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A Theory of Order Relations in Perceptual Matching

Roger Ratcliff
Yale University

A theory of order relations in the perceptual matching task relates order ma-
nipulations to research on retrieval processes and the representation of order
information in memory. In experimental tests of the theory, presentation of a
study string of letters to the subject was followed by a test string to which the
subject responded same or different. The data of main interest concern the case
where the test string is a permutation of the study string. When adjacent letters
are switched, reaction time is long and accuracy low, suggesting that, in the
comparison process, a test letter is not simply compared to the letter in the same
position in the study string; rather, the comparison is distributed across positions.
The memory model assumes that the representation of a letter is distributed
(spread) over position and that the comparison process assesses the amount of
overlap between the test string and the memory representation. The amount of
overlap is transformed by a power function into the drift rate in a diffusion
(random walk) comparison process. The diffusion retrieval model and overlap
memory model are fitted to the data and goodness-of-fit is assessed. Shortcomings
of alternative models are considered and applications of the model to related
matching tasks are described.

One of the main problems with models in
cognitive psychology at the present time is
that they tend to be developed in isolation.
For example, a sophisticated model of mem-
ory structure may have associated with it
only the simplest retrieval mechanism, or
alternatively, a detailed model of retrieval
processes may have little to say about mem-
ory structure. The aim of this paper is to
attack this problem by integrating two classes
of models: a perturbation or overlap model
of memory for order information and a ran-
dom-walk model of retrieval processes. These
models will be applied to the area of research
known as perceptual matching. This paper
will first review the perceptual matching lit-
erature, emphasizing retrieval models, and
then the order information literature. A new
model for the representation of order infor-
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mation and retrieval processes in the per-
ceptual matching task will then be pre-
sented.

Perceptual Matching

The perceptual matching task requires the
matching of one pattern against another pat-
tern. It has been argued many times that this
process is a fundamental component of hu-
man information processing. In the world
around us, we are continually matching pat-
terns, whether it be faces, common objects,
traffic situations, or whatever. With typical
panache experimental psychologists have
translated this rich matching process into the
tightly experimentally controlled task of
matching one letter string against another
letter string.

One of the major findings of this area of
research is that judgments are made faster
when two letter strings are the same than
when they are different. Several models have
been developed to explain this result and
these have been reviewed in a number of
places (e.g., Krueger, 1978; Nickerson,
1978). It will be sufficient for this paper to
discuss only the major current models.

Bamber (1969) developed a model with
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a serial-matching process, that is, a process
by which the letters from the study and test
strings are compared one by one. This model
gave good fits to mean reaction time for dif-
ferent judgments. For same judgments the
model predicted reaction times longer than
were found in the data and so a fast identity-
matching mechanism was added to the
model. The model did not make predictions
about error rates; Bamber argued that errors
were probably due to loss of information
from the sensory information store and were
therefore outside the scope of the model.

Taylor (1976) compared serial and par-
allel search models for perceptual matching
and concluded that a parallel model with a
limited-capacity parallel comparison process
is superior to any serial model. The parallel
model includes an identity matcher as in
Bamber's model and incorporates a guessing
process to account for errors.

There are several problems with models
that, like those proposed by Bamber and
Taylor, include scanning plus identity-match
comparison processes. First, accuracy and
reaction time are not tied together in the
processing mechanism; rather, error rate and
reaction time differences result from differ-
ent mechanisms. Thus, these models are un-
able to deal with speed-accuracy trade-off
relations, except by the manipulation of un-
related mechanisms (scanning and guess-
ing). Second, it is not possible according to
these models for same judgments to be
slower than different judgments, even though
a relatively simple manipulation (Experi-
ment 1 below) removes the same advantage.
The third problem is that there is no attempt
to account for the shapes of the distributions
of reaction times.

Krueger (1978) has developed a model
that deals with many of these problems.
According to this model a letter is composed
of a number of features (Krueger assumed
100 features in fitting the data). It is as-
sumed that if a study letter matches a test
letter, there are no nonmatching features; if
the study and test letters do not match, then
there is a small number of nonmatching fea-
tures (e.g., 6 to 12 out of 100). The com-
parison process is executed in a series of
passes. On each pass the number of feature
nonmatches out of the total number of fea-

tures is counted. If this number is above one
criterion, a different response is initiated; if
this number is below another criterion, a
same response is initiated. If the number of
nonmatches is between the two criteria, an-
other pass is performed and the number of
nonmatches again checked against two (ad-
justed) criteria. Passes continue to be exe-
cuted until a criterion is met or a deadline
is reached. During the comparison process
a feature match may be misperceived as a
feature nonmatch or a feature nonmatch
may be misperceived as a feature match. The
probability of such misperceptions is low
(e.g., less than .1). Such misperceptions rep-
resent noise in the comparison process.

For multielement strings it could be as-
sumed that there are just more features to
be compared. However, this assumption does
not provide good fits of the model to data.
Instead, it is assumed that the probability
of obtaining a feature mismatch in the com-
parison process decreases as the number of
mismatching letters increases. This assump-
tion will be discussed later when Krueger's
model is compared to the model presented
in this paper.

Krueger's model is of the class of sequen-
tial-sampling models and as such relates ac-
curacy and reaction time to each other (and
provides an account of the shape of reaction
time distributions). Models of this class have
been used in several different areas of re-
search to relate accuracy and reaction time,
including recognition memory (Ratcliff,
1978), choice reaction time (Laming, 1968;
Link, 1975; Stone, 1960), and semantic
memory (McCloskey & Glucksberg, 1979;
Collins & Loftus, 1975).

Order Information

Models of the representation of order in-
formation in short-term (or primary) mem-
ory have been presented by Lee and Estes
(1977, 1981) and by Shiffrin and Cook
(1978).

Lee and Estes's model is based on the per-
turbation model of Estes (1972) and is de-
signed to explain data from recall experi-
ments. In experiments presented by Lee and
Estes (1977), subjects studied four letters
interspersed among eight digits. The subjects
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were asked to recall the letters in correct
position. The data of main interest were the
position gradients of recall for the studied
letters (i.e., the frequency with which item
/ was recalled at position /, i + 1, i - 1, etc.).
The perturbation model assumes that an
item has some probability of perturbing to
adjacent positions in the string. This model
provided a good account of transposition
data (i.e., items / and j recalled in incorrect
order) when study letters were separated but
overpredicted the number of transpositions
when study letters were adjacent. It was pro-
posed that adjacent study letters form a
chunk (Estes, 1972), so that recall of adja-
cent letters could be mediated through the
chunk, giving better order recall than would
otherwise be predicted by the perturbation
model.

Shiffrin and Cook (1978) have presented
a model with a different flavor. Subjects are
assumed to encode a study string of letters
both with item-to-item links, which provide
the basis for ordered recall, and item-to-con-
text links, which provide information about
an item's occurrence but not its position.
They applied the model to data from several
experiments using short-term recall of letter
strings. The model provided good fits to the
data, and they concluded that this model was
a viable alternative to the perturbation model.

Perceptual Matching and Order

An Overview of the Model

The model proposed here provides both a
submodel for the representation of infor-
mation in memory and a submodel for the
process of matching the study and test rep-
resentations to produce a same or different
response. The memory model assumes that
the letters of the study string have distri-
butions over position so that the represen-
tation of one letter will extend into adjacent
letter positions; thus, the model is closely
related to Lee and Estes's (1977) model.
This assumption leads to interesting predic-
tions about the relative difficulty of various
negative conditions in the matching task. For
example, if a test string contains the same
letters as the study string but with two ad-
jacent letters switched in position, then the

test string will appear to match the study
representation very well. This condition will
be more difficult to respond different to than
the condition in which two letters of the
study string are replaced by new letters in
the test string.

