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Continuous Versus Discrete Information Processing: 
Modeling Accumulation of Partial Information 
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David Meyer and colleagues have recently developed a new technique for examining the time course 
of information processing. The technique is a variant of the response signal procedure: On some 
trials subjects are presented with a signal that requires them to respond, whereas on other trials 
they respond normally. These two types of trials are randomly intermixed so subjects are unable to 
anticipate which kind of trial is to be presented next. For data analysis, it is assumed that on the 
signal trials observed reaction times are a probability mixture of regular responses and guesses based 
on partial information. The accuracy of guesses based on partial information can be determined by 
using the data from the regular trials and a simple race model to remove the contribution of fast- 
finishing regular trials from signal trial data. This analysis shows that the accuracy of guesses is 
relatively low and is either approximately constant or grows slowly over the time course of retrieval. 
Meyer and colleagues have argued that this pattern of results rules out most continuous models of 
information processing. But the analyses presented in this article show that this pattern is consistent 
with several stochastic reaction time models': the simple random walk, the runs, and the continuous 
diffusion models. The diffusion model is assessed with data from a new experiment using the study- 
test recognition memory procedure. Fitting the diffusion model to the data from regular trials fixes 
all parameters of the model except one (the signal encoding and decision parameter). With this one 
free parameter, the model predicts the observed guessing accuracy. In summary, results obtained 
from Meyer et al?s (1988) new technique give important qualitative support to some stochastic 
models and impressive quantitative support to the continuous diffusion model. 

The distinction between discrete and continuous models of  
information processing is central to theory in cognitive psychol- 
ogy. Models based on discrete processing are quite different 
from models based on continuous processing, and the kinds of  
data used to support the two different classes of  models have 
different characteristics. However, the problem of  discriminat- 
ing between the classes of  models is difficult because it is often 
possible for a model of  one class to mimic the properties of tbe  
other class. Currently, the scope of  continuous models seems 
larger because continuous models are able to account for more 
aspects of the data from reaction time experiments than are 
discrete models (e.g., the relation between accuracy and reac- 
tion time, the shape of  reaction time distributions, and response 
signal data). 

This research was supported by Grant BNS 8510361 from the Na- 
tional Science Foundation and Grant HD 18812 from the National In- 
stitute of Child Health and Human Development. 

I would like to thank David Meyer and John Kounios for useful dis- 
cussions and information about the experimental method; Bill Hockley, 
John Kounios, Ben Murdock, Ed Shoben, Jim Townsend, and two 
anonymous reviewers for comments on the manuscript; and especially 
Gail McKoon and Dave Meyer for extremely detailed and valuable com- 
ments and suggestions. 

Correspondence concerning this article should be addressed to Roger 
Ratcliff, Department of Psychology, Northwestern University, Evans- 
ton, Illinois 60208. 

238 

The issue of  continuous versus discrete processing arose pre- 
viously in the domain of  learning theory, where the question 
was, Does learning proceed in an all-or-none fashion ("now you 
have it, now you don't")  or continuously? Crowder (1976, pp. 
264-273) provided a summary of  this issue and concludes that 
rather than a binary distinction, the question should concern 
the conditions under which learning is all-or-none or continu- 
ous. With respect to information processing in cognitive psy- 
chology (and in particular, reaction time models), exemplars of  
both discrete and continuous models have been developed, yet 
there are few tests to discriminate the two kinds of  models like 
the tests that were used in learning theory. 

Meyer and Irwin (1981) and Meyer, Irwin, Osman, and Kou- 
nios (1988) have developed a new technique for investigating 
the time course of tbe  accumulation of  partial information over 
time, and this technique may help to discriminate between con- 
tinuous and discrete models. The method is one in which sub- 
jects are presented with two types of  test trials randomly inter- 
mixed. One type allows the subject to respond normally in his 
or her own time (regular trials), and the other type forces the 
subject to respond when a signal is presented at one of  a number 
of  experimenter-determined times (signal trials). The logic of  
the method is simple: It is assumed that on signal trials, the 
subject's responses are a probability mixture of  fast regular re- 
sponses based on complete information and guesses based on 
whatever partial information is available to the subject. A race 
model (e.g., Ollman & Billington, 1972) is used to extract the 
accuracy of  the guesses from the signal trials (using the regular 
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trial data to factor out the contribution of fast-finishing regular 
processes), and these are the results of principle interest. The 
accuracy of guesses is obtained at several signal lags to show the 
amount of  partial information available as a function of time. 

Meyer and Irwin ( 1981) provided predictions from both con- 
tinuous and discrete models of  information processing and 
compared these predictions to their data, concluding that the 
data supported discrete models. They argued that continuous 
models, such as the diffusion (random walk; Ratcliff, 1978) and 
cascade (McClelland, 1979) models, predict that accuracy of 
guesses will grow continuously over time, whereas discrete 
models (e.g., Sternberg, 1966) predict that accuracy will grow 
as a single step or series of  discrete steps. Meyer and Irwin used 
a double-word lexical decision task (if two letter strings are both 
words or both nonwords, respond "yes", otherwise respond 
"no") and showed that the accuracy of guesses rose to a plateau 
at a lower level than that of  regular responses (e.g., d's of  0.8 
vs. 2.5, respectively). They used this step function as evidence 
against continuous models ~ and evidence for a two-stage dis- 
crete model. 

In this article, it is shown that some continuous models are 
qualitatively consistent with Meyer and Irwin's (1981) data. In 
their updated presentation of  the method and theoretical inter- 
pretation, Meyer et al. (1988) examined the results presented in 
this article (in later sections below) and agreed that only certain 
classes of continuous models are ruled out qualitatively. How- 
ever, they still argued that the detailed patterns of data are in- 
consistent with continuous models that otherwise account for a 
large range of  reaction time and accuracy data. In this article I 
show that the data are quantitatively consistent with the contin- 
uous random walk (the diffusion model) and that the diffusion 
model accounts for the data without any change in the structure 
of the model. The same model that accounts for the behavior of 
mean reaction time, the shape of reaction time distributions, 
and accuracy as a function of  various experimental variables 
across a range of  paradigms also accounts for the behavior of 
guessing accuracy as a function of  time. In addition, I examine 
several other sequential sampling models (the simple random 
walk, the runs model, and the counter or recruitment model) 
and present their predictions for guessing accuracy as a function 
of time. 

