
Psychological Review
1976, Vol. 83, No. i, 190-214

Retrieval Processes in Recognition Memory

Roger Ratcliff and Bennet B. Murdock, Jr.
University of Toronto, Toronto, Canada

A method of analyzing reaction time data in recognition memory is presented,
which uses an explicit model of latency distributions. This distributional method
allows us to distinguish between processes in a way that the traditional measure,
mean latency, can not. The behavior of latency distributions is described, and
four experiments are reported that show how recognition accuracy and latency
vary with independent variables such as study and test position, rate of pre-
sentation, and list length. These data are used to develop and test the empirical
model. The resulting analyses, together with functional relationships derived
from the experimental data, are used to test several theories of recognition
memory. The theories examined all show problems in light of these stringent
tests, and general properties required by a model to account for the data are
suggested. As well as arguing for distributional analyses of reaction time data,
this paper presents a wide range of phenomena that any theory of recognition
memory must explain.

Over the last few years, researchers have
been developing theories of recognition mem-
ory based not only on accuracy measures but
also on latency measures. In this article, we
consider latency measures in recognition mem-
ory. Results from four experiments are pre-
sented, and an empirical model for latency
distributions is developed. Latency distribu-
tions are shown to provide much more in-
formation than can be obtained from mean
latency, the most common dependent variable
in reaction time measurements. From this, a
strong case is made for the study of distribu-
tional properties by showing how some cur-
rent theories are inadequate or wrong when
examined in the light of distributional analy-
ses. These recent theories are further evalu-
ated using functional relationships extracted
from results of the four experiments pre-
sented.
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Perhaps one of the more important ad-
vances in the theory of recognition memory
came with the application by Egan (Note 1)
of the decision mechanism of signal detection
theory. Before this, threshold theories pre-
vailed, but Egan (Note 1) demonstrated that
this class of theory is inadequate (see Mur-
dock, 1974, chap. 2). The decision mechanism
of signal detection theory is present in some
form or another in most current theories of
recognition memory and is probably a major
factor in the success of many of these the-
ories. Figure 1 is an attempt to order the-
ories of recognition memory both historically
and in terms of antecedents, which are not
necessarily causal.

The strength theory of Norman and Wickel-
gren (1969) and Wickelgren and Norman
(1966) assumes that, along with the trace,
some continuous variable is stored that pro-
vides a measure of the subject's familiarity
with the test item. The Bower (1967) and
Norman and Rumelhart (1970) attribute
models use a discrete ensemble of features to
represent the memory trace, and the finite
state models of Bernbach (1967) and Kintsch
(1967) suppose that an item is in one of two
or three memory states, respectively. Each of
these three classes of model does reasonably
well in dealing with a substantial body of
data, but it has been argued (Anderson &
Bower, 1972) that this success is not so much
due to the memory representation employed
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FIGURE 1. Schematic representation of theoretical development in the field of recognition memory.
(SDT = Signal Detection Theory; HAM = Human Associative Memory; FRAN = Free Recall in
an Associative Net.)

as to the use of signal detection theory. An-
derson and Bower (1972) mounted a major
attack on these classes of theory, the main
thrust of their argument being aimed at the
ahistorical nature of the memory trace. They
found that in list discrimination experiments,
subjects were capable of much finer dis-
criminations than the earlier theories allowed.
A theory was developed stating that subjects
associate "list markers" with study items in
an all-or-none process and that the recogni-
tion process, as before, utilizes signal detection
theory.

Following hard on the heels of this work
and the FRAN model of Anderson (1972)
came the comprehensive book, Human Asso-
ciative Memory (HAM; Anderson & Bower,
1973). This work provides a major integra-
tion of many different areas of cognitive psy-
chology under one theoretical structure. Later,
a comparison will be made between HAM's
predictions and our empirical findings. Ander-
son and Bower (1974) modified their 1972
position to produce a propositional representa-

tion of contextual information and to account
for context effects in recognition memory
(Tulving & Thomson, 1973; Watkins & Tulv-
ing, 1975). Some of the modifications seem to
weaken the position taken in HAM, but they
appear necessary to deal with empirical re-
sults. This will be discussed in detail later.

Another research program that has gen-
erated considerable interest and inquiry is
the list-scanning work of Sternberg (1966,
1969a). An excellent summary of current is-
sues in this research is contained in Stern-
berg (1975). This investigation is primarily
aimed at dealing with short lists (within mem-
ory span), but it has provided part of the
impetus for the Atkinson and Juola model
(1973) and the conveyor belt model of Mur-
dock (1974), both of which deal with longer
supraspan lists. The Atkinson and Juola
model stores item information in two memory
systems, the conceptual store and the event
knowledge store. Retrieval consists of a deci-
sion, using signal detection theory, based on
familiarity (or strength) of the item in the
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conceptual store, with either a fast response
being emitted or an extended search of the
event knowledge store taking place. The con-
veyor belt model (see also Murdock & Ander-
son, 197S) supposes that items are encoded
in some kind of temporal format such as an
episodic store (Tulving, 1972) and that re-
trieval consists of a very rapid 5 msec/item,
backward-serial scan through the list, so that
when a match is found a response is initiated.
This quick reveiw of recognition memory the-
ory can by no means be considered exhaus-
tive. Rather, it is an attempt, at least, to note
the major theories and their ancestors.

In comparison, distributional properties of
reaction times have received little attention in
recent years. There was an awareness in the
early days of reaction time research that mean
reaction time was not sufficient and that some
note of distributional properties should be
taken. For example, in 1868, Donders (1969)
reported minimum reaction times, as well as
means to support his subtractive method.
More recently, Woodworth (1938, chap. 14)
presented an excellent review of research in
reaction time, which we feel has real impor-
tance even today. He presented several ex-
amples in which arguments are based on the
behavior of latency distributions and not sim-
ply mean latency. For example, he cited the
work of Johanson (1922), which demonstrated
that simple reaction time could be speeded
up using incentives or punishment. If mean
reaction time alone had been reported, we
would not have known whether overall reac-
tion time decreased or whether slower re-
sponses were just speeded up. The distribu-
tions, though, showed that overall reaction
time decreased. However, none of this early
work appears to have attempted to deal with
the mathematical properties of distributions.

Perhaps the most explicit and authoritative
review of mechanisms, mathematical models,
and applications is still the review of McGill
(1963). Since that review, relatively little use
of distributional analysis has been made (an
important exception being Metzler & Shep-
herd, 1974, p. 182), although its importance
has been noted at times (Broadbent, 1971, p.
320; Townsend, 1972). What research there
has been seems to have developed along two
different lines.

First, Sternberg (1969b; Note 2) has been
concerned with the additive-factor method
that he used to establish the existence of pro-
cessing stages in his paradigm. This powerful
method uses the properties of cumulants (es-
sentially moments—mean, variance, etc.) in
testing hypotheses about stages. Distribu-
tional properties enter through the cumulants,
and so explicit forms of the distributions need
not be assumed. Sternberg (1969b) used this
method to identify four stages in item recogni-
tion—stimulus encoding, comparison, decision,
and translation plus response organization.
However, Aube and Murdock (1974) found
results in a Sternberg procedure that argued
against an additive stage model. It is some-
what difficult to see where to proceed from
this point. Sternberg (Note 3) introduced
some further properties of reaction time dis-
tributions, based on cumulative distribution
functions, to argue against self-terminating
models of memory search; again, these did
not require explicit forms of the distributions
(see also Sternberg, 1975).