The retrieval model is concerned with the
assessment of the amount of match or over-
lap between the study and test strings; the
result of this assessment is a same or dif-
ferent judgment as to the identity of the two
strings. It is assumed that the amount of
overlap (or relatedness) between the two
strings is not constant during the course of
the comparison process but varies randomly
about some mean value, This mean value
determines the mean drift rate in the ran-
dom-walk comparison process: The greater
the relatedness, the more quickly evidence
is accumulated toward a positive response;
the smaller the relatedness, the more quickly
evidence is accumulated toward a negative
response. The particular version of the ran-
dom-walk model used in this paper is the
continuous diffusion model (Ratcliff, 1978).
An overview of the whole scheme is shown
in Figure 1.

Item and order information. The mem-
ory model represents both item and order
information in the same way, that is, in the
distribution of information that is spread
over position. Loss of order information is
represented by spreading of the study letters
over positions so that positional certainty is
lost. Loss of item information about a letter
is represented by assuming that the study
distribution of that letter has an area less
than one (for further discussion of item and
order information, see Murdock, 1976).

Matching process. The process of match-
ing is assumed to proceed in real time in the
following way: A particular study string is
encoded and a representation is laid down
in memory, the letters in the representation
having distributions over position. Then the
test string is encoded; because the compar-
ison of the study and test strings begins al-
most immediately, the letters in the test
string are not assumed to be distributed over
position. The comparison process measures
the amount of overlap between the study and
test strings as that amount varies continu-
ously over a period of time about some mean
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Figure 1. Overview of the model. (The top panel depicts
the memory representation of the study and test strings.
The middle panel shows the distributions of overlap for
a matching and nonmatching comparison. The bottom
panel depicts the diffusion comparison process, s,
through s5 are the standard deviations of the study dis-
tributions, u and v are mean relatedness values for
matching and nonmatching comparisons respectively
[u is also the mean drift rate denoted by the arrow in
the bottom panel], and z and a are the starting point
and match boundary positions in the diffusion process.)

value. The quantity representing the amount
of overlap is transformed so that small dif-
ferences between the amount of overlap of
matching strings and the amount of overlap
of nonmatching strings are magnified. This
transformed value is the drift rate that drives
the random-walk comparison process. This
quantity is accumulated (integrated) over
time so that the larger the average drift, the
faster the process proceeds to a match, and
the smaller the average drift, the faster the
process proceeds to a nonmatch.

Memory Model

The overlap memory model assumes that
the representation of letters in memory is
distributed. Mathematically, these distri-
butions are assumed to be normal. The dis-
tributions for the different letters of a string
are centered at equal distances on a spatial
axis. The amount that a particular letter

spreads into adjacent positions depends on
the variance of its distribution. It is assumed
that the distributions for different positions
have different variances and these variances
are the free parameters of the model. The
distributions of letters in a test string are
assumed to have small variance so that they
do not spread into adjacent positions (see
Figure 1 ). The amount of overlap between
the representations of the study and test
strings is assessed in the following way. First,
for each position, the area of the test distri-
bution of the letter in that position (always
equal to one) is multiplied by the area of the
study distribution of the same letter in that
position (i.e., the area within the slot). Then
the results of this multiplication are summed
across all positions. Mathematically this cor-
responds to:

/« + <A p

fv(x)dx
Jl- <A Ji

fs(x)dx, (1)

where / is the center of the slot, /T(JC) is the
distribution of a test item centered on /,
/s(x) is the distribution of a study item, and
x is position along the spatial axis. There are
many other possible choices for the assess-
ment of overlap between the study and test
strings; for example, a correlation of the two
strings can be performed. However, most
other schemes will introduce more parame-
ters and require further assumptions about
the nature of the distributions of items in the
test string. Until there are experimental data
that can give us some information about the
test distributions, the simple form presented
above is used.

If a letter in a particular position in the
study list is replaced by a new letter in the
test list, then there is zero overlap between
the study and test letters in that position
(in fact, similarity or similar letters in the
same position on earlier trials could provide
some overlap, but for our purposes here we
will assume zero overlap). When two letters
are switched, the tails of the distributions of
the letters in the memory representation
overlap with the switched letters in the test
string. When two adjacent letters are
switched, there is considerable overlap,
sometimes nearly as much as in the same
condition.
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Figure 2 shows two examples of the as-
sessment of overlap. For study condition /'
the study string is AXCDE and the test string
is ABCDE. The amount of overlap between
study and test strings works out to be the
shaded areas in the top panel. In study con-
dition ii ABCED is studied and ABCDE is
tested. The shaded areas show the consid-
erable overlap between the tails of E and D
in the memory representation of the studied
string and D and E in the test string.

The possibility that item information can
be lost from the memory representation is
not included in the model as presented here
because the delay between study and test
presentation is short and the number of let-
ters in the strings is small.

Numerical examples. There are two ex-
tremes in the parameter space of the mem-
ory model: First, when the letters in the
study distributions have small variances and
thus little spread into adjacent positions, and
second, when the letters in the study distri-
butions have large variances and hence large
spread into adjacent positions. Numerical
examples of the amount of overlap for same,
single- and double-replace different, and
switch-different conditions derived from
Equation 1 are given in Table 1.

In order to interpret these numbers it is
necessary to note that the subject is per-
forming a discrimination between the same
and the various different conditions. In other
words, the subject must set a criterion to

study i:
2nd item
replaced

study ii:
4th & 5th

^switched

test
string

Figure 2. Examples of evaluation of overlap between
study and test strings. (Study i [top panel] represents
the case where AXCDE is studied and ABCDE is tested.
Total overlap is given by the shaded area. Study ii
[middle panel] represents the case where ABCED is stud-
ied and ABCDE is tested. Overlap is given by the shaded
area.)

Table 1
Overlap Values for Various Parameter Values
and Conditions

Condition

Same
Single replace
Double replace
Switch ;', i + 1
Switch (', / + 2
Switch /, i + 3
Switch /, z + 4

.5

3.41
2.73
2.05
2.36
2.05
2.05
2.05

Si

1.0

.92

.53

.15

.63

.27

.16

.15

4.0

.50

.40

.30

.49

.47

.45

.42

Note, s/ stands for the standard deviation of the item
distributions (all distributions are set to have the same
standard deviation).

separate the amounts of overlap for strings
that match the study string from the amounts
of overlap for strings that do not match the
study string. The largest amount of overlap
between study and test strings is in the same
condition. The next largest amount of over-
lap is in the most difficult different condition
and so on through to the smallest amount
of overlap in the easiest different condition.
When the standard deviation for each item
is .5, single replacements are the most dif-
ficult negatives (overlap is highest in these
negative conditions). There is little spread
so that even adjacent switches (/, / + 1) are
quite accurate. In contrast, when the stan-
dard deviation for each item is 4, there is
considerable spread of items into adjacent
positions, and the amount of overlap for the
adjacent switch condition is almost as large
as the amount of overlap for the same con-
dition. In this case even switches between
items four positions apart are less accurate
than single replacements. From these two
examples we can make the following obser-
vation: If the amount of overlap is lower for
adjacent switch conditions than for single
replace conditions, then the letter distribu-
tion spreads are relatively narrow and the
subject has relatively good representation of
the order of the study letters. On the other
hand, if the adjacent switch conditions have
high overlap relative to the single replace
conditions, then the letter spread distribu-
tions are relatively wide and the subject has
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poor representation of order of the study let-
ters. It ought to be noted that, in practice,
the item distributions do not have equal stan-
dard deviations as in the examples presented
above, but this does not change the point of
the examples.