In the experiments reported so far in the literature using the 
new response signal decomposition technique, Meyer et al. 
(1988) have argued that two patterns of data have been ob- 
tained. In the original Meyer and Irwin (1981) study and Exper- 
iments 1 through 4 in Meyer et al. (1988) using a double-word 
lexical decision procedure, results show a rise of guessing accu- 
racy from chance to a low asymptote, and this asymptotic accu- 
racy plateau continues for about 150 to 200 ms (there are no 
data beyond this range). In contrast, recent experiments using 
other experimental tasks such as single-word lexical decision 
(Meyer et al., 1988, Experiment 5), semantic verification (Kou- 
nios, Osman, & Meyer, 1987), and item recognition (Experi- 
ment 1 in this article)show a monotonic growth of  guessing 
accuracy without asymptote and with low accuracy (relative to 
regular responses). Meyer et al. (1988) concluded that these are 
two different patterns of  results because, relative to regular reac- 
tion time distributions (i.e., over the range from the fastest regu- 
lar responses to the median), both patterns occur in different 

experiments. That is, at the same point in time, measured from 
the regular response time distribution, one experiment shows a 
plateau of asymptotic accuracy, whereas the other shows a grad- 
ual rise. 

However, the conclusion that the two patterns are different 
must be viewed as tentative because (a) there are significant 
differences in absolute times in the two cases; (b) an asymptote 
has only been demonstrated in the double-word lexical decision 
and there could be a gradual rise up to the asymptote (in the 
experiments performed so far, there is a gap of  200 ms from the 
measurement at chance to the next measurement at plateau in 
the double-word lexical decision task, so it is not known if there 
is a gradual rise in guessing accuracy or not); and (c) in the 
conditions demonstrating a monotonic growth, there could be 
an asymptote later in processing. Before these patterns can be 
used as a classification scheme as Meyer et al. (1988) have pro- 
posed, further experiments need to be performed to allow gen- 
eralization of  the results. For the purposes of  the theoretical 
analyses that follow, the pattern of  predictions I concentrate on 
is one in which guessing accuracy rises and asymptotes at an 
accuracy plateau lower than that for regular processes. 

Meyer et al. (1988, see also Meyer, Yantis, Osman, & Smith, 
1985; Yantis & Meyer, 1985) stressed the importance of  the dis- 
tinction between discrete and continuous processing. To the ex- 
perimentalist, the framework of  continuous models suggests a 
set of  empirical questions that have little overlap with the ques- 
tions one would ask from the framework of  discrete models. For 
example, discrete models are often tested and interpreted with 
additive factors logic (Sternberg, 1969), whereas some versions 
of  continuous models suggest that additive factors logic is flawed 
(e.g., McClelland, 1979; see Meyer et al., 1988, for further dis- 
cussion). Also, discrete models are examined in a way that 
makes the behavior of  errors and reaction time distributions of  
little importance, but many continuous models give error rates 
and reaction time distributions equal weight to mean reaction 
time. Given such major differences in focus between the two 
classes of  models, new methods like that presented by Meyer et 
al. (1988) are of  considerable importance to the field; they allow 
qualitatively new kinds of  tests to be performed between 
models. 

In this article, I show that Meyer and Irwin's ( 1981) analyses 
of some of  the continuous models are incomplete, that one class 
of these models (the sequential sampling models) provides tight 
predictions for the form of the growth of  the accuracy of  guesses 
as a function of  time, and that empirical data provide strong 
support for some members of  this large class. Simulations of  
four sequential sampling models--the simple random walk 
(Feller, 1968), the diffusion model (Ratcliff, 1978, 1981; 1985), 
the runs model (Audley, 1960), and the counter or recruitment 
model (LaBerge, 1962; Pike, 1973)--are presented and predic- 
tions of these models are compared with the qualitative features 

' It is interesting to note the genesis of the ideas in this article. I be- 
lieved the claims made in the Meyer and Irwin article were correct, that 
their data ruled out continuous models, and decided to see how badly 
the diffusion model missed their data. Without altering the model at all 
(i.e., using the model described in Ratcliff, 1978), the model predicted 
their data qualitatively, and in this article I show that the unmodified 
diffusion model fit results from their procedure quantitatively. 
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of  the data in Meyer et al. (1988). Following this comparison, a 
new experiment is presented that uses the study-test recogni- 
tion memory procedure to examine the accumulation of  partial 
information in item recognition. Finally, the diffusion model is 
fitted explicitly to the data from this new experiment. 

Predict ions o f  Sequential  Sampl ing and 
Con t inuous  Models  

Meyer et al. (1988) examined the predictions of the cascade 
model of  McClelland (1979) for the growth of  partial informa- 
tion as a function of  time and noted that the accuracy of  guesses 
should rise continuously to the asymptotic accuracy of  regular 
processes. They contrasted this prediction with that derived 
from a discrete model in which there are a number of  informa- 
tion-processing stages. The discrete model predicts that accu- 
racy should grow in steps so that initially accuracy is near zero 
and then rises to an intermediate level, with a separate interme- 
diate level for each stage that provides some further partial in- 
formation. One criticism that can be made of  this kind of  dis- 
crete model is that it is post hoc; the nature of  the proposed 
serial processes is determined completely by the experimental 
results, and there is no theoretically motivated reason to expect 
any particular number of  intermediate plateaus of  guessing ac- 
curacy. In contrast, predictions from a sequential sampling 
model are determined by the preexisting structure of  the model 
and cannot be easily changed in the light of  experimental re- 
sults. The estimate of  partial information (guessing accuracy) 
is the estimate of  accuracy for a process that has not termi- 
nated, that is, a process that has not reached a response crite- 
rion. It should be stressed that this estimate and how it changes 
as a function of  time are determined by the structure of  sequen- 
tial sampling models. The predictions of  these sequential sam- 
pling models are presented in the next sections. 

Three of the models considered are the simple random walk, 
the runs model, and the counter model. These models fall be- 
tween the classes of  discrete and continuous models because 
they accumulate information over time (like a continuous 
model), but the information is accumulated in discrete packets. 
Because the accumulation of  information is over time, they con- 
trast with discrete serial stage models in the same way as contin- 
uous models. Predictions from each of  these models are found 
with simple simulation programs using parameter values that 
produce reaction time distributions and levels of  accuracy that 
mimic experimental data (reaction time distributions should be 
skewed to the right, and accuracy should be between 75% and 
95% to cover choice reaction time and recognition memory par- 
adigms, e.g., Vickers, Caudrey, & Willson, 1971). These simula- 
tions are sufficient to demonstrate the predictions of  these 
models. While explicit solutions could probably be obtained, 
for the present purposes such derivations seem unnecessary be- 
cause only the qualitative behavior of  the three models is consid- 
ered. The other model presented is the continuous version of  
the random walk, the diffusion model. Because this model will 
be fitted to data, explicit predictions in equation form are pre- 
sented. The model is treated more fully than the others because 
(a) it has been applied quantitatively across a range of  para- 
digms, (b) it is one of  the continuous models that Meyer and 

Irwin (1981) specifically rejected, and (c) Meyer et al. (19881 
claimed it has trouble handling some aspects of  their data. 