Second, researchers such as McGill (1963),
McGill and Gibbon (196S), Hohle (1965),
and Snodgrass, Luce, and Galanter (1967)
have taken a rather more extreme approach in
which distributions underlying stages are
specified. From these, the overall distribution
can be deduced by convolution if it is as-
sumed that the underlying stages are inde-
pendent. This convolution is fitted to the em-
pirical data, and variation in reaction time
produced by changes in experimental condi-
tions should show up in changes in the param-
eters of the stage affected by the experimental
manipulation. However, as pointed out by
Sternberg (1969b), if such an approach fails,
it is difficult to decide which of the several
assumptions is at fault. Also, as we shall see
later, rather different assumptions about pro-
cessing stages and their distributions can give
rise to similar latency distributions, and so
there is a problem in deciding between models.

We shall attempt to remedy this lack of
consideration of distributional properties by
applying distributional analyses to several
recognition memory studies. From this, it will
become obvious that such an approach is ex-
tremely useful in evaluating models and the-
ories. The method we shall promote repre-



RETRIEVAL PROCESSES IN RECOGNITION MEMORY 193

sents distributions in an explicit form (which
is amenable to an additive stage analysis)
but does not directly identify stages of pro-
cessing with component mathematical stages.

EXPERIMENTS: PROCEDURES AND RESULTS

Four experiments are reported and the data
serve two main purposes: first, to test an em-
pirical model for response time distributions,
and second, to provide functional relation-
ships between accuracy and various experi-
mental variables such as list length, rate of
presentation, and output position. These func-
tional relationships, along with the distribu-
tional analyses, are used to test various the-
ories of recognition memory. Experiments 2
and 3 were reported by Murdock and Ander-
son (1975, Experiments III and V, respec-
tively), but several additional analyses are
presented here.

General Method

A discrete trials standard recognition memory pro-
cedure was employed. A list of study items was
presented, followed by a test list containing all the
study items and an equal number of new items, in
random order. The lists were random samples from
the University of Toronto wordpool, a collection of
1,024 two-syllable common English words not more
than eight letters long, with homophones, contrac-
tions, and proper nouns excluded. Each trial con-
sisted of a random selection from the wordpool. In
some experiments, repetitions were prohibited until
two successive lists had intervened; in others, there
were no repetitions per session. List generation, dis-
play, and response recording were controlled by a
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FIGURE 2. Plot of mean latency versus confidence
judgment for Experiment 1. (The number of observa-
tions per plotted point is shown in parentheses next
to the point.)

PDP-12A laboratory computer. The presentation time
was typically 1 sec per item, and the list was termi-
nated by an instruction asking the subject to press a
response key to start the test phase. The test phase
was self-paced, and items stayed in view until a
response was made. A confidence judgment procedure
was employed, and the subjects had to respond on
a 6-point scale from ("sure new") to +++
("sure old") by pressing the appropriate response
key. For each item tested, input and output position
(output position only for new items), confidence
judgment (i.e., key pressed), and the latency (stimu-
lus onset to response key depression) were recorded.
In some experiments, a 25 msec time base was used;
in others, a 5 msec time base was used. Subjects were
undergraduates in psychology at the University of
Toronto and were paid $30 for the 12 sessions. Each
experiment used four subjects except Experiment 3,
which used five.

Experiment 1

Method

The study list consisted of 16 items and the test
list of 32 (16 old and 16 new). There was 1 practice
session and 12 experimental sessions, with no repeti-
tions of study or test items in the 3 2-trial session.
The time base used was 5 msec, and latencies up to
12 sec were recorded.

Experiment 1, besides replicating earlier experi-
ments (Murdock, 1974; Murdock & Anderson, 197S),
served to show that results in these earlier experi-
ments were not an artifact of display graphics (a
much clearer set was used here), time base (a faster
time base was employed), randomization process
(previously, items were tested in their wordpool
order), or repeated items between lists (no repeti-
tions per session in this experiment).

Results

Variation of mean latency with confidence
judgment. Murdock and Dufty (1972) found
that mean latency decreased with increasing
confidence. Figure 2 both demonstrates and
replicates that finding.

Handler and Boeck (1974) conducted an
experiment using a recognition memory study-
test procedure. Their subjects were required
to make a yes/no response followed by an un-
paced confidence judgment. Mean latency
plotted against confidence judgment showed
the same trends as shown in the present Ex-
periment 1. This indicates that these effects
are not artifacts of the six-key (as opposed
to two-key) response procedure.

Later it will be argued that lower confidence
judgments involve more complex processing
such as a second memory interrogation or a
second decision after some alteration in cri-
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teria, so, in line with Murdock (1974), only
high-confidence results are examined here.

Accuracy junctions. Murdock and Ander-
son (1975) present strong arguments for the
use of lag as the independent variable in these
tasks. However, because this obliterates the
distinction between input and output inter-
ference and because several of the analyses
performed maintain this distinction, a two-
way classification of input and output position
is employed. Figure 3 graphs the change in
proportion of high-confidence hits, misses, cor-
rect rejections, and false alarms with input
(for hits and misses only) and output posi-
tion. It can be seen that the decrease in the
number of hits with output position is more
pronounced than the decrease in the number
of correct rejections (see also Murdock &
Anderson, 1975). If a signal detection theory
(or strength theory) approach is employed,
then for increase in output position, the "sig-
nal" and "noise" distributions move closer
together but the criterion remains more or
less in the same place relative to the noise dis-
tribution. For a fixed output position, the sig-
nal and noise distributions are closer together
for earlier input positions.
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Latency junctions. Graphs of latency plotted
against input (for hits and misses only) and
output position for high-confidence hits,
misses, correct rejections, and false alarms
are shown in Figure 4. Some of these results
replicate those presented in Murdock (1974)
and Murdock and Anderson (1975), which
provided the main impetus for the backward-
serial scanning, or conveyor belt, model. An
important point to note is that for some sub-
jects, high-confidence correct rejections are
almost as fast as high-confidence hits, com-
pared with the spread in response times (see
histograms later)—for example, Subject 3
had a mean hit latency of .757 sec and a
mean correct rejection latency of .823 sec.
Figures 3 and 4 show a primacy effect for
latency and accuracy of hits versus input
position, an effect that has important con-
sequences for some of the models discussed
later.

Experiment 2

Method

The study list consisted of IS items, and the test
list, of IS old and IS new items. Two intervening
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lists were required before any word could reappear.
The subjects were given 1 practice session (32 trials)
and were then tested for 12 further sessions, four
sessions at each of three presentation rates. Two sub-
jects, who had d' values of about 2.0, had rates of
.6, .9, and 1.5 sec/item, and the other two subjects,
who had d' values of 3 or greater, had rates of .6,
.8 and 1.2 sec/item (see Murdock, 1974, p. 273).

This experiment was reported by Murdock (1974).
It is presented here because rate of presentation ef-
fects are of particular interest and because further
analyses have been carried out.

Results

Latency and accuracy plotted against input
and output position show trends similar to
those found in Experiment 1 and are there-
fore not presented here. The effect of rate of
presentation on both accuracy and latency is
shown in Figure 5. It is interesting to note
that as rate of presentation decreases, ac-
curacy increases and there is a small increase
in latency. Also, Murdock (1974) reported
that slopes of the linear lag and output-posi-
tion/latency functions change little with rate
of presentation.

Experiment 3
Method

On each trial a list of L items was presented, and
then 2L items were tested (half old items and half
new). The number of lists per session was inversely
proportional to L; so for L — 4, 8, 16, 32, and 64 (a
between-sessions variable), the number of lists per
session was 128, 64, 32, 16, and 8, respectively. The

five subjects were each given a practice session fol-
lowed by four sessions per condition, 20 sessions per
subject in all. No word could be repeated until at
least two lists had intervened, and the presentation
rate was 1.2 sec per item.

