest to 0.5) are distributions of correct
responses and errors for the lowest contrast stimulus.
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where m is the number of free parameters in the model and N is the
number of observations used in calculating G2. The BIC is a
sample-size-dependent penalty statistic that penalizes models ac-
cording to their number of free parameters. The best model from
a competing set of candidate models is the one with the smallest
BIC. As Table 1 shows, the quality of the fits of the four models
was very similar. The best model, in both a G2 and BIC sense, was
the single diffusion/gain model. Manifestly, however, the similar-
ities between models far outweigh the differences. The largest and
smallest G2 values are within 4% of each other, and the quantile
probability plots for the four models are virtually indistinguishable.

We have avoided assigning p values to the goodness-of-fit
statistics in Table 1 because G2 statistics computed from averaged
quantile probability data do not satisfy multinomial sampling
assumptions and also because the interpretation of p values from
chi-square-type tests is inherently problematic.5 When multino-
mial sampling assumptions are satisfied, the expected value of G2

when the null hypothesis is true is equal to its degrees of freedom
(the number of degrees of freedom in the data minus the number
of free parameters in the model), which, for these data, is equal to
206 or 207. The fact that the G2 values in the table are all
substantially less than this is because quantile averaging reduces
variability, leading to data which, in a statistical sense, are “un-
derdispersed.” As our primary focus is on the models’ ability to
capture the main qualitative features of the data, the presence of
underdispersion does not concern us.

Table 2 lists the parameters that were used to fit the models and
shows their estimated values. The free parameters fall into four
groups: sensory encoding parameters, attention/VSTM parameters,
decision process parameters, and parameters describing other (i.e.,
nonsensory and nondecision) processes. The encoding parameters
describe the transduction of stimulus contrast and the rate at which
stimuli pass through early sensory filters. Contrast transduction is
described by three Naka-Rushton parameters: �, �, and Iin. The
parameter � describes the mapping between contrast and VSTM
trace strength (the latter expressed in units of the diffusion coef-
ficient �); � is the Naka-Rushton exponent, and Iin is the inhibition
constant. The assumption that contrast transduction follows a
Naka-Rushton function allows the effects of the 10 different stim-
ulus contrasts, which would otherwise have had to be treated as
free parameters, to be characterized using only three parameters.

The remaining encoding parameters were the three rate con-
stants of the masked and unmasked sensory response functions.
These were the onset rate, 
on, assumed to be the same for masked
and unmasked stimuli, and the offset rates, 
off, m and 
off, u, for
masked and unmasked stimuli, respectively. We arbitrarily set n,
the number of cascaded stages in �(t), to three. In fitting the
models to data we found, like other researchers who have used

linear filter models of sensory encoding, that the quality of the fits
was largely insensitive to the number of stages in the filter (Smith,
1995). We therefore treated n as a fixed parameter in the fits
reported here. The final sensory encoding parameter was IP, which
characterized the perceptual effect of the pedestal.

The VSTM process was parameterized differently for gain and
orienting models. For the gain models, VSTM was parameterized
by a pair of gain constants, �A and �U, which describe the rate of
VSTM formation for attended and unattended stimuli. For orient-
ing models, VSTM was again described by two free parameters, a
gain constant, �, assumed to be the same for attended and unat-
tended stimuli, and an orienting parameter, tor, which describes the
delay in the opening of the attention gate for unattended stimuli
relative to attended stimuli, that is, tor � tU – tA. This parameter-
ization assumes there is no loss of stimulus information on cued
trials, because the gate opens at the cued location prior to stimulus
onset. The assumption is reasonable psychologically, because the
cue-target SOA of 140 ms was chosen to be optimal or near-
optimal to produce large cuing effects with peripheral cues. We
modeled the attention gate as a gamma function (Equation 1)
composed of n  2 cascaded stages and a large (
  250) rate
constant, both of which were treated as fixed parameters in the fits.
With these values the gate approximated a step function, which
opened virtually instantaneously on orienting to the stimulus.

The decision process parameters were the decision criterion, a,
and the between-trial drift variability for masked and unmasked
conditions, �m and �u. Initially, we allowed the criteria for masked
and unmasked stimuli to differ because the experiment used a
blocked design in which masked and unmasked stimuli were
presented in different conditions. However, for none of the four
model types was the fit better (according to the BIC) with separate
criteria for masked and unmasked stimuli than when the criteria
were the same. We have therefore reported fits for the single-
criterion model in Table 1. We thought it likely that the trial-to-
trial variability in stimulus encoding would differ for masked and
unmasked stimuli because of the perceptual effects of the mask, so
we allowed the drift variability parameters to differ between con-
ditions. The estimates of drift variability confirmed this expecta-
tion, so we retained separate parameters for masked and unmasked
stimuli in the models reported in Table 1. The dual diffusion
models also had an additional parameter, the OU decay constant,
�. The remaining parameters were Ter, and st, the mean and the
range of the nondecisional component of RT, respectively. We

5 The philosophical objection to chi-square goodness-of-fit tests is the
same as the objection to null hypothesis testing, namely, that they test point
hypotheses, which have a probability measure of zero in the space of
experimental outcomes. Such hypotheses are false with probability 1.0 and,
so, must be rejected by a test of sufficient power. This is sometimes
expressed by saying that the chi-square test is “too powerful.” This objec-
tion applies equally to the likelihood-ratio test, G2, and to the Pearson X2

test. A further, technical objection to assigning p values to G2 or X2

computed on bins formed from quantiles was pointed out by Speckman and
Rouder (2004). This is that the resulting sampling distribution is not a true
multinomial, as required by these tests, because the boundaries of the bins
are determined by the data. A somewhat paradoxical feature of this
situation is that estimation performance appears to be better when the
(incorrect) multinomial sampling model is used than when the correct
sampling model is used, which is based on order statistics.

Table 1
Fit Statistics (Smith, Ratcliff, & Wolfgang, 2004)

Model G2 df BIC

Diffusion gain 166.2 207 283.0
Diffusion orienting 173.7 207 290.6
Dual diffusion gain 173.9 206 299.5
Dual diffusion orienting 171.8 206 297.6

Note. BIC  Bayesian Information Criterion.
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found that the quality of the fit was relatively insensitive to
changes in st across a range of plausible values, so we set it to 0.1 s
and treated it as a fixed parameter.

With this parameterization, fits of the single and dual diffusion
models were based on 13 and 14 free parameters, respectively.
Although the number of parameters is fairly large, the degree of
data reduction provided by the models is substantial. There are a
total of 220 degrees of freedom in the data (20 distribution pairs,
each with 11 degrees of freedom). Empirical models of RT, such
as the ex-Gaussian, the shifted Weibull, and the shifted gamma,
typically require three free parameters to describe the location,
dispersion, and shape of a single distribution (Luce, 1986, pp.
507–511; Ratcliff, 1979). An empirical description of the family of
40 distributions would therefore require a total of 120 free param-
eters and would provide no account of the choice probabilities. In
comparison, our process models require an order of magnitude
fewer parameters and provide an account of both the choice
probabilities and the distributions of RT.

The estimated values of the parameters in Table 2 seem reason-
able psychologically. Visual contrast transduction was described
by a Naka-Rushton function with an inhibition term of around 0.01
and an exponent of around 2, consistent with values reported in the
literature.6 Estimates of the perceptual effect of the pedestal, IP,
ranged from 0.8 to around 1.0. These values are consistent with the
interpretation of IP in the VSTM equation, as a measure of the
relative energies of the pedestal and the patch. The data do not
allow IP to be estimated with any great precision, as its role is to
determine the rate of VSTM trace formation, which in turn deter-
mines the location of the first quantile of the RT distribution. The

RT distributions in Figure 12 are consistent with a model in which
the rate of trace formation is independent of stimulus contrast and
this can be achieved with any large value of IP.

Estimates of the sensory response function onset rate parameter,

on, were fairly variable. This was unsurprising, as estimates of
rate parameters from noisy data typically tend to be labile. Indeed,
we found that fits of reasonable quality could be obtained by fixing
the value of this parameter arbitrarily anywhere on the range 50 to
300. Estimates of the masked offset rate, 
off, m, were uniformly
greater than 
on, whereas estimates of the unmasked offset rate,



off, u
, were much less than 
on. This is consistent with the idea that


off, m describes rapid, multiplicative suppression of the stimulus
by the mask whereas 
off, u describes slow, iconic decay.

The fits in Table 1 were obtained subject to the constraint that

off, u � 10. We constrained the fits in this way because the models
predict mask-dependent cuing effects when the persistence of
unmasked stimuli is long relative to masked stimuli. Consequently,
estimates of 
off, u in unconstrained fits tended to go to zero. We
constrained 
off, u to see whether the observed cuing effects could
be predicted using realistic estimates of stimulus persistence. As
Table 2 shows, for all four models, the estimated value of 
off, u

was at or near the lower bound of 10. With n  3 cascaded stages
and 
off, u  10, �(t) decays to 25% of its peak within 350 ms of
stimulus offset.

6 With �  2, a value of Iin  .01 corresponds to a semisaturation
constant I0.5  0.1 (see Footnote 3). That is, the visual contrast transducer
function attains half its maximum value at a contrast of 0.1.

