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Confidence in judgments is a fundamental aspect of decision making, and tasks that collect confidence
judgments are an instantiation of multiple-choice decision making. We present a model for confidence
judgments in recognition memory tasks that uses a multiple-choice diffusion decision process with
separate accumulators of evidence for the different confidence choices. The accumulator that first reaches
its decision boundary determines which choice is made. Five algorithms for accumulating evidence
were compared, and one of them produced proportions of responses for each of the choices and full
response time distributions for each choice that closely matched empirical data. With this algorithm, an
increase in the evidence in one accumulator is accompanied by a decrease in the others so that the total
amount of evidence in the system is constant. Application of the model to the data from an earlier
experiment (Ratcliff, McKoon, & Tindall, 1994) uncovered a relationship between the shapes of
z-transformed receiver operating characteristics and the behavior of response time distributions. Both are
explained in the model by the behavior of the decision boundaries. For generality, we also applied the
decision model to a 3-choice motion discrimination task and found it accounted for data better than a
competing class of models. The confidence model presents a coherent account of confidence judgments
and response time that cannot be explained with currently popular signal detection theory analyses or
dual-process models of recognition.
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Understanding human decision making is integral to progress in
many fields, notably psychology, neuroscience, and neuroeconom-
ics. Major advances in understanding how simple decisions are
made have been achieved when theoretical approaches deal jointly
with choice proportions and response times (RTs). When both
dependent variables are considered, some classes of models are
falsified and others are left with no direct empirical support.

Up to now, decision models have most often focused on tasks
with only two alternatives (Busemeyer & Townsend, 1992; Lam-
ing, 1968; Link, 1975; Ratcliff, 1978; Ratcliff & McKoon, 2008;
Ratcliff, Thapar, & McKoon, 2010; Ratcliff, Van Zandt, & McK-
oon, 1999; Usher & McClelland, 2001; Wagenmakers, 2009).
However, there is growing interest in tasks with multiple alternatives

(Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Leite & Ratcliff,
2010; McMillen & Holmes, 2006; Milosavljevic, Malmaud, Huth,
Koch, & Rangel, 2010; Niwa & Ditterich, 2008; Roe, Busemeyer, &
Townsend, 2001; Usher & McClelland, 2004; Usher, Olami, & Mc-
Clelland, 2002), and a number of algorithms have been proposed to
describe how such decisions are made. The most promoted are based
on random walk or diffusion processes that gradually accumulate
noisy evidence toward decision boundaries. Each of the possible
choices is represented by its own accumulator and has its own bound-
ary, and a choice is made when the amount of evidence in one of the
accumulators reaches its boundary. The algorithms differ in whether
evidence for one alternative is evidence against the others, whether
there is inhibition among accumulators, whether there is decay in the
amount of evidence in the accumulators, whether the stopping rule is
absolute or relative, and whether the evidence in an accumulator can
fall below zero.

Confidence judgments provide a compelling application for
multiple-choice decision algorithms because they require one of
several choices, where the choices range from a high level of
confidence to a low level. The confidence with which decisions are
made and the time taken to make them are fundamental compo-
nents of decision making. Confidence has been examined with
brain-imaging techniques (e.g., Curran, 2004; Fleming, Weil, Nagy,
Dolan, & Rees, 2010; Rolls, Grabenhorst, & Deco, 2010), and it has
become a focus in the neurophysiological domain where analogs of
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confidence have been investigated in animal studies (Kepecs, Uchida,
Zariwala, & Mainen, 2008; Kiani & Shadlen, 2009).

Confidence judgments have also played a prominent role in
claims about memory. There has been considerable debate about
whether recognizing a previously-presented item involves one
cognitive process or two separate ones, and researchers have
attempted to resolve this debate with signal detection theory (SDT)
analyses of confidence-judgment data. However, as we show be-
low, SDT analyses are inadequate and misleading because only the
proportions of choices for each level of confidence are considered,
not their RTs. For this reason, SDT can no longer be used to model
how information is represented in memory for recognition tasks or
how information is retrieved. Instead, a model must incorporate
both the proportions of responses for each of the different levels of
confidence and their RTs, and show how they arise from a com-
mon underlying decision process. One consequence of joint con-
sideration of proportions and RTs is that findings that have been
taken to support dual processes can be explained by a single
process.

In a study prior to this one, Ratcliff and Starns (2009) developed
a model designed to explain how information in memory is trans-
lated to confidence choices. In their paradigm, subjects decided
whether test words had or had not appeared in a previously studied
list and pressed one of six response keys corresponding to high-
confidence “old,” medium-confidence “old,” low-confidence
“old,” low-confidence “new,” medium-confidence “new,” and
high-confidence “new”. In the model (RTCON for Response-Time
Confidence), there was an accumulator for each of the choices,
with a diffusion process for each accumulator. The accumulator
that reached its boundary first determined which choice was made
and the time taken to make that choice. The model accounted well
for the proportions of responses for each choice and the RTs of the
responses.

However, we have since examined data sets that show qualita-
tively different patterns of results. Subjects in Ratcliff and Starns’s
(2009) experiments were encouraged to make fast decisions and
they were trained to press all of the confidence keys quickly. The
resulting RT distributions were flat across confidence categories in
that the fastest RTs (the leading edges of the RT distributions)
were about the same across the six levels of confidence. In this
article, we model data from Experiment 5 in Ratcliff, McKoon,
and Tindall (1994). These subjects experienced less severe time pres-
sure than those in Ratcliff and Starns, and they showed a large range of
differences among individuals in the patterns of choice proportions
and RT distributions. Some subjects’ responses were faster for
lower-confidence choices than higher-confidence choices and
some slower. In both cases, the differences primarily took the form
of shifts in the RT distributions, with increased spread, but with no
discernible changes in shape. The leading-edges (i.e., the fastest
responses) moved by as much as about 500 ms for some subjects.
These shifts in the RT distributions as a function of confidence
cannot be accommodated by RTCON and several other decision
models (as described later). Shifts like these were also found in the
three-choice motion-discrimination paradigm used for the second
experiment described in this article.

RTCON also cannot accommodate a second feature of Ratcliff
et al.’s (1994) data (a feature presented below for the first time):
The shapes of z-ROC functions matched the profiles of the RT
distributions. z-ROC functions are generated from confidence

judgments. Hit and false alarm rates are computed for the highest
confidence category, then computed for the two highest categories
combined, and so on, and z-ROC functions plot the z-transforms of
these hit rates and false alarm rates. In Ratcliff et al.’s study,
U-shaped z-ROC functions were obtained when lower-confidence
judgments were faster than higher-confidence judgments, and in-
verted U-shaped z-ROC functions were obtained when higher-
confidence responses were faster than lower-confidence responses
(this held when the number of observations in the confidence
categories were not less than about 2%—see the Appendix). Like
the shifts in RT distributions, RTCON cannot accommodate these
regularities in the relation between RT distributions and z-ROC
functions.

To model the data from Ratcliff et al. (1994), we developed a
new model (we call it RTCON2) that kept three key assumptions
from RTCON. First, the information from memory that is available
to the decision process—that is, the strength of the match between
a test item and a representation in memory—is not a single value,
but rather a distribution across the strength dimension. For exam-
ple, a well-remembered item might have maximal strength for a
“high-confidence old” response and also some degree of strength
for a “medium-confidence old” response. Second, the strength
dimension is divided into regions, with each region corresponding
to one of the possible confidence choices. For each choice, the area
of the distribution that falls in its region determines the rate at
which evidence is accumulated in its accumulator. Third, each
accumulator has its own boundary, so more evidence can be
required for some accumulators to reach their boundaries than
others.

For the decision algorithm from RTCON, it was assumed that
evidence is accumulated independently in each accumulator, that
the amount of evidence in an accumulator decays with time, and
that the amount of evidence in an accumulator cannot fall below
zero. For RTCON2, it is assumed that if the amount of evidence in
one accumulator is incremented, then the others are decremented
such that the total size of the decrements equals the increment. It
is also assumed that there is no decay with time and that the
amount of evidence can fall below zero. We combine these as-
sumptions into the “constant summed evidence” algorithm. As we
show below, RTCON2 accommodates Ratcliff et al.’s (1994) data:
the shapes of the RT distributions, the large shifts in leading edges
across confidence categories, and the relationship between RTs
and the shapes of z-ROC functions constructed from the propor-
tions of responses in each category. We also tested three other
decision algorithms, but none were successful.