Results

Since our main concern is with supraspan
lists, results from list lengths 16, 32, and 64
only are considered. Figure 6 shows mean
latency for high-confidence hits and correct
rejections as a function of output position for
the three list lengths. The main result is that
as list length increases, the slope of the
latency/output-position function decreases and
mean latency increases.

Experiment 4

Method

In this experiment there were two types of task.
The first was a standard study-test task having 24
study items—8 presented once (IP) and 8 presented
twice (2P) and thus 24 tokens and 16 types—and 32
test items (half old and half new). The second type
of task was a word-nonword discrimination task. A
list of 24 study items with the same composition as
in the study-test task was presented to the subject. A
displayed message then told the subject whether each
trial was a memory or word-nonword task. For the
word-nonword task, 32 test items were presented—•
half were the stimulus words and half were scrambled
versions of new words from the wordpool. The sub-
ject's task was to press the high-confidence new key
for a nonword and the high-confidence old key for
a word. There were 16 memory and 16 word-non-
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word randomly ordered trials per session, with 8
sessions preceded by one practice session.

The word-nonword task was used as a check on
encoding facilitation (Kirsner & Craik, 1971); thus,
if there was any encoding facilitation at test because
of the second presentation of the word, it would
show up in this task.

Results

Figure 7 shows both accuracy and latency
data for the memory test. An important re-
sult to notice is that for 2P items, accuracy
is higher and latency lower than for IP items.
In Figure 8, latency and accuracy are shown
as a function of output position for the word-
nonword task. It is interesting to notice that
this task exhibits a slope for latency plotted
against output position; this is examined
later. There is almost no difference in latency
for IP and 2P words in the word-nonword
task. This suggests that there is little encoding
facilitation and that the difference between IP
and 2P items in the memory task arises from
memory or decision processes.
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FIGURE 6. Mean latency of high-confidence hits and
correct rejections as a function of output position for
list lengths 16, 32, and 64 in Experiment 3. (Note
that the output-position blocking is different for the
three list lengths: for list length 16, blocks of 8; for
32, blocks of 16; and for 64, blocks of 32.)

AN EMPIRICAL MODEL FOE LATENCY
DISTRIBUTIONS

In most reaction time studies, the dependent
variable is taken to be mean latency. On the
basis of the model developed here, it will be
shown that in some cases this measure is in-
adequate and misleading. The alternative we
wish to suggest is the consideration of latency
distributions, which provide much more in-
formation than mean latency (see McGill,
1963).

In this section, three models are considered;
the method of fitting the models to the data
and estimating parameter variance is de-
scribed; and results of applying the best of
these models to the four experiments are
presented.

The Mathematical Models

Gamma Distribution

Gamma distribution has often been used
with some success in modeling time-dependent
processes (Anderson & Bower, 1973; McGill,
1963; McGill & Gibbon, 1965; Ratcliff, in
press; Snodgrass et al., 1967; Townsend,
1972). To fit the experimental data, the dis-
placed gamma distribution must be used be-
cause there is a delay in time (c) reflecting
encoding of the probe and response output.
The expression for this distribution is given by

/(O = (i)

For the parameter a taking integer values, the
second term is the convolution of a indepen-
dent, exponentially distributed, random vari-
ables each with rate parameter p. (For further
properties and discussion see Cox, 1962.)

Lognormal Distribution

This distribution has been used implicitly
in many reaction time analyses in psychology,
because a lognormal distribution is trans-
formed to a normal distribution by a loga-
rithmic transformation. This transformation is
used in the analysis of variance of reaction
time data to make the variance independent
of the mean.

Because the lower limit of this distribution
is pegged to zero, a displaced lognormal dis-
tribution (by c) must be used:
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where ln(t—c) is normally distributed with a
mean of — ln(l/£0) and a variance of I/T.

Convolution of Exponential and Normal
Distributions

This distribution was used by Hohle (1965)
to fit choice reaction time distributions, but it
seems to have been used little since. This dis-
tribution represents the situation in which
several of the processes have normally dis-
tributed latency functions (the convolution of
two normal distributions is another normal
distribution) and one process has an ex-
ponential distribution. The expression for the
convolution is

h(t) =

(3)

where /i and o-2 are the mean and variance,
respectively, of the normal distribution and r
is the parameter (and mean) of the exponen-
tial distribution.

Fitting the Models and Goodness-oj-Fit

The method of maximum likelihood was
used to fit the three models to the data and
obtain parameter estimates.

Let L(ff) = f ( x i , . . . ,*„, 0) be the joint
probability density function of the data sam-
ple Xi,..., xn with function parameters 8

n

(note that L(ff) = TJ /(*<,<?) for a random
»-i

sample). Then, the maximum likelihood esti-
mates $ are obtained by maximizing L(6), or
equivalently In L(6), with respect to 6. As a
check, this was done two ways for a few sets
of data: first by directly maximizing In L(6)
using the SIMPLEX routine (Nelder & Mead,
1965) and second by numerically solving the
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set of nonlinear equations (obtained by set-
ting the first derivatives of In L(6) with re-
spect to 9 equal to 0) using ZSYSTM
(Brown, 1969). The two sets of estimates
were identical, although the SIMPLEX
method was preferred because it had fewer
convergence problems and was cheaper than
the ZSYSTM method.

Only high-confidence responses were fitted,
and these were blocked by input and output
position so that no less than about 300 re-
sponses were used for parameter estimation,
except in the case of high-confidence misses
and false alarms. Responses longer than 2.S
sec were eliminated, although a check carried
out showed that the parameter estimates were
altered little and that parameter trends were
maintained (though goodness-of-fit became a
little worse with those responses included).
Individual subjects' data were fitted, and
averages over subjects were calculated on the
results of the fits to the individual data. This
is most important, because combining dis-

tributions results in a distribution that can
be quite different in shape from the original
individual distributions.

A x2 goodness-of-fit statistic was obtained
by blocking latencies into SO-msec steps and
forming

where k is the number of frequency classes
with expected value Et greater than S (for Ei

less than 5, the frequency classes were grouped
and degrees of freedom reduced appropriately)
and Oi is the observed number of responses in
class i. The number of degrees of freedom
was k — 4, as three parameters were fitted for
each model. Table 1 contains values of x2

from a nonsystematic sample of fits of the
three models to data from Experiments 1
and 4.

It can be seen that the gamma distribution
is clearly inferior to the convolution and log-
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normal distributions, with the convolution
being slightly better than the lognormal. Even
though the fits of the convolution are better
than the fits of the other two distributions,
they often give statistically significant x2

values. Three things can be said about the x2

values being significant. First, if the sample
size is reduced to about 100, as for misses
and false alarms, then nonsignificant values
of x2 would be obtained, but parameter trends
would be more noisy. Second, blocking over a
range of input and output positions means
that the resulting distribution is a combina-
tion of latencies with differing parameters, and
so an inflated value of x2 may be expected.
Third, average response time decreases over
the course of testing (Burrows & Murdock,
1969), which again leads to an inflated value
of x2 because the distribution will be a com-

bination of latencies with different param-
eters.

Maximum likelihood estimators have nice
asymptotic (large sample) properties. There
is a theorem (Wilkes, 1962) that states that
6 (the estimates of 6) are asymptotically dis-
tributed Nid,!'1) under certain regularity
conditions, where / is the information matrix
with elements

For the convolution model, the diagonal ele-
ments of I'1 provide variance estimates of /*,
<T, and T, and these estimates allow statistical
comparisons to be carried out.

Table 2 contains a comprehensive sample of
standard deviation estimates for values of /x,
a, and r obtained in Experiments 1 through 4.