Table 2
Model Parameters (Smith, Ratcliff, & Wolfgang, 2004)

Parameter Symbol
Diffusion

gain
Diffusion
orienting

Dual diffusion
gain

Dual diffusion
gain

Sensory response function
Onset rate 
on 57.8 121.1 49.5 45.9
Offset rate (masked) 
off, m 182.2 127.7 108.4 53.7
Offset rate (unmasked) 
off, u 10.1 10 10.2 10.2
Number of stagesa n 3 3 3 3
Naka-Rushton amplitude � 1.05 1.35 1.04 1.23
Naka-Rushton exponent � 1.97 2.10 2.31 2.22
Naka-Rushton inhibition Iin 0.008 0.005 0.002 0.003
Pedestal amplitude IP 0.88 0.94 0.99 1.06

Attention/VSTM (gain models)
Gain (attended) �A 15.0 — 14.6 —
Gain (unattended) �U 9.5 — 10.0 —

Attention/VSTM (orienting models)
Gain � — 5.7 — 6.5
Orienting time tor — 0.041 — 0.061

Decision process
Decision criterion a 0.096 0.091 0.05 0.048
Drift variability (masked) �m 0.22 0.33 0.29 0.35
Drift variability (unmasked) �u 0.35 0.54 0.5 0.56
Ornstein-Uhlenbeck decay � — — 6.0 6.1
Reflecting boundarya r — — �0.01 �0.01

Nondecision processes
Mean nondecision time Ter 0.281 0.283 0.301 0.276
Nondecision time rangea st 0.1 0.1 0.1 0.1

Note. VSTM  visual short-term memory.
a Denotes a fixed parameter.
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It is difficult to assess whether these estimates are reasonable or
a little too long. Visual persistence can be estimated in a variety of
different ways (Breitmeyer, 1984, chap. 3) and these methods give
differing estimates. Moreover, as Coltheart (1980) argued, visual
persistence and informational persistence are not the same, and it
is the latter that is relevant in our theory. One way to measure the
informational persistence of a stimulus was proposed by Loftus,
Johnston, and Shimamura (1985), who compared performance with
masked and unmasked stimuli to estimate “the worth of an icon.”
They found that the icon was worth an additional 100 ms of stimulus
exposure. That is, when stimuli were masked, exposure duration
needed to be increased by around 100 ms to obtain a level of
performance comparable to that obtained with unmasked stimuli.

Using the logic of Loftus et al. (1985) in Equation 2, we find
that a plausible value of 
off, u is around 20. We estimate this value
by equating the areas of �(t) for a masked stimulus with d  0.16 s
and an unmasked stimulus of d  0.06 s, using typical values of

on and 
off to do so. A decay parameter of 
off, m  20 represents
a sensory response function that decays to 25% of its maximum
value within 200 ms of stimulus offset. This value agrees reason-
ably well with estimates of the visual persistence of a 3.5 cycles-
per-degree grating, like those used by Smith, Ratcliff, and Wolf-
gang (2004), reported by Bowling and Lovegrove (1981). When
we constrained 
off, m � 20 in the fits, the G2 values worsened, but
only by around 4%. The resulting constrained fits are still highly
acceptable.

The estimates of attention gain were around 10 to 15 in the gain
models and a little smaller in the orienting models. Gain values of
10–15 imply that the VSTM trace is formed within the first
200–300 ms after stimulus onset, consistent with the results of
Vogel et al. (2006). In the gain models, �A was around 1.5 times
greater than �U. These estimates are reasonable if we regard gain
as a precursor to, and determinant of, relative trace strength. The
relative gains correspond to an attentional effect of around 3.5 dB,
which agrees with the mask-dependent cuing effects found exper-
imentally (Smith, Wolfgang, & Sinclair, 2004).7 The estimates of
orienting time in the orienting models ranged from 41 ms to 61 ms.
These values are longer than the 16 ms estimated by Smith,
Ratcliff, and Wolfgang (2004) in an earlier version of the theory.
Given that the cuing effect with peripheral cues takes around 100
ms to reach its maximum, the longer estimates seem more reason-
able. These estimates can be attributed to our use of a more
elaborated and psychologically realistic model of the sensory
response function than the one used by Smith, Ratcliff, and Wolf-
gang (2004).

The criterion-setting hypothesis. We noted earlier that a num-
ber of authors have suggested a criterion-setting explanation for
the Posner effect in detection. According to this explanation, RTs
are shorter for cued stimuli because people set lower criteria for
stimuli at cued locations, allowing them to respond to cued stimuli
more rapidly. Although criterion setting does not explain the
mask-dependent cuing effect, it is conceivable that some part of
the attentional effect in the Smith, Ratcliff, and Wolfgang (2004)
data may be due to criterion differences.

To investigate whether this was so, we refitted the data with
each of the four models, allowing the criteria for attended and
unattended stimuli, aA and aU, to differ. The resulting goodness-
of-fit statistics are shown in Table 3. The table shows that there is,

at best, equivocal support for the criterion setting hypothesis.
Allowing aA and aU to differ produced a uniform improvement in
G2 for all models, but only in some cases is the BIC for a
criterion-varying model better than for a fixed-criterion model, and
in those cases, the difference is small. There is thus little evidence
that the attentional effects in this task are due to observers adopting
different criteria for attended and unattended stimuli. Of course,
we do not argue that this finding generalizes beyond these data.
The study of Smith, Ratcliff, and Wolfgang (2004) used a psycho-
physical task, in which accuracy was stressed and in which ob-
servers were given trial-by-trial accuracy feedback. There was thus
little incentive to try to optimize speed by setting low criteria at
cued locations. It remains plausible that criterion setting may be a
determinant of performance in tasks in which speed of responding
is stressed, as previous authors have argued. In the Smith, Ratcliff,
and Wolfgang data, however, the differences in RT produced by
cuing appear to be due to other mechanisms.

Interim summary. We have shown that our theory provides a
good account of the data from a cued detection task with masked
and unmasked stimuli. The pattern of data is a fairly complex one:
Cues increased accuracy only when stimuli were backwardly
masked, but they reduced RT unconditionally. The theory at-
tributes these effects to an interaction between attention and the
informational persistence of stimuli. It assumes that attention in-
creases the efficiency with which stimulus information is trans-
ferred to VSTM, either by increasing the rate of transfer or by
reducing the delay before the transfer begins. The effect of the
increased efficiency is most apparent when stimuli are masked and
informational persistence is short. Under these circumstances, at-
tention produces an increase in accuracy and a large reduction in
mean RT. When stimuli are unmasked, there is no change in
accuracy and a smaller reduction in RT.

Our theory not only accounts for the effects of cues and masks
on accuracy and mean RT but it also accounts for the shapes of RT
distributions for correct responses and errors and how the shapes
change as a function of experimental conditions. It thus provides
an extremely rich and detailed characterization of performance on
this task. We found that two different decision models, both based
on diffusion processes, provided equally good accounts of the RT
distributions and choice probabilities. This finding reinforces the

7 The cuing effect in decibels is equal to 20log10(d�A/d�U), where d�A and
d�U are the sensitivities to cued and miscued stimuli, respectively. A
scaling factor of 20, rather than 10, is used because, by convention, the
decibel is a unit of relative power rather than relative amplitude. Argu-
ments in relative amplitude units must therefore be squared before taking
logarithms.

Table 3
Test of Criterion Setting (Smith, Ratcliff, & Wolfgang, 2004)

Model G2 df BIC

Diffusion gain 154.5 206 280.3
Diffusion orienting 163.3 206 289.1
Dual diffusion gain 164.9 205 299.7
Dual diffusion orienting 168.7 205 303.4

Note. BIC  Bayesian Information Criterion.
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findings of Ratcliff and Smith (2004), who showed that the critical
ingredient of a successful decision model is not whether the model
assumes one evidence total or two but the kind of stochastic
process used to model evidence accumulation. As Ratcliff (2001)
has shown, models based on diffusion processes naturally predict
the kinds of RT distributions that are found experimentally.

Effect of Spatial Uncertainty (Gould et al., 2007)

The data of Gould et al. (2007) in Figure 4 show a similar
pattern to that in the data of Smith, Ratcliff, and Wolfgang (2004).
When stimuli were localized by fiducial crosses, cues shortened
mean RT but had no effect on sensitivity. When stimuli were not
localized by crosses, cues shortened RT and increased sensitivity.
Because these effects were obtained with unmasked stimuli, they
cannot be due to an interaction between attention and informa-
tional persistence.

To model the data of Gould et al. (2007), we assumed that
fiducial crosses affect the process of selecting stimuli for entry into
VSTM. Our initial hypothesis was that cues and crosses act in a
similar way, to affect the efficiency of VSTM trace formation.
Specifically, we assumed that cues have a top-down effect on
efficiency, whereas crosses have a bottom-up effect. This implied
that gain (or orienting time) would vary as a function of both cues
and crosses. We therefore predicted very low gain or very long
orienting times when stimuli were miscued and were presented
without fiducial crosses.

This idea led to the right qualitative predictions—namely, re-
duced accuracy and long RTs in the miscued, no-cross condition—
but the resulting models failed quantitatively. There were two
reasons for this failure. First, values of gain or orienting time that
were sufficient to predict the reduction in accuracy in the miscued,
no-cross condition also predicted increases in RT that were much
greater than those found experimentally. Second, the magnitude of
the predicted cuing effect in accuracy in the no-cross condition was
largely independent of stimulus contrast. The cuing effect found
experimentally, expressed as a proportional reduction in sensitivity,
increases at low contrasts (Gould et al., 2007, Figure 4). This differs
from the pedestal task, in which the magnitude of the cuing effect
is almost independent of contrast (Smith, Wolfgang, & Sinclair,
2004). We therefore sought a different characterization of the
effects of the fiducial cross.

Of the many alternatives we considered, the one that provided
the most parsimonious account of the data was the assumption that
the fiducial cross affects �, the exponent of the sensory transducer
function. This assumption derives from the idea that the fiducial
cross is primarily a manipulation of observer uncertainty (Gould et
al., 2007; Petrov, Verghese, & McKee, 2006) and that uncertainty
changes the effective shape of the transducer function (Pelli,
1985), making low-contrast stimuli less detectable than they would
be otherwise. Pelli (1985) argued that, for a stimulus to be detect-
able, the activity in the visual filter coding the stimulus must differ
by some threshold amount from noise in filters coding the sur-
rounding display. The task of distinguishing the stimulus from the
background becomes more difficult with increasing uncertainty
about the stimulus location because it increases the number of
filters the observer must monitor for evidence of a signal. These
effects are largest at low stimulus contrasts, where the activity
produced by signals is similar to the noise in the surrounding

display. The result appears as an increase in the exponent of the
visual contrast response function. Pelli’s argument echoes an ar-
gument made earlier by Green (1960) for auditory detection.