The assumptions that memory strength is distributed and that
areas under the distribution determine rates of accumulation of
evidence are not common, but precedents do exist. In psychology,
these assumptions have been used in explaining data from letter-
matching and word-matching paradigms (e.g., does the letter string
ABCDE match the string ABDCE?; Gomez, Ratcliff, & Perea,
2008; Ratcliff, 1981), and they have been used in a model of
attention (Logan, 1996). In neuroscience, a neuron that responds
maximally to one stimulus also responds, to a lesser extent, to
other similar stimuli. For example, the response of a neural pop-
ulation to a specific motion direction has a peak for neurons tuned
to that direction and falls off for nearby neurons that are tuned to
slightly different directions (Beck et al., 2008; Cowell, Bussey, &
Saksida, 2006; Jazayeri & Movshon, 2006). The summed activity
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of the neural population would correspond to the area under the
strength distribution for confidence judgments.

Signal Detection Theory and Dual-Process
Accounts of Memory

RTCON2 speaks directly to the claims that have been made
about whether recognition of previously-studied items involves
one cognitive process or two separate ones. For dual-process
theories, the processes are often labeled “familiarity” and “recol-
lection” (e.g., Yonelinas, 1994, 1997; see also Squire, Wixted, &
Clark, 2007; Wixted, 2007). It has been claimed that these two
processes occur in different areas of the brain (Chua, Schacter,
Rand-Giovannetti, & Sperling, 2006; Eichenbaum, Yonelinas, &
Ranganath, 2007; Henson, Rugg, Shallice, & Dolan, 2000; Kim &
Cabeza, 2007; Kirwan, Wixted, & Squire, 2008; Moritz, Glascher,
Sommer, Buchel, & Braus, 2006; Rissman, Greely, & Wagner,
2010; and reviews in Cabeza, Ciaramelli, Olson, & Moscovitch,
2008), that they occur at different points in the time course of
processing (Curran, 2004; Rugg & Curran, 2007), and that they
can be separately affected by memory disorders (e.g., Yonelinas,
2002).

Typically, SDT analyses of confidence-judgment data have been
used to support single-process or dual-process theories. However,
when SDT is applied to a single condition in an experiment, it
cannot be falsified because it transforms two numbers, the hit rate
and the false alarm rate, into two other numbers, d= and the
criterion. It also cannot be falsified by the shapes of z-ROC
functions generated from confidence judgments. The standard
assumption is that distributions of memory strength are normal,
and so z-ROC functions must be linear (e.g., Macmillan & Creel-
man, 1991). However, if the distributions are not normal, z-ROC
functions can be non-linear. Moreover, distributions other than
normal can produce linear z-ROC functions (Banks, 1970; Lock-
hart & Murdock, 1970). In addition to problems with falsifiability,
SDT does not explain how decisions unfold over time and so
cannot explain RTs. We show that jointly modeling proportions
and RTs explains data previously taken to support dual processes
with a model using a single decision process. Consideration of RTs
also addresses the question of why the z-ROC functions have
different shapes for different subjects (Malmberg & Xu, 2006;
Ratcliff et al., 1994). These limitations, it should be noted, do not
detract from SDT’s practical utility in separating discriminability
from bias.

As mentioned above, in examining the data from Ratcliff et al.
(1994), we found a systematic relationship between the behavior of
RT distributions and the shapes of z-ROC functions constructed
from the proportions of choices for each of the confidence levels.
To anticipate the analyses below, when responses are faster for
lower-confidence choices, z-ROC functions are slightly U-shaped,
whereas when responses are faster for higher-confidence choices,
z-ROC functions are either roughly linear or inverted U-shaped.
Neither single- nor dual-process signal detection models can ex-
plain this relationship; it can only be explained by a more complete
approach that accommodates the time course of decision pro-
cesses.

The most important difference between SDT analyses and the
RTCON models is that in the latter, the evidence from memory in
favor of a choice does not map directly to responses. Instead,

decision processes transform the strength of the match between a
test item and memory to a confidence judgment. Whether a par-
ticular choice is made depends not only on the amount of evidence
in favor of it but also the criteria that separate the relevant dimen-
sion into regions and the boundaries on the accumulators. Depend-
ing on the confidence criteria, the decision boundaries, and com-
binations of them, the confidence choice for a particular test item
and its RT do not necessarily reflect its mean value of strength. For
example, a large value of mean strength could be associated with
a high boundary, which would lead to fewer high-confidence
responses and longer RTs for them.

Empirical Data

In the sections below, we describe the decision algorithms we
considered and the RTCON2 model, and apply the model to the
data from Ratcliff et al. (1994). We then test the generality of the
successful decision algorithm, the constant summed evidence al-
gorithm, in a new experiment.

For Ratcliff et al.’s (1994) experiment, the choices were levels
of confidence about memory. For the new experiment, the task was
a three-choice motion discrimination task (Niwa & Ditterich,
2008). On each trial, there was a display of dots, with some of the
dots moving in the same direction as each other and others moving
randomly. Subjects were asked to choose whether the dots moving
together were moving downward to the left, downward to the right,
or straight up vertically. The probabilities of the three directions
were manipulated such that one direction occurred with a higher
probability than the other two. These data provided convergent
evidence for the constant summed evidence algorithm. Just as this
algorithm provided the best account of leading-edge shifts across
confidence levels for Ratcliff et al.’s (1994) data, it also provided
the best account of leading-edge shifts for the low-probability
directions in the motion discrimination task.

Decision-Making Algorithms

We tested five decision algorithms, each specifying a different
way in which processing might proceed. It has been argued that it
is difficult or even impossible to discriminate among such algo-
rithms on the basis of behavioral data (Ditterich, 2010), but here
we show that behavioral data can, in fact, discriminate among
some classes of algorithms.

The successful algorithm was the constant summed evidence
algorithm. On each time step �t during the decision process, one
of the accumulators is selected at random. This accumulator gets
an increment to its accumulated evidence (�x) that is determined
by the amount of evidence in its region of the strength distribution
(“drift rate,” v) plus a noise term to represent variability in pro-
cessing. In our implementation of this algorithm, the non-chosen
accumulators (N � 1) are each decremented such that the sum of
the decrements is equal to the increment in the chosen accumula-
tor. The expression for the increment in the chosen accumulator is

�xi � avi�t � ��i��t (1a)

and the expression for the decrement in each of the other accu-
mulators is
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�xj � � � 1

N � 1� �avi�t � ��i��t�

� � � 1

N � 1� �xi for j � i (1b)

where a scales the area under the strength distribution to drift rate,
� is the standard deviation (SD) in within-trial variability in the
accumulation process (the square root of the diffusion coefficient),
and � is a normally-distributed random variable with mean zero
and SD 1. Note that, because of noise, on any time step, evidence
can take a negative value; if this occurs, the evidence in the chosen
accumulator decreases rather than increases and the sum of the
evidence in the other accumulators increases. Note also that, again
because of noise, evidence in some accumulators can fall below
zero. However, because this is a linear algorithm, a constant could
be added to the amounts of evidence and decision boundaries with
no change in any predictions.

The constant summed evidence algorithm is a variant on a
scheme proposed by Audley and Pike (1965) and has more re-
cently been termed feedforward inhibition by Shadlen and New-
some (2001; see also Bogacz et al., 2006; Ditterich, 2006; Niwa &
Ditterich, 2008). A related input normalization scheme has been
used in decision field theory by Roe et al. (2001). The algorithm
can also be viewed as a generalization of the diffusion model for
two-choice decisions (Ratcliff, 1978; Ratcliff & McKoon, 2008;
Shadlen & Newsome, 2001).

One of the other algorithms we examined was the linear inde-
pendent accumulators algorithm. It is the same as the constant
summed evidence algorithm in that evidence is accumulated inde-
pendently in each accumulator, but there is no decrement to the
other accumulators. That is, on each time step the selected accu-
mulator moves up without the other accumulators moving down,
so the summed evidence across all accumulators does not remain
at zero.

The other three algorithms have been termed “neurally plausi-
ble,” because at each time step, the evidence decays by some
fractional amount, and the amount of evidence in an accumulator
cannot fall below zero (i.e., “neural firing rates” cannot be nega-
tive). One was the leaky competing accumulator algorithm (LCA;
Usher & McClelland, 2001). On each time step, one accumulator
is randomly chosen and the amount of evidence added to it is the
increment specified by Equation 2. There is decay of evidence in
the accumulator that depends on the amount of evidence already in
it (�kx), and there is inhibition from the other accumulators that is
a function of the summed evidence in them (���x):

�xi � a�vi � kxi � �
j�i

�xj� �t � ��i��t (2)

Another was the independent accumulators with decay algorithm
used by Ratcliff and Starns (2009, RTCON; see also Bogacz &
Gurney, 2007; Ratcliff et al., 2007). The equation for updates is the
same as for the LCA algorithm except that the inhibition term
(���x) from Equation 2 is removed. The third algorithm was the
same as the independent accumulators with decay algorithm but
with a different decision rule, the “max. versus next” rule (Ditter-
ich, 2010; McMillen & Holmes, 2006; Ratcliff & McKoon, 1997).
This algorithm has been argued to be optimal or approximately

optimal for multiple-choice decisions (Draglia, Tartakovsky, &
Veeravalli, 1999). In our version of this algorithm, the accumulator
with the highest amount of evidence wins when the evidence in it
exceeds the next highest amount of evidence by a criterial amount.