TABLE 1

COMPARISON OP x2 VALUES BETWEEN MODELS

Response

Input Output
posi- posi-
tion11 tiona

Convolution

x2 df

Lognormal Gamma

xa

Experiment 1, Subject 1

Hit

Miss

1
1
2
2
1
1
2
2

1
2
1
2
3
4
3
4

38.9
40.7
20.9
37.9

5.3
5.2
3.9
4.4

11
12
9

11
6
3
6
5

35.1
13.6
28.5
44.0

5.0
3.0
3.9
2.0

11
11
9

10
5
3
6
5

124.9
61.5
43.9
44.1

7.1
6.2
6.5
7.4

12
11
9

10
6
3
5
5

Experiment 4, Subject 3

Hit (lP)b

Correct rejection

Word, hit (IP)

Nonword, correct rejection

1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

18.9
14.2
25.0
50.4
56.9
26.8
36.5
35.2

2.6
19.7
19.4
28.2
17.3
24.4
49.2
42.0

8
8
9

11
13
13
14
16
7
7
8
8
9
8

10
10

13.5
14.1
47.8
56.4
37.0
13.4
24.5
39.2
36.4
49.2
25.6
32.0
21.7
30.9
51.5
41.1

7
8

10
12
11
12
13
15
7
7
8
8
9
8

10
10

43.2
38.0
53.0
89.0
84.2
46.4
60.2
74.0
11.9
27.7
39.8
38.3
69.3
60.3

122.6
81.3

8
8
9

12
12
13
13
16

7
7
8
8
9
8

10
10

Input and output position are blocked by eights.
IP indicates item was presented once.
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TABLE 2

ASYMPTOTIC STANDARD DEVIATION ESTIMATES" FOR
A RANGE or PARAMETER VALUES WITH

SAMPLE SIZE 300b

.500

.500

.500

.500

.500

.500

.500

.500

.500

.600

.600

.600

.005

.007

.008

.006

.008

.009

.007

.009

.010

.008

.009

.010

.030

.030

.030

.040

.040

.040

.050

.050

.050

.040

.040

.040

.004

.006

.007

.005

.007

.009

.006

.008

.009

.006

.008

.009

.100

.200

.300

.100

.200

.300

.100

.200

.300

.200

.300

.400

.007

.013

.019

.008

.014

.019

.009

.014

.020

.014

.019

.025

Note. An independent check to see if the variance estimates
were reasonable was carried out. If 7 were made large relative
to ir, then the distribution would approximate an exponential,
and s, = T. For r = 1.0 (<r = .03. N = 1). s, = 1.027, and for
T = 1.5 (<r = .03, 2V = 1), s, = 1.527 (where N is the sample
size).

a These estimates are square roots of the asymptotic variance
estimates.

b To obtain values for sample size N, multiply s by V300/W.

Results of Applying the Convolution to the
Experimental Data

In this section, only high-confidence hit,
miss, correct rejection, and false alarm la-
tencies are analyzed, and unless otherwise
noted, average parameter trends for the group
of subjects are representative of each indi-
vidual. Note that any statistical tests on ju,
a, and T can be carried out using the standard
deviations presented in Table 2.

Experiment 1

In Figure 9 are shown histograms of latency
distributions plus fits of the convolution for
hits, misses, and correct rejections for Sub-
ject 4. (Hits and misses are blocked in two
groups of input positions. Hits, misses, and
correct rejections are all blocked in four
groups of output positions.) There were too
few false alarms to permit fitting, although for
other subjects, the trends were the same for

HITS, I/P 1-8 HITS, I/P 9-16 CORRECT REJECTIONS MISSES

0/P 1-8
1/P 1-8

X 2 = 3.6, d f = 9

0/P 9-16
I/P I -8

X 2 - - 16.0, df * 10

0 -j 10 10 15 05 10 1 5

LATENCY(SEC]
05 10 1 5

FIGURE 9. Empirical and fitted latency distributions for Subject 4, Experiment 1.
(I/P = input position; 0/P = output position.)
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hits, misses, and correct rejections as shown
in Figure 9. These results show that the lead-
ing edge and mode of the distribution change
little with output position, and that change in
mean latency (Figure 4) comes from a greater
number of slower responses. In Figure 10, it
can be seen that these two effects are mir-
rored in group average parameters of the con-
volution. The mean of the normal /j, increases
a little with output position, and this cor-
responds to the behavior of the leading edge
and mode, whereas the exponential parameter
r gives the main contribution to the change in
mean latency. Table 3 shows values of x2 for
Subjects 1, 2, and 3 for hits, misses, and cor-
rect rejections over the range of input and
output position blocks. These parameter
trends, which are present in data from all the
experiments, provide much of the justification
for use of the convolution. Also, it is these
trends that turn out to be very important in
criticizing various models of the underlying
processes.

HITS CORRECT REJECTIONS

INPUT POSITION 1 INPUT POSITION 2

3 4 1 2 3

OUTPUT POSITION

(/> 06
O
2 05
O
a 04
in
x 03
O

Z 02
LU
h-
< O.I
_j

0

CORRECT REJECTIONS

.

_— o— — -or

A
T T j i

2 3 4

OUTPUT POSITION

FIGURE 10. Distribution parameters for hits, misses,
and correct rejections as a function of input and out-
put position for Experiment 1. (Note that there is a
weak effect of output position on ju; the average
slope of a linear least squares fit on /i for hits and
correct rejections combined is 1.1 msec/item.)

0 I

06

05

04

03

02

01
tn
0 06

(J 05

^ 0 4
Z 03
LU

fet 02

-1 o i

06

05

04

03

02

n i

; -_-— ...
FAST PRESENTATION RATE

:^r~
: — — -

: ?^rr<

MEDIUM
PRESENTATION RATE

i i i i

, . « •

i i i i

-
SLOW PRESENTATION RATE

i i i i
- ^— *

1 2 3 4 1 2 3 4

OUTPUT POSITION

FIGURE 11. Distribution parameters for hits and
correct rejections as a function of rate of presentation
and output position for Experiment 2. (Note that
the average slope of a linear least squares fit on p, as
a function of output position for hits and correct
rejections combined is .9 msec/item.)

Experiment 2

As in Experiment 1, change in the exponen-
tial parameter T with output position is
mainly responsible for the change in mean
latency. Figure 11 shows that both p. and r
increase a little as rate of presentation de-
creases.

Experiment 3

Figure 12 shows that changes in list length
produce changes in both /j. and T, although the
rate of change of r with output position de-
creases as list length increases. As before,
change in mean latency with output position
is mainly attributable to changes in r.

Experiment 4

A sample of fits of the convolution and
histograms of the latency distributions for
both memory and word-nonword trials are
shown in Figure 13. These indicate that the
convolution is adequate for both 2P memory
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TABLE 3

X2 GOODNESS-OF-KlT STATISTICS FOR SUBJECTS 1, 2, AND 3 OF EXPERIMENT 1, BY INPUT AND OUTPUT POSITION

Input
posi-

Response tiona

Hit 1
1
1
1
2
2
2
2

Correct rejection —
—

——
Miss 1

1
1
1
2
2
2
2

False alarm — •

—— .
— •

Output
posi-
tion14

1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

Subject

X*

38.9
40.7
S5.1
27.2
20.9
37.9
41.0
63.S

100.6
S0.3

116.7
80.7
6.8
2.4
5.3
3.9

—
—5.2
4.4
4.8
3.9

14.4
4.9

df

11
12
13
13
9

11
13
14
16
17
19
20
3
4
6
6

—

—
3
S
5
8
8
7

l

N

615
642
633
648
609
714
661
636

1207
1273
1252
1246

66
78
92
97
33
52
75
95
98

134
134
111

Subject

X'

17.0
32.2
17.4
16.3
17.9
16.6
25.7
28.9
31.6
83.8
72.9
97.1

7.4
7.1
7.9

11.9
10.6

7.7
16.3
37.5
8.2

—
.2

—

df

12
13
15
14
11
13
13
13
15
17
20
21

5
9

10
11
5
9

10
13
3

—
1

—

2

N

472
470
433
410
516
451
368
353

1121
1284
1240
1225

102
152
173
202

87
157
190
232
61
44
64
49

Subject

x!