Simple Random Walk 

The simple random walk can be understood best by analog~ 
with a feature matching model. The process starts with some 
count, Z, and response boundaries are placed at 0 (for a non- 
match) and A (for a match). At each feature comparison, the 
counter is incremented one count for a feature match or decre- 
mented one count for a feature nonmatch until the process ter- 
minates at either A or 0. For the process to terminate with a 
match, there must be A - Z more feature matches than feature 
nonmatches (conditioned on the total count not having reach- 
ing zero first). For the process to terminate with a nonmatch, 
there must be Z more feature nonmatches than feature matches 
(conditioned on the count not reaching A first). The parameters 
of  the model are Z, A, and p, the probability of  a feature match 
(i.e., taking a step toward the match criterion). Figure 1 (top 
panel) shows the simple random walk and parameters of  the 
model. In a general model, there would also be a parameter rep- 
resenting the encoding, response preparation, and other nonde- 
cision processes, but this parameter is ignored for this model 
and for the runs and counter models because quantitative fitting 
to data is not performed. 

In the case of  a signal trial in which processing is interrupted 
and a response is required, the response has to be made on the 
basis of  where the process is currently positioned. This can be 
done by placing a criterion at some position so that, for exam- 
ple, all processes with a count greater than Z give positive re- 
sponses, all processes with a count less than Z give negative re- 
sponses, and processes with counts equal to the criterion split 
the counts 50/50 positive and negative (note that in fitting the 
model to data, the criterion would usually be some value other 
than Z). 

To examine the behavior of  this model for signal trials, a sim- 
ple simulation was performed. The model as just described was 
used, and 10,000 Monte Carlo simulations were performed for 
each of  several sets of  parameter values. For the simulations, 
the starting point Z was set to be k, the position of  the upper 
boundary A was set to be 2k (i.e., boundaries equidistant from 
starting point), and the guess criterion was chosen to be k. 
When a guess terminated the walk at the criterion, a half score 
was given to both positive and negative categories of  responses. 
The results of  main interest were accuracy of  regular responses 
and accuracy of  guesses as a function of  time (i.e., the stopping 
position in number of  counts). 

Table 1 shows the results from the Monte Carlo simulations. 
The accuracy of  guesses rises rapidly (accuracy seems close to 
asymptote by 5 steps) and remains constant out to 40 steps (and 
more, though the variability becomes large because the number 
of  observations becomes very small because most processes ter- 
minate earlier). These results are qualitatively consistent with 
the Meyer and Irwin (1981) and the Meyer et al. (1988) results 
for Experiments I through 4. They show a rise to an asymptotic 
level of  accuracy below the level of  accuracy for regular re- 
sponses. 

There is one major issue, and that concerns the relative posi- 
tions of  the minimum reaction time for regular processes and 
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THE RANDOM WALK PROCESS 
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Figure 1. An illustration of the simple random walk (top panel), the 
diffusion process (bottom panel), and variability in drift rate over trials 
in the diffusion model (middle panel). 

the time at which the accuracy of  guesses rises above chance to 
asymptote. The simple random walk predicts that at the time 
the fastest regular processes begin to terminate, the accuracy of 
guesses is approaching asymptote, while the experimental data 
of Meyer et al. (1988) show that guessing accuracy is at chance 
just before the fastest regular processes begin to terminate. The 
resolution I present in detail later is that processing the signal 
to respond takes extra time and so the point at which guessing 
accuracy is measured actually reflects an earlier point in pro- 
cessing than an equivalent point in real time for regular pro- 
cesses. So guesses are at chance when fast regular processes are 
finishing because those guesses are based on the amount of  in- 
formation accumulated at an earlier point in time. 

A second main point is that the accuracy of guesses is lower 
than the accuracy of regular processes. Using the first simula- 
tion and hit rate derived from the values in the table, with p the 
probability of a feature match at .6 and the probability of a 
mirror image process at .4 (1 - p) for false alarm rates, values 
of  d' can be calculated for both guesses and regular processes. 

These values are 0.9 for guesses and 2.4 for regular processes 
for walks of  10 or more steps. These values are quantitatively 
near the ratio found for the data of Meyer et al. (1988). 

These simulations demonstrate that the simple random walk 
qualitatively predicts the results from the Meyer et al. (1988) 
studies: high accuracy for regular responses and low, relatively 
constant accuracy across lags for guesses after an initial rapid 
rise. No additional assumptions have to be made in the model 
to produce this pattern of  results. 

The prediction from the simple random walk model that the 
accuracy of guesses rises and asymptotes rapidly is difficult to 
understand intuitively. One would expect that accuracy of  
guesses would rise slowly to the accuracy of  regular processes. 
This is prevented from happening by noise in the system. Con- 
sider the case in which the response boundaries are far from 
the criterion, and consider the behavior of  a large number of 
processes each with the same feature match probability, thus 
giving a distribution across trials. As the number of steps in- 
creases, the distribution of  processes will drift toward one re- 
sponse boundary, and the distribution of processes not termi- 
nated will spread. When processes begin to reach the response 
boundary, the processes with the greatest number of  counts will 
terminate first and the rest will move closer to the boundary. All 
of the processes will not terminate, however, because noise will 
tend to move some processes away from the boundary (as well as 
bump some over the boundary). Therefore, noise in the system 
balances the tendency for processes to terminate at the response 
boundary. This works to keep some processes far away from 
the response boundary. There are three effects balancing each 
other: the tendency for a process to move closer to the boundary 
on average, the tendency for the process to exit the walk, and 
noise in the system that acts to move some processes away from 
the response boundary. As can be seen from this discussion, it 
is hard to guess what will happen from these component effects. 
The simple simulations shown above demonstrate that in fact 
accuracy of  guesses is relatively low and asymptotes rapidly. 

It is useful to note that the particular model just presented 
does not exhaust the range of  possible versions of  the simple 
random walk. It is possible to have the probability of a count of  
one kind vary as a function of the number of  counts, or have 
the boundaries change position as a function of  number of  
counts, or have the relationship between counts and millisec- 
onds change as a function of  number of  counts (i.e., slow down 
or speed up). Any of these alternatives would alter the predic- 
tions, and it may be possible to obtain increasing or decreasing 
guessing accuracy as a function of time. However, none of  these 
assumptions have been seriously considered and developed to 
produce reaction time models, and there are few explicit solu- 
tions for such variations of  the random walk. Most of  these same 
variations would be possible for the other models considered 
below, but again, few if any have been examined. Also, the 
aforementioned model does not exhaust the range of  versions 
of  the random walk with constant boundary positions and con- 
stant drift rate that have been examined. These other versions 
of the random walk (Laming, 1968; Link & Heath, 1975) would 
produce the same predictions as the model used for these simu- 
lations. 