The RTCON2 Model

The assumptions for RTCON2 are that memory strength is
distributed across a dimension of strength, that the strength dimen-
sion is divided by criteria into confidence categories, that the areas
between and outside the criteria determine drift rates, and that each
confidence category has its own decision boundary. Choices and
RTs are determined by the constant summed evidence algorithm.

The parameters of the model can be illustrated with the design
of the experiment from Ratcliff et al. (1994). There were six
conditions in the experiment that varied in difficulty, and subjects
were asked to choose among six confidence categories. The mean
of the strength distribution is different for each of the conditions,
with one of them fixed at zero, giving five parameters. Across
trials, the means are drawn from normal distributions with a
different SD for each condition (analogous to variability in mem-
ory strength in SDT), giving six parameters. There are five con-
fidence criteria to divide the strength continuum into six regions
for each response on the confidence scale, and this gives another
five parameters. These 16 parameters make up the parameters that
describe memory strength and how it is divided across confidence
categories.

There are 11 parameters for the decision process. One is a
scaling parameter that converts area in the strength distribution to
drift rate. Another is the amount of time taken up by processes
other than the decision process (e.g., stimulus encoding, memory
access, response execution), which has mean RT of Ter ms. A third
is the variability in nondecision time across trials, assumed to be a
uniform distribution with range st ms. There are six decision
boundaries (b), one for each of the accumulators (one for each of
the six confidence choices). The boundaries vary across trials with
a uniform distribution with range sb, the same sb for all the
boundaries. Finally, the within-trial variability in the accumulation
process is �, which is the square root of the diffusion coefficient.

The assumption that the strength of a test item is distributed
across the strength dimension helps constrain the number of model
parameters. It also explains why one confidence category can have
a relatively higher proportion of responses than another across all
the conditions of an experiment; if two of the criteria were widely
separated, the areas for all conditions would be large, and hence all
the drift rates would be large, compared with the case in which the
criteria had a small separation. The confidence criteria are fixed
across all the experimental conditions (because conditions are
randomly intermixed within a test list), so changes in the drift rates
for the six confidence levels are determined only by differences in
the mean and SD of memory evidence distributions. Thus, given
the confidence criteria, two parameters for each condition give the
six areas for the six confidence categories. Thus, for six conditions
of the experiment, 12 memory parameters and five confidence
criteria are needed instead of 36 independent parameters.

Figure 1 illustrates the model with four confidence catego-
ries—A, B, C, and D—and their accumulators (the four panels
under “Accumulators”). Accumulation paths for three example
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Figure 1 (caption opposite).
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trials are shown in blue, black, and red. The noise in the accumu-
lation processes means that the times at which winning accumu-
lators reach their boundaries vary and that the category with the
largest drift rate may not be the winner. For the blue processes,
Category A wins fairly quickly and for the black processes it wins
more slowly. The differences in winning times lead to a right-
skewed RT distribution. For the red processes, Category D is the
winner. The patterns of subjects’ decision boundaries can vary
substantially. Some subjects might be biased toward a high-
confidence “old” response (Category A in the example) and so set
the “A” decision boundary lower than the boundaries for the other
categories, some might be biased against high-confidence re-
sponses, and so on.

The right-hand column of Figure 1 shows four plots of evidence
accumulation processes, all terminating at the A boundary, each
with 2,000 simulated trials, with red for a high density of paths and
dark blue for a low density. For the A and D processes, the
decision boundary is set relatively low, and for the B and C
processes, it is set higher. Because it takes more time to reach the
boundaries for the B and C processes, the paths are more diffuse
than for the A process. For the B process, with a small value of
drift rate, the paths tend to decline as the paths for the winning
accumulator (A) move to their boundary. For the C process, with
a moderate value of drift rate, the paths tend to remain in the
middle of the range. For all four plots, the density decreases with
time as processes terminate (as A processes hit the A boundary).

Predictions from RTCON2. We simulated data for an exper-
iment with six confidence categories and three conditions that
varied in the means of their strength distributions (e.g., new items,
old items with short study times, and old items with long study
times). We repeated the simulations for each of three settings of
the boundaries on the accumulators: In one case, the boundaries
were the same for all the accumulators; in the second case, they
were inverted U-shaped with higher boundaries for the middle
accumulators (those for low-confidence responses); and in the
third case, they were U-shaped with higher boundaries for the
right- and left-most accumulators. Figure 2, third row, shows these
three settings. The strengths of the distributions from memory and
the placements of the confidence criteria are shown in the bottom
panel, the same strengths and criteria for all three. Given the
strength distributions, the confidence criteria, and the decision
boundaries, the proportions of responses in each confidence cate-
gory and their RTs were generated. (The other parameters of the
model were set to the mean values in the fits to Experiment 1
below.).

The top panel of Figure 2 shows the distributions of RTs
produced by the simulations for new items. The distributions for
the other conditions were similar. For each of the confidence
categories, the figure shows the .1, .3, .5, .7, and .9 quantiles of its

RT distribution. (The .7 quantile, e.g., is the time by which .7 of
the trials have terminated.) The important result is that the relative
positions of the RT quantiles follow the decision boundaries: flat
when the boundaries are flat (left-most panel), inverted U-shaped
when the boundaries are inverted U-shaped (middle panel), and
U-shaped when the boundaries are U-shaped (right-most panel).

With inverted U-shaped or U-shaped boundaries, the whole RT
distribution shifts from choices that are made with higher proba-
bilities to choices that are made with lower probabilities. RTCON2
shows this behavior because more evidence is needed for a deci-
sion when a boundary is relatively high and so the probability of
it winning is lower. Of the algorithms we tested, only the constant
summed evidence algorithm could produce shifts like these.

The simulations show that the shapes of z-ROC functions are
not diagnostic of single- versus dual-process models. To demon-
strate this, the proportions of responses produced by the simula-
tions for each confidence category were used to generate the
z-ROC functions shown in the second row of Figure 2. The
functions follow the decision boundaries: linear when the bound-
aries are the same for each category and inverted U-shaped and
U-shaped when the boundaries are inverted U-shaped and
U-shaped, respectively. Thus, the U-shaped z-ROC function that
has been said to be diagnostic for dual-process models can be
produced by a single process (other z-ROC shapes are possible; see
the other experiments in Ratcliff et al., 1994).

For the results shown in Figure 2, the proportions of responses
in each confidence category were not close to zero. When the
proportion of responses in one or more categories is close to zero
(e.g., less than 1% of the total number of observations for all
conditions), the patterns of the z-ROC function shapes may not
follow the decision boundaries (this is true for the data analyzed
below for Subjects 1 and 11). This issue is examined with addi-
tional simulations in the Appendix.

The conclusion to be drawn from the simulations is that perfor-
mance—the proportions of responses in the confidence categories,
the z-ROC functions generated from them, and the distributions of
RTs—comes from memory strength and decision processes
jointly, not memory strength alone. The model explains the em-
pirical relationship between z-ROC shapes and the behaviors of
RT distributions and it explains why the shapes of z-ROC func-
tions must be interpreted in the context of the behavior of RT
distributions.

The components of the model that are most important in pre-
dicting the locations of RT distributions and the shapes of z-ROC
functions are the values of memory strength and the relative
heights of the boundaries. The positions of the confidence criteria
play only a small role. If the confidence criteria are moved, points
on the z-ROC functions move around, but the shapes of the z-ROC

Figure 1 (opposite). The left-hand vertical distribution represents memory strength or perceptual strength (depending on the task). Three confidence
criteria divide the distribution into four areas—A, B, C, and D—and the sizes of the areas determine the drift rates for the four accumulators, as shown
by the arrows. The middle column shows paths of evidence accumulation in the accumulators, the red paths for one test item, the black for another, and
the blue for another. The right hand column shows heat maps for 2,000 simulated decision processes for the constant summed evidence model when the
top process wins. The histogram on the top plot shows the distribution of finishing times. The top and bottom processes have low decision boundaries (b1

and b2 in Table 1), and the middle two plots have higher criteria (b3 and b6 in Table 1). The mean of the memory evidence distribution was 0.0, and the
other model parameters were those from the averages of the fits shown in Table 1. conf. � confidence.
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Figure 2. Data were simulated for three conditions of a recognition memory experiment: new items (mean
strength � �0.5), weak old items (mean strength � 1.5), and strong old items (mean strength � 2.5). The bottom
row of the figure shows their distributions of strength (for these simulations, across-trial variability in memory
strength was small at .05 for all items) and five confidence criteria. The second-from-bottom row shows the
decision criteria that were used to simulate data: equal criteria for each confidence category, inverted U-shaped,
and U-shaped. The top row shows the .1, .3, .5, .7, and .9 quantile response times (RTs) for one condition, strong
old items. The second-from-top row shows z-ROC functions derived from the weak old and new item conditions
and from the strong old and new item conditions. Nondecision time was 323 ms, within-trial variability was .09,
the scaling parameter a was .035, across-trial variability in boundaries was 1.13, and the range in nondecision
time was 108 ms.
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functions do not change and neither do the relative positions of the
RT distributions.