Interfacing the Memory and Retrieval
Models

It is necessary at this point to describe how
the memory and retrieval models interface
or connect. The perceptual matching task is
essentially a discrimination task; that is, sub-
jects have to discriminate between same and
different trials. The connection between the
memory and retrieval models is made through
a series of discriminability statistics of (fs,
one for each different condition, scaled
against the same condition. Thus, the re-
trieval model is fitted to accuracy and re-
action time data to produce a set of d scores
to which d' scores derived from the memory
model can be compared. The memory model
produces d' scores by calculation of the dif-
ference between the amount of overlap for
same and different and transformation of
this difference so that small differences are
magnified. This transformed value is labeled
d'm. Details of the transformation will be
taken up later.

Raw accuracy scores cannot be used to
generate the d' statistics to which the mem-
ory model is fitted, for the following reason:
The estimated value of d' derived from raw
accuracy scores will depend on the particular
speed-accuracy criterion set by the subject;
d' would be higher the more accurate and
slower the subject attempted to be. But an
important property of the memory model is
that it should be independent of the partic-
ular retrieval parameters set by a subject.
Thus, because the diffusion model allows
computation of asymptotic discriminability
d's (d'a) that are independent of speed-ac-
curacy criteria (Ratcliff, 1978), d'a values
computed from the retrieval model should
be used as the meeting point of the memory
and retrieval models.

Further discussion of the retrieval model
will come after Experiment 1 because math-
ematical details of the model have been pre-

sented in a previous paper (Ratcliff, 1978)
and a similar model has been presented by
Krueger(1978).

Empirical Applications

In order to provide tests of the model, the
perceptual matching procedure will be used
with the manipulation of the order of the
letters in the test string as the variable of
principal interest. There will be two exper-
imental tests, one using the usual reaction
time procedure and one using a response sig-
nal procedure that measures accuracy as a
function of time. The procedures of both
experiments begin with a study phase in
which a string of letters is presented to the
subject. This is followed by one of three types
of test strings: (a) The letters are identical
to the studied string, (b) one or two of the
studied letters are replaced by new letters,
or (c) the order of two of the studied letters
is switched. The subject's task is to recognize
that a test string in which letters are switched
or replaced is different from the study string.
In the first experiment subjects are allowed
to respond in their own time, and reaction
time and accuracy data are collected. In the
second experiment subjects are required to
respond at one of several time deadlines, and
accuracy as a function of time provides the
data of principal interest.

These experiments differ from the usual
perceptual matching experiment in the in-
clusion of the switch condition. Previously,
the major variables used in perceptual
matching have been the lengths of the study
and test strings and the number of letters
replaced in the replacement condition. Pre-
viously proposed models will be examined in
light of the data obtained from this proce-
dure, with the result that the models for per-
ceptual matching (Bamber, 1969; Krueger,
1978; Taylor, 1976) and Shiffrin and Cook's
(1978) model for order information are
shown to be inadequate. It will then be
shown that a conjunction of a random-walk
retrieval model and an overlap model for
order information provides a good account
of the data, including the relative difficulty
of experimental conditions (both reaction
time and accuracy) and the shapes of re-
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action time distributions for Experiment 1,
and the relative difficulty of experimental
conditions and the time course data for Ex-
periment 2.

Experiment 1

Method

Subjects were presented with a study string of five
letters followed by a mask and then a test string. Sub-
jects were instructed to respond same if the study and
test strings matched exactly. They were to respond dif-
ferent either if one or more letters in the study string
were replaced in the test string by new letters or if two
of the letters in the study string were interchanged in
the test string. One third of the trials were positive (same
correct) and two thirds were negative. There were 25
types of negative trials: 5 were replacements of one let-
ter, 10 were replacements of two letters, and 10 were
interchanges of two letters. The data of main interest
are the reaction time and accuracy of different responses
for the 25 types of negative trials.

In the perceptual matching paradigm, other research-
ers have used list length manipulations to obtain data
for testing and developing models. Elsewhere (Ratcliff,
1978), I have argued that such between-trial variables
allow the subject to alter speed-accuracy criteria before
retrieval and therefore are not particularly useful for
testing models. Thus the variables used in this study are
within-trial variables so that the subject cannot antici-
pate the experimental condition before the test item is
presented.

Subjects. Four undergraduate volunteers served as
subjects in 12 50-min. sessions and were paid at a rate
of $3 per 50-min. session.

Apparatus. The stimuli were presented on a Data-
media Elite 1520 video display terminal. The video ter-
minal was controlled by a microcomputer that was in-
terfaced to the main university time-sharing computer.

Stimuli. The 10 consonants C, D, F, H, J, K, L, R,
S. and T were used in constructing the study and test
strings. These consonants were used by Taylor (1976)
in his perceptual matching experiments and were chosen
for ease of identification and minimum confusability in
the 5-by-7-dot-matrix character set produced by the
display unit. The display letters were 5.1 mm high and
2.4 mm wide with one dot separating adjacent char-
acters. Viewing distance was not controlled but was ap-
proximately 60 cm. For a string of 5 characters, the
visual angle subtended was 1.3°.

For each trial the letters of the study string were
randomly selected from the 10 letters without replace-
ment (there were no repeated letters in either the study
or test strings). In a block of 75 trials, there were 25
negative trial types, each represented twice, and 25 pos-
itive trials. Five of the negative trial types had one of
the study letters (1 to 5, respectively) replaced by a new
letter randomly selected from the remaining letters. Ten
of the negative trial types had all combinations of two
of the study letters replaced by new letters. The re-
maining 10 negative conditions represented all combi-
nations of two study letters interchanged. The order of

the negative trials in a block of 75 trials was randomized
along with the 25 same trials. Subjects received 12
blocks of 75 trials in a 50-min. session.

Procedure. Each trial began with a fixation point
that remained on for 1 sec. The study string then re-
placed the fixation point and subjects studied it for 1.5
sec. The study string then disappeared and was replaced
after 50 msec by a five-asterisk mask that remained on
for 200 msec. Following a 50-msec blank period, the
test string was presented for 250 msec (this brief pre-
sentation was used to reduce the possibility that eye
movements would take place), and then the screen re-
mained blank until the subject responded. Following the
response the fixation point for the next trial appeared.
After each block of 75 trials, subjects took a self-paced
break.

Results

Response times and error rates for the
positive condition and the 25 negative con-
ditions, averaged over subjects, are shown
in Table 2. There are three results of im-
mediate interest: First, responses in the same
condition are considerably slower than the
fastest different responses. This result im-
mediately causes problems for those models
that propose a fast identity matcher for pos-
itive responses; this point will be discussed
later. Second, the data show dramatic
effects of interchanges on both reaction time
and accuracy. When adjacent letters are
switched, accuracy is poor and reaction time
is long; when nonadjacent letters are
switched, accuracy is better and reaction
time is shorter. Third, performance is better
when two letters are replaced than when two
adjacent letters are switched. As will be dis-
cussed later, these results rule out any model
that assumes independent comparisons of
single letters and require the development
of a model that accounts for interactions
between adjacent letters.

Fitting the Model to the Data

In fitting the model to the data from Ex-
periment 1, the overall model is decoupled
into the memory and retrieval components.
Fits of the retrieval model are made to the
reaction time and accuracy data, yielding
d'a measures of the discriminability of each
negative condition from the positive condi-
tion. These 25 values of d'a are the data to
which the memory model is fitted.
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Table 2
Accuracy and Mean Reaction Time for Experiment 1 Averaged Over Subjects

Item Proportion correct Reaction time for correct (msec)

Single replace

1
2
3
4
5

1
2
3
4

1
2
3
4

.956

.879

.889

.834

.881

2 3

.972 .973
.955

2 3

.940 .959
.753

4

.976

.958

.941

4

.973

.855

.655

Double replace

5 2

.975 495

.967

.966

.935

Switch

5 2

.972 564

.919

.875

.734

511
582
580
654
665

3

491
518

3

527
738

4

506
531
533

4

522
649
795

5

499
520
530
564

5

508
595
667
853

Same

.834 709

Note. Number of observations for same is about 14,400 and for each different condition about 1150. Standard
error in reaction time for same is 3 msec; representative values for the different conditions are 500 ± 6 msec, 650
± 10 msec, 800 ± 15 msec. In the single replace condition, the item number indicates the item replaced. In the
double replace and switch conditions, the row and column numbers indicate the pair of items replaced or switched.