To summarize, the mathematics of  the random walk requires 
that the distribution of nonterminated items moves close to the 
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Table 1 
Probability of a Positive Response for the Simulations of the Simple Random Walk 

Parameter Cutoff 

p k Response 1 2 3 4 5 6 10 20 30 40 

.6 5 Regular . . . .  .882 .897 .882 .880 .884 .884 
Guess .600 .600 .648 .646 .666 .657 .668 .675 .668 .675 
N regular . . . .  903 886 2,913 6,461 8,281 9,096 

.55 6 Regular . . . . .  .788 .784 .766 .766 .767 
Guess .549 .549 .574 .572 .597 .586 .592 .594 .609 .608 
N regular . . . . .  340 1,481 4,233 6,127 7,409 

Note. N regular refers to the number of trials out of 10,000 that terminated with a regular response (= 10,000 - N guess). 

response boundary and asymptotes in shape. From that point 
on, the shape does not change; the proportion of  processes left 
in the walk simply decreases (i.e., the distribution collapses in 
size). 

Diffusion Model  

The diffusion model is a continuous version of  the simple ran- 
dom walk (see Feller, 1968; see also Ratcliff, 1978, for applica- 
tions) and can be derived from the simple random walk by tak- 
ing limits as the step size becomes small. The bottom panel of  
Figure 1 illustrates the diffusion process and the parameters of 
the model. Expressions for accuracy and the distributions of  
finishing times for regular processes are available (see Ratcliff, 
1978), as are expressions for the distributions of  processes that 
have not terminated (Cox & Miller, 1965; Ratcliff, 1980). The 
expression for the distribution of  nonterminated processes can 
be used to predict accuracy of  guesses by setting a criterion as 
in the simple random walk. This expression for the distribution 
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Figure 2. Distribution of nonterminated processes in a single diffusion 
process as a function of time. (Parameters used were as follows: a =.  16, 
z = .08, u = .3, s = .08, and Ter = 0. Note that there was no variability 
in mean drift rate across trials in this example.) 

of  nonterminated processes as a function of  position in the 
diffusion process and time is shown in Equation 1 (and is de- 
rived in Ratcliff, 1980), 

cO 

p(x, t) e U(X_z)/s2 ~ 2 . /mrz \  = - s ln~- - -~ - )  
n=l a 
�9 [mrx\ f I[U 2 n27r2S2\ ) 

• s l n t - - - ~ ) e x p t - ~ / ~ - +  ~ ) t l ,  (1) 

where x refers to the position in the diffusion process (between 
boundaries 0 and a), and where t represents time; u, the drift 
rate; z, starting point of the process; and s 2, variance in the drift 
rate. Figure 2 shows the distribution of  nonterminated pro- 
cesses from Equation 1 as a function of  position in the walk for 
several values of  time for parameter values that are typical of  
fits of  the diffusion model to data (e.g., Ratcliff, 1978, 1981). It 
can be seen that the distribution of  nonterminated processes 
reaches an asymptote in shape as a function of time. Up to 0.2 
s, the distribution moves toward the boundary a (set at 160/ 
1000 = .  16), while after that time the distribution collapses in 
size as more and more processes terminate. (Note that the dis- 
tributions in Figure 2 are unnormalized probability density 
functions; the area under the function is the proportion of  pro- 
cesses that have not terminated.) 

This version of  the diffusion process is the simplest case. In 
the model of  Ratcliff(1978), an additional assumption is made: 
that there is variability in the mean drift rate across trials (the 
normal distribution is assumed with variance n2). From now on 
the phrase "the diffusion model" will be used to refer to the 
diffusion process with a distribution of  drift rates. Mathemati- 
cally, this means that it is necessary to integrate over a range of  
drift values in Equation 1. The solutions are numerical but ex- 
act (the infinite series in Equation 1 has to be summed and this 
quantity integrated numerically over the distribution of  drift 
rates u). Figure 3 shows an illustration of  the diffusion process 
with variability in drift. The distribution over a large number 
of  trials begins at the starting point, and as time elapses it 
spreads out, with both mean and variance increasing (the distri- 
bution is normal). When processes begin to terminate, the dis- 
tribution begins to bunch up near the top boundary with a skew 
toward the bottom boundary. The difference between the unre- 
stricted process (i.e., without response boundaries, as shown by 
the dotted distribution, which is presented for comparison) and 
the process with response boundaries represents the processes 
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Figure 3. The diffusion process illustrating the distribution of regular 
processes (marked "correct responses" and "errors"), the distribution 
c~f nonterminated processes (marked "guess distribution"), and the dis- 
tribution of processes that would occur with no response boundaries 
(the dotted line). 

that have terminated. As time progresses further, the distribu- 
tion becomes slightly less skewed because the processes with the 
larger values of  drift tend to terminate more quickly (on aver- 
age) leaving processes with lower values of  drift that are (on 
average) less bunched toward the boundary. Thus, we would 
expect to see d' for nonterminated processes rise rapidly and 
then plateau and drop slowly. 

Predictions for the behavior of  several quantities are shown 
in Figure 4 for values of  the parameters a, z, and u that are 
typical of  fits of the diffusion model to empirical data (Ratcliff, 
1978, 1981). The top panel shows the reaction time distribution 
for regular processes. The middle panel shows the growth of  d' 
both for guesses (nonterminated processes) and for the diffusion 
process without boundaries (to contrast with guessing d', which 
has boundaries). Note the initial rise is the same because in both 
cases all the processes are involved in the calculation of d'; it is 
only when processes begin to terminate that guessing diverges 
from the process without response boundaries. These d' graphs 
were derived using a negative process with negative drift the 
same magnitude as positive drift (i.e., a mirror image process) 
and then using this negative process to give false alarms for the 
d' calculation. The bottom panel shows the growth of  probabil- 
ity correct as a function of  time. 

For the diffusion process without boundaries, the distribu- 
tion is normal and the equation is given by 

p(x ,  t) = ~ e -�89 ,,)2/s2, (2) 
V2~rs2t 

Thus, accuracy in terms o fd '  is given by 

t 

da (3) 
d'(t)  = 1/1 + sZ/(n2t) ' 

where d'a = (u - v)/n; an example of  this function is shown in 
the middle panel of  Figure 4. For guesses, accuracy rises rapidly 
and decays more slowly, so for d' the peak is at d' = 1.4 and t = 
.075 s, and when t = .25 s, d '  has fallen to 1.0. Note that the 
precise positioning, rate of  growth, and height of  this function 

are dependent on the parameter values used, but the shape is 
intrinsic to the model. 

These results, like those for the simple random walk, demon- 
strate that important aspects of  the data from Meyer et al. 
(1988)--rise to a relatively low level of  guessing accuracy and 
relatively fiat asymptote--are qualitatively predicted by a con- 
tinuous model, the diffusion model. Possible decreases in accu- 
racy of  guesses at longer signal lags become difficult to examine 
because estimates of  guessing accuracy become unstable at 
these longer times (this issue is considered later in this article). 