Fitting the RTCON2 Model to Data

Because we have no exact solutions for this model, we used
simulation to generate predicted values from the model. For sim-
ulation of the process given by Equation 1, we used the simple
Euler’s method with 1-ms steps (cf. Brown, Ratcliff, & Smith,
2006; Usher & McClelland, 2001). Updates were asynchronous: In
each millisecond, one accumulator was chosen randomly, and the
evidence in it was incremented or decremented according to Equa-
tions 1 or 2. With synchronous updates, in which all accumulators
are updated in each one millisecond step, the model predictions
and parameters were similar as for the asynchronous update ver-
sion except for the parameters for within-trial variability and the
scaling from area to drift rate (because six increments were taken
per millisecond). Also, the computer program implementing the
model ran 4 or 5 times slower than the program with one asyn-
chronous update per millisecond.

For the experiment from Ratcliff et al. (1994) that is analyzed
below, there were six confidence categories and six conditions that
differed in difficulty (described later). Response proportions and
.1, .3, .5, .7, and .9 RT quantiles were generated for each confi-
dence category for each condition using 20,000 iterations of the
decision process for each condition. For each evaluation of the
model, a chi-square statistic was computed over the observed data
and expected model-based frequencies. This was done by using the
observed quantiles to produce the cumulative proportions between
the quantiles and hence the frequencies by multiplying by the
number of observations. These are computed for each of the four
bins between quantiles and the two bins outside the extreme
quantiles, for the six confidence categories (for details, see Ratcliff
& Starns, 2009; Ratcliff & Tuerlinckx, 2002). When the number of
observations was less than eight, we used a single value computed
from observed and expected proportions in the chi-square calcu-
lation. This occurred for nine out of 396 bins (the product of six
conditions, six levels of confidence, and 11 subjects). The chi-
square value was computed from (O � E)2/E; it is asymptotically
equivalent to Wilks’s likelihood ratio G-square (see Ratcliff &
Smith, 2004). We computed G-square values for the parameters
and found the G-squares tracked the chi-squares (correlation .98)
and were similar to the chi-square values. With six confidence
categories and six bins per category, there are 36 degrees of
freedom, but one is lost because they must sum to the total number
of observations. With six levels of difficulty, the total number of
degrees of freedom was 210 (6 � 35).

An iterative simplex minimization routine was used to find
parameter values that produced the smallest value of chi-square.

The initial values were obtained after trial and error fitting. The
simplex fitting process was restarted seven times with starting
values from the prior fit. This process is not guaranteed to produce
the best fit, but it shows the model can fit at least this well.

Recognition Memory: Experiment 5 From
Ratcliff et al. (1994)

Ratcliff et al. (1994, Experiment 5) tested recognition memory
for 11 subjects, with 7 to 11 one-hr sessions per subject. Subjects
studied pairs of words and then were tested on memory for single
words. The six confidence categories ranged from “very sure old”
to “very sure new.” Subjects used a different finger for each
confidence key and were asked to keep their fingers on the keys
throughout the test lists. The 6 conditions were strongly-encoded
old items (studied for 5 s per pair), weakly-encoded old items
(studied for 1.5 s per pair), and new items, and for each of these
conditions, the words occurred in English with high- or low-
frequency. In the experiment, for some lists of pairs, the study time
was the same for all the pairs. For other lists, pairs with short and
long study times were mixed together. For the analyses here, we
collapsed over list types so that all the strong old items were
combined and all the weak old items were combined. Ratcliff et al.
reported only response proportions, but here both proportions and
RTs are analyzed. The details of the experiment are described fully
in Ratcliff et al. (1994).

The paradigm used by Ratcliff et al. (1994) is common in
memory research (e.g., Egan, 1958; Hautus, Macmillan, & Rotello,
2008; Heathcote, 2003; Murdock & Dufty, 1972; Ratcliff, Sheu, &
Gronlund, 1992). However, it is less common in research on
perception where a confidence judgment is often made after a
two-choice judgment (Baranski & Petrusic, 1998; Vickers, 1979,
and reviews of earlier work therein). Pleskac and Busemeyer
(2010) and Van Zandt (2000) have proposed models for this task,
but we have not applied RTCON2 to it. It could be that combining
such a model with RTCON2 would constrain the parameters of
both. Whether this could be done is a question for further research.

There were 11 subjects in the experiment, with between 7 and
11 one-hr sessions per subject. Nine of the subjects showed shifts
in their whole RT distributions. For seven of them, RTs were longer for
the low-confidence categories than the high-confidence categories;
for the other two, the pattern was the opposite. For the remaining
two subjects, RTs were about the same across the categories. We
fit the RTCON2 model to the data for each individual subject as
described above. Figure 3 displays results for the five subjects who
showed maximum variation in the shape of their z-ROC functions,
and Figure 4 shows the other six subjects. For each subject, the top

Figure 3. Plots of model fits and data for 5 subjects showing the largest differences in z-ROC shape from Experiment 5 in Ratcliff et al. (1994). The top
six rows show response time (RT) quantiles as a function of confidence for high-frequency (HF) new words, HF strong old words, HF weak old words,
low-frequency (LF) new words, LF strong old words, and LF weak old words. The 1, 3, 5, 7, 9 symbols are the .1, .3, .5, .7, and .9 quantile RTs from the
data, and the lines are the model predictions. The seventh row shows a plot of empirical against predicted response proportions (for the six confidence
conditions and six experimental conditions). The eighth row shows empirical and predicted z-ROC functions for weak and strong LF words (data are “1”
for weak and “2” for strong, and model predictions are “3” and “4”). The ninth row shows empirical and predicted z-ROC functions for weak and strong
HF words. The tenth row shows the decision boundaries for the best fit to the data.
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Figure 3 (caption opposite).
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Figure 4. The same plots as for Figure 3 for the other six subjects from Ratcliff et al. (1994). RT � response
time; HF � high-frequency; LF � low-frequency.
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six rows of the figure show the RT quantiles for the six confidence
categories for the six conditions. The numbers are the data and the
lines joining them are the predictions generated from the model
using the best-fitting values of the parameters. The right-skewed
RT distributions (smaller separation between the .1 and .3 quan-
tiles than between the .7 and .9 quantiles) produced by the model
generally match the right-skewed RT distributions produced by the
subjects. This is strong confirmation of the model because RT
distributions provide an extremely stringent test (Ratcliff & McK-
oon, 2008; Ratcliff & Murdock, 1976; Ratcliff & Tuerlinckx,
2002).

The model also fit response proportions well: The seventh row
shows the proportions in each confidence category for each condition,
with data on the x-axis and model predictions on the y-axis. All the
points fall close to the line with slope 1.0 (the diagonal black line).
The eight and ninth rows show that the model fits z-ROC functions
well. In the eighth row, z-transforms of response proportions are
plotted against each other: Old high-frequency words presented for 1
s are plotted against new high-frequency words (data the solid line
with “1” symbols, model fits the dashed line with “3” symbols), and
old low-frequency words presented for 1 s are plotted against new
low-frequency words (data the solid line with “2” symbols, model fits
the dashed line with “4” symbols). The ninth row shows the same
plots for words studied for 5 s. The tenth row shows decision bound-
aries. The values of the model parameters averaged over subjects are
shown in Table 1.

Conclusions

The data from this experiment show large differences among
individuals. RTCON2 captures these differences, showing the re-

lations among memory strength, confidence categories, and deci-
sion boundaries, and how different combinations of them can
produce the same or different z-ROC functions and the same or
different RT profiles. Subjects 1, 5, 8, 9, and 11 had inverted
U-shaped decision boundaries, roughly linear z-ROC functions, and
inverted U-shaped RT-quantile plots; Subjects 3 and 6 had U-shaped
boundaries, U-shaped z-ROC functions, and U-shaped RT-quantile
plots; and Subjects 4, 7, and 10 had inverted U-shaped boundaries,
inverted U-shaped z-ROC functions, and inverted U-shaped RT-
quantile plots. All of these patterns are produced by RTCON2
from a single source of information from memory, including the
U-shaped z-ROC functions (Subjects 3 and 6) that have been
claimed to require two sources.