66.7
39.9
81.2
60.5
40.1
97.0
55.0
58.4
45.1
85.7
52.2
78.9
—
—
—
—
—
—
—
—
—
—
—
—

df

14
14
15
16
13
15
14
16
19
21
20
21
—
—
—
— .
—
—
—
—
—
—
—
—

3

N

615
700
739
738
675
738
745
688

1223
1399
1368
1421

12
12
8

14
4
4
6

17
8

12
7
2

Note, x1 values for Subject 4 can be found with the histograms in Figure 9.
• Input and output position are blocked by eights.

responses and word-nonword responses. Fig-
ure 14 contains graphs of convolution param-
eters plotted against output position. These
show that 2P items are responded to more
quickly than IP items in the memory task,
with the difference being mainly in r.

Also, 2P words are responded to more
quickly than IP words in the word-nonword
task—again, with the difference being mainly
in r. Most of the increase in mean latency
with output position is reflected in the change
in r in this latter task. Thus we should not
assume that all of the 5 msec/item slope in
the memory task comes solely from changes in
memory or decision processes.

SUMMARY OF RESULTS AND EMPIRICAL
METHOD

In the first section, standard analyses of re-
sults from four experiments were presented;
in the second section, an empirical model for
latency distributions was developed and the
four experiments were then analyzed using
the model. In this section, a summary of the

experimental results in terms of both standard
analyses and the model is presented. This
summary takes the form of a series of graphs
(see Figure IS) of the various independent
variables, as well as the following functional
relationships:

1. In general, hits are faster than cor-
rect rejections, with the difference being much
less than the spread of the distributions.

2. Changes in latency with input and out-
put position are mainly changes in r in the
model.

3. Changes in latency between IP and 2P
items (Experiment 2) are mainly changes in r
in the model.

4. Changes in latency with list length are
changes in ^ and r in the model.

We wish to propose that the convolution of
normal and exponential distributions (where
the fit is reasonable) provides an excellent
summary of reaction time distributions for
three reasons. First, the parameters ^ and ^
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FIGURE 12. Distribution parameters for hits and
correct rejections as a function of rate of presenta-
tion and output position for Experiment 3. (Note
that, as before, output-position blocking is different
for the three list lengths — larger blocks for the longer
lists.)

mirror properties of distributions that seem
important in evaluating models and theories —
namely, leading edge (or minimum reaction
time) and spread (or variance). For ex-
ample, a change in /x is consistent with a stage
insertion model, and a change in r (but not /n)
is consistent with models that postulate a
proportion of responses being slowed. Second,
any required properties of the data, such as
mean, variance, or mode, can be calculated
quickly and cheaply (albeit approximately),
and thus rapid assessments can be made. This
is particularly easy for moments, for it is
well known that the mean and variance of a
sum of independently distributed random
variables (the distribution function being the
convolution of the individual distribution
functions) are equal to the sums of the means
and variances of the component variables.
Third, if a viable model of the processes
under consideration is developed, then it is a
simple matter to fit the convolution to that

model and check whether the convolution pa-
rameters from the model behave in the same
way as do parameters from the data.

THEORIES or RECOGNITION MEMORY
LATENCY

In this section, several theories of recogni-
tion memory that deal with latency are ex-
amined using the functional relationships sum-
marized in the last section.

In much of the work on recognition-mem-
ory latency, it is not often stated explicitly
which theoretical processes produce observed
differential latency effects. By differential la-
tency effects we mean changes in latency as a
function of experimental variables such as in-
put or output position, list length, or rate of
presentation. To highlight how the theoretical
processes produce such empirical effects, each
theory will be analyzed in terms of a simple
stage model, as shown in Figure 16. It should
be noted that such a model with independent
stages is more than likely a gross oversimpli-
fication, but on the basis of our criticisms of
existing models, it provides a useful frame-
work for comparison of theories.

Conveyor Belt Model

In the conveyor belt model (Murdock,
1974; Murdock & Anderson, 197S), the con-
secutively presented stimulus items are en-
coded and stored with their serial order main-
tained. Upon presentation, the probe is en-
coded and compared with the most recent
item in the list. If the match is not successful,
then the next most recent item is examined.
This process continues until a match is found,
in which case a yes response is made, or until
the end of the list is reached, whereupon a no
response is produced. Note that both study
and test items are scanned. To incorporate
confidence judgments (and very slow re-
sponses), it is assumed that the result of the
best match to date is stored in a register. If
no match has produced a result above a posi-
tive response criterion (cu) leading to a high-
confidence yes response, then the contents of
the register are examined; if the result in the
register is below a negative criterion (cz), then
a high-confidence no response is made. Other-
wise, the criteria are made less strict (c;

raised and cu lowered) and a second search
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FIGURE 13. A sample of empirical and fitted latency distributions for Subject 3, Experiment 4.
(0/P = output position; IP = presented once.)

takes place, which gives rise to intermediate-
confidence responses. Thus, accuracy enters
through the matching process: the greater
the difference between the stored trace and
the probe, the more likely a low-confidence
or a no response.

In terms of a stage model, all changes in
latency with input and output position are a
result of the number of times the memory-de-
cision loop is executed (Figure 16). Thus, ac-
curacy and latency effects arise from different
stages in the process. The conveyor belt model
is successful in dealing with relationships be-
tween latency and confidence judgments (Fig-
ure ISa), with the linear latency-input and
latency-output position functions (Figure
ISb), and with the relationship between la-
tency and rate of presentation of the input
list (Figure 15d). Also, the conveyor belt
model does a good job in dealing with a wide

range of other results—for example, judg-
ments of recency (Murdock, 1974), subspan
lists (Murdock & Anderson, Note 4), and
forced choice data (Murdock & Anderson,
1975). Thus, this model provides a frame-
work that accommodates a large body of re-
sults. However, some of the functional rela-
tionships shown in Figure 15 do present prob-
lems for the model. For example, the model
provides no reason why the slopes of the la-
tency-input and latency-output position func-
tions decrease with increasing list length (Fig-
ure IS f ) . Also, the model is not designed to
deal with stimulus items presented more than
once (Figure 15e), and it is incapable of ex-
plaining the primacy effect (Figure 15c).
Furthermore, we run into very serious prob-
lems when attempting to apply the conveyor
belt model to properties of latency distribu-
tions, as shown in the following paragraphs.
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Fixed rate scanning. In this subclass of
models, it is assumed that scanning rate is
constant at, for example, about 5 msec per
item for 16-item lists. It has been shown
(through the functional relationships and in
Figure 9) that the fastest responses at all in-
put and output positions are approximately as
fast. Consider the latency distributions for
lags 5 and 45: The fastest responses at lag
5 must be 200 msec faster than the fastest re-
sponses at lag 45 (40 items scanned X 5
msec/item). This contradicts the empirical
findings.