R u n s  M o d e l  

The runs model is related to the simple random walk in that 
counts are accumulated with some probability p that a count is 
positive and (1 - p) that a count is negative. The main difference 
between the two models is that in the runs model, counts of  the 
same kind are accumulated until a count of  the opposite kind 
occurs; then the counter is reset so the model assumes no mem- 
ory beyond the current run. The stopping rule is a run of  k 
counts in a row of the same kind (see Figure 5). 

Discussion of  this model can be found in Audley (1960) and 
Laming (1968). A simulation similar to that for the simple ran- 
dom walk was performed (using 10,000 trials per set of  parame- 
ter values). For guesses, it was assumed that the last longest run 
type is stored and if the subject is required to respond, a re- 
sponse is produced based on this type. (If the response is based 
on the current run, the response will be based on the last count 
and thus will be p, the probability of  a count, and will be con- 
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Figure 4. An example of predictions from a single diffusion process. 
(The parameters of the model that were used: a = .l, z = .05, u = .3, 
and Ter = 0. Note that the label response signal d' refers to predictions 
from the diffusion process without boundaries and reflects predictions 
for the response signal procedure from Rateliff, 1978.) 
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Runs Model 

p=probability of a "1" count 

Respond on a run of length k (=4). 

run example: 

100011101001111 
A 

Respond Here (runTof length=4) 

Figure 5. The runs model. 

stant over the whole range.) Table 2 provides results for these 
simulations. For a probability p of  .6 of  one kind of  count and 
a k of  6, the probability that a regular process will finish cor- 
rectly is about .92 (corresponding to d '  of  2.8 using a process 
with p = .4 to produce a false alarm rate of.08 [ 1 - .92]). This 
accuracy is roughly constant across a range of  steps from 10 to 
200. For guesses, the accuracy is about .80 (this corresponds to 
a d '  of  about 1.7) and is constant from 50 to 200 steps, showing 
a plateau of  guessing accuracy. 

One possibly important  difference between the runs model 
and the simple random walk is that by the time the fastest pro- 
cesses begin to finish in the simple random walk, accuracy of  
guesses is very near asymptote, whereas in the runs model it is 
only by the time 30 to 40% of regular processes have finished 
that accuracy of  guesses has risen to asymptote. Thus, the runs 
model provides the same qualitative results (i.e., guessing accu- 
racy rising to a low asymptote relative to the accuracy of  regular 
processes) as the simple random walk and explains qualitatively 
Meyer et al?s (1988) data. However, to argue for a quantitative 
explanation of  the data, note needs to be taken of  the relative 
positions in time of  fast-finishing regular processes and the 
point at which the accuracy of  guesses asymptotes. 

Counter Model  

The last sequential sampling model considered here is the 
counter model (Pike, 1973). This model is related to the runs 

Counter Model 

Respond Respond 
A B 

i counts -  

- j counts 

p -- probability of a 
count in A 

Figure 6. The counter model. 

model and the random walk model, but there are two counters. 
One parameter is the probability p of  a count to one of  the two 
alternatives. Each counter accumulates counts until one 
reaches a criterion k, the other parameter of  the model (see Fig- 
ure 6). As before, a simple simulation was performed (with 
10,000 trials per set of parameter values) to study the behavior 
of regular processes and guesses. For guesses, the counter with 
the largest number of  counts is used; if  the number of  counts is 
the same, one counter is randomly chosen with a probability 
of  0.5. 

The results are shown in Table 3 and provide a picture differ- 
ent from that seen in the runs and random walk models. As the 
number of  steps increases from zero, the accuracy of  guesses 
rises until processes begin to terminate. From then on, accuracy 
of  regular processes and of  guesses decreases. To understand the 
behavior of  the counter models, consider a specific example: For 

Table 2 
Probability of a Positive Response for the Simulations of the Simple Random Walk 

Parameter Cutoff 

p k Response 10 20 30 50 100 150 200 

.6 6 Regular .921 .930 .922 .925 .917 .919 .919 
Guess .700 .746 .760 .789 .810 .800 .796 
Nregular 675 1,749 2,885 4,506 7,258 8,522 9,265 

.6 5 Regular .901 .892 .894 .888 .892 - -  - -  
Guess .684 .720 .737 .743 .754 - -  - -  
N regular 1,387 3,300 4,734 6,689 9,072 - -  - -  

.7 3 Regular .948 .943 . 9 4 8  . . . .  
Guess .753 .760 . 7 3 3  . . . .  
N regular 6,562 9,177 9,783 . . . .  

.55 6 Regular .757 .782 .772 .767 .765 .771 .773 
Guess .604 .630 .636 .663 .679 .671 .665 
N regular 445 1,362 2,097 3,463 5,938 7,442 8,447 

Note. N regular refers to the number of trials out of 10,000 that terminated with a regular response (= 10,000 - Nguess). 
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Table 3 
Probability of a Positive Response for the Simulations of the Counter Model 
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Parameter Cutoff 

p k Response 1 2 3 4 5 6 7 8 9 

.65 5 Regular . . . .  .958 .931 .899 .870 .826 
Guess .651 .653 .723 .719 .739 .680 .667 .5 - -  
N regular 0 0 0 0 1,206 3,488 5,915 8,157 10,000 

.6 4 Regular - -  - -  - -  .839 .789 .759 .719 - -  - -  
Guess .599 .600 .647 .614 .596 .50 - -  - -  - -  
Nregular - -  - -  - -  1,575 4,224 7,259 10,000 - -  - -  

Note. N regular refers to the number of trials out of 10,000 that terminated with a regular response (= 10,000 - Nguess). 

a regular process to terminate after only 5 counts, when 5 is the 
criterion, it must have received 5 counts of  the same kind in a 
row. This is much more likely for the counter with higher proba- 
bility than for the counter with lower probability. For example, 
with p = .65, the probability of  5 counts in a row is. 116; with 
p = .35 (1 - .65), the probability of  5 counts in a row is .00525, 
so that accuracy will be .959. In contrast, when both counters 
have 4 counts in them, the next count (9) will produce a re- 
sponse and the accuracy will be .65 (note the regular process 
accuracy in Table 3 is an average over all processes that termi- 
nated earlier). Thus, accuracy of regular processes decreases 
from .959 to .65 from the first regular responses to the last. Be- 
fore regular processes begin to terminate, accuracy of guesses 
grows until processes begin terminating then accuracy de- 
creases. For example, when the number of  counts in each 
counter is one less than the critical number (the slowest possible 
guess), the accuracy of  a guess must be 0.5. Thus the counter 
model makes a prediction for guesses that is at odds with the 
prediction made for continuous models by Meyer and Irwin 
(1981). 