These data and the fit of the model to them show that SDT can
no longer be used to interpret z-ROC functions. In SDT analyses,
z-ROC functions are determined by the strengths of test items in
memory. Strength is mapped to accuracy and accuracy to z-ROC
functions. This simple interpretation of z-ROC functions as direct
reflections of strength is not tenable because the shapes of z-ROC
functions covary with RTs. SDT assigns all variability in process-
ing to variability in memory strength, while RTCON2 includes
variability in memory strength, within-trial variability in the deci-
sion process, variability in decision boundaries, and variability in
nondecision time. If a SDT representation were mapped to RTs by
assuming a direct relationship between strength and RTs, errors
and RT distribution shapes would be mis-predicted (Ratcliff et al.,
1999, Figure 15). It might be feasible to combine a SDT repre-
sentation with a diffusion decision process such that both accuracy
and RTs could be predicted, but then the simple relationship
between SDT and z-ROC functions would no longer hold.

Table 1
Model Parameters

Model and parameters Parameter symbol

Ter st a � sb

Confidence model 384 76 0.038 0.093 0.78
Three-choice model 392 155 0.066 0.120 1.04

Decision boundaries b1 b2 b3 b4 b5 b6

Confidence model 1.64 1.71 2.41 2.53 1.92 1.75
Three-choice model 1.46 1.48 2.26

Confidence criteria c1 c2 c3 c4 c5

Confidence model �0.96 �0.06 0.67 1.56 2.44

Memory strength means 	hfN 	hfS 	hfW 	lfN 	lfS 	lfW

Confidence model 0.00 2.20 1.81 �0.68 3.04 2.37

Memory strength standard deviations shfN shfS shfW slfN slfS slfW

Confidence model 0.85 1.19 1.29 0.92 1.58 1.90

Three-choice model drift rates v1 v2 v3

40:10:10 0.56 0.20 0.24
30:20:10/40:30:10 0.46 0.34 0.20
10:10:30 0.20 0.21 0.59

Note. Ter is the mean nondecision time, st is the range in nondecision time, a is the scaling factor that multiplies drift rate, � is the standard deviation
in within trial variability, sb is the range in variability in the decision boundaries, and b1–b6 are decision bounds. For the three-choice model, b3 is higher
than b1 and b2 because it is correct for a low proportion of the trials. For the confidence model, c1–c5 are confidence criteria from the division between
high confidence new and medium confidence new to the division between medium confidence old and high confidence old, hf represents high frequency,
lf represents low frequency, N represents new, W represents weak studied items (1.5 s per pair), and S represents strong studied items (5 s per pair). For
the three-choice model, across trial standard deviation in drift rate for the largest drift rate was .042.
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In standard SDT, if the strength distributions are normal, the
slope of the z-ROC is the ratio of new item to old item SDs
(Ratcliff et al., 1992). In RTCON2, the slope of the z-ROC
function usually differs from the ratio of SDs (see also Ratcliff &
Starns, 2009). In fitting the model to the data, we found that for
high-frequency words, the ratio of new-to-old item SDs was .69,
but the slope was .79, and for low-frequency words, the ratio was
.53 and the slope was .71. The z-ROC slope is nearer 1 than the SD
ratio because the decision process introduces sources of variability
in addition to variability in memory evidence, and adding the same
amount of variability to two distributions with unequal SDs pro-
duces distributions with SDs more nearly the same. (In one respect,
the results with RTCON2 are similar to those for SDT, specifically
that the SDs for old items were larger than the SDs for new items;
e.g., Egan, 1958; Ratcliff et al., 1992.)

Other Decision Algorithms

First, we examined the linear independent accumulators algo-
rithm in which only one accumulator is incremented at a time and
the others are not altered. All of the other assumptions were the
same as those for RTCON2. This algorithm can produce bowed
RT-quantile functions with shifts in the leading edges like those in
the data (see Figure 5). However, it misses the tails of the RT
distributions; on average, the predicted .9 quantile RT is 226 ms
shorter than the data. In contrast, RTCON2 predicts a .9 quantile
RT only 6 ms longer than the data.

The LCA, the independent accumulators with decay, and the
max. versus next algorithms were combined with the assumptions
of RTCON2 in the same way as for the linear independent accu-
mulators algorithm. The resulting three models fit RT distributions

Independent accumulators (with decay, no negative evidence) and the max. vs. next decision rule

Independent accumulators (with decay, no negative evidence, Ratcliff & Starns, 2009)

 Accumulators (with decay, inhibitition, no negative evidence LCA model)
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Figure 5. For the data in the third row of Figure 3, the plots show response time (RT) quantiles for new
low-frequency words generated from the best-fitting parameters for these algorithms: independent accumulators
with decay, max. versus next, leaky competing accumulator algorithm (LCA), and the independent accumulators
with no decay, respectively.
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poorly (see Figure 4) because they could not capture leading-edge
shifts (especially for Subjects 1, 10, and 11 as well as Subjects 4,
7, and 8, which are not shown). In contrast to their failure to fit RT
distributions, the models did produce adequate fits to response
proportions.

With these latter three algorithms, evidence in an accumulator
decays on each time step. This is the reason they predict almost flat
.1 quantiles across the categories. For low values of drift rate, the
only way evidence in an accumulator can reach its boundary is if
within-trial variability gives several large increments in a row. If
they are not successive, each single increment is subject to decay
back to zero and its advantage is lost. With low values of drift rate,
such a run of large increments can occur at any time in the decision
process (early or late). This means that, over many simulated trials,
all of the accumulators will have some trials with a run of large
increments early which in turn means that the predicted shortest
RTs for all of them will differ by relatively small amounts, as in
Figure 5. However, simply removing decay from these algorithms
does not solve the problem. It produces RT distributions with right
tails that are too short, as for the linear independent accumulators
model (see also the models in Ratcliff & Smith, 2004).

In contrast to the three algorithms with decay, for the linear
independent accumulator and constant summed evidence algo-
rithms, when an accumulator gets a large increment, that advan-
tage does not decay away. This means that more gradual ap-
proaches to the boundaries can occur because several large
increments can be separated from each other in time, or a number
of moderately large increments can allow a low-probability accu-
mulator to win. Also, because there is no decay, larger increments
from noise are not as critical to allowing a low-probability accu-
mulator to win (because increments separated in time can add) and
this explains why the SD of the within-trial noise for the linear
algorithms is estimated to be about half the value of the three
algorithms with decay.

Chi-square goodness of fit. In the chi-square (quantile-based)
measure, not only do the response proportions have to be divided
among the six confidence categories, they also have to be divided
among the quantile bins. This provides quite stringent constraints
on a model because a single set of decision boundaries and a single
set of confidence criteria must produce these divisions, and do so
consistently across the conditions of an experiment. This speaks to
the regularity in the data that the model captures: For example, if
a low confidence condition has a high quantile for low frequency
new words, it has a high quantile for high frequency old words
also.

The mean chi-square for RTCON2 (with 27 parameters) was
706 with 183 degrees of freedom with a critical value of 216; that
is, the mean chi-square value is about 3.3 times the critical value.
This is in line with the fits in Ratcliff and Starns (2009) and shows
a misfit that is only modest given the large amounts of data (see the
discussion in Ratcliff & Starns, 2009, p. 74).

The linear independent accumulators model (with 27 parame-
ters) fit the data reasonably well qualitatively, capturing the bow in
the .1 quantile RTs, but the mean chi-square was 1,811, and the
model missed the tails of the distributions as described above. This
model and RTCON2 have the same number of free parameters and
so using an alternative goodness of fit metric, the Bayesian infor-
mation criterion (BIC), does not affect the relative goodness of fit
of the two models. BIC indicates a better fit for the model with

more parameters if the difference in G-square between this model
and a model with fewer parameters is larger than Mln(N), where M
is the difference in the number of parameters between the two
models, and N is the sample size. BIC indicates a better fit for the
model with fewer parameters if the G-square difference is less than
Mln(N).

The original RTCON model (with 28 parameters) had a mean
chi-square of 1,842. For the LCA model (with 29 parameters), the
mean chi-square was 1,652, and for the max. versus next algorithm
(with 24 model parameters), the chi-square was 2,525. Our imple-
mentation of the max. versus next model had three parameters less
than the constant summed evidence model. The difference between
the BIC complexity penalty for the two models is 27 and 26 for
Subjects 1–7 and 8–11, respectively. The difference in G-square is
much larger than this value, so BIC also prefers the constant
summed evidence algorithm over the max. versus next algorithm.