Retrieval Model

In this section the retrieval model will be
presented and fitted to the data from Ex-
periment 1. The model assumes a compari-
son process that is a steady accumulation of
evidence towards either a match or a non-
match decision. The process is more easily
understood in the discrete rather than the
continuous random-walk formulation, so the
discrete case is discussed first. In the discrete
case a count is kept of the number of feature
matches and nonmatches between the study
and test strings; if a feature match occurs,
the counter is increased by one, and if a fea-
ture nonmatch occurs, the counter is de-
creased by one. The counter begins at some
base number of counts z. If the counter
reaches a counts, a match results, and if the
counter reaches 0 counts, a nonmatch re-

sults. In the continuous case evidence is con-
tinuously accumulated over time. The rate
of accumulation is called the drift rate; the
better the match between the study and test
strings, the faster the drift toward the match
boundary; the poorer the match between the
study and test strings, the faster the drift
toward the nonmatch boundary.

The comparison process has several pa-
rameters. First, the distances from the start-
ing point to the match (a-z, Figure 1) and
nonmatch (z-0) boundaries determine how
much evidence is needed for a match or non-
match. These parameters can be varied to
model speed-accuracy trade-offs. Second,
drift (derived from the relatedness of the
study and test strings being compared) has
a variance (s2) associated with it. Variability
in drift represents the noise associated with
the comparison process. In the discrete fea-
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ture-matching conceptualization, this vari-
ance arises from randomness in the order of
feature matches and nonmatches. In the con-
tinuous case this variance is assumed to arise
because of noise in the assessment of ov-
erlap between study and test strings. Third,
it is assumed that another source of variance
is associated with the average value of re-
latedness or overlap. Thus the average drift
rate varies across trials (for a single exper-
imental condition) and this variance is sep-
arate from the variance within a comparison.
Variance in the average drift rate across
trials could arise from variability in the en-
coded representation of the study string. For
example, on some trials some letters may be
better encoded (leading to less spread into
adjacent positions), but on other trials these
letters may not be encoded as well (leading
to more spread). The distributions of relat-
edness between the study and test strings are
assumed to be normal distributions; for
matches, the distribution is n(u, 77) and for
nonmatches, n(v, ?j).

It has been demonstrated (Ratcliff, 1978;
Reed, 1976) that it is necessary to assume
that there are two sources of variance (as
described above) in order to deal with results
from experiments that examine the growth
of accuracy as a function of time (e.g., re-
sponse signal or deadline procedures; see
Experiment 2 below). If there is no vari-
ability across trials (?j2 = 0), then accuracy
will not approach asymptote as a function
of time (see Experiment 2); rather it will
grow as a function of the square root of time.
The variability within a trial (s2 > 0) is nec-
essary because otherwise accuracy would
rise to asymptote as soon as the comparison
began (as soon as any information was avail-
able).

In experiments in which the length of the
study and test strings is varied, it is possible
that subjects adjust boundary positions ac-
cording to list lengths (e.g., short lists are
easier so boundaries can be set close to the
starting point because little evidence is
needed for high accuracy). With boundary
parameters free to vary, such data do not
provide strong tests of models.

In Experiment 1 all the experimental ma-
nipulations took place at List Length 5
rather than at different list lengths. Thus,
subjects could not anticipate whether the

trial was a same, single replace, double re-
place, or switch trial before the test string
was presented. Thus, boundary positions
could not vary and so, to fit the data from
all 25 negative experimental conditions
(scaled against the positive condition), the
only parameter that could vary was non-
match relatedness (t>). Changes in this one
parameter have to account for changes in
reaction time, accuracy, and the shapes of
reaction time distributions across the 25 con-
ditions.

From the fits of the model to the accuracy
and reaction time data, a value of v can be
obtained for each negative condition, yield-
ing a corresponding asymptotic d'a value (u -
u)/ij. This value measures the asymptotic
discriminability between the match distri-
bution and the particular nonmatch distri-
bution under consideration and hence re-
moves bias dependent on the particular
speed-accuracy criterion set by the subject
that would be introduced into d' measures
derived from raw accuracy scores. The mem-
ory model is then fitted to this set of 25 da
values.

Fits of the retrieval model. The retrieval
model was fitted to the data of individual
subjects rather than data averaged across
subjects for two reasons: First, subjects
showed quite different levels of performance;
thus, fitting the individual data is a useful
test of the model. Second, in the average
data shown in Table 2, there are speed-ac-
curacy trade-offs due to averaging across
different subjects who show different pat-
terns of results. The results of these fits and
the data are shown in Figures 3 and 4.
(Details of the fitting procedure are pre-
sented in the Appendix.) Figure 3 shows fits
of the diffusion model to mean reaction
times and error rates for the four subjects
for the 25 different conditions. The dots rep-
resent each condition and the solid lines
show the theoretical fits. (Note that it would
be possible to improve the overall fits for
Subject 3 by allowing the fit to the same
condition to become poorer, falling outside
two standard errors, but this was not done.)
Figure 4 shows fits of the model to group
cumulative distribution functions. There are
several points to note about the data and the
fits of the model to the data.

Individual differences. The individual



PERCEPTUAL MATCHING 561

S3

S2

Figure 3. Theoretical predictions and empirical results
for probability correct versus mean reaction time for the
four subjects. (The error bars [for selected points] rep-
resent one standard error. Fits to reaction time and ac-
curacy for same responses lie within two standard errors
of the data. Parameter values for the diffusion model
are as follows: Subject 1, JER = 295 msec, a = .30, 2 =
.12, u = .38; Subject 2, <ER = 295 msec, a = .08, z =
.035, « = .14; Subject 3, /ER = 330 msec, a = .19,
z = .08, u = .25; Subject 4, fER = 335 msec, a = .13,
z = .06, u = .23. The v values can be calculated from
the tf values in Table 4 using <? = [(«- «)]/»; where
7, = .18.)

subjects show vastly different patterns of
performance. Subjects 1 and 3 have high
accuracy and slow reaction times for the
difficult conditions, whereas Subject 2 shows
wide variations in accuracy (for different
judgments, from .93 correct to .49 correct)
but relatively fast reaction times that do not
vary by more than about 70 msec from the
easiest to hardest conditions. The results for
Subject 4 fall between these subjects. The
fast and inaccurate subject is modeled by
having the boundaries of the diffusion pro-
cess close to the starting point of the process.
The slow and accurate subjects are modeled
by having the diffusion process boundaries
relatively far from the starting point.

The behavior of these types of subjects is
reminiscent of the two types of subjects de-
scribed by Cooper and Podgorny (1976). For
their task, which required visual comparison
of angular shapes, subjects fell into two dif-
ferent groups: Type 1 subjects showed no
reaction time differences as a function of
stimulus-test similarity, and Type 2 subjects
showed large reaction time differences (the
more similar the two patterns, the slower the

different response). For both types of sub-
jects, they found large differences in accu-
racy as a function of similarity (the more
similar the study and test strings, the more
inaccurate the different response). By anal-
ogy to the results presented here, the differ-
ences between the subjects in the task of
Cooper and Podgorny (1976) could be ac-
counted for by differences in the settings of
the boundary positions in a random-walk
comparison process.