Table 4 lists the parameters that were estimated to fit the
resulting models. As in the Smith, Ratcliff, and Wolfgang (2004)
experiment, the two attention and two decision models gave us a
total of four different models. As Table 4 shows, along with gain
(or orienting time), the main parameter that varied between cue
and cross conditions was the Naka-Rushton exponent, �. Initially,
we allowed � to vary freely as a function of cue and cross
conditions (a total of four values in all). However, we found no
evidence that � changed with cuing in the cross condition; rather,
any changes were confined to the no-cross condition. We therefore
constrained cued and miscued � values in the cross condition to be
equal and allowed � to vary with cues only in the no-cross
condition. We also allowed �, the drift variability in the decision
process, to vary as a function of fiducial condition, as it seemed
likely that trial-to-trial encoding efficiency would vary, depending
on whether fiducial crosses were used. The results of Gould et al.
(2007) suggest that crosses reduce the effects of noise from the
surrounding display, leading to more efficient stimulus localization
and VSTM trace formation. If so, trace strength variability is likely
also to be reduced by crosses, because stimulus localization is less
affected by trial-to-trial variations in display noise. We also as-
sumed the decision criteria and the onset and offset rates for the
sensory response function, 
on and 
off, would be the same in all
conditions. The assumption of equal criteria is required by the
experimental design, which mixed cross and no-cross stimuli ran-
domly within blocks of trials. Equal onset and offset rates were
assumed because the same, unmasked stimuli were used in all
conditions. The fixed parameters were constrained as in the pre-
vious experiment.

The models with Naka-Rushton exponents varying in this way
provided a reasonable account of all the mean features of the data,
including the choice probabilities, the shapes of the RT distribu-
tions, and the changes in the leading edge of the distributions as a
function of contrast. Figure 13 shows the fit of the single-diffusion,
gain model; the top part of Table 5 shows the goodness-of-fit
statistics for all four models. As was the case with the Smith,
Ratcliff, and Wolfgang (2004) data, all four models performed
similarly. The best model, in both a G2 and a BIC sense, was the
dual diffusion, orienting model. Again, however, the G2 values for
the best and worst fitting models were within a few percent of each
other.

Although the patterns of sensitivity and mean RT for the Smith,
Ratcliff, and Wolfgang (2004) study and the Gould et al. (2007)
study are very similar, the quantile probability plots for the two
studies are quite different. In comparison with the Smith, Ratcliff,
and Wolfgang (2004) study, the distribution quantiles in the Gould
et al. data are considerably more bowed, and there is substantially
more change in the .1 quantile across stimulus conditions. The
models do reasonably well in capturing the bowing of the .1
quantile, as Figure 13 shows. The critical feature of the models that
allow them to capture both patterns of data is the presence or
absence of the pedestal intensity term, IP, in the VSTM equation.
When IP is present, the rate of VSTM growth, and hence the
leading edge of the RT distribution, is relative independent of
stimulus contrast. When IP is absent, the leading edge of the RT
distribution varies substantially.
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Although the models satisfactorily capture the interaction of
cues and uncertainty and their joint effects on the shapes of the RT
distributions, the fit statistics in Table 5 are about 40% worse than
those in Table 1. For these data, G2 for a well-fitting model should
be around 206–207, with a standard deviation of around 20, so the
values in Table 5 suggest some failure to fit. A possible reason for
this failure can be identified in the pattern of mean RTs in Figure 4.
The figure shows that there was a small cuing effect when stimuli
were localized by crosses and a large effect when they were not.
Unlike the corresponding pattern in the Smith, Ratcliff, and Wolf-
gang (2004) study, however, the cuing effect in the no-cross
condition disappears at low contrasts. At these contrasts, there was
no difference in mean RT for cued and miscued stimuli.

What is happening at low contrasts in the no-cross condition in
this experiment? Figure 4 shows that, at the lowest levels of
contrast, performance is almost at chance. At these levels of
contrast, observers were obtaining virtually no stimulus informa-
tion from the display. One interpretation of the collapse of the
Posner effect in RT at low contrasts is that observers were re-
sponding according to an internal deadline. That is, they were
aware within a few hundred milliseconds of the cue that they had
not registered the presence of a sensory event and were unlikely to
do if they continued to wait and so chose to terminate sampling
from the display. In other words, they were not using a pure
information-controlled decision process but, rather, were using a
mixture of time-controlled and information-controlled processing.
Responses to miscued, low-contrast, no-cross stimuli would be
most affected by a mixed strategy of this kind because these

responses are the slowest. The result would be a collapse of the
Posner effect at low contrasts.

Superficially, the quantile probability functions in Figure 13
appear consistent with a mixed-strategy account of this kind. In
comparison with the other three panels, the bowing of the distri-
bution tails in the miscued, no-cross condition is reduced, as would
be expected with deadline responding. However, closer inspection
reveals that the bowing of the quantile probability functions is
reduced for the other quantiles, as well. This is inconsistent with a
simple deadline model of responding—of either a fixed or variable
kind—because deadline responding should only affect the longest
RTs and should leave the remainder of the distribution unaltered.
We therefore considered an alternative hypothesis to try to capture
what is happening in the no-cross condition.

Both of our decision models assume that drift (or, more pre-
cisely, the excitatory component of drift) and the diffusion coef-
ficient grow in proportion to one another. Psychologically, the
time at which the diffusion coefficient changes from zero marks
the point at which the diffusion process begins to accumulate
evidence. The idea that drift and diffusion coefficient grow pro-
portionally presupposes that evidence accumulation is tightly
bound to the spatiotemporal properties of the stimulus. Although
this is plausible when stimuli are localized by pedestals or fiducial
crosses, it is also plausible that this binding may break down to
some extent in the absence of localizing markers. This accords
with the suggestion of Laming (1968), who argued that informa-
tion accumulation can be initiated even in the absence of a stim-

Table 4
Model Parameters (Gould et al., 2007)

Parameter Symbol
Diffusion

gain
Diffusion
orienting

Dual diffusion
gain

Dual diffusion
gain

Sensory response function
Onset rate 
on 128.6 105.8 86.4 92.2
Offset rate 
off 32.2 22.6 20.8 16.9
Number of stagesa n 3 3 3 3
Naka-Rushton amplitude � 3.44 3.95 2.53 2.21
Naka-Rushton exponent

Fiducial �fid 1.65 1.67 1.59 1.64
Attended, no fiducial �A, no fid 1.69 1.75 1.65 1.68
Unattended, no fiducial �U, no fid 2.00 2.04 2.01 2.00

Naka-Rushton inhibition Iin 0.054 0.036 0.059 0.051
Attention/VSTM (gain models)

Gain (attended) �A 15.64 — 38.3 —
Gain (unattended) �U 11.7 — 28.6 —

Attention/VSTM (orienting models)
Gain � — 14.3 — 40.7
Orienting time tor — 0.050 — 0.062

Decision Process
Criterion a 0.068 0.065 0.046 0.048
Drift variability, fiducial �fid 0.53 0.80 0.50 0.44
Drift variability, no-fiducial �no fid 0.67 0.85 0.55 0.51
Ornstein-Uhlenbeck decay � — — 6.6 6.0
Stimulus independent diffusion �2 0.015 0.014 0.020 0.032
Reflecting boundarya r — — �0.01 �0.01

Nondecision Processes
Mean nondecision time Ter 0.267 0.260 0.276 0.259
Nondecision time rangea st 0.1 0.1 0.1 0.1

Note. VSTM  visual short-term memory.
a Denotes a fixed parameter.
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ulus by the expectation of its occurrence at a particular time.8 We
investigated a very simple form of this idea, in which the SDE
describing evidence accumulation in the decision stage had an
additional component of diffusive variability that was independent
of drift. We modeled evidence accumulation by an SDE of the
form

dX	t� � ��	t� � �X	t��dt � ��1	t� � �2�dW	t�. (18)

In this equation, �1(t) is the component of the diffusion coefficient
that grows with drift and �2 is a small component independent of
drift (cf. Equation 17). Psychologically, �2 may be thought of as a
nonspecific component of decision noise that is independent of the
stimulus.

Consistent with this interpretation, we found the extra decision
noise improved fit only in the no-cross condition; it had no effect
in the fiducial condition, and its effect in the no-cross condition
was most apparent with miscued stimuli. The effect of additional
decision noise is to reduce accuracy and shorten RT. Its effects are
most pronounced at low stimulus contrasts where the rate of
VSTM growth is slowest. Unlike deadline responding, however,
its effects extend across the distribution. The net result is a flat-
tening of RT quantiles, as is found in the Gould et al. (2007) data.

The lower part of Table 5 shows the goodness of fit of the four
models when the �2 term is added. Although the addition of �2

improves G2 by only around 5–7%, it leads to a better qualitative

match between models and data. As further support for the idea
that the flattening of the RT quantiles in the miscued, no-cross
condition of Gould et al. (2007) was due to an uncertainty-
dependent increase in diffusion noise, we went back and added a
�2 term to the fits of the Smith, Ratcliff, and Wolfgang (2004)
data. Unlike in Gould et al., this produced no improvement in fit,
consistent with the idea that the extra decision noise and associated
change in distribution shape only occur under conditions of spatial
uncertainty, when stimuli are not well localized perceptually.