It is important to distinguish between how well an algorithm fits
the data qualitatively and how good its chi-square value is. Figure
5 shows that the LCA model and the RTCON (Ratcliff & Starns,
2009) model miss the experimental data qualitatively but that the
independent linear accumulator model captures the qualitative
trends quite well. However, the better qualitative fit of the inde-
pendent accumulator model is not reflected in chi-square values,
which are better for the LCA model than the independent accu-
mulator model. The reason the chi-square values for the LCA and
RTCON models are not a great deal larger given the qualitative
misses is that there are very few observations in the intermediate-
and low-confidence categories for the subjects that have pro-
nounced inverted U-shaped quantile functions (for which the mod-
els miss the data). This produces relatively small contributions to
the chi-square despite the large qualitative misses.

To illustrate the consequences of mispredictions with low num-
bers of observations, we used the number of observations for
Subject 11. There were on average 21 observations per condition
for the each of the two lowest-confidence categories (248 obser-
vations for the two-lowest confidence categories for the six exper-
imental conditions out of a total of 6,214 observations). We took
21 counts and randomly placed them in six bins with probability
1., .2, .2, .2, .2, and .1 (the proportions outside and between the .1,
.3, .5, .7, and .9 quantiles) and computed chi-square values (the
mean is 5). Then we moved all the counts from the first bin (.1
proportion) to the last bin, the counts from the second to the fifth,
and the counts from the third to the fourth. This would correspond
to a shift in the RT distribution such that all the counts between the
lower quantiles moved out of the lower three bins to the higher
three bins. The mean change in the chi-square value was about 30
(for 1,000 simulations with 21 observations randomly divided
among the six bins with expected proportions 1., .2, .2, .2, .2, and
.1). Multiplying this by 12 to mimic 12 conditions (the two
lowest-confidence categories by six experimental conditions) adds
360 to the chi-square value. If half the subjects showed this shift
in the distribution relative to the predictions (see Figures 3 and 4),
the increment to chi-square would be about 180, which is about
10% of the average chi-square value for the LCA algorithm (and
about one fifth of the difference between the chi-squares for
RTCON2 and LCA). Thus, the large qualitative misses in the shifts
of the RT distributions between the data and the LCA, RTCON,
max. versus next algorithms show up in only modest increases in
chi-square. We believe that such qualitative misses are more
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important in evaluating models than numerical goodness of fit
measures, although both are useful.

Variants of the Constant Summed Evidence Algorithm

The assumption that evidence for one confidence category is
evidence against all the others may be too extreme. For example,
we might not want evidence for a high-confidence old category to
be evidence against the medium- and low-confidence old catego-
ries, but only evidence against the new categories. We imple-
mented this scheme by assuming that when there was an increase
in evidence in one of the “old” accumulators, there were decreases
only in the “new” accumulators (each by 1/3 the amount as the
selected accumulator), not the other “old” accumulators. This
variant produced about the same quality of fit to the data as the
RTCON2 model with about the same model parameters. The
goodness of fit value was lower than for RTCON2 (
2 � 676), but
this was not consistent across subjects: Chi-square was lower for
this model relative to RTCON2 for five of the 11 subjects.

There are other variants that are also reasonable. For example, if
an accumulator in one category is incremented, the accumulators
for other members of the category (e.g., “old”) might be incre-
mented by half or some proportion of that increment and the
accumulators in the other category (e.g., “new”) would be decre-
mented by one third of the total increment. Such a scheme would
be similar in tenor to the friends and enemies behavior of McClel-
land and Rumelhart’s (1981) interactive activation model. This
analogy with the interactive activation model suggests that a
variant of this scheme might be applicable to tasks in which
subjects are asked to name a word. In naming, one might want
some similar words to be incremented, some similar and some less
similar words to be decremented, but distant words not to be
affected (e.g., Ratcliff & McKoon, 1997).

Motion Discrimination

One of the key results from applying RTCON2 to the data from
Ratcliff et al. (1994) is that the RT distributions for low-probability
choices were shifted relative to high-probability choices. The shift
in the leading edges of the distributions (the .1 quantiles) was as
large as several hundred ms for some of the subjects. To generalize
application of the constant summed evidence algorithm, and also
further test the LCA algorithm, we sought to produce the same
kinds of RT shifts in a quite different paradigm.

On each trial, a circular field of dots was displayed. Some
proportion of the dots moved together downward to the left, some
proportion moved downward to the right, and some proportion
moved straight up vertically. Subjects were asked to choose for
which direction the proportion of the dots that moved was the
largest, pressing one of three buttons. The stimuli and their pre-
sentation followed Niwa and Ditterich (2008). On each trial, one of
the directions had the strongest motion, and we manipulated the
proportion of trials so that one direction was correct much less
frequently than the other two. The question was whether the RT
distribution for the low-probability choice would be shifted rela-
tive to the high-probability choices.

The proportions of moving dots for the three directions were
assumed to map to the rates of accumulation of evidence (drift
rates) in three accumulators, one for each direction. The drift rates

were assumed to add to 1 (e.g., Usher & McClelland, 2001) for
both the constant summed evidence and LCA algorithms. Other-
wise, the assumptions about the algorithms were the same as those
given above. The LCA algorithm was tested as a representative of
the algorithms that incorporate decay of evidence in the accumu-
lators.

Method

Stimuli. The dots were displayed on a computer monitor that
was 17 in. (43.18 cm) on the diagonal with 640 � 480 pixel
resolution. Each dot was 2 pixels (0.1 degree) on a side. Five dots
were initially placed randomly within a circular disk that was in
the center of the screen, 5 degrees in diameter. If a coherent move
placed a dot outside of the disk, then the dot was placed back into
the disk on the opposite edge. The screen was updated at a rate of
60 Hz, making the dots per square degree per second equal 5/
(2.5 � 2.5 � 3.14159)/.0166 � 15.34 (5 dots in 2.5-degree radius
disk at 16.6 ms per screen).

The five dots were assigned to four populations, depending on
the coherence proportions for the conditions. Three populations
moved coherently in three directions 120 degrees apart and the
fourth population moved randomly. Each population moved co-
herently every third screen. Population 1 and the random popula-
tion moved in the same frame, followed by Population 2 on the
next frame, and Population 3 on the third frame. Dots were
randomly assigned to one of the three populations every third
screen (so some dots remained in the same population and moved
consistently for a few frames, but others switched to a different
population). Coherent dots moved at a rate of 5 degrees of visual
angle per second. If, for example, a coherent dot moved once every
three screens, then it took 20 screens at 60 screens per second to
move 5 degrees. At normal viewing distance, 5 degrees is 100
pixels (20 pixels per degree), so dots moving coherently move
100/20 � 5 pixels per screen.

Subjects. The subjects were 12 undergraduate students re-
cruited from the Ohio State University population by advertise-
ment. They each participated in four or five sessions and were paid
$15 per session. Each session was about 50 min long. They were
instructed to respond with the “b,” “n,” or “m” dots for the lower
left, up, or lower right choices, respectively, with one finger for
each key.

Procedure. There were two experimental manipulations. One
was that one direction (C) occurred with a much lower probability
than the other two directions (A and B) over the experiment. To
accomplish this, over trials, A was the strongest direction 4/9
times, B was strongest 4/9 times, and C was strongest 1/9 times.
Subjects were reminded at the beginning of each block which
direction was the low probability one. This low probability direc-
tion was the same throughout all the sessions for a given subject
and which of the three directions was the low probability one was
counterbalanced over subjects.

The second manipulation was the strength of motion, that is, the
coherence of the motion, for the three directions. Coherence was
defined as the proportion of dots moving coherently in a direction.
For the first six subjects, there were five conditions: the propor-
tions for the three directions (A, B, and C) were 40:10:10, 10:40:
10, 30:20:10, 20:30:10, and half as many trials as for those four
conditions with coherences 10:10:30. For the other six subjects,
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conditions were the same except that 30:20:10 and 20:30:10 were
replaced by 40:30:10 and 30:40:10.

Individual differences were larger than differences averaged
over subjects between the 30:20:10 and 40:30:10 conditions and
the patterns of results were the same, so we grouped the two sets
of conditions into one for modeling and data analysis. This pro-
duced three conditions for modeling.

There were 10 blocks of 108 trials per session. On each trial, the
stimulus was displayed until the subject made a response. Then, if
the response was longer than 1,500 ms, the message “too slow”
was displayed for 300 ms. If the response was shorter than 250 ms,
“too fast” was displayed for 300 ms. In all cases, there was a
500-ms delay before the next stimulus was displayed.