Variable rate scanning. To attempt to over-
come this contradiction, let us allow the
scanning rate to be variable by giving the
time for an individual scan a probability dis-
tribution, so that some sequences of scans can
be very fast and produce rapid responses. A
simple (and perhaps extreme) distribution for
scanning time is the exponential distribution
with a mean of 5 msec. In scanning n items, it
is reasonable to assume that as soon as each
scan ends, the next begins, so that the result-
ing probability distribution function is the
convolution of n exponential distributions.
This results in a gamma distribution with pa-
rameter n and rate parameter .2/msec. For
lag 5, the gamma distribution has a mean of
25 msec and a standard deviation of 11.2
msec; for lag 45, the gamma distribution is
approximately normal, with a mean of 225
msec and a standard deviation of 33.5 msec.
Thus, at lag 45, the fastest response (for
sample size 500, say) would be 125 msec
(225 msec - [3X33 .5 msec]). Therefore,
the variable rate scanning model reduces the
difference in leading edges of latency distribu-
tions at large and small lags, but not by
enough to be consistent with the empirical
results.

Thus, we have shown that an analysis of
latency distributions poses very serious prob-
lems for a class of otherwise acceptable
models, namely, serial scanning models.

Strength Theory

Strength theory (Norman & Wickelgren,
1969; Wickelgren & Norman, 1966) was pri-
marily developed to deal with accuracy data
and to provide measures that would eliminate
response criterion biases. Information in mem-
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FIGURE 14. Distribution parameters for hits and
correct rejections as a function of rate of presenta-
tion and output position for Experiment 4. (IP =
presented once; 2P = presented twice.)

ory is represented by normal distributions,
with old items being stronger than new items
on the average. In recognition, the subject
has automatic access to the test item and
considers only the memory trace strength.
This strength is then compared to a criterion,
a yes response being produced if the criterion
is exceeded and a no response otherwise. The
decision rule comes originally from signal de-
tection theory (see Figure 17). As time
passes or as interference builds up, forgetting
occurs, and the old item distribution gradually
drops back to its initial resting level.

Strength theory can handle many results
from simple experiments on recognition mem-
ory, from yes/no and confidence judgment
procedures to w-alternative forced choice pro-
cedures. However, as argued earlier, this is not
a strong test of strength theory because the
same results can be predicted from a variety
of underlying trace distributions (Lockhart &
Murdock, 1970) and also from completely
different representations of information in
memory (Bernbach, 1967; Bower, 1972;
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FIGURE IS. Functional relationships derived from Experiments 1-4. (Note that relationships
(b) through (f) are for high-confidence responses only.)

Kiritsch, 1967). Therefore, it appears that
much of the success of strength theory comes
from the use of signal detection theory.

Several types of data are not adequately
predicted by strength theory. Judgments of

frequency and judgments of recency are two
examples that have been examined in some
detail by Wells (1974). A major problem with
strength theory is that it is ahistorical, that is,
it is not based on the past history of occur-
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RESPONSE")

FIGURE 16. A simple stage model indicating the
memory-comparison process and decision.

rences of items. Anderson and Bower (1972)
raised serious doubts about this theory by
showing that memory is capable of much
finer discriminations in list identification and
discrimination experiments than such a simple
strength theory would allow.

A major finding that relates "strength" to
latency is the result that latency of response
decreases as confidence (which reflects
strength) increases. Thus it is assumed that
extreme values of strength give rise to short
latencies (see Figure 17), and so in terms of
our stage model (Figure 16), all differential
latency effects result from processes occurring
in the decision stage. The assumption that
latency depends on the difference between the
criterion and the strength of the item causes
serious problems when applied to the accuracy
and latency-input and latency-output position
functions (Figure ISb).

To map from accuracy (strength) to la-
tency for high-confidence hits, an approxi-
mately logarithmic transformation is required.
(Hits appear to decrease roughly exponen-
tially, and latency is roughly linear with input
and output position; see Figure ISb.) If this
transformation is applied to the nearly flat
accuracy function for high-confidence correct
rejections, then a linear latency-output posi-
tion function with the same slope as for hits
is not obtained. Evidence from confidence
judgment procedures implies that this trans-
formation should be nearly symmetric (Mur-
dock & Dufty, 1972; Norman & Wickelgren,
19,69). This implies that simple strength the-
ory cannot account for the linear latency-
output position functions. Even if the theory
could account for these functions, it would
still run into problems with latency distribu-

tions. Suppose, following Murdock and Dufty
(1972), that a logarithmic transformation
maps strength to latency; it is difficult, if not
impossible, to get reasonable looking distribu-
tions for both error and correct responses with
the same parameter values.

As rate of presentation of study items de-
creases, then the strength of those items
increases, and this is mirrored in accuracy in-
creasing. If the strength-latency relation de-
scribed above holds (distance from the cri-
terion), then latency should decrease as rate
of presentation decreases. Experimentally,
however, this is not found to occur (see Fig-
ure ISd).

Murdock and Dufty (1972) performed a
yes/no recognition memory experiment in
order to test the prediction of strength theory
that the variability in latency of error re-
sponses should be less than the variability in
latency of correct responses. This prediction
failed—correct responses were less variable in
latency than error responses.

Therefore, a simple strength model of recog-
nition latency seems untenable.

Atkinson and Juola Model

It must be stressed from the outset that the
Atkinson and Juola model (Atkinson & Juola,
1973; Atkinson, Herrmann, & Wescourt, 1974)
was developed to account for results from an
experimental paradigm employing premem-
orized lists and that this paradigm is some-
what different from the study-test paradigm
considered so far.

STRENGTH (s) 'STRONG)

FIGURE 17. The relationship between trace strength
and latency in a strength theory.
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For response accuracy and latency, this
model assumes that the subject makes either
a fast response based on the familiarity of the
test item or a slower response based on an
extended search of memory if the familiarity
is neither low nor high. In the best fitting
submodel, the latency for a fast response is
independent of familiarity, as long as familiar-
ity of the test word is outside the two criteria.
Therefore, this submodel cannot deal with
latency distributions unless further assump-
tions are included. In the second best fitting
submodel, an exponential function mapping
familiarity to latency was used. From this,
predictions of the form of the latency dis-
tributions can be made, but these turn out to
have the same problems as noted for strength
theory.

In a footnote, Atkinson et al. (1974, p.
116) state that the latency distributions in
their experiments are bimodally distributed,
reflecting fast responses and a slow memory
search. In the experiments reported here,
using the study-test paradigm, all observed
high-confidence distributions are unimodal. It
seems reasonable to suppose that the lower
confidence judgments, which have relatively
long response latencies, involve extra pro-
cessing—such as a slow memory search of the
partly learned material. Therefore, high-con-
fidence responses can be assumed to include
all fast responses based on familiarity in the
Atkinson and Juola model, together with too
few slower memory searches to produce bi-
modality. However, because there is no learned
memory set, it is possible that a memory
search strategy is not used and that all re-
sponses are based on familiarity. If this is so,
the version of the Atkinson and Juola model
thus derived is isomorphic to the strength
model.

In terms of the stage model (Figure 16),
there are two memory stores in the Atkinson
and Juola model: a conceptual store and an
event knowledge store. Information from the
conceptual store is fed into the decision sys-
tem, at which point a fast response is made
if familiarity is extreme or else the event
knowledge store is searched. Therefore, it can
be seen that differential latency effects can be
due first, to the temporal properties of the de-
cision system, second, to the relative number

of fast responses and memory searches, and
third, to the properties of the memory search.
Thus, this model has more degrees of freedom
than either the conveyor belt model or
strength theory.