Table 4 shows the estimated parameters for the four models. In
general, the estimated values were similar to those in Table 2,
although there are some differences, both between experiments
and among models. Some of this variability can be attributed to the
cascaded stage structure of the models, which leads to trade-offs
between parameters. The estimated values of the �(t) offset pa-
rameter, 
off, were larger than the corresponding estimates for the
Smith, Ratcliff, and Wolfgang (2004) study, whereas the differ-
ences between the attentional gain constants, �A and �U, were
smaller. The average estimated value of 
off was around 20, which
agrees with the figure based on Loftus’s “worth of an icon” idea,
estimated in the previous experiment.

The important parameters from the point of view of the cuing
effect are the values of the Naka-Rushton exponent, �, which
characterizes nonlinearity in stimulus transduction. To fit the mod-
els we assumed a transducer function, r(�I), of the form in Equa-
tion 6, in which the inhibitory coefficient, Iin, was held fixed while
the exponent varied across conditions. The estimated values of � in
Table 4 are a little smaller than the corresponding values in Table

8 Laming (1968) used the idea of top-down initiated information accu-
mulation to explain the fast errors that are often found under conditions of
speed stress. Laming argued that the expectation of stimulus onset may
cause the decision process to begin sampling prematurely, from the pre-
stimulus field. As a result, it would initially accumulate noise, rather than
stimulus information, leading to an increased probability of error. We do
not invoke expectation or time uncertainty here, but only the idea that the
initiation of information accumulation may be, in part, under top-down
control. Smith and Wolfgang (2004, p. 133) used Laming’s idea more
explicitly, in a precursor to the current theory. The model of Equation 18
could be extended in an obvious and plausible way, by introducing tem-
poral uncertainty in the �2 term and allowing the onset of the second source
of noise to lag behind the stimulus. We have not pursued this possibility
further here, as it is incidental to the main purpose of the article.

Figure 13. Fit of the single-diffusion, attention gain model to the re-
sponse time (RT) distributions and choice probabilities for the Gould,
Wolfgang, and Smith (2007) study. The large symbols are the experimental
data and the continuous curves and small circles are the fitted values. The
five lines in each panel are, in ascending order, the .1, .3, .5, .7, and .9
quantiles of the predicted RT distributions. The corresponding empirical
quantiles are shown as circles, squares, diamonds, inverted triangles, and
upright triangles, respectively. The plot is parameterized by stimulus
contrast, as described in the caption to Figure 12. The model had a �2 term
in the diffusion coefficient in the no FID, miscued condition (see text for
details).

Table 5
Fit Statistics (Gould et al., 2007)

Model G2 df BIC

Diffusion gain 247.9 207 363.5
Diffusion orienting 247.6 207 363.1
Dual diffusion gain 246.6 206 371.0
Dual diffusion orienting 234.8 206 359.2

Models with diffusion term, �2

Diffusion gain 232.2 206 356.9
Diffusion orienting 235.9 206 360.2
Dual diffusion gain 234.0 205 353.3
Dual diffusion orienting 218.7 205 352.0

Note. BIC  Bayesian Information Criterion.
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2. They were smallest in the fiducial cross condition, a little larger
in the cued, no-cross condition, and largest in the miscued, no-
cross condition. This is consistent with Pelli’s (1985) idea that
increasing uncertainty increases the exponent of the contrast re-
sponse functions. Our fits showed that, when stimuli were local-
ized by fiducial crosses, � values were the same for cued and
miscued stimuli. Because stimuli were unmasked, asymptotic
VSTM trace strengths were also the same. Consequently, differ-
ences in gain or orienting time produced differences in RT be-
tween conditions but none in accuracy. When stimuli were not
localized with crosses, there were large differences in � for cued
and miscued stimuli. The effect of these differences was to make
miscued stimuli less detectable than cued stimuli, especially at low
contrasts, as Figure 14 shows. This resulted in both RT differences
and accuracy differences. The latter were most pronounced at low
contrasts, as Gould et al. (2007) found.

The estimates of � were slightly larger for cued, cross stimuli
than for cued, no-cross stimuli. Although the difference is small
numerically, it reflects a significant difference in performance.
Gould et al. (2007) found that sensitivity to cued, cross stimuli was
slightly but consistently higher than to cued, no-cross stimuli for
all observers. This suggests that the cue and the cross both acted to
reduce uncertainty by localizing the stimulus but that the cross was
the more effective of the two. This is unsurprising because, unlike
the cue, the cross was 100% predictive of the stimulus location and
localized the stimulus more precisely in space and in time.

We also tested whether some part of the cuing effect in the
Gould et al. (2007) study could be attributed to differences in the
criteria used to make judgments about attended and unattended
stimuli. The results of these model fits are shown in Table 6. As in
the Smith, Ratcliff, and Wolfgang (2004) study, allowing the
criteria for attended and unattended stimuli to differ produced a
reduction in G2 for all models, but the BIC improved for only one
of them, and this improvement was small. There is thus little
evidence that the Posner effect in RT in the Gould et al. study was
due to criterion setting.

A Neurally Plausible Model of VSTM

The heart of our theory’s ability to predict the experimental data
in Figures 12 and 13 is the VSTM growth equation, Equation 15.
In this equation, the pedestal intensity affects the rate of VSTM
growth but not asymptotic trace strength. This decoupling of rate
and asymptote is needed to account for the data of Smith, Ratcliff,
and Wolfgang (2004) and of Gould et al. (2007) with the same
VSTM equation. To obtain this equation, we needed to assume that
the rate of VSTM growth depends on the energy in the stimulus
compound, whereas the asymptotic trace strength depends only on
the part of the compound that carries information about stimulus
identity. If we think of the VSTM trace as a cognitive represen-
tation of the information used in the observer’s decision, this
property is evidently the right one. How might a computation like
the one in Equation 15 be realized in the visual system?

We propose that the VSTM trace is formed by the integration of
stimulus activity carried in two parallel pathways. The activity in
one of the pathways depends on the total energy in the stimulus
compound and is insensitive to the presence of any form informa-
tion or visual structure the compound may contain. We denote the
activity in this pathway by �E(t) (for “energy”). The activity in the
second pathway depends on the presence of visual structure that
carries information about stimulus identity. We denote the activity
in this pathway by �F(t) (for “form”). As shown in Figure 15, the
relationship between the two pathways is a simple one. Activity in
the energy pathway selects a location in the visual field and gates
the form information at that location into VSTM. The drift of the
diffusion process is proportional to the strength of the resulting
VSTM trace.

The computations depicted in Figure 15 are implemented by a
pair of coupled shunting equations:

dvE

dt
� �i�	IC � Iin��	t��1 � vE	t��

� �1 � 	IC � Iin���	t�vE	t�� (19)
and

dvF

dt
� �ivE	t��r	�I��	t��� � vF	t�� � �1 � r	�I���	t�vF	t��,

(20)

where �i � {�A, �U}. As defined previously,

IC � 	�I
2� � IP

2�

is the square root of the power in the transduced stimulus com-
pound, and r(�I) is the Naka-Rushton transduced stimulus incre-
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Figure 14. Naka-Rushton sensory transducer functions, r(�i), as a func-
tion of contrast for stimuli presented under conditions of low (�  1.6) and
high (�  2.0) uncertainty. The effect of uncertainty is to make stimuli less
detectable, because the activity in the visual filter coding the stimulus must
be distinguished from noise in the surrounding display. Proportionally, the
impact of uncertainty is largest at low-stimulus contrasts.

Table 6
Test of Criterion Setting (Gould et al., 2007)

Model G2 df BIC

Diffusion gain 229.6 205 362.7
Diffusion orienting 225.3 205 358.5
Dual diffusion gain 228.8 204 362.0
Dual diffusion orienting 214.5 204 352.6

Note. BIC  Bayesian Information Criterion.
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ment of Equation 6. The critical feature of these equations is that
the rate of growth of the VSTM trace, �F(t), is equal to the product
of the attention gain, �i, and the instantaneous activity in the
energy pathway, �E(t). The activity in this pathway depends on the
energy in the stimulus compound. It is large and relatively inde-
pendent of stimulus contrast when the pedestal is present and small
and strongly dependent on contrast when the pedestal is absent.

To obtain the right kinds of properties in the composite VSTM
model, we have again used shunting equations that decouple the
rates and asymptotic trace strengths from one another.9 Unlike the
equations described earlier in this article, the rate of VSTM growth
in the dual-pathway model depends on stimulus contrast solely via
the coupling between the pathways. The model assumes that
contrast information in the form pathway is subject to early gain
control (Naka-Rushton-like nonlinear transduction) prior to enter-
ing the memory system, as depicted in Figure 15. As noted earlier,
this assumption is consistent with the known physiology of the
visual system (Walraven et al., 1990). The asymptotic trace
strength in the form pathway is �r(�I), and the rate of growth is
�i�E(t). The asymptotic trace strength in the energy pathway is
IC � Iin, and the rate of growth is �i. The composite VSTM model
in Equations 19 and 20 assumes a gain model of attention; an
orienting model can be obtained by an obvious generalization of
Equation 11.10

To evaluate the dual-pathway model, we fitted it to the data of
Smith, Ratcliff, and Wolfgang (2004) and Gould et al. (2007) in
the way described previously. Because we previously found no
significant differences in fit among the four model classes, in this
evaluation, we focused exclusively on the single-diffusion, atten-
tion gain model. We found that the multiple-pathway model fit the
data just as well and, indeed, slightly better than the model based
on Equation 15. For the data of Smith, Ratcliff, and Wolfgang, the
goodness-of-fit statistic was G2(207)  160.4, BIC  277.3, and
for the data of Gould et al., it was G2(205)  229.8, BIC  363.0.
These fit statistics indicate that the dual-pathway model nicely
captures the differences in the shapes of the RT distributions and
the changes in their leading edges in the two data sets.