Three-Choice Models

For the constant summed evidence algorithm, it was assumed
that there are three accumulators and that when one is incremented,
the others are each decremented by half the increment. Three drift
rates were used for each experimental condition, one for each
accumulator, and these add to 1 so that there are two independent
parameters. Many of the parameters are the same as for RTCON2:
nondecision time, the range in nondecision time, a scaling param-
eter multiplied by drift rates to map them into accumulation rates,
a parameter representing within-trial variability, three boundary
settings for the three choices, and variability in the decision bound-
aries. The means of these parameters are shown in Table 1.

Adding across trial-variability to drift rates is not straightfor-
ward. Random variability in the drift rates for the three accumu-
lators would not allow the drift rates to add to a constant, and if
drift rates were to be positive, variability should decrease as drift
rates approach zero. To implement across-trial variability, we
decided to add a normally distributed random number (which
could be positive or negative) to the accumulator with the largest
drift rate. Half this random number was subtracted from the other
two accumulators.

The LCA algorithm that we implemented to represent versions
of the algorithms with decay was identical to the constant summed
evidence model just described except that the decision mechanism
was that given by Equation 2.

Results

The data from each session were examined separately for each
subject. If a subject’s performance for the first session was similar
to performance for the others (in both mean RTs and accuracy),
then the data for the first session and the following three sessions
were combined; there was no fifth session. If a subject’s perfor-
mance in the first session was different from performance in the
following three (usually slower and less accurate), then a fifth
session was added and the last four sessions were combined.
Responses with RTs less than 300 ms and greater than 2,000 ms
were eliminated from analyses. This was less than 0.6% of the
data.

The data for each subject were fit individually using the same
fitting routines as were used for RTCON2 for Experiment 1. For
both experiments, Figure 6 shows plots of the model predictions
versus the data for response proportions, and the .1, .5, and .9
quantile RTs for each subject and each condition of the experi-

ment. The circles are for responses for the low-probability condi-
tions, and the xs are for the other conditions.

Just as for the recognition memory experiment above, some of
the RT distributions showed large shifts. The fastest responses for
the high-probability conditions were mostly between 350 and 500
ms, whereas the fastest for the low-probability conditions were
mostly between 400 and 600 ms. For the constant summed evi-
dence model, the only large misses were those for the median and
the .9 quantile RTs (the eight circles furthest above the diagonal).
These misses were all for errors from the low-probability condi-
tions (conditions for which accuracy was less than .05). For the
LCA model, there were underestimates of the shifts in the .1

Figure 6. Fits of the multiple-choice model for response proportion, and
the .1, .5, and .9 quantile response times (RTs) for the constant summed
evidence model (first column) and the leaky competing accumulator algo-
rithm (LCA) model (second column). The circles are for the conditions
with the lower proportion of responses, and the xs are for the higher
proportion conditions. CSE � constant summed evidence.
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quantile RTs for the low-probability conditions in all except five
out of 36 cases. This is similar to the results for Experiment 1: The
LCA algorithm does not account for large shifts in RT distribu-
tions between low- and high-probability conditions.

The parameters for the constant summed evidence model are
shown in Table 1. The parameters that are in common with
RTCON2 are in the same range, with the exception of the param-
eter that scales drift rate to accumulation rate. The drift rates show
that when there is one dominant direction, the drift rate for that is
almost 3 times higher than for the other two directions, but when
there are two directions that both have strong motion, the drift rates
differ less from each other.

The chi-square value for the constant summed evidence model
was 101.0, and the chi-square for the LCA model was 122.9 (the
BIC penalty for two additional parameters for the LCA relative to
the constant summed evidence model is about 17). The chi-square
value for the LCA model is 191.2 if across trial variability in drift
is removed. The critical value was 54.6 with 39 degrees of free-
dom, so the mean chi-square for the constant summed evidence
model is a little less than twice the critical value. The misfits are
modest given the large number of observations and large number
of conditions (see discussion in Ratcliff & Starns, 2009, p. 74).

General Discussion

Our understanding of how simple decisions are made has been
advanced when model-based approaches have dealt jointly with
choice proportions and RTs (e.g., Hanes & Schall, 1996; Ratcliff
& McKoon, 2008; Roe et al., 2001; Usher & McClelland, 2001;
Wagenmakers, 2009). Confidence judgments about memory have
usually been interpreted with SDT, but SDT cannot explain RTs.
Arguments for dual-process models have depended on the specific
shapes of z-ROC functions, but RTCON2 shows that those shapes
can be produced by a single-process model (see also Ratcliff, Van
Zandt, & McKoon, 1995).

RTCON2 offers insights into the architecture of the interactions
between decision making and memory. Because the information
retrieved from memory is a distribution over strength, not a single
value, it produces evidence not just for one confidence category,
but for all of them, to different degrees. This means that memory
strength cannot be mapped directly to responses. Instead, decision
processes act on the distributions of strength that retrieval pro-
cesses produce and set confidence criteria along the strength
dimension. Some confidence categories may cover only a narrow
range of strength values and others a wider range. Decision pro-
cesses also set the boundaries that determine the amounts of
evidence required to make a decision; the boundaries may be
higher for some categories than others. Depending on the confi-
dence criteria, the boundaries, and combinations of them, the
confidence choice for a particular test item and its RT do not
necessarily reflect the mean of an item’s strength distribution.

With the constant summed evidence algorithm, the assumption
that memory produces a distribution over strength, and the as-
sumption that criteria divide the distribution into confidence cat-
egories, RTCON2 explains choice proportions, the shapes of
z-ROC functions, the shifts in the locations and spreads of RT
distributions across conditions, and relationships between the
shapes of z-ROC functions and RT distributions, and it does so for
individual subjects. The shapes of z-ROC functions for individual

subjects (linear, U-shaped, or inverted U-shaped) follow the
shapes of their RT distributions, which in turn are determined by
the decision boundaries for the confidence categories (unless the
choice proportions are extremely small; see the Appendix). The
model has 16 memory-related parameters, the same number as
would be needed for SDT to fit choice proportions, and 11 param-
eters for the decision process (six of them decision boundaries).
Together, these 27 parameters allow the model to fit the 210
degrees of freedom in the data from Ratcliff et al.’s (1994) exper-
iment. If SDT were fit to the choice proportions, its 16 parameters
would fit only 30 degrees of freedom.

Currently, there are no memory models that allow retrieval
processes to produce distributions of memory strength that could
be used to drive RTCON2, although there have been some pro-
posals for integrating memory models and sequential-sampling
decision models (Donkin & Nosofsky, 2012; Malmberg, 2008;
Nosofsky, Little, Donkin, & Fific, 2011). If such a model were
developed, it could be combined with a decision algorithm such as
the ones examined here. The question would be whether the values
of memory strength produced by the model could, when combined
with a decision algorithm, give the correct proportions of re-
sponses and their RTs.

With the three-choice motion discrimination task, we general-
ized the result that RT distributions shift when the probability of a
response to a choice is small compared to when it is larger. We
manipulated the choices so that one of them was correct on a low
proportion of trials and the other two were correct on higher
proportions of trials. The data showed a shift in the RT distribution
for the low-probability choice relative to the higher-probability
choices. This shift was accommodated well with the assumptions
that there were three accumulators, one for each choice, and that
the accumulators were incremented according to the constant
summed evidence algorithm. This is a modest generalization of the
algorithm, but it does suggest that its applicability is not limited to
confidence decisions about memory.

Signal Detection Theory and the Single-Process Versus
Dual-Process Controversy

The distinction between RTCON2, based on choice proportions
and RTs, and SDT, based only on choice proportions, merits
further discussion. In RTCON2, for each type of test item (e.g.,
strongly-encoded old items), the mean of its strength distribution
varies from trial to trial. This suggests that RTCON2 could be used
to update SDT to handle the time course of decision making and so
give SDT the ability to handle RT distributions. However, as we
pointed out above, doing this would produce quite different esti-
mates of the means and SDs of the strength distributions than
would SDT alone. This is because in RTCON2, there are several
sources of across-trial variability whereas in SDT, there is across-
trial variability only in memory strength. This contrast is one
reason that SDT by itself cannot be used to describe how infor-
mation is retrieved from memory or how information is repre-
sented in memory.

In most applications of SDT, the slope of a z-ROC function is the ratio
of the SD of the strength distribution for new items to the SD of the
distribution for old items. This means that for SDT, the slope of the
z-ROC function can only be understood in terms of the SDs of
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those distributions. In contrast, in RTCON2, the slope of the
z-ROC is not directly tied to the strength distributions.