Adequacy of retrieval model fits. For
Subjects 2 and 4, the fits are rather good,
with both reaction time and accuracy falling
within two standard deviations of the data
for all conditions. For Subjects 1 and 3 (the
slow subjects), the fits miss significantly, es-
pecially in the conditions in which reaction
time was long. An inspection of Figure 4

M 1.0 1.8
TIME (SEC)

S4

0.5 1.0 IS
TIME (SEC)

Figure 4. Theoretical (continuous lines) and empirical
(dots) cumulative probability functions for same re-
sponses (top panel) and selected different responses.
(For the different responses a represents double replace-
ment of Letters 2 and 4, b represents switches of Letters
2 and 5, and c represents switches of Letters 3 and 4.
Most other negative conditions are similar to condition
a but these are not shown.)
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shows the way in which the model misses in
predicting reaction time in these conditions:
The experimental reaction time distributions
have a greater shift in the relative positions
of the negative distributions than the theo-
retical distributions. However, in general,
the fits to the distributions are very good
considering that there is only one parameter
changing across the 25 different conditions.
In only 7 out of 104 cases are there serious
mispredictions by the model. These mispre-
dictions take the form of the c conditions in
Figure 4 where the mode of the experimental
distribution is slower than the mode of the
theoretical distribution and the tail of the
experimental distribution is shorter.

Error reaction times. Table 3 shows er-
ror reaction time data and fits of the diffu-
sion model to those data. The results show
that error reaction times are not well pre-
dicted by the model. In general, error re-
action times are predicted to be slower than
reaction times for correct responses, but the
data show that for some subjects errors are
faster. Ratcliff (1978) demonstrated that in
the diffusion model, predictions of error re-
action times are heavily dependent on the
shapes of the extreme tails of the relatedness
distributions. In contrast, predictions about
reaction times for correct responses, shapes
of reaction time distributions, and error rates
are dependent on the mean and spread of
the distributions of relatedness (meaning
approximately interquartile spread rather
than the variance that depends on the tail
of the distribution). It is possible to adjust
the distribution shape to keep approximately
constant the reaction time for correct re-
sponses, reaction time distribution shape,
and error rate while varying error reaction

Table 3
Theoretical and Empirical Error Reaction
Times (msec)

Subject

Response

Same
Empirical
Theoretical

Different
Empirical
Theoretical

1634
2850

1460
2130

414
524

425
479

536
1376

681
1134

543
901

575
826

time from very fast to very slow (by as much
as a second or two; Ratcliff, 1978, p. 87).
Thus, if a relatedness distribution other than
the normal distribution were chosen, it would
be possible to vary error reaction time with-
out affecting the reaction time for correct
responses or error rate.

The question of the relative speed of cor-
rect and error responses is still a major puz-
zle in most experimental paradigms, and
attempts to account for the data continue.
Laming (1979) has provided results on the
random-walk model that suggest that the
reason that error responses are faster than
correct responses in choice reaction time is
that the subject begins sampling before the
stimulus is presented (thus bringing vari-
ability into the starting point of the random
walk). Variability in the starting point of the
diffusion process along with distributions
over relatedness would be sufficient to ac-
count for any pattern of error reaction time.
To get fast errors the variability in the start-
ing point would be large, and for slow errors
variability would be small (slow errors com-
ing from the tails of the relatedness distri-
butions). Thus, Laming's suggestion may
apply to the data presented here. In any case,
it is clear that the unmodified model does
not do a good job of accounting for error
reaction times and that much more work is
required to decide what factors are respon-
sible for producing slow errors in some con-
ditions and fast errors in other conditions.

Reaction time differences between the
same and different conditions. By adding
the very difficult switch different conditions
to the experiment, the usual result that same
responses are faster than different responses
has been reversed. This is not owing to the
use of long strings, because I have replicated
this using three-letter strings (in an unpub-
lished experiment), nor is this result due to
the high frequency of different trials (2:1
over same trials) in the experiment. Ratcliff
and Hacker (in press) have shown similar
results using equal-frequency conditions. In
the model the relative speeds of same and
different responses depend on the position
of the criterion on the relatedness scale, and
the positions of the response boundaries in
the diffusion process (note that these criteria
settings also account theoretically for effects
of the unequal probability of same and dif-



PERCEPTUAL MATCHING 563

ferent trials). Comparing the case in which
different responses are easy (when there are
no switch conditions in the experiment) to
the case in which some different responses
are very difficult, there is a greater range of
different distributions on the relatedness
axis in the latter case (see Figure 5 and
Krueger, 1979) than in the former case.
Thus, the criterion separating same and dif-
ferent relatedness values must be placed rel-
atively near the same distribution; this leads
to slow same responses, slow difficult dif-
ferent responses, and fast easy different re-
sponses. Why same responses are fast when
there are only easy different responses in the
experiment is discussed by Krueger (1978,
1979).

Given the generally good fit of the re-
trieval model to the data, we can proceed to
connect the retrieval model to the memory
model. The retrieval model provides param-
eter estimates for the mean relatedness val-
ues for the same condition (u) and the 25
different conditions (v). From these values
and ?/ it is possible to calculate 25 d' values
for the different conditions scaled against
the same condition using d'a = (u - t))/?j.
These values are shown in Table 4 (from
these values and the values for u and 77 in
Figure 3, the v values can be computed).
These values of d'a are the basic data to which
the memory model is fitted.

Fits of the Memory Model

The difference in amount of overlap be-
tween study and test strings for the same
condition and the particular negative con-
dition studied is transformed to a d' value

EASY DIFFICULT
QATIVE SAME

EASY
SAME

Figure 5. Distributions of total overlap (relatedness)
showing criterion placement for conditions in which
difficult negatives are included (top panel) and in which
there are only easy negatives (bottom panel).

by a power function transformation (d'm =
a (os - od)

b where os = same overlap and
°d = different overlap). These values are
then fitted to the d'a values (shown in Table
4) of the retrieval model by least squares.
Values of the five variance parameters and
the transformation parameters a and b are
presented in Table 5. Table 6 shows the fits
of the model. In general the fits of the model
are reasonable; there do not seem to be any
systematic deviations of the computed dm
from the d'a values across subjects.

Power transformation. Before continu-
ing, it is necessary to examine the power
transformation relating overlap and discrim-
inability. One assumes that subjects are us-
ing amount of overlap as the dimension on
which to make their judgment about simi-
larity or difference. However, there is no
need to assume that overlap directly mea-
sures discriminability. Rather, the best that
one can hope for is that discriminability is
a monotonic transformation of overlap.
Monotonic transformations (e.g., a power
function) have often been assumed for the
relationship between the perception of a
stimulus and the physical stimulus. For let-
ter matching, not only should the transfor-
mation be monotonic but it would also be
most useful if it magnified small differences
in order to aid the most difficult discrimi-
nations, as the power transformation does
(with exponent less than 1).

Figure 6 shows that the power function
describes the relation between the amount
of overlap and the da values from the re-
trieval model for the four subjects (using the
values for the variance parameters in Table
6). As can be seen, all the curves show some
nonlinearity (each dot represents one nega-
tive condition), and the power function (the
solid line) captures the relationship between
overlap and d"a.

The overlap model provides a good ordinal
representation of the data. Rank order cor-
relations between the data and the overlap
model are .956, .959, .986, and .944 for Sub-
jects 1 to 4, respectively. Figure 7 shows a
plot of d'a from the retrieval model versus
dm from the overlap memory model. This is
essentially a plot of the data from Tables 4
and 5 and shows that there is no systematic
deviation from linearity as there is in Fig-
ure 6.