As a further test of the dual-pathway model, we investigated
whether the same set of model parameters could describe the RT
distributions and choice probabilities in the two data sets simulta-

neously. The model in Figure 5 involves interacting subprocesses
whose parameters can trade off when it is fitted to data. To ensure
a consistent characterization of the VSTM process in the pedestal
and the no-pedestal task, we fitted the two data sets with a single
composite model. Because the two data sets were based on differ-
ent groups of observers, we expected that any such composite
model would misfit to some degree. However, quantile averaging
should have reduced the effect of individual differences enough for
this comparison to still be meaningful.

Table 7 shows the parameters that were estimated to fit the
composite model to the two sets of data, and Figure 16 shows the
associated fits. We assumed that the two sets of data could be
described by the same decision criteria, sensory response func-
tions, VSTM processes, attention gains, and nondecision times.
The parameters that differed between experiments were the Naka-
Rushton parameters, which describe the early, nonlinear transduc-
tion of contrast, and the between-trials variability in VSTM trace
strength. The latter determines the trial-to-trial variability in the

9 Unlike the inhibitory coefficient in Equation 20, the inhibitory coeffi-
cient in Equation 19 is not guaranteed to remain positive for all values of
IC and Iin. In practice, however, it does so for the kinds of values that arise
in fitting data. If we adopt a more general formulation, writing the inhib-
itory coefficient as K – (IC � Iin), where K is a positive constant, the
asymptotic trace strength in the energy pathway becomes (IC � Iin)/K. We
investigated this more general model, allowing K to vary as a free param-
eter. When we did so, we obtained a small improvement in G2 (G2  460.9
vs. G2  466.3). According to the BIC, this improvement in fit was not
sufficient to offset the gain in model freedom associated with the intro-
duction of an extra free parameter (BIC  773.5 vs. BIC  760.8).

10 Smith (in press) described another way to decouple the rate and
asymptote in a shunting equation, which leads to a predicted asymptotic
trace strength that is proportional to the Michelson contrast of a stimulus.
(Michelson contrast is defined as (I2 – I1)/(I2 � I1), where I2 and I1 are the
maximum and minimum luminances in the stimulus, respectively.) In the
equation described by Smith, the rate of VSTM growth is equal to I2 � I1,
which, for a grating stimulus, is proportional to the mean luminance of the
display. Although this approach has some appealing features, it does not
extend readily to the case in which VSTM growth can depend on stimulus
contrast, as we have argued occurs in the data of Gould et al. (2007).
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Figure 15. Dual-channel shunting visual short-term memory (VSTM) model. The power in the stimulus
compound, IC � 	�I
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2� gates form information in the grating patch, �I

� into VSTM. The contrast of the
patch is subject to nonlinear transduction and early gain control before gating. The activity in the energy pathway
depends on the square root of the total power in the pedestal and patch. The contrast of the patch, �I, and of the
pedestal, IP, are subject to separate nonlinear transduction with exponent � before power is computed.
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drift of the diffusion process. We expected both Naka-Rushton
shape and between-trial variability to differ between experiments
because they are features of stimulus encoding likely to vary with
uncertainty and the presence or absence of masks.

The notation used to designate the parameters in Table 7 is the
same as that used in Tables 2 and 4, with the following exceptions.
The parameters �1 through �4 are, in order, the drift variabilities in
the unmasked and masked conditions of Smith, Ratcliff, and
Wolfgang (2004) and in the fiducial and the no-fiducial conditions
of Gould et al. (2007). The parameters Iin, 1 and Iin, 2 are the
Naka-Rushton inhibition constants for Smith, Ratcliff, and Wolf-
gang and Gould et al., respectively. The parameter �1 is the
Naka-Rushton exponent for all four conditions of Smith, Ratcliff,
and Wolfgang; �2 is the exponent for the cued and miscued

fiducial conditions of Gould et al.; and �3 and �4 are, respectively,
the exponents for the cued and miscued no-fiducial conditions of
Gould et al. This choice of parameters was guided by the fits of the
models based on Equation 15.

The parameter IP is a component of the energy pathway re-
sponse that depends on the pedestal. It is nonzero for the Smith,
Ratcliff, and Wolfgang (2004) study and zero for the Gould et al.
(2007) study. The amplitude of the energy pathway response in
Equation 19 is the sum of two terms: IC, which depends on
stimulus contrast, and Iin, which does not. In the single-pathway
model of Equation 14, Iin is the inhibitory coefficient in an
excitatory-inhibitory shunting equation. In Equation 19, however,
it has no such interpretation. Rather, it is simply a component of
the energy pathway response—and, hence, of the rate of VSTM
growth—that is independent of contrast. We retained it in the
model after finding that models with an energy pathway response
proportional to a power of �I produced quantile probability func-
tions that were far more bowed than those in the data. We infer that
the rate of VSTM growth increases with stimulus contrast but not
as a simple power function of it.

Finally, the parameter �2 denotes the drift-independent compo-
nent of the diffusion coefficient for the miscued uncertainty con-
dition of Gould et al. (2007). As before, our rationale for this
parameter is that the accumulation of stimulus information by the
diffusion process is unlikely to be tightly bound to the stimulus
when stimuli are not localized by either pedestals or fiducial
crosses. This assumption was supported by our finding that the
model fits improved (according to the BIC) when this parameter
was included, but there was no improvement with a corresponding
parameter for any of the conditions of Smith, Ratcliff, and Wolf-
gang (2004), or for the fiducial conditions of Gould et al.

The joint fit of the dual-pathway model in Figure 16 shows it
provides a fairly good description of the RT distributions and the
choice probabilities in the two studies, G2(420)  466.3. The most
obvious misfit is in the miscued, uncertainty (no FID) condition of
Gould et al. (2007), where the model underestimates the range of
choice probabilities (i.e., overestimates the magnitude of the cuing
effect). Apart from this, most of the main features of the data,

Table 7
Two-Channel VSTM Model, Joint Fit (Single-Diffusion, Gain)

Parameter Value

a 0.087

on 155

off, m 346

off, u 24
�A 103
�U 75
�1 0.274
�2 0.427
�3 0.278
�4 0.359
Ter 0.229
� 1.13
Iin, 1 0.001
Iin, 2 0.021
�1 2.47
�2 1.84
�3 1.89
�4 2.24
IP 0.30
�2 0.022

Note. VSTM  visual short-term memory; st  0.10 fixed.

Figure 16. Simultaneous fit of the attention-gain, single-diffusion model to the data of (a) Smith, Ratcliff, and
Wolfgang (2004) and (b) Gould, Wolfgang, and Smith (2007).
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including the differences in the shapes of the RT distributions and
the changes in their leading edges are captured by the dual-
pathway model. Although the dual-pathway model uses 20 free
parameters to fit the two data sets, it affords a high degree of data
reduction, as these parameters jointly describe 80 RT distributions
and 40 choice probabilities. This translates to one free parameter
per four distributions and pair of choice probabilities.

The dual-pathway model provides a dynamic account of how a
VSTM process like the one in Equation 15 could be computed in
the visual system. It assumes that the patch and compound are each
subject to excitatory-inhibitory shunting interactions and that the
final VSTM trace is the confluence of the activity carried by the
two pathways. Although the dual-pathway model is more complex
than the simple, single-channel shunting VSTM model with which
we began, the model is plausible physiologically. There is now
considerable evidence that visual information is processed in par-
allel, through anatomically distinct dorsal “where” and ventral
“what” pathways (Mishkin, Ungerleider, & Macko, 1983). Ac-
cording to one version of the dual-pathway account, the dorsal
pathway locates a stimulus in space and segregates it from its
background while the ventral pathway processes form and identity
information. Indeed, Vidyasagar and colleagues (Vidyasagar,
1999; Saalmann, Pigarev, & Vidyasagar, 2007) have proposed a
physiologically motivated model of attentional selection that is
based on dorsal and ventral pathways interacting in this way.

In Vidyasagar’s (1999) model, stimulus attributes processed
through the dorsal stream allow task-relevant stimuli to be located
spatially and segregated from their surroundings. Processing of
form information from selected locations via the ventral stream
then allows the stimulus to be identified. In a similar way, the
lower pathway in Figure 15 selects stimuli into VSTM on the basis
of their overall energy properties. The more energy a stimulus
contains, the more rapidly and efficiently it is encoded in VSTM.
However, this pathway carries no information about stimulus
identity. Identity information is processed via the upper pathway;
the activity in this pathway is gated by the activity in the lower
pathway to determine the overall strength of the VSTM trace. The
lower and upper pathways in Figure 15 therefore exhibit, respec-
tively, dorsal-like and ventral-like properties similar to those en-
visaged by Vidyasagar.

Although our dual-pathway model is consistent with visual
physiology, our aim in developing it was not primarily to account
for the effects of dorsal and ventral pathways in attentional selec-
tion; rather, it was to provide an account of the dynamics of VSTM
formation within a shunting equation framework. The form of the
dual-channel VSTM model was guided purely by mathematical
and empirical considerations, rather than by any considerations of
physiology or anatomy. Nevertheless, we find it striking that the
minimum set of computational principles needed to account for
our data should map so naturally onto structures and processes that
have been identified physiologically.

Episodic Dynamics of Visual Attention

Our account of the mask-dependent cuing effect assumes that
attention affects the efficiency of selection into VSTM and that
VSTM selection interacts with the differential persistence of
masked and unmasked stimuli to produce the dependency on
masking. We showed that two different kinds of attentional model

could produce this interaction: a gain model and an orienting
model. The goodness-of-fit statistics in Tables 1 and 5 show that
these two models provide equally good accounts of the experi-
mental data. We have therefore shown a form of model mimicry,
in which two models with different process structures make pre-
dictions that are experimentally indistinguishable. Model mimicry
is, of course, not uncommon in cognitive psychology. There are a
variety of examples in the literature, the best known being
Townsend’s (1972) demonstration of mimicry between serial and
parallel search models. Smith (1998, in press) discussed another
example of mimicry in the attentional domain, between maximum-
outputs and independent-detectors signal-detection models.