In a dual-process framework, the slope and shape of the z-ROC
function provide a way to estimate the relative contributions of
recollection and familiarity to decisions. Recollection contributes
high-accuracy responses at the high-confidence old end of the
ROC function, and so makes the function non-linear. The greater
the proportion of recollection responses, the more U-shaped is the
function. U-shaped z-ROC functions have been claimed as support
for dual-process models in many applications, including studies of
the effects of clinical neuropsychological conditions on recogni-
tion memory and studies of the patterns of brain activity that are
observed with imaging techniques during recognition. However,
the findings here show that U-shaped functions are not diagnostic.
To put this point in a different way, the U shapes of z-ROC
functions may have nothing to do with the relative contributions of
two memory processes.

Ratcliff and Starns (2009; also Van Zandt, 2000) provided
another example of a situation in which decision processes can
change z-ROC slope even when memory strength is constant. In
their study, subjects showed a bias to repeat the response made on
the previous trial, and z-ROC slope was higher following “old”
responses than following “new” responses. Fits of the RTCON
model showed that changing decision boundaries accounted for
changes in the response proportions along with changes in the
z-ROC slope, with higher slopes when the boundaries were higher
for “old” responses and lower slopes when they were higher for
“new” responses. Strength of encoding of an item should not be
affected by the previous response. In a similar way, inducing
response biases by changing the proportion of old items in a test
list or by changing the reward structure for responses affects the
slopes of z-ROC functions formed from confidence judgments
(Mueller & Weidemann, 2008; Van Zandt, 2000). Still another
example of decision processes changing z-ROC properties when
memory strength is constant is provided by experiments in which
speed/accuracy tradeoffs are manipulated, for example, when sub-
jects are given instructions that stress speed over accuracy or
accuracy over speed. Speed/accuracy tradeoffs are also an issue
when performance is compared across populations, for example,
college students, elderly adults, amnesic patients, and children.

Comparisons of Algorithms

We considered four algorithms in addition to the constant
summed evidence algorithm: a linear independent accumulator
algorithm, the LCA, an independent accumulator algorithm with
decay, and a max. versus next algorithm. None of these could
accommodate the recognition memory data or the motion discrim-
ination data. The linear independent accumulator algorithm could
account for shifts in the RT distributions between high- and
low-probability conditions but underestimated the tails of the
distributions. The three algorithms with decay could not account
for the shifts in the RT distributions. As described earlier, these
failures come about because several large noise increments in a
row are needed to boost a low-probability alternative over the
decision boundary. Large increments from noise can occur both
early and late in processing, which means that, on average, the
earliest occur at close to the same time across conditions.

It has been argued that behavioral data cannot discriminate
among algorithms such as those considered here (e.g., Ditterich,
2010), but very few data sets have been produced to decisively test
among multiple-choice models. Those that have been produced
(e.g., Leite & Ratcliff, 2010; Niwa & Ditterich, 2008) come from
paradigms in which subjects discriminated among different stimuli
rather than among different levels of confidence. In these studies,
typically, the probabilities of the response choices were not ma-
nipulated and this might account for the relatively small differ-
ences in the locations and spreads of the RT distributions. When
we manipulated probabilities in the Motion Discrimination exper-
iment, we found RT distribution shifts. It was this manipulation
that distinguished the constant summed evidence algorithm from
the other algorithms (similar conclusions were obtained with two-
choice data in Starns, Ratcliff, & McKoon, 2012).

Conclusion

Theories of memory must specify how the evidence supplied by
a memory system is translated into overt decisions. For decades,
this role has been played by SDT. Although SDT has guided
volumes of research across all of psychology, it fails to explain
basic decision-making phenomena: the time subjects take to make
decisions and the relationship between time and response propor-
tions. The model presented here does just that. In addition, the
model demonstrates a previously unknown relationship, that
z-ROC shapes reflect the patterns of RT data. Both single- and
dual-process models for recognition memory ignore RT as a de-
pendent variable. Hence, we argue, the single- versus dual-process
debate can be advanced only by a fundamentally new approach
that encompasses RTs as well as response proportions.

We anticipate that the decision algorithm in RTCON2 can be
applied to many domains in addition to recognition memory. We
are currently using it to investigate other kinds of memory tasks
(e.g., associative recognition, source memory) and perceptual
tasks, and the model can be applied to issues in the neuropsychol-
ogy of memory, neuroeconomics, and the neurophysiology of
decision making. Switching from models that account only for
response proportions to models that also account for RTs will
strongly impact many current theories. The notion of confidence
runs through numerous real-life decision-making tasks and
through much research on memory and decision making. Thus,
research into confidence, and more generally multiple-choice de-
cision making, requires a serious consideration of the combination
of RT and response proportion data, and this should begin sooner
rather than later.
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Appendix

Simulations of the Constant Summed Evidence Model

Figures A1, A2, and A3 present simulated data for a range of
conditions in a design that mimics that of the experiment in the
body of the article. The discussion below is in terms of the
experimental factors. There were six kinds of test words, strong
and weak study words and new words and each of these is crossed
with high and low word frequency in English. The mean strength
for the high-frequency words was for new words, 0.0, for weak old
words, 1.0, and for strong old words, 2.0; and for low frequency
words, they were for new words, �0.5, for weak old words, 2.0,
and for strong old words, 3.5. The other parameters were set at
values like those for a typical subject (e.g., Table 1). These were
Ter � 323, st � 108, a � .035, and � � .092. Across-trial standard
deviation in memory strength was set to be small, at 0.05. In each
of the three figures, the pattern of decision boundaries across
confidence categories was different: For Figure A1, decision
boundaries were equal; for Figure A2, they were U-shaped; and for
Figure A3, they were inverted U-shaped. In the simulations cor-
responding to the five columns in each figure, we changed the
locations of the confidence criteria (the same way in each figure).
The top two rows show response time (RT) quantile plots as a
function of confidence. The next two rows show the proportions of
responses in the different confidence categories. The next two
rows show the z-ROC functions for the two classes of old items
against new items. The next row shows decision boundary settings.
The last two rows show the distributions of within-trial strength
(SD � 1) for high- and low-frequency words, respectively. Along
with the distributions are shown the confidence criteria, which are
different for the different columns. As we move from the left to
right columns, the criteria are narrow (0, 0.5, 1, 1.5, and 2), then

move right by one unit, then left from the settings from column 1
by one unit, then spread out in the next two columns (in the fourth
column they are �1, 0, 1, 2, and 3, and if the fifth column they are
�3, �1, 1, 3, and 5). As the boundaries spread out, the proportion
of responses in the extreme confidence categories decreases, and
the proportions in the lower confidence categories increase.

In Figure A1 (third and fourth rows), the response proportions
are near zero for the middle categories in the first three columns
and are close to zero in the extreme categories in the fifth column.
The z-ROC functions move from almost U-shaped in the first three
columns to inverted U-shaped in the last column. In Figure A2
with U-shaped decision boundaries, the first four columns have
few conditions with near zero counts, and the z-ROC functions are
U-shaped and follow the decision boundary shape. In the fifth
column, the extreme confidence categories have almost zero
counts in them, and the z-ROC function shape moves to have a
small inverted U-shape. In Figure A3 with inverted U-shaped
decision boundaries across confidence categories, in the first three
columns, there are near zero counts in the middle categories, and
the functions are linear or slightly inverted U-shaped. In the last
two columns, there are more counts in the middle categories, and
the functions become inverted U-shaped and follow the decision
boundary shape.

These results show that the z-ROC function shape follows
decision boundary shape across confidence categories when there
are observations in each confidence category. If there are very few
observations (less than 1 or 2%), then the shapes of the z-ROC
function and decision bounds across confidence categories can be
different, as shown in Figures A1–A3.

(Appendix continues)
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Figure A1. Simulated data from the model with confidence criteria changing across columns. The top two rows
are representative response time (RT) quantiles for new low-frequency words (top row) and strong old
low-frequency words (second row). The third and fourth rows show response proportions for weak and strong
old items and new items for high- and low-frequency words. The fifth and sixth rows show z-ROC functions for
strong and weak high- and low-frequency words. The seventh row shows decision boundaries. The eighth row
shows distributions of memory strength for new high-frequency words, weak old high-frequency words, and
strong old high-frequency words. From the left to the right columns, the confidence criteria are narrow (set at
0, 0.5, 1, 1.5, and 2), move right by 1 unit, move left by one unit from those in column 1, and then spread out
(�1, 0, 1, 2, and 3), and then spread out again (�3, �1, 1, 3, and 5). Freq � frequency; LF � low frequency;
HF � high frequency.
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Figure A2. The same plots as for Figure A1 except with U-shaped decision boundaries across confidence
categories. RT � response time; Freq � frequency; LF � low frequency; HF � high frequency.
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Figure A3. The same plots as for Figure A1 except with inverted U-shaped decision boundaries across
confidence categories. RT � response time; Freq � frequency; LF � low frequency; HF � high frequency.
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