It seems that Atkinson et al. (1974) would
like to have their model apply to lists not
prememorized (footnote, p. 113), and so on
this basis we shall evaluate the applicability
of this model to the study-test paradigm. In
the model used by Atkinson et al. (1974), fast
responses have constant latency. So if it is as-
sumed that high-confidence responses are fast
because of the item's familiarity, then the
linear increase in latency with output position
for high-confidence responses cannot be ex-
plained (Figure ISb; see also Homa & Fish,
1975, for a discussion of lag effects). Follow-
ing Atkinson et al. (1974, footnote, p. 113),
let us suppose that errors can be made in the
memory search in dealing with items not pre-
memorized. This would account for errors
being slower than correct responses if a
greater proportion of errors came from the
memory search. In this case, the linear out-
put position-latency function for high-confi-
dence correct rejections could not be predicted
at the same time as the relatively flat ac-
curacy function for correct rejections (Fig-
ure 15b).

A similar contrast can be found in attempt-
ing to explain the primacy effect and the effect
of number of stimulus presentations together
with the presentation rate effect (Figures ISc,
ISe, and I5d, respectively). If only fast re-
sponses with constant latency contribute to
high-confidence correct responses, then la-
tency should be constant with increasing rate
of presentation (familiarity and accuracy de-
creasing)—but then no primacy effect or de-
crease in latency with increasing number of
stimulus presentations would be expected. If,
on the other hand, there are slow memory
searches involved, then the primacy effect and
the effect of the number of stimulus presenta-
tions can be predicted, but constant latency
over a range of stimulus presentation rates
can not. Thus, the Atkinson and Juola model
has problems similar to those of simple
strength theory.
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LIST-K

HAS-AS-
PARTS

FIGURE 18. The memory representation of the input
list, as conceived in the model of Human Associative
Memory.

Human Associative Memory

Although Anderson and Bower (1974) have
presented a more up to date version of their
propositional theory of recognition memory,
they did not attempt to account for latency
effects in that article; thus the following eval-
uation deals with their original HAM formula-
tion (Anderson & Bower, 1973). Even this
formulation only deals explicitly with pre-
memorized lists, so it is not directly applicable
to the study-test paradigm. However, in many
of the experiments reported in the present
article, the hit rate was 80%-90%, so the
study-test paradigm should converge to the
prememorized list paradigm.

In HAM, the items in the study list are
encoded in propositional form, as shown in
Figure 18. For example, presenting the test
item C is equivalent to constructing and prof-
fering the probe "List-K, Has-as-parts C?"
HAM then attempts an all or none match of
that probe to memory. The matching process
begins the search simultaneously from the
three entry nodes "List-K," "Has-as-parts,"
and "C." A no response is produced if an un-
successful match from any of the three entry
nodes occurs. When the negative probe has
not been used previously in the experimental
context, instances of it will be linked to other
preexperimental propositions. If these are ac-
cessed, then immediate falsification occurs. In
order to obtain a match from "List-K" or
"Has-as-parts," the processes beginning from
these nodes have to search the whole object
conjunction. If a match is found, then a yes
response is made. Therefore, this model pre-
dicts that no responses must take longer than
yes responses unless encoding decision or re-
sponse output times are different in the two
cases. From "List-K" and "Has-as-parts"

there are 5 + 2k links to be searched, and
from "C" there are 7, k being the memory
set size. Thus, the overall search rate param-
eter for the fastest of a three-way race is
1/(S + 2k)a + 1/(S + 2k)a + I/la, where a
is the time to search one association. Thus, for
a hit response, the mean latency is

Tk = KT + | E 7(5 + 2i)/(19 + If), (4)

and for correct rejections the mean latency is

Fk = KP + o[7(S 2*)], (5)

where KF and KT are constants reflecting en-
coding, decision, and response output. When
Equations 4 and 5 are applied to Atkinson
and Juola data, the resulting fits are as good
as the fits of the Atkinson and Juola model
(Anderson & Bower, 1973, p. 377).

Because of lack of development, the HAM
model has several weaknesses when applied
to partly learned material. When a node is
searched for a particular type of association,
then a serial search is carried out on a list of
nodes (GET-list), each having the required
relationship to the initiating node. The only
mechanism for forgetting in HAM is a stop
rule associated with depth of search or time
of search through the GET-list. Anderson and
Bower (1974, p. 408) indicate that this may
be inadequate: "However, some of the asso-
ciations in Figure 2 ["Memory representation
of propositions formed upon the appearance
of the word dog in List N"] may not have
been formed in the time allotted for study in
a typical experiment (or may be unavailable
at the time of testing)." This implies that
sometimes items may not be encoded and
sometimes access to a proposition may be lost
for reasons other than the association disap-
pearing down the GET-list. Thus, it is prob-
ably wise to reserve judgment on the model
where criticisms involve these two processes.

In terms of the stage model (Figure 16),
all the differential latency effects are localized
in the memory stage. Decision appears to be
an automatic process occurring along with the
search processes.

The HAM model can predict input-position
effects if it is assumed that the search from
"List-K" and "Has-as-parts" is backward-se-
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rial through the object conjunction (Figure
18). This means that Equation 4 has to be
modified so that the upper limit of summation
is (list length) + 1 — (serial position of the
item). Using a value of 46 msec for a (Ander-
son & Bower, 1973, p. 375), the time to
search an association for the Atkinson and
Juola data, an input-position effect of 2 S — 17
msec/item for input positions 1-16 is found.
This effect is not too different from a linear
latency/input-position function but is too
large by a factor of about 5. If some random
entry were allowed, then this figure might be
reduced to the 5 msec/item found in the
study-test paradigm. If the search processes
have exponentially distributed latencies (An-
derson, 1974) and if we introduce normal dis-
tributions for encoding, decision, and response
output, then the response time distribution
turns out to be a normal distribution con-
voluted with an exponential distribution. A
very important property of the model formu-
lated this way is that increases in mean la-
tency with input position are reflected in
changes in the rate parameter of the exponen-
tial alone. Therefore, as was found empiri-
cally, the leading edge of the distribution re-
mains in about the same place while mean
latency increases.

In both Anderson and Bower (1973, p.
364) and Anderson (1974), it is assumed that
the time to traverse, sequentially, n links in a
HAM associative structure is exponential with
rate parameter 1/na, where a is the time to
search a single link. This is counter to notions
of sequential processing (Cox, 1962), as in-
dependence is usually assumed and the dis-
tribution is gamma with parameter n and rate
I/a. Anderson (1974) states that the only rea-
son for the assumption of an exponential dis-
tribution for the conjunction is mathematical
tractability and that this assumption is not
critical when dealing with mean reaction time.
It seems likely that these two distributional
assumptions could be tested using properties
of reaction time distributions and that the re-
sults of such testing would have implications
for our earlier discussion of distributional
properties in the HAM formulation of the
study-test paradigm.

HAM is also capable of dealing with the
following effects: (a) rate of presentation ef-

fects—because the time to search the memory
structure is independent of encoding time;
(b) number of stimulus presentations—be-
cause, for an item encoded twice in the list,
the process becomes a four-way race with rate
increased by l/7a, and therefore, twice-pre-
sented items should have faster response times
than once-presented items; and (c) decrease
in slope of the latency-input position function
with increasing list length—because if list
length increases, there are more elements to
search in the list and therefore the relative
change in latency with input position is
smaller.

Although the HAM model is capable of
producing acceptable latency-input position
and distributional functions, it is incapable of
producing similar output-position functions.
For, in this model, the test list is independent
of the study list, which means that latency is
predicted to be independent of output posi-
tion. Also, the HAM model has no way of
dealing with confidence judgments, for most
of the processes in HAM are all or none, with
no memory trace strength or equivalent at-
tribute. Thus, it is difficult to see how errors
can arise from the processes proposed, but as
was noted earlier, extra processes may be
added to the model to overcome these dif-
ficulties.