In addition, the counter model makes other predictions that 
are at odds with the real reaction time data: It predicts a maxi- 
mum value of  reaction time (with a criterion of  5 counts, there 
can be no longer run than 9 counts), and it predicts negatively 
skewed error reaction time distributions (the accuracy of regu- 
lar processes falls as a function oftbe number of counts, which 
means that the number of  incorrect responses rises [see Table 
3]). Thus the counter model seems to fail on several grounds 
and cannot be considered a candidate to explain the data from 
the paradigm of Meyer et al. (1988). 

S u m m a r y  o f  the Models  

None of these models predicts what might be expected from 
a continuous model (e.g., Meyer & Irwin, 1981), that is, that 
guessing accuracy will grow slowly and continuously to the ac- 
curacy of  regular processes. Three of  the models--the runs, the 
random walk, and the diffusion models--predict growth of  
guessing accuracy to a low level, with the level then constant 
for the random walk and runs models and with the level then 
declining slowly after a faster rise for the diffusion model. The 
counter model predicts rising then falling accuracy of  guesses 
as a function of  time. The simple random walk, the runs, and 
the diffusion models are all candidates to explain the data of  

Meyer et al. (1988). In the following section, the diffusion model 
is tested using results from a new recognition memory experi- 
ment. 

Exper iment  

Meyer and Irwin (1981) argued that the pattern of  data they 
observed in their double-word lexical decision data could not 
be accounted for by the diffusion model of  Ratcliff (1978), and 
Meyer et al. (1988) argued that there were aspects of  the data 
(the onset of the growth of  guessing accuracy relative to the 
minimum reaction time for regular processes) that the diffusion 
model was incapable of  fitting. To test whether the diffusion 
model is capable of  making adequate quantitative predictions, 
I performed a new experiment using the study-test recognition 
memory procedure to which the diffusion model has been pre- 
viously fitted, rather than attempt to modify the diffusion 
model by adding assumptions to deal with the processes in- 
volved in the double-word lexical decision task (note that this 
was done before the availability of  Meyer et al 's  single-word 
lexical decision [their Experiment 5] and Kounios et al?s, 1987, 
semantic memory experiments). A second reason for using the 
study-test recognition memory procedure is that accuracy is 
off the ceiling, typically 70% to 90%. Thus contamination of  
results by a small proportion of  bad data would not be as serious 
as with experimental procedures in which accuracy is near ceil- 
ing (because it is possible for a large proportion of  the errors to 
be spurious when error rates are low). A possible problem in 
using the study-test procedure is that averaging data over a 
range of study and test positions might result in a mixture of  
contributions from various long- and short-term components 
of performance. However, the importance of this problem is 
largely an empirical question and it is addressed in analyses of  
the effects of  study and test position on performance. 

The experimental procedure devised by Meyer and Irwin 
( 1981) and Meyer et al. (1988) consists of  the two types of  exper- 
imental trials: regular and signal, randomly intermixed. On reg- 
ular trials, subjects are free to respond in their own time, 
whereas on signal trials, subjects are presented with a signal to 
which they must respond immediately (within 200-300 ms). 
The experimenter determines the onset of  the signal; in the 
Meyer et al. (1988) studies, the signal lags were not set at fixed 
values; rather, the values were set relative to the median re- 
sponse time of  the prior block of  trials. In the present experi- 
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ment, the signal onsets were set at fixed values. A practical ad- 
vantage of this is that programming is much simpler. 

Theoretically, both methods of setting lags have some limita- 
tions from the viewpoint of the diffusion model, and if the pa- 
rameters of the model fluctuate across trials (giving different 
median reaction times across blocks of trials), the two methods 
produce averaged curves with different properties. For example, 
one way regular reaction times can change systematically from 
block to block in the diffusion model is by changes in the re- 
sponse boundaries. If such changes are responsible for changes 
in regular reaction time, then tracking the changing median re- 
action time would result in the averaging of diffusion processes 
with different starting times. This is illustrated in the right panel 
of Figure 7, where the two processes (top right two graphs) are 
lined up with respect to the median reaction time (note that the 
median for processes with wider boundaries will be later in 
time, so that lining up the medians shifts the starting points). 
The third and fourth graphs in Figure 7 show the growth of 
accuracy of guesses for the top two panels, respectively, and the 
bottom graph is the average of the two above. Each individual 
process will have rapid initial rise followed by a more and more 
gradual approach to asymptote. The average shows a two-step 
rise, but this would not be observed in practice. What would be 
observed, averaging over a range of such varying processes, is a 
more constant (i.e., linear) and gradual rise than any individual 
process. 

Fixed times for signal lags relative to the onset of the test item 
would keep the starting point of the diffusion process fixed (not 
dependent on boundary fluctuations), and this would result in 
averaging over the asymptotic portion of the curve, as shown in 
the left panel in Figure 7. The latter alternative would distort 
fits of the diffusion model less than would lining up medians, so 
fixed lags were chosen for this experiment. Note that for a serial 
stage model, the median will track a fixed point relative to the 
end of processing whereas a fixed time will track the beginning 
of processing. 

The second main change in procedure was to use a visual 
signal to respond instead of an auditory signal. In other proce- 
dures using signals to respond, visual signals have been found 
to work just as well as auditory signals (Ratcliff, 1981; Ratcliff 
& McKoon, 1982). 

M e t h o d  

Subjects. The subjects were three Northwestern University under- 
graduates who participated in the experiment partly to fulfill a course 
requirement and partly for pay at a rate of $4 per hour. Each subject 
completed 5 practice sessions and 12 experimental sessions. 

Materials. Words were selected randomly without replacement from 
a pool of 1,025 common two-syllable words not more than eight letters 
in length. There were no repetitions within a session, and words were 
assigned to conditions randomly. 

Design and procedure. Stimuli were presented and responses re- 
corded on a terminal driven by a Radio Shack color computer. The color 
computer obtained lists of materials from an Apple II+ computer that 
communicated with several color computers. Subjects responded by 
pressing one of two keys on the terminal keyboard (the slash key for 
"old" and the Z key for "new"). 

The first two practice sessions used a standard study-test recognition 
memory procedure without signal trials. On each study-test sequence, 

subjects studied 16 words presented individually for 1.5 s each. After a 
pause and a signal that the test list was about to begin, subjects were 
presented with 32 test words one at a time, to which they had to respond 
"old" or "new." The test list was composed of the 16 old words along 
with 16 new words, in random order. After a response, there was either 
a 500-ms delay if the response was correct or the word error was pre- 
sented for 500 ms if the response was incorrect. After each study-test 
sequence, subjects were allowed a self-paced pause before proceeding to 
the next list. 