From one viewpoint, the mimicry of gain and orienting models
might be seen as disappointing, because we could not distinguish
between alternative models using the available data. From another
viewpoint, however, the distinction between gain and orienting
models—or, more generally, between capacity and switching
models—although it is well entrenched in the literature, can be
viewed as an artificial and perhaps ultimately spurious one. Rather
than viewing gain and orienting as mutually exclusive, they can
instead be viewed as the spatial and temporal aspects of a single,
dynamic attentional control system. The theory that best captures
this spatiotemporal view of attention is the episodic theory of
Sperling and Weichselgartner (1995). As shown in Figure 17,
episodic theory assumes that the movements of an attentional
spotlight in the visual field can be parsed into a series of discrete
episodes, each with its own spatial and temporal extent.

In the version of the theory shown in Figure 17, attention is
viewed as a time-dependent gradient of resources that can be
flexibly allocated across space according to the demands of the
task. This is depicted in Figure 17 for a single spatial dimension,
x. The function in the figure, �(x, t), shows the resources allocated
to location x at time t. The theory assumes the observer begins each
experimental trial, before the cue has been processed, in a diffuse
or divided attention state. In this initial state, resources are distrib-
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Figure 17. The attention-gating function in episodic theory. The left-
hand axis, x, represents a spatial coordinate of the visual field (e.g.,
horizontal displacement); the right-hand coordinate, t, represents time. Two
attentional episodes are shown: an initial, diffuse, episode, in which re-
sources are spread broadly across the visual field, and a second, focused,
episode, in which resources are withdrawn from the miscued location and
concentrated at the cued location. Gain models assume that the rate of
visual short-term memory growth, �(x, t), is proportional to the resources
allocated to location x at time t. The theory implies that the rate of trace
growth may change dynamically during the course of an experimental trial.
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uted equally across the possible stimulus locations. After the cue
has been processed, the observer enters a focused attentional state
in which resources are withdrawn from uncued locations and
concentrated on the cued location. These two episodes are depicted
in Figure 17. As Smith and Wolfgang (2004) argued, Sperling and
Weichselgartner’s (1995) episodic theory combines in a very nat-
ural way with diffusion-process decision models if we assume that
the function �(x, t) represents the instantaneous value of attentional
gain at time t and location x.

Under this interpretation, prior to cue processing, when the
observer is in a divided attention state, gain is intermediate at all
display locations. After cue processing is complete, when the
observer moves into a focused attention state, gain is high at cued
locations and low at uncued locations. The orienting time is the
time at which the second attentional episode is initiated, when the
observer moves from a divided to a focused attention state. Viewed
in this way, gain and orienting are not mutually exclusive mech-
anisms. Rather, gain refers to the spatial dimension of attention
and orienting to its temporal dimension. Gain describes the rate of
acquisition of information as a function of space at a specific, fixed
time. Orienting describes changes in the rate of acquisition as a
function of time at a specific, fixed location.

The breakdown of the strict dichotomy between gain and ori-
enting in Figure 17 makes our failure to find quantitative differ-
ences between them less surprising than it might otherwise have
been. We noted earlier that the effect of a change in either gain or
orienting time is to change the efficiency of VSTM selection.
Differences in selection efficiency lead to predicted differences in
RT and accuracy as a function of spatial cuing. Our theoretical
preference is to view attentional selection within the Sperling and
Weichselgartner (1995) episodic framework, because of the natu-
ral way it marries with our decision models, and because it appears
to us to best capture the flexible and dynamic nature of attentional
control. Indeed, the manner in which we implemented gain and
orienting models in our theory assumed a spatiotemporal atten-
tional control system similar to the one proposed by Sperling and
Weichselgartner.

There is, however, an important difference between the view of
attentional orienting implied by Figure 17 and the strict view of
orienting implied by Posner’s (1980) spotlight account and ex-
pressed in the model of Equation 11. According to a strict orienting
account, no information about stimulus identity is extracted until
after a central decision mechanism has been switched to, or aligned
with, the stimulus location. This is what our Equation 11 ex-
presses. According to the composite gain-orienting model of Fig-
ure 17, however, observers begin to extract information about the
identity of unattended stimuli as soon as they appear, but at a
slower rate before orienting than afterward. The distinction be-
tween a strict view of orienting and the view implied by Figure 17
is thus between a model in which no identity information is
extracted prior to orienting and one in which information extrac-
tion prior to orienting is slow and inefficient. The distinction
parallels that originally made in the classical auditory literature
between Broadbent’s (1958) filter model, which was an all-or-
none switching model, and Treisman’s (1960) attenuation model,
which assumed that the efficiency of information acquisition from
unattended stimuli is reduced.

Potentially, one might test between these alternatives by using a
paradigm in which the stimulus event and the discriminative

information it carries are decoupled. The manipulation of interest
would be one in which the visual structure that carries information
about stimulus identity is delayed for a few tens of milliseconds
after the energy change that signals the appearance of a new
stimulus. According to a strict interpretation of orienting, delaying
the availability of discriminative information should have no effect
on performance if the delay is shorter than the orienting time,
because no information about stimulus identity is extracted until
after orienting has been completed. According to the composite
gain-orienting account, however, any delay of discriminative in-
formation should degrade performance, because extraction of iden-
tity information begins as soon as the stimulus appears. We have
not pursued the distinction between strict orienting and composite
gain-orienting models any further here, as our purpose in this
article was not to test experimentally between these two kinds of
model. Rather, it was to show how different kinds of attentional
mechanisms can provide detailed quantitative accounts of the RT
distribution and accuracy data from cued signal-detection para-
digms.

Extensions of the Theory

Selection From Multielement Displays

The theory developed in this article characterizes performance
in the simplest attentional task: detecting a single stimulus in an
otherwise empty visual field. We have focused on this task because
it is well suited to distinguishing between the low-level processes
involved in signal enhancement and uncertainty reduction (Luck et
al., 1994; Smith, 2000a). When attempting to test between these
accounts, the presence of distractor stimuli in the visual field adds
an additional layer of complexity, because the processes involved
in selecting target stimuli from among distractors are also then
engaged. This makes it more difficult to draw inferences about the
effects of attention on the processing of stimuli at cued and
miscued locations, because these effects must be distinguished
from target selection effects.

Nevertheless, for many researchers, the selection and processing
of a target stimulus from among distractors is the hallmark of
attention. For such researchers, these selective properties best
characterize attention’s presumed evolutionary role in processing
stimuli in natural scenes. For this reason, it is important to know
whether the theory presented here can generalize to tasks of this
kind. We do not attempt to provide a detailed treatment of these
issues in this article but, rather, limit ourselves to sketching how
the theory can be developed in this way.

During the last 25 years or so, a number of researchers have
investigated performance in near-threshold versions of the visual
search task, in which observers are required to detect or identify
weak visual targets presented among a background of distractor
stimuli (e.g., Eckstein et al., 2000; Palmer et al, 1993; Shaw,
1982). Unlike the standard visual search task, in which the depen-
dent variable is RT, the dependent variable in these studies was
accuracy or contrast threshold, that is, the level of stimulus con-
trast needed to achieve a specified level of accuracy. One of the
most highly replicated findings is that performance in such tasks is
well described by some version of a maximum-outputs signal-
detection model (Baldassi & Burr, 2004; Palmer et al., 2000).
These models assume that preattentive processes identify the max-
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imum, or most target-like, stimulus in the visual field. The value of
this maximum is then compared to a criterion in order to make a
decision. Formally, the decision rule in such models is

P	Yes� � P�Xi � c, where Xi � max	X1 . . . Xn��.

This equation states that the probability the observer responds
“yes” or “target present” is equal to the probability that the largest
of a set of random variables, X1. . . Xn, exceeds a criterion, c. The
random variables code the strength of evidence that a target is
present at each of n display locations. These models give a good
account of how performance varies as a function of the number of
stimuli in the display. Smith (in press) and Palmer et al. (2000)
have provided detailed analyses of these models.

Although maximum-output models provide a good account of
performance on search tasks, they provide no account of how the
maximum of the set of random variables is actually computed by
the visual system. Grossberg (1987, 1988) has shown how this
problem is solved by systems of competitively interacting shunting
equations. Specifically, he has shown that systems of shunting
equations augmented with faster-than-linear (e.g., quadratic) feed-
back compute a maximum function on their inputs. The combina-
tion of feedback and competitive interactions among the stimuli
leads to a VSTM representation in which the strongest, or most
target-like, input is driven to its maximum, whereas all other
stimuli are suppressed. Although Grossberg’s analysis has focused
on noise-free, deterministic systems, his results carry over in a
natural way to systems in which the inputs are subject to trial-to-
trial perturbations by noise. There is thus a natural correspondence
between systems of shunting equations and maximum-outputs,
multichannel signal-detection models.

More generally, Grossberg has shown that systems of compet-
itively interacting shunting equations augmented with sigmoidal
feedback (faster-than-linear changing to slower-than-linear) ex-
hibit what he terms a “quenching threshold.” This endows such
systems with a form of limited capacity property in which the
strongest inputs in the display are represented in VSTM and the
remainder are suppressed. Smith (in press) argued that this is
consistent with the results of cued visual search tasks, in which
observers appear to form a VSTM representation of a subset of the
most target-like stimuli in the display, but not of all of them. The
repeated success of maximum-outputs models in predicting per-
formance on such tasks, and their correspondence with systems of
competitively interacting shunting equations, makes us believe that
the shunting equation formalism is the correct one.