SUMMARY OF RECOGNITION MEMORY
LATENCY THEORIES

Four major models have been examined—
namely, simple list scanning, strength theory,
a strength and search model, and a preposi-
tional model. It seems that each of these has
major problems in dealing with latency dis-
tributions and with some of the functional re-
lationships shown in Figure IS. These prob-
lems are summarized below.

Conveyor belt model. The major problem
with this model is that its specific predictions
about latency distributions are wrong. Be-
sides this, the model cannot predict the pri-
macy effect, and it is not designed to deal
with double presentation of stimulus items. In
terms of a stage model (Figure 16), all dif-
ferential latency effects (input position, out-
put position, and confidence judgment effects)
are a result of the number of times the mem-
ory-decision loop is executed.
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Strength theory. A simple strength model
assumes that extreme values of strength give
rise to fast responses. As discussed earlier, a
model with such a single accuracy-to-latency
(i.e., strength-to-latency) mapping can not ac-
count for (a) the shape of latency distribu-
tions for correct and error responses simul-
taneously, (b) both high-confidence accuracy
and latency results for hits and correct rejec-
tions, or (c) rate of presentation effects. In
this model, access to memory is automatic,
with differential latency effects occurring in
the decision stage and no decision-to-memory
return loop.

Atkinson and Juola model. In this model,
the subject makes a fast response if the
familiarity of the item is extreme; otherwise,
he makes a slower response based on an
extended memory search. As with simple
strength theory, high-confidence latency and
accuracy results for hits and correct rejections
cannot be explained together, and reasonable
latency distributions cannot be produced. If
the model is adjusted to predict constant la-
tency with rate of presentation, it cannot pre-
dict a difference in latency between once- and
twice-presented items. In terms of a stage-
model representation, there are two separate
memory stores. Differential latency effects can
enter at the decision stage or in the slow mem-
ory search, or they can be related to the ratio
of fast responses to slow memory search re-
sponses. Therefore, there are many more de-
grees of freedom in this model than in the
other models considered in this section.

Human associative memory. This is perhaps
the least well developed model for dealing
with latency in a study-test paradigm, but it
seems to hold the most promise for account-
ing for empirical results. It seems that Ander-
son and Bower (1974, p. 408) wish to in-
clude some further mechanism for forgetting,
in which case the problems raised here may
provide a good test of the adequacy of such
an addition. The model predicts input-position
effects (serial-position effects) and produces
distributions that are of the same shape and
vary with input position in the same way as
the empirical distributions. Also accounted for
are effects on latency of number of stimulus
presentations, rate of presentation, and list
length. At this stage, the model cannot deal

with output-position effects, confidence judg-
ments, or errors, and it predicts that correct
rejections should always be significantly
slower than hits. In terms of a stage model, all
differential latency effects occur in the mem-
ory search stage.

DISCUSSION

Attempts to develop models of recognition
memory have not utilized the information
contained in latency distributions. For any
model to be a reasonable approximation to
the truth, it should, at least, account for re-
sults obtained from considerations of latency
distributions. We have shown that a knowl-
edge of distributions is necessary before con-
clusions can be drawn about serial scanning.
We have also warned that even if serial scan-
ning does occur in a paradigm under con-
sideration, there may be other processes going
on. Thus, we urge experimenters, at the least,
to be aware of how their latency distributions
change with the experimental variables, even
if no further analysis is carried out. Similarly,
we urge theoreticians to look at the distribu-
tions predicted by their models in order to
avoid developing theories that are contra-
dicted by more rigorous analyses of experi-
mental data.

The method we have proposed uses an ex-
plicit probability function to serve as a sum-
mary of the empirical data. There are several
advantages in using this method. First, the
distribution parameters directly represent two
properties (namely, minimum response time
and spread of the distribution) that seem im-
portant in evaluating models and theories.
Second, distributional properties such as
mean, variance, and mode can be calculated
quickly and cheaply. Third, if a theoretical
model of the processes is developed, then it
is simple and convenient to fit the convolution
to that model and compare this fit with the
fit of the convolution to the data.

We shall now attempt to bring together the
more promising aspects of several of the
models discussed earlier and see whether this
points the way to development of a model
that can deal with latency distributions and
with the functional relationships (Figure IS).
It seems that most reasonable models of rec-
ognition memory employ the decision mecha-
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nism of signal detection theory, but the argu-
ments against strength theory suggest that it
is likely that more complex processing than
simple direct access is occurring, such as
memory search processes. There is one im-
portant issue we have not considered in this
article, and that is the speed/accuracy trade-
off (Pachella, 1974). In the present experi-
ments we believe we have been addressing
situations in which forgetting processes affect
recognition performance (situations in which
both speed and accuracy generally decrease)
rather than speed versus accuracy situations
in which speed is traded off for accuracy.

What can be said about the way in which
the stimulus items are stored in memory and
the retrieval processes employed? It seems at
the moment that there is no clear concensus
as to the form of stored information or the
types of retrieval processes. Tulving (1972)
maintains a distinction between semantic and
episodic memory stores, and in such a view
the list would be stored in episodic memory.
Explicit models for this view have been de-
veloped by Murdock (1974) and Kintsch
(1974). Anderson and Bower (1974), on the
other hand, suggest that episodic memory is
simply a tagging of nodes in semantic memory
to form some kind of prepositional representa-
tion. Collins and Quillian (1969), Shiffrin
(1970), and Estes (1972) have all developed
models that employ the notion of control ele-
ments so that items are organized with respect
to some superset tag. Rumelhart, Lindsay,
and Norman (1972), Norman and Rumelhart
(197S), and Schank (1973) have developed
important models that all have a proposi-
tional memory structure, but these have not
been applied to item learning situations, so
their suitability cannot be assessed. Foss and
Harwood (197S) claim that theories based on
association (such as HAM) are fundamentally
inadequate and that Gestalt information must
be included in any memory model. Smith,
Rips, and Shoben (1974) make the even
stronger claim that a graph structure is the
wrong framework from which to view se-
mantic memory. They see it as more reason-
able to suppose that concepts lie in some ab-
stract semantic space and that response times
reflect set overlap.

What about retrieval processes? Murdock
(1974) has presented the backward-serial
scanning model to account for retrieval from
episodic memory. Anderson and Bower
(1974), Anderson (1974), and Thorndyke
and Bower (1974) have all considered pos-
sible search processes in sentence memory and
have come to the conclusion that simultaneous
entry search into a HAM-like structure fits
the data best. Foss and Harwood (1975)
make a case for conjunctive nodes in which
a node acts as a logical AND-gate; that is, the
path from the node can only be traversed
when the node receives two simultaneous in-
puts. Smith et al. (1974) use a feature match-
ing version of the Atkinson and Juola model
to account for recognition latency in semantic
memory, but this is not a necessity for their
semantic memory theory.

What general comments can be made about
memory structures and search processes? We
find the notion of control elements that con-
nect to items in the list, together with a top-
down bottom-up search, attractive. If an ex-
ponential distribution is used to characterize
the search and if the top-down search is serial
through the input list, then latency distribu-
tions and input-position effects will be con-
sistent with the empirical data. The test list
must somehow interact with the memory rep-
resentation of the list to provide output-posi-
tion effects for both hits and correct rejections.

The point we wish to make from this dis-
cussion is that there is no ready concensus on
the form of the memory structure or the form
of the retrieval processes used to access in-
formation. The data and empirical model
presented here provide quite stringent tests of
any reasonably explicit model that deals with
both accuracy and latency, and we believe
these tests should be used by researchers in
developing theories of recognition memory.
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