The experimental sessions, preceded by three identical practice ses- 
sions (Sessions 3-5), were the same as the first two practice sessions 
except for the addition of signal trials. Half the trials (randomly chosen) 
were regular trials and identical to those in the first two practice sessions. 
The other half were signal trials. The test word was presented and then, 
after an experimenter-determined time, a signal to respond was pre- 
sented. The signal was a row of eight asterisks presented directly under 
the test word. Subjects could respond before or after the signal was pre- 
sented, and the test word remained on the screen until the response 
was made. On signal trials, response time feedback was presented and 
subjects were asked to keep the signai-to-response time to about 200 
ms. The signal lags chosen were 200, 250, 300, and 400 ms. These lags 
were chosen to span the time after partial information had begun to 
accumulate to roughly the mean reaction time (note that it is necessary 
to add the subject's signal-to-response latency of about 200 to 300 ms 
to obtain total processing time on signal trials). 

Instructions. One of the most important features of the use of signal 
trials in conjunction with regular trials is that it is extremely difficult to 
train subjects to respond adequately. The problem is that the two kinds 
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Figure 7. A theoretical comparison for the diffusion model between the 
average of cases in which median reaction time is tracked (right panel) 
and the average of cases in which fixed signals are used (left panel). 
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of trials require seemingly inconsistent behavior. On regular trials sub- 
jects are required to be accurate, whereas on the signal trials they are 
required to be fast. In a pilot run of this experiment, in which both 
signal and regular trials were presented in the practice sessions, subjects 
simply responded as quickly as possible so that on regular trials they 
actually responded more quickly than on the trials with the longest sig- 
nal. It was after this that the following method was devised (with the 
consultation of John Kounios and David Meyer): Subjects were trained 
on the first two practice sessions with instructions to be accurate, and 
error feedback was given to emphasize accuracy. The next three sessions 
introduced the signal trials, and subjects were instructed to stay accu- 
rate on regular trials while gradually speeding up responses to the sig- 
nals. By the third signal practice session, subjects were able to perform 
both tasks well, keeping regular trials accurate (and slow) and response 
times to the signal fast. 

Results 

The results from the practice sessions were discarded after 
determining that subjects' performances were acceptable. Pre- 
l iminary analyses of  the data showed that test position had a 
relatively large effect on performance (20-40 ms and 8% differ- 
ence in reaction time and accuracy, respectively, between the 
first and second halves of the test list), but study position had 
little effect (less than 10-ms difference in reaction time and less 
than 2% difference in error rates). These analyses showed that 
within each half of  the test list differences in performance were 
close enough to average, and so the data were split into two 
halves as a function of  test position for data analysis (see Mur- 
dock, 1974; Murdock & Anderson, 1975; Ratcliff, 1978; Rat- 
cliff& Murdock, 1976). 

Signal trials and the race model. In order to extract the accu- 
racy of  guesses at each of  the signal lags, it is necessary to per- 
form an analysis in which the accuracy and reaction time of 
guesses are extracted from the mixture of  guesses and fast-fin- 
ishing regular trials that provides responses on signal trials. The 
first step involves deriving the cumulative distribution function 
for guesses. The second step uses this distribution to determine 
the probability that a guess will beat out a regular process, and 
this is used in deriving guessing accuracy. 

According to the race model, the observed distribution of  re- 
sponses will reflect the minimum values of finishing times for 
samples drawn from regular processes and guesses. The equa- 
tion for the cumulative distribution of  guesses (Equation A2 in 
Appendix A) can be written in terms of the cumulative distribu- 
tion functions of  regular trials (observed) and signal trials (ob- 
served). In performing this derivation (see Appendix A and 
Meyer et al., 1988), it is assumed that the distribution of guesses 
for a particular response is independent of  the duration of  nor- 
mal processes for a given type of  stimulus and that the duration 
of  the guessing process does not depend on whether the guess is 
correct or incorrect. The rationale for this method is discussed 
in Appendix A. Cumulative distribution functions were ob- 
tained using the group distribution method of  Ratcliff (1979). 
For each session for each subject, reaction time quantiles were 
obtained (deciles). These were averaged across sessions to give 
the cumulative distributions used in the analyses (see also 
Meyer et al., 1988). Figure 8 shows the cumulative distribution 
functions for guesses averaged over three subjects for short test 
positions (2-16) (position 1 is discarded because these re- 

Figure 8. Cumulative guessing reaction time distributions for Experi- 
ment 1. (Short and long test position refers to positions 2-16 and 17- 
32, respectively, in the test list. Graphs for two of the four lags are pre- 
sented and the data shown are for hits and correct rejections.) 

sponses are slower by several hundred milliseconds, the result 
of  warming up to the test list [Murdock, 1974]) and two subjects 
for long test positions (17-32). 

Data from only two subjects were used at the longer lags be- 
cause the data from the other subject were unstable at the long 
test positions. This was because accuracy was too low and the 
late signal trials were so slow that most of  the responses were 
fast-terminating processes. The guessing distributions in Figure 
8 differ little except at the highest quantiles. The slight differ- 
ences observed are similar to those found by Meyer et al. (1988, 
Figures 14, 15, & 20). 

The second step in obtaining guessing accuracy involves the 
use of a relationship among signal, guesses, and regular trials 
(using the cumulative reaction time distributions for guesses). 
There are three combinations that will lead to a correct re- 
sponse on signal trials: 1) when both the regular process and the 
guess are correct; 2) when the regular process is correct, the 
guess incorrect, and the regular process faster than the guess; 
and 3) when the regular process is incorrect, and the guess is 
correct and faster than the regular process. An expression for 
the accuracy of  guesses using these three terms is shown in 
Equation B2 in Appendix B (see Appendix B and Meyer et al., 
1988, for details). 

Results for the accuracy of  guesses as a function of time are 
shown in Figure 9. The accuracy of  guesses grows slowly as a 
function of time at a level that is considerably lower than the 
accuracy for regular trials (see Table 5). For early test positions, 
accuracy is higher than for later test positions for both guesses 
and regular processes. Table 4 shows the hit and correct rejec- 
tion rates for guesses from which the d '  results shown in Figure 
9 were derived. It is possible that averaging over individual sub- 
ject 's performance distorts the group results. However, the re- 
suits for individual subjects show exactly the same trends (see 
the brief discussion of  fits to individual subject's data). 
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confidence intervals translate into 2 standard error confidence 
intervals in d' of  approximately. 13. 

Figure 9. Guessing accuracy for results from Experiment 1. (Test Posi- 
tions 1 and 2 refer to Positions 2-16 and 17-32, respectively, in the test 
list.) 