Table 4
Asymptotic (d'J Values for Individual Subjects for Fits of the Retrieval Model to the Data From Experiment 1

Item

1
2
3
4
5

1

Subject

2

4.75
3.94
4.75
3.50
3.22

Single replace

2.28
1.50
1.33
1.06
1.50

3

4.72
3.61
3.61
3.06
3.06

4

3.22
2.39
2.39
2.28
2.56

Double replace

1
2
3
4

1
2
3
4

2 3

5.44 5.72
5.44

2 3

3.86 4.56
3.78

4

5.17
5.06
5.17

4

4.56
4.06
3.50

5

5.33
5.06
5.17
4.33

5

5.17
4.06
4.06
2.94

2 3

2.44 2.44
2.17

2 3

2.06 2.28
.78

4

2.44
2.00
1.89

4

2.28
.94
.67

5 2

2.44 5.00
2.17
2.17
1.78

Switch

5 2

2.28 3.61
1.61
1.22
.89

3

5.00
4.44

3

4.17
2.33

4

4.72
4.17
3.61

4

4.44
2.94
1.67

5 2

4.72 3.39
4.17
3.89
3.61

5 2

4.44 3.17
3.33
2.78
1.94

3

3.39
2.94

3

3.22
1.67

4

3.39
3.22
3.17

4

3.50
2.50
1.28

5

3.50
3.22
3.39
2.94

5

3.39
2.83
2.39
1.83

§o

I
•fl
T)

Note. In the single replace condition, the item number indicates the item replaced. In the double replace and switch conditions, the row and column numbers indicate
the pair of items replaced or switched.
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Table 5
Variance and Transformation Parameters for the Memory Model for Experiment 1

Parameter

Subject s,

1 1.24
2 .59
3 1.05
4 .65

*2

1.83
1.43
2.17
1.62

*,

1.39
1.63
3.23
2.11

S4

4.58
2.05
6.08
2.01

Si

2.92
1.42
3.93
1.53

a

6.11
2.70
5.81
3.78

b

.21

.50

.26

.28

Note. Parameters a and b are from the power function transformation d^ = a (o, -

The power function was the third trans-
formation considered for relating dm values
to amounts of overlap. The first was d'm =
a (os - od), which is the simplest possibility.
This produced very poor fits to the data. The
second transformation considered was the
linear transformation, ctm = a (os — orf) + b,
which was designed to improve the bad fits
obtained from the first transformation on the
conditions in which d' was small. Fits were
better, but there were systematic deviations
in the adjacent switch conditions consis-
tently across subjects. Furthermore, the lin-
ear transformation was difficult to interpret
in that the parameter b produced a discon-
tinuity in the d'm scale (dm could not be below
b). The fits of the linear transformation sug-
gested that the scale of overlap needed
stretching at low dm values (i.e., when the
amount of different overlap was very close
to the amount of overlap for the same con-
dition), and contracting at high dm values.
The power function does just that.

Adequacy of memory model fits. There
are seven parameters in the model, five vari-
ance parameters and two transformation
parameters. These parameters are not in a
one-to-one correspondence with the data
points. For example, a change in one vari-
ance parameter affects 9 out of the 25 dm

values, and changes in the transformation
parameters affect the levels of all 25 dm val-
ues. Thus attempting to improve the fit to
one data point by adjusting just one param-
eter may perturb fits to at least eight other
conditions. This indicates that the structure
of the model captures relationships between
the different experimental conditions. From
this and the fact that the two versions of the
linear transformation did not produce good
fits to the data, it can be concluded that the

data provide reasonably tight constraints on
the model.

The parameter values across subjects show
interesting patterns. First, the values of the
variance parameters are in the same range
across all subjects (except for two high val-
ues, 6.08 and 4.58). Much of the difference
between subjects arises in the transformation
parameters. This suggests that the limit on
performance is in the transduction process
between the memory representation and the
d values (i.e., drift in the diffusion compar-
ison process).

Second, the values of the overlap param-
eters in some cases are fairly large. With a
standard deviation of 2, 20% of the distri-
bution is in the correct position, and 16%,
12%, and 7% extend to the successively ad-
jacent positions. Thus, it is necessary to as-
sume that there is considerable positional
uncertainty.

The Time Course of Processing

There are two complementary methods
for investigating the tempdral properties of
information processing. The first is exem-
plified by Experiment 1, in which reaction
time and accuracy measures were obtained.
This kind of processing can be termed in-
formation controlled (Ratcliff, 1978), be-
cause the subject is free to respond when he
or she has obtained enough information for
a decision. The second method involves de-
termining the growth of accuracy as a func-
tion of time by requiring the subject to re-
spond at experimenter-determined time
deadlines, that is, to respond immediately
when a signal is given. This kind of pro-
cessing, termed time controlled, is investi-
gated in Experiment 2.
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Table 6
d^ Values for Fits of the Memory Model to da Values Derived From the Retrieval Model (Table 4)

Subject

Item 1 2 3

Single replace

1
2
3
4
5

4.78
4.41
4.67
3.64
4.00

2.09
1.41
1.32
1.18
1.41

4.49
3.76
3.40
2.89
3.23

3.21
2.54
2.36
2.39
2.58

yeoo
Double replace jo

4 5 2 3 4 5 2 3 4 5 >

O

•5
Tl

1
2
3
4

1
2
3
4

5.34 5.47
5.27

2 3

3.85 5.03
3.67

5.04
4.74
4.94

4

4.77
3.77
3.40

5.16 2.52
4.90
5.08
4.45

5 2

5.02 1.83
4.40
4.36
2.29

2.47
1.93

3

2.29
.84

2.40
1.84
1.78

4

2.30
1.32
.67

2.52 4.98
2.00
1.94
1.84

Switch

5 2

2.52 3.53
1.88
1.46
.76

4.84
4.29

3

4.34
2.23

4.68
4.07
3.79

4

4.49
2.90
1.61

4.78
4.21
3.96
3.67

5

4.61
3.49
2.44
1.42

3.56 3.49
2.98

2 3

2.90 3.30
1.72

3.50
3.00
2.89

4

3.41
2.41
1.55

3.57
3.11
3.01
3.02

5

3.56
2.95
2.44
1.79

Note. In the single replace condition, the item number indicates the item replaced. In the double replace and switch conditions, the row and column numbers indicate
the pair of items replaced or switched.
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Overlap Difference *'*

Figure 6, d derived from the retrieval model and the
experimental data plotted against the difference in over-
lap between the same condition and the particular dif-
ferent condition. (Each dot represents one different con-
dition and the solid line represents the power function.)

The diffusion retrieval model makes a
strong prediction about the form of the func-
tion describing the growth of accuracy as a
function of time. The expression for d as a
function of time is derived as follows: First,
the boundaries on the decision process are
removed so that there is no criterion for
amount of evidence accumulation. Second,
it is assumed that if the diffusion process is
on the match side of the starting point of the
process when the signal to respond is given,
then the subject initiates a same response.
If the process is on the nonmatch side, the
subject initiates a different response.

* • d' Data « «

Figure 7. d' data refers to the asymptotic d'a values de-
rived from the data using the retrieval model and d
theory refers to the fits derived from the memory (over-
lap) model. (These data are plotted from Tables 4 and
6. Each dot represents one negative condition and the
solid line is the line of perfect prediction.)

The expression that describes d as a func-
tion of time is given by:

d'

\/l + s>/tf[t - <ER])
(2)

where d'a is the asymptotic d value for the
particular negative condition, s2 is the vari-
ance in the comparison process, ij2 is the vari-
ance in drift, <ERis the encoding and response
parameter, and t is elapsed time from the
presentation of the test string (see Ratcliff,
1978). The form of this function is the same
for each different condition and the only free
parameter between conditions is the asymp-
totic d'a value for each curve. Thus, fits of
the model to the response-signal curves are
another reasonably constrained test of the
retrieval model. Furthermore, the values for
the asymptotic d's can be used in fitting the
memory model in the same way as in Ex-
periment 1.