There is another way in which our theory can be extended to
account for selection from multielement displays, which does not
require the assumption of competitive interactions among stimuli
for entry to VSTM. Bundesen (1990) has modeled selection from
multielement arrays using a race model, in which display items are
processed in parallel and in which items that finish processing first
have priority of entry to VSTM. The model assumes that pertinent
stimuli are processed more rapidly, increasing their likelihood of
being selected into a limited-capacity memory system. Bundesen
has shown that this model can predict accuracy as a function of
display size and exposure duration in selective report paradigms
and mean RTs in visual search and divided-attention tasks. In its
assumption that attentional selection affects processing rates,
Bundesen’s theory is similar to the gain models we have proposed
here. In summary, then, although our theory was developed to

account for the detection of a single, cued stimulus in an empty
display, its principles extend in a very natural way to tasks in
which targets are presented among a background of distractors.

Detection, Discrimination, and Other Cued
Perceptual Tasks

Earlier we noted that one of the most influential ideas in the
classical selective attention literature was that the processes in-
volved in identifying a stimulus could be divided into two classes:
a class of focal attention processes that require access to a limited-
capacity system and a class of preattentive processes that do not.
According to this distinction, stimulus detection can be carried out
preattentively; focal attention is required only for complex percep-
tual judgments like difficult discrimination or recognition of form.
Although the data presented here are inconsistent with any simple
form of attention–preattention dichotomy, it is nevertheless true
that larger attentional effects are typically found for more difficult
perceptual judgments. Indeed, a number of the studies reviewed
earlier that found little or no attentional effect in detection also
found large and systematic effects for more complex perceptual
judgments (Bonnel & Hafter, 1998; Bonnel et al., 1992; Brawn &
Snowden, 2000; Lee et al., 1997; Müller & Findlay, 1987; Palmer,
1994; Palmer et al., 1993; Shaw, 1984). Many studies that have
found large attentional effects for discrimination, recognition, or
acuity judgments have done so without backward masks (e.g.,
Bonnel & Hafter, 1998; Carrasco, Williams, & Yeshurun, 2002;
Palmer et al., 1993; Shaw, 1984). Taken together, the results of
these studies imply a Cue � Mask � Task interaction: When
stimuli are well localized perceptually, backward masks are
needed for cuing effects in detection but are not needed (or may
not be needed) for more complex judgments.

The Cue � Mask � Task interaction follows straightforwardly
from our VSTM model under the assumption that the information
required to make complex judgments becomes available compara-
tively slowly. The idea that different parts of a stimulus may be
processed at different rates is a fundamental property of multiresolu-
tion filter models of the visual system. Complex discrimination and
recognition tasks often rely on the high spatial frequency content or
fine spatial structure of stimuli, and this information is extracted
comparatively slowly and becomes fully available only late in per-
ceptual processing (Lupp, Hauske, & Wolf, 1976; Watt, 1987). These
effects can be represented very simply in the VSTM model, as
changes in the value of 
on, the sensory response function onset rate.

Figure 18 shows the effects on the VSTM trace of reducing the
value of 
on for a briefly presented (50-ms) stimulus. To generate
these predictions, the offset rate, 
off, was held fixed, and �A, the
attention gain for cued stimuli, was set equal to twice �U, the gain
for miscued stimuli. The other parameters of the model were
chosen so the asymptotic VSTM trace strength was 1.0. As Fig-
ure 18a shows, for a stimulus of fixed duration, the effect of
reducing 
on is to reduce the area under the sensory response
function, �(t). How closely the VSTM trace approaches its asymp-
tote depends on the product of this area and the attention gain.

As shown in Figure 18b, when 
on is large, the asymptotic
VSTM trace is independent of �. The trace grows rapidly for cued
stimuli and slowly for miscued stimuli, but the asymptotic strength
for cued and miscued stimuli is the same. Under these circum-
stances, there is an RT effect but little or no effect on accuracy.
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This is what is found in unmasked detection tasks with perceptu-
ally well-localized stimuli. Figure 18c shows what happens when

on is reduced and all other model parameters are held constant.
The reduction in rate means that the area under the sensory
response function is insufficient to drive the VSTM trace to
asymptote. Cued stimuli then have an advantage because of their
higher gain, because more of the VSTM trace will have formed
before the stimulus decays to the point at which it cannot support
further trace growth. Under these circumstances, there is both an
RT effect and an accuracy effect, as is found empirically in
difficult discrimination and recognition tasks.

The preceding analysis assumed a gain model of attention, but
orienting models predict similar performance because of the inter-
action between 
on and the orienting time, ti. Of course, we do not
claim that all attentional cuing effects can be understood in such a
simple way, as an interaction between rate of perceptual process-
ing and efficiency of VSTM transfer. Nevertheless, the fact that a
three-way interaction between task type, cue condition, and back-
ward masking emerges in a natural way from our theory is one of
its attractive features and is something we are investigating further.

External Noise Exclusion and the Perceptual
Template Model

In a series of studies over the past decade, Dosher, Lu, and
colleagues have investigated attentional cuing effects in low-level
visual tasks within the framework of an extended signal-detection
model they call the perceptual template model (Dosher & Lu,
2000a, 2000b; Lu & Dosher, 1998). One of their most replicated
findings is that large and systematic cuing effects are obtained
when stimuli are embedded in a background of external noise
(Dosher & Lu, 2000b; Lu, Lesmes, & Dosher, 2002). In compar-
ison, the cuing effects found in noiseless displays are somewhat
smaller and less systematic and are found only with certain types
of cues. Lu and Dosher have attributed these effects to the actions
of an attention-dependent external noise-exclusion mechanism,
which allows observers to efficiently filter out noise at the display
location containing the target.

The study by Smith and Wolfgang (2007), described earlier, was
carried out to test whether the mask-dependent cuing effect re-
ported by Smith and colleagues could be viewed as a manifestation
of Lu and Dosher’s external noise mechanism. As a mask may be
viewed as a source of noise in the display, the identification of the
mask-dependent cuing effect with external noise exclusion is plau-
sible, as Lu et al. (2002) suggested. Smith and Wolfgang argued
that if mask-dependent cuing is mediated by an external noise-
exclusion mechanism, then the cuing effect should be maximal
when the target and mask are simultaneous and should decrease
with increasing temporal separation between them. However, if the
cuing effect is mediated by an interruption-masking mechanism, it
should be maximal at target-mask SOAs that are optimal for
producing interruption masking, typically around 80–100 ms. The
latter is what they found. Backward masks produced large and
systematic cuing effects; simultaneous masks produced much
smaller effects, which were significant for only a minority of
observers. Exactly the same results were obtained with checker-
board pattern masks and with noise masks. On the basis of these
findings, Smith and Wolfgang argued that the mechanism under-

Figure 18. Predicted visual short-term memory (VSTM) traces for de-
tection and discrimination. The model assumes that the information needed
for discrimination becomes available more slowly than for detection. This
is represented in the model by a reduction of 
on from 200 to 20. a. Sensory
response functions for detection and discrimination of a 50-ms (d  0.05 s)
stimulus. Heavy line, 
on  200; light line, 
on  20. b and c. VSTM
traces for cued (continuous line) and miscued (dashed line) stimuli for
detection (b) and discrimination (c), respectively. Asymptotic VSTM trace
strength for cued and miscued stimuli is different for discrimination but not
for detection. These predictions are for unmasked stimuli.
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lying the mask-dependent cuing effect was not the same as Lu and
Dosher’s external noise-exclusion mechanism.

At the same time, however, the finding of weak but significant
cuing effects when stimuli are presented with simultaneous masks
contrasts with the results of our detection experiments with well-
localized, unmasked stimuli, none of which has a shown a signif-
icant cuing effect. Examples of this are the unmasked condition of
Smith, Ratcliff, and Wolfgang (2004) in Figure 2, the fiducial
condition of Gould et al. (2007) in Figure 4, and the unmasked
condition of Smith and Wolfgang (2004) in Figure 7. Because the
cuing effect with simultaneous masks could not have been due to
interruption masking, Smith and Wolfgang (2007) argued that it
could plausibly be attributed to an external noise-exclusion mech-
anism of the kind identified by Dosher and Lu. The difference in
the magnitude of the external noise effects found by Smith and
Wolfgang, which are small and unsystematic, and those of Lu and
Dosher, which are large and systematic, can be attributed to
differences in the difficulty of the perceptual judgments. Whereas
Smith and Wolfgang used the orthogonal discrimination task, Lu
and Dosher have typically used more difficult discrimination tasks
and have often presented their targets in arrays of distractors to
increase the magnitude of the cuing effect.

Given the evidence that the cuing effects with simultaneous
masks and trailing masks are produced by different mechanisms, it
is important to know whether both kinds of effects can be pre-
dicted by our theory. The theory predicts mask-dependent cuing
effects via an interaction between attentional dependencies in the
efficiency of VSTM transfer and the differential persistence of
masked and unmasked stimuli. What about the cuing effects with
simultaneous masks? Smith et al. (in press) argued that a VSTM
model like the one presented here can predict increased cuing
effects when stimuli are embedded in external noise, if one as-
sumes that noise slows the rate at which a perceptual representa-
tion of the stimulus is formed. The argument exactly parallels that
made in the preceding section for the relationship between detec-
tion and discrimination. If noise slows the formation of a percep-
tual representation of the stimulus, then its effects can be repre-
sented in the model as a reduction in 
on, the onset rate for the
sensory response function. Reducing 
on reduces the area under
�(t), and as shown in the preceding section, reducing this area
increases the magnitude of the cuing effect. Consequently, larger
cuing effects are obtained with higher levels of external noise.

As the theory attributes the effects of external noise and judgment
complexity (i.e., detection vs. discrimination) to the same cause,
namely, a reduction in 
on, it predicts an interaction between noise
and judgment complexity. The increase in the cuing effect produced
by adding noise to the stimulus is small in detection and easy dis-
crimination tasks and large in difficult discrimination, recognition,
and acuity tasks. A comparison of the results of Smith and Wolfgang
(2007) and the studies of Lu and Dosher show that this is indeed the
case.