An important point to note is that ac-
cording to Equation 2, at any given time t,
the ratio of d'(t) for the different conditions
will be identical to the ratio of d'a for those
conditions. This shows that the memory
model can be tested by performing experi-
ments in which subjects respond at a single
constant deadline (not at one of several
deadlines as was done in Experiment 2). The
parameter that changes to account for the
difference between the d(t) value and the
d'a value is a in the power transformation.

Experiment 2

Method

Experiment 2 was designed to provide further tests
of both the memory model and the retrieval model by
providing data complementary to those of Experiment
1, that is, data showing the growth of accuracy as a
function of time.

The matching conditions used in Experiment 2 in-
cluded the same, single replace different, and switch
different. Double replace trials were dropped to reduce
the total number of sessions required per subject. Details
of the procedure followed Experiment 1 except that sub-
jects were required to respond at one of five response-

Subjects. Two undergraduate volunteers served as
subjects and were paid at a rate of $3 per SO-min. ses-
sion. The subjects served in 18 50-min sessions preceded
by two practice sessions.

Stimuli. Construction of the stimuli was the same
as for Experiment 1. Subjects received 18 blocks of 45
trials (IS same, 10 single replace, and 20 switch trials).
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Procedure. Each trial began with a fixation point
that remained on for 1 sec. The study string then re-
placed the fixation point and subjects studied it for 1
sec. The study string then disappeared and was replaced
after 50 msec by a five-asterisk mask that remained on
for 200 msec. Subjects were presented with one of five
response-signal lags: 100, 200, 400, 900, or 2000 msec.
For the 100-msec lag, after presentation of the mask a
SO-msec blank period preceded presentation of the test
string. The test string was removed 100 msec after it
appeared, and the signal to respond was then presented
(a row of + signs one line below the test string). For
the other response-signal lags, the test stimulus re-
mained on for 200 msec and was then removed before
the signal to respond was presented. Subjects were in-
structed to respond within 200 to 300 msec of the pre-
sentation of the response signal. Following the response
of the subject, feedback as to the response latency was
presented for 250 msec. Next, the fixation point was
again presented and the next trial began. The five re-
sponse-signal lags were randomly assigned to the same
and different conditions so that on average about seven
responses per session were made for each different con-
dition at each lag. Subjects were allowed a self-paced
rest after each 45 trials.

Results

The main results are shown in Figure 8.
Reaction time to the response signal is in-
cluded in the computation of the response
time in Figure 8.

The fit of the function d'(t) allows esti-
mates to be obtained for the asymptotic da
values for each negative condition, the en-
coding and response parameter <ER, and the
ratio s2/rj2. Fits of the diffusion model are
shown along with the experimental results
in Figure 8. The parameter estimates for the
d'a values for the negative conditions are
shown in Table 7.

The memory model is fitted to these da
values as in Experiment 1. The parameter
values are shown in Table 7 and the fits are
shown in Table 8. Again we see large indi-
vidual differences between subjects. Subject
1 is quite accurate in the switch conditions;
thus, estimates of the item distribution stan-
dard deviations are quite small. In contrast,
Subject 2 is quite inaccurate in switch con-
ditions; thus, the estimates of the standard
deviations are large.

General Discussion

Evaluation of Alternative Models

Most of the models that would be consid-
ered competitors to the model presented

1 Response Time (sec) 2

Figure 8. if as a function of response time for Experi-
ment 2. (The dots represent the experimental data and
the continuous lines represent the fits of Equation 2.
Only 4 of the 15 curves were selected for display; 1 and
5 refer to Single Replace Conditions 1 and 5, respec-
tively, and 3-4 and 4-5 refer to Switch conditions be-
tween Items 3 and 4 and 4 and 5, respectively. Param-
eters for the fits are as follows: Subject 1, «ER = 347
msec, s^/ri2 = 370 msec; Subject 2, <ER = 320 msec, s2/
rf = 167 msec. Values for the asymptotic d values can
be found in Table 8. Standard errors for representative
d values are as follows: .5 ± .1, 1.0 ± .12, 2.0 ± .14,
3.0 ± .2.)

above would assume letter-by-letter com-
parisons between the study and test strings.
One such model is that of Shiffrin and Cook
(1978), designed to account for ordered re-
call of items from short-term memory. The
model assumes that items are stored so as
to represent item information that allows
identification of a presented item and to in-
clude order links between adjacent items.
The retrieval process in ordered recall is as-
sumed to be a serial process. First, the order

Table 7
Variance and Transformation Parameter
Values for the Overlap Memory Model

Parameters
Sub-
ject

1
2

s\

.52
1.03

ST.

.75
1.97

•S3

.71
2.82

st

.82
5.94

Si

1.11
5.06

a

4.14
4.60

b

.53

.24

Note. Parameters a and b are from the power function
transformation d^ = a (os — orf)*.
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Table 8
Asymptotic o" Values Computed From the Response Signal Curves (Experimental) and From the
Overlap Memory Model (Theoretical) for Experiment 2

Item Experimental Theoretical

Single replace
1
2
3
4
5

Switch

3.52
2.75
3.15
2.53
2.07

Subject 1

3.33
2.85
2.92
2.73
2.37

1
2
3
4

3.42 3.97
3.21

4.50
3.68
2.99

4.37
4.07
3.47
2.37

3.59 4.47
3.04

4.38
3.89
2.90

4.16
3.75
3.61
2.30

Subject 2

Single replace
1
2
3
4
5

Switch

3.54
3.16
3.14
2.62
2.60

3.64
3.15
2.90
2.44
2.53

1
2
3
4

3.31 3.35
1.75

3.47
2.56
1.42

3.63 2.98
2.97
2.18
1.02

3.56
2.06

3.65
2.57
1.54

3.69
2.94
2.12
1.13

Note. In the single replace condition, the item number indicates the item replaced, and in the switch condition,
the row and column numbers represent the items switched.

of items is determined by intact order links.
Then the subject guesses at the remaining
unordered items using item information. To
apply this model to the perceptual matching
task, the obvious strategy is to compare se-
rially items in the study and test strings. For
the experiments presented above, loss of item
and order information should not be a prob-
lem according to this model. There should
be less than 3% chance that an order link
is lost between study and test (Figure 9 in
Shiffrin & Cook, 1978). As it stands this
model is unable to account for the large dif-
ference in performance between the double
replace condition and the condition in which
adjacent items are interchanged. The reason
is that as soon as a nonmatching item is en-
countered in the serial comparison process,
a negative response will be made. However,
it should be noted that Shiffrin and Cook's

model was not designed to account for re-
action time data, and perhaps in light of
these data, the retrieval assumptions could
be modified and some mechanism added that
would allow an item adjacent to the item
being processed to have an effect on the com-
parison process.

Other models of the perceptual matching
process (Bamber, 1969; Taylor, 1976) are
inadequate in the same way as the Shiffrin
and Cook model. Any unelaborated serial or
parallel matching process must predict that
reaction time and accuracy are the same for
double replace conditions and conditions in
which two items in the study string are
switched; this prediction is clearly discon-
firmed by the data.

Krueger's model (1978) is very closely
related to the retrieval model presented
above, but there are some differences. First,
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Krueger's model has no provision for dis-
tributed representations of letters. The model
has only one source of variability and that
is variability in the comparison process.
There is no allowance for variability in the
quality of the encoding, so accuracy should
not level off with time as in Experiment 2
(unless a deadline is reached). Second, in
Krueger's model, letters are represented as
feature bundles, and letters that do not
match have a surprising number of features
in common. In the worst case only 11 out
of 100 features are assumed to mismatch
physically. This seems to conflict with the
idea of a dot-matrix representation as de-
scribed by Krueger (1978) because one
would expect far less overlap between dif-
ferent letters. Furthermore, the way mul-
tielement strings are processed seems arbi-
trary: If one mismatch is registered in one
position, then the probability of registering
a mismatch in an adjacent position is re-
duced. In the memory model presented here,
this kind of assumption is not necessary.
Another difference between the models is
that Krueger's model assumes discrete pro-
cessing, one comparison taking about 200
msec, whereas the diffusion overlap model
assumes continuous processing. However,
even though the models do differ consider-
ably in detail, they are very much alike in
their approach to retrieval processes. Both
assume a sequential sampling scheme; both
are applied to accuracy, reaction time, and
reaction time distributions; and both reduce
the importance of fast same judgments from
a separate process to little more than a cri-
terion effect.

Application to Other Paradigms

One important property of a model is its
ability to generalize across experimental
paradigms. In this section, I consider how
the model presented in this paper generalizes
to some related paradigms.

The converse of the perceptual matching
task. Taylor (1976) has introduced a vari-
ant of the Bamber (1969) task in which sub-
jects have to respond positively if one or
more letters match in position, and nega-
tively if no letters match in position. Results
show that as the number of matching letters

decreases, reaction time increases and ac-
curacy becomes poorer. Krueger (1978) ob-
tained adequate fits of his retrieval model to
these data. Therefore, it is likely that fits of
the diffusion retrieval model presented here
would also be adequate. In the overlap model
the parameter that would vary is the relat-
edness parameter for positive comparisons:
If all letters matched, there would be con-
siderable overlap between the study and test
strings. As the number of matching letters
decreased, the overlap would decrease and
reaction times and error rates would in-
crease.

Multiple element comparison task. An-
giolillo-Bent and Rips (Note 1) have per-
formed two experiments designed to test var-
ious models of item and order information.
In their experiments three letters were pre-
sented as the study string. The test string
was either a permutation of the study string,
to which the subject was to respond posi-
tively, or a permutation with one letter re-
placed by a new letter, to which the subject
was to respond negatively. They found that
performance was best, with low error rate
and fast responses, when the study and test
strings were identical (e.g., study ABC and
test ABC). The next best test condition was
ACB, followed by BAC. The remaining
three permutations were all equally worse.

The overlap model will predict exactly this
pattern of results. The letter A has smaller
variance in the fits of the model to the data
than the other letters because it is in Position
1; in fits of the model to the experiment pre-
sented above (and other data), Position 1
consistently has the smallest variance esti-
mates. Thus, it would be expected that ACB
would have greater overlap with ABC than
would BAC. The other three permutations
all have three letters exchanged, so they
should have the poorest performance.

The model proposed by Angiolillo-Bent
and Rips (Note 1) includes a position-sen-
sitive component such that the number of
steps necessary to permute the test string to
produce the study string helps account for
reaction time differences. This mechanism
captures the kind of structure proposed in
the overlap model. Angiolillo-Bent and Rips's
proposal will not, however, be able to ac-
count for the effects found in Experiment 1.
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Their permutation scheme will require some
other decision mechanism; if the study and
test strings had only two adjacent letters
switched, only one switch would be needed
to convert the test string to the study string,
so performance should be good, but in fact
it is poor.

Conclusion

The theory developed here integrates a
random-walk retrieval model and an overlap
model for the representation of order infor-
mation into a single scheme for the percep-
tual matching task. The strength of the the-
ory is that it provides integration of several
different areas of research: The overlap
model is related to the perturbation model
of Lee and Estes (1977) that accounts for
data from short-term memory recall studies.
The retrieval model is a variant of the ran-
dom-walk model that has been used to model
retrieval in a number of experimental par-
adigms. The theory also provides an account
of many aspects of the data, including re-
action time, accuracy, and the time course
of processing with the retrieval model; and
performance on several kinds of different
trials (including the new switch condition)
with the memory model.

An important aspect of the memory model
presented here is the assumption that the
representation of an item is distributed over
position rather than being precisely located
in a single position. This conception goes
against the view of letter-matching pro-
cesses, in which it is assumed that items are
compared one by one with no effect of
nearby items. In contrast, in research in the
areas of letter and word perception, the as-
sumption of positional uncertainty is well
established. Thus, the model presented here
may help relate the areas of letter perception
and letter matching.

Reference Note
1. Angiolillo-Bent, & Rips, L. Order information in

multiple element comparison. Manuscript submitted
for publication, 1981.
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Appendix

Fitting the Retrieval Model to Data

Mathematical Expressions

In order to fit the retrieval model to the data
(reaction time, distributions, and accuracy) it is
necessary to use expressions that relate the the-
oretical parameters (a, z, s, it, u, v, and /ER) to
the empirical results. These expressions can be
found in the appendix to Ratcliff (1978). Equa-
tion A8 gives the probability of a nonmatch 7 _
(£) for a particular drift rate £. Equation A12
gives the expression for the first passage time dis-
tribution function G _ (t, £) (the cumulative den-
sity function) for a particular drift rate £. Equa-
tions A24 and A25 give the expressions for the
first passage time distribution functions averaged
over a distribution of drift rates—n(«, 77), for ex-
ample. These expressions are sufficient to allow
the model to be fitted to mean reaction time (by
integrating t times the density function), reaction
time distributions, and accuracy.

It should be noted that in all these expressions
the encoding and response output time parameter
/ER has been ignored. In the fits to the model it
is estimated along with the other parameters. It
is assumed that the encoding and response output
processes have variability small enough to be ig-
nored.

Fits of the Retrieval Model

Fitting all 25 sets of data using some kind of
minimization routine would have taken far too
much computer time, so the fits were performed
in a more informal manner. First, group reaction
time distributions (Ratcliff, 1979; Thomas &
Ross, 1980) were obtained for each subject for
each condition across sessions. Ratcliff (1979) has
shown that this method introduces no serious bias
into the determination of the average reaction
time distribution. Even if there are significant
practice effects across sessions, the distributions
across conditions will maintain their relative
shapes (a condition with a long tail will still have
a long tail relative to other conditions). In fact,
eliminating the first session from analyses had no
effect on the distribution parameters except that
everything was a few milliseconds faster.

These group distributions (one for each subject
in each condition) were then fitted by the con-

volution model shown by Ratcliff and Murdock
(1976) to describe the shape of empirical reaction
time distributions. The convolution model (the
convolution of an exponential and a normal dis-
tribution) uses three parameters to describe dis-
tribution shape. These parameters are the expo-
nential parameter T (the mean of the exponential)
and n and a (the mean and standard deviation of
the normal). Roughly, n describes the behavior
of the mode or fastest responses and r describes
the behavior of the tail of the distribution. Thus,
fitting the, convolution model to the group distri-
bution for each condition gave 25 sets of three,
parameters. These parameters were fitted by the
retrieval model. Specifically, the equations for the
theoretical reaction time distributions and error
rates were used to generate predicted empirical
reaction time distributions and error rates. Con-
volution parameters for these predicted distribu-
tions were then compared to the convolution pa-
rameters obtained from the data. Thus, the
convolution model serves as a meeting point for
the theoretical and empirical distributions. This
procedure does not introduce serious bias into the
fitting process (Ratcliff, 1978, 1979). Although
the empirical and theoretical distributions are fit-
ted to each other through the convolution model,
the fits that are presented in Figures 3 and 4 are
direct from retrieval model to data; the convolu-
tion model parameters are not shown. This is a
critical point. If the fitting procedure described
above introduced any bias, then this bias would
show up as a poor fit of the diffusion model to the
data in Figure 4.

The fits of the model to the data were achieved
by adjusting parameters to obtain the best fits to
accuracy and reaction time distributions for the
25 different conditions and the same condition.
The parameters s (variability in drift in the dif-
fusion process) and j; (variability in relatedness)
were kept constant at the values used by Ratcliff
(1978), .08 and .18. Adjusting these parameters
over a small range (30%) did not affect the fits
but did alter other parameter estimates (though
not the relative values). The results of these fits
and the data are shown in Figures 3 and 4.
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