Although this account of the external noise effect is a specula-
tive one, it is supported by unpublished data from Ratcliff’s
laboratory on the discrimination of pairs of letters embedded in
external, dynamic noise (Smith, 2007, December). The RT distri-
bution data from this task show a pronounced bowing of the first
quantile in the quantile probability plot, similar to that in the data
of Gould et al. (2007) in Figure 13. The bowing of the first quantile
means that the leading edge of the RT distribution is shifted

progressively to the right as stimuli become more noisy. These
effects are well described quantitatively by a version of the VSTM
model in which the rate of VSTM formation decreases with
decreasing frame-to-frame correlation in the stimulus. This corre-
lation decreases with increasing stimulus noise. The results of
Ratcliff’s study are therefore consistent with the idea that VSTM
formation is slowed when noise is added to the display. Our theory
predicts that this will also lead to an increase in the cuing effect,
as the studies of Dosher and Lu have shown.

Conclusions

The literature on attention and visual signal detection from the
last 25 years is an inconsistent and confusing one. Studies using
accuracy and RT as dependent variables have led to different
conclusions about cuing effects in detection, and among accuracy
studies, the results have differed, depending on the paradigm. The
experimental data we have presented show why this confusion has
arisen. Attentional cues do not produce consistent effects on de-
tection accuracy; rather, the effects depend jointly on attention and
on the other variables manipulated in the task. The mask-
dependent cuing effect is one manifestation of this; the
uncertainty-dependent cuing effect is another. Moreover, there is a
dissociation in the effects of these variables on accuracy and on
RT. Unlike accuracy, cuing effects in RT are found regardless of
whether stimuli are backwardly masked or are well localized
perceptually. The complexity of these relationships is only fully
revealed in studies that jointly manipulate attention and other
variables and that measure both accuracy and RT.

Uncertainty can be controlled experimentally by the use of pedes-
tals or fiducial crosses. Theoretically, these manipulations have the
same effect, of localizing the decision to a single region of the display.
Consistent with this expectation, they abolish the cuing effect in
sensitivity but preserve it in mean RT. However, their effects on the
shapes of RT distributions are very different. When stimuli are local-
ized with pedestals, most of the change in RT with changes in
stimulus contrast occurs in the tail quantiles of the RT distribution; the
leading edge of the distribution changes only slightly. When stimuli
are localized with fiducial crosses, there is a large change in the
leading edge.

We believe that these relationships can only be understood
through a detailed analysis of how attention affects the processes
of forming a perceptual representation of a stimulus and of making
a decision about its identity. This requires a theory that links
perceptual encoding, visual masking, attention, VSTM, and deci-
sion making in an integrated dynamic framework. The theory
presented in this article provides an account of the mask-dependent
cuing effect, the uncertainty-dependent cuing effect, the dissocia-
tion of accuracy and RT, and of the differences in the shapes of RT
distributions when stimuli are localized with pedestals and with
fiducial crosses. It also extends to account for the selection of
stimuli from multielement displays, the Cue � Mask � Task
interaction, and the effects of embedding stimuli in external noise.

The heart of the theory is a neurally plausible, shunting model of
VSTM. The model assumes that attention increases the efficiency
with which a VSTM trace is formed, either by increasing the rate at
which stimulus information is transferred to VSTM or by reducing the
delay before VSTM trace formation begins. Differences in the shapes
of the RT distributions as a function of how stimuli are localized
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perceptually are predicted by a dual-pathway model of VSTM. In this
model, energy in the stimulus compound gates the form information
that is used to make a decision into VSTM. Changes in the leading
edge of the RT distribution reflect differences in the rate of VSTM
formation that, in turn, depend on the contrast energy in the stimulus.
The resulting theory offers a rich, detailed, and quantitatively precise
account of fundamental attentional processes and of their effects on
the speed and accuracy of performance.
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Appendix A

Solution of Shunting Equations

This appendix shows the solution of the shunting equation,
Equation 4,

dv

dt
� �I�	t��� � v	t�� � I0�	t�v	t�.

Equations of this form can be solved either by separation of
variables or by introducing an integrating factor that renders the
equation exact. Here we use separation of variables. Smith, Lee,
Wolfgang, and Ratcliff (in press) described the use of the integrat-
ing factor method. We write the equation as

dv

dt
� �	t����I � 	�I � I0�v	t��.

and then separate the variables, to obtain

dv

��I � 	�I � I0�v
� �	t�dt.

The left hand side can be made into an exact differential by writing
the equation as

� � 1

� I � I0
�� � 	�I � I0�dv

��I � 	�I � I0�v� � �	t�dt.

Multiplying through by �(�I � I0) and then integrating both sides
of the equation yields

log��� I � 	�I � I0�v	t�� � � 	�I � I0��t

�	s�ds � K,

where K is the constant of integration. We assume the initial
condition �(0)  0, which implies that K  log(��I). Substituting
this value in the preceding equation and exponentiating gives

�� I � 	�I � I0�v	t� � ��I exp� � 	�I � I0��
0

t

�	s�ds�,

which, after rearrangement, yields

v	t� � �� �I

�I � I0�� 1 � exp�� 	�I � I0��
0

t

�	s�ds� � ,

which is Equation 5 in the text. The other equations in the text
differ from Equation 4 only in their excitatory and inhibitory
coefficients and, so, can be solved in an identical way.

The VSTM model (Equations 16, 19, and 20) uses symmetrical
shunting equations in which the inhibitory coefficient is equal to
one minus the excitatory coefficient. This allows asymptotic
VSTM trace strength to be decoupled from the rate of trace
growth. These equations exploit the fact that an excitatory-
inhibitory shunting equation of the form

dv

dt
� b�a�	t��1 � v	t�� � 	1 � a��	t�v	t��

can be rewritten as a simple, one-term equation:

dv

dt
� b�	t��a � v	t��,

with rate b and asymptote a. Although we could have assumed a
one-term equation in developing our VSTM model, we reject
one-term models on theoretical grounds because they assume that
the asymptote is a property of the memory, rather than the stim-
ulus. This property has no principled psychological interpretation.
For the asymptote to be a property of the stimulus, it must be a
coefficient of �(t), the sensory response function. The symmetrical
shunting representation provides a way to transfer stimulus prop-
erties “across the brackets,” making the asymptote equal to a, the
excitatory coefficient of �(t). Equations of this form contrast with
Equation 4 and Equation 7, in which the asymptote is equal to the
excitatory coefficient divided by the sum of the excitatory and
inhibitory coefficients. The rate is equal to the sum of the excita-
tory and inhibitory coefficients multiplied by the gain. Such equa-
tions imply a close relationship between rate and asymptote, which
is not general enough to account for our data.

Appendix B

Rate of VSTM Growth

The rate of VSTM growth in Equations 13, 16, 19, and 20
depends on IC, the square root of the power in the stimulus
compound. We define

IC � 	�I
2� � IP

2�,

where �I
2 and IP

2 are, respectively, the power in the patch and the
power in the pedestal. This generalizes the simple, amplitude-unit,
measure of compound power, 	�I

2 � IP
2, by allowing separate,

nonlinear transduction of the components prior to computing

power. The value IC defined in this way reduces to �I
� when no

pedestal is present, as required.
The components of IC depend on stimulus contrast and area. Let

�I(x, y) be the deviation of the patch intensity from its background
(i.e., the pedestal) at display location (x, y), expressed in Weber
contrast units. Then

� I
2 � ���I

2	x, y�dxdy,
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where the integration is over the spatial extent of the patch. A
similar integration for the pedestal gives IP

2 � a�P
2, where a is the

area of the pedestal and �P is the intensity difference between the
pedestal and the surrounding uniform field. As noted in the text, IC

is similar to the root-mean-square measure of stimulus contrast
that has been used by many authors, except that, unlike RMS
contrast, it is not normalized for stimulus area.

Watson (2000), among others, has advocated total contrast
energy as a psychophysically appropriate measure of stimulus
strength. Total contrast energy is obtained by integrating the
square of the local contrast, �I

2(x, y), over the area and duration of
the stimulus. The unit of measurement, termed a Barlow unit, is
chosen so that the contrast energy at detection threshold will be about
one. Total contrast energy differs from root-mean-square contrast in
that it is an energy measure rather than an amplitude measure, and it
is not normalized for stimulus area. The measure IC is similar to the
measure proposed by Watson, except that it is based on power
rather than energy. Energy dependency is obtained via the inte-
gration over time involved in solving the differential equation, that
is, in forming the VSTM trace.

An alternative way to define IC would be to express �I and IP in
units of power rather than amplitude and to assume that the rate of
VSTM formation is proportional to the power in the compound

rather than its square root. That is, �I  (��I)
2 and IP  (I�P)2,

where ��I and I�P are the intensities of the patch and the pedestal
in amplitude units. Then IC takes the simpler form

IC � �I
� � IP

�,

which also reduces to �I
� when no pedestal is used. The represen-

tations in power and amplitude units make virtually indistinguish-
able predictions, except in the joint fit of the dual-channel model
to the Smith, Ratcliff, and Wolfgang (2004) and Gould, Wolfgang,
and Smith (2007) data, where the more complex, amplitude-unit
representation yielded an 8% better fit.

For a Gabor patch of specified frequency, bandwidth, and du-
ration, measures of stimulus strength based on root or root-mean
contrast power or contrast energy are proportional to peak enve-
lope contrast (i.e., the Weber contrast of the peak of the Gabor
patch’s Gaussian envelope). Because our stimuli were specified
using peak envelope contrast, we assumed peak envelope contrast
in fitting our models and allowed any difference between units to
be absorbed by the VSTM asymptote parameter, �.
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