Standard errors in guessing accuracy. In order to estimate 
standard errors, it is necessary to consider two sources of  error. 
Because regular trial data are used across all signal lags, any 
error in the regular trial quantities will appear as a constant 
error in guessing accuracy across lags. In contrast, error in data 
from signal trials could be different for each lag so that there 
will be variability between signal lags. Estimating the variability 
in guessing accuracy is difficult because estimation of  some of  
the terms in the equation for guessing accuracy (Equation B2) 
depends on observed reaction time distributions. However, it is 
possible to get estimates empirically by using simple Monte 
Carlo simulation. In the simulation, the quantities in Equation 
B2 are replaced by values drawn from a normal distribution, 
with mean and standard deviations derived empirically. Then 
the value of  guessing accuracy is derived, and the process is re- 
peated 1,000 times. These 1,000 sets of  values of  guessing accu- 
racy are then used to determine the standard errors on guessing 
accuracy (both for hit and false alarm rates and d'). The stan- 
dard error in p* (probability of  a response on signal trials; see 
Appendix B) is typically .03 for a single subject (derived from 
the binomial expression V(p(1 -p ) /N) .  The standard error in 
p is .01 and the standard error in the probability P(tig < tj) (the 
three expressions in Equation B2) is roughly 0.02 at short lags 
and 0.026 at long lags. These were computed by a second Monte 
Carlo simulation of the race model: the distributions in Figures 
8 and 10 were used to provide reaction times given random 
numbers between 0 and 1 (i.e., cumulative probability). Ran- 
dom reaction times were generated for guesses and regular pro- 
cesses, and the probability that guesses were faster than regular 
processes was thus obtained. Variability in this quantity was 
estimated using 50 Monte Carlo repetitions. Averaged over 3 
subjects, a 2 standard error confidence interval in guessing ac- 
curacy is about +.036. Most of  the variability comes from the 
variability in p*, so that the distinction between within and be- 
tween lag variability has little practical consequence. These 

Fits o f  the Diffusion Model  

The expressions shown in Equation 1 apply to the case in 
which a single diffusion process serves as the decision process; 
however, in the model of  Ratcliff (1978), several diffusion pro- 
cesses proceed in parallel. Thus to obtain predictions for the 
data shown in Figure 9, it is necessary to obtain expressions for 
guessing accuracy in which several processes proceed in paral- 
lel. The decision rule is the same as that used in Ratcliff(1978, 
p. 95) for the response signal procedure: For guesses, if one pro- 
cess is above the criterion, a "yes" response is initiated; all pro- 
cesses must be below the criterion for a "no"  response to be 
initiated. This rule is conditional, first, on the process's having 
not terminated (so it is necessary to sum over all combinations 
of  processes from 1 to n still left in the walk) and second, on no 
other process's having terminated at the positive boundary. The 
derivation for guessing accuracy for the multiple parallel diffu- 
sion model is presented in Appendix C. 

In order to fit the diffusion model to the guessing accuracy 
data, some method of  limiting the number of  free parameters 
must be found. The method I used involved fitting the model 
to the accuracy and reaction time distribution data from regu- 
lar trials (as in Ratcliff, 1978), thus fixing the parameters of  the 
model. These parameter values were then used to provide pre- 
dictions for the accuracy of  guesses as a function of  time. The 
only free parameter was the time to process the response signal 
after it was presented, and this determined the position of  the 
onset of  guessing accuracy. In contrast, the level of  accuracy for 
guesses is completely determined from the parameter estimates 
derived from the fits to data for regular trials. 

The first result to discuss is the fit of  the diffusion model to 
accuracy and reaction time for regular processes. The method 
used to achieve this fit is somewhat involved but is logically 
straightforward. First, a summary distribution is fitted to the 
hit and correct rejection reaction time distributions. The sum- 
mary distribution used is the convolution of  normal and expo- 
nential distributions, and the parameters, the mean of  the nor- 
mal (~), standard deviation of the normal (~), and the time con- 
stant (r = mean) of  the exponential are used as a summary of  
distribution shape. The next step is to fit the diffusion model 

Table 4 
Guessing Accuracy as a Function of Retrieval Time 

Hit False alarm 
t (milliseconds) rate rate d' 

Te~Position 1(2-16) 
494 .561 .379 .456 
512 ..589 .398 .481 
553 .638 .414 .586 
667 .640 .337 .771 

Te~Position 2(17-32) 
490 .500 .362 .358 
524 .505 .408 .253 
567 .523 .388 .329 
688 .537 .353 .486 
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Table 5 
Results for Regular Trial (R T) Data for Experiment I 
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Data Fits 

RT # r RT # r 
Response type Accuracy (seconds) (seconds) (seconds) Accuracy (seconds) (seconds) (seconds) 

Test Position 1 (2-16) 
Hit .777 .801 .418 .382 .781 .780 .425 .353 
Correct rejections .752 .830 .446 .384 .745 .832 .425 .353 

Test Position 2 (17-32) 
Hit .686 .828 .430 .398 .686 .822 .422 .398 
Correct rejections .674 .850 .442 .408 .686 .861 .447 .407 

Note. ~ and r refer to parameters of the convolution of normal and exponential distributions used as a summary of reaction time distribution shape. 
The parameters of the diffusion model were as follows: For Test Position 1, a =.  157, z = .037, u =.  182, v = -.349, and Ter = 243 s. For Test Position 
2, a = .145, z = .039, u = .084, v = -.336, and Ter = .244 s. 

with its parameters a, z, u, v, and T,r to the convolution sum- 
mary distributions and accuracy. This is done by generating 
predictions from the diffusion model, fitting the convolution 
distribution to the theoretical reaction time distributions, and 
then minimizing the squared differences between theoretical 
and empirical values ofg,  r,  and accuracy using a minimization 
routine (SIMPLEX, Nelder & Mead, 1965) that adjusts the pa- 
rameters of  the diffusion model. The parameters of  the diffusion 
model that best fit the convolution distribution and accuracy 
are used as the diffusion model 's account of  the data. If  there is 
any distortion due to use of  the convolution distribution, it can 
only make the fits worse than they would be by fitting the data 
directly (see also Hockley, 1982; Ratcliff, 1978, 1979, 1981; 
Ratcliff& Murdock, 1976). 

It should be noted that group average data for the reaction 
time distributions were used in these analyses. The data were 
averaged by first finding the 10 quantiles for the hit and correct 
rejection reaction time distributions for each experimental ses- 
sion for each subject. These were averaged across sessions for 
each subject, and the convolution distribution was fitted to 
these average distributions for each subject (see Ratcliff, 1979). 
The parameters of  the convolution model were then averaged 
across subjects. 

The results for the fit o f  the cumulative reaction time distri- 
butions are shown in Figure 10, and as can be seen, the fits are 
excellent (as noted above, fits achieved more directly without 
use of  the convolution distribution as an intermediate sum- 
mary can only be better). Table 5 shows the fits of accuracy and 
the reaction time distribution typical of  those found in fits to 
the study test paradigm (see Ratcliff, 1978). The fits of  the 
model show that for early and late test positions, almost identi- 
cal values of  T,r are obtained. This would be expected if varia- 
tions in reaction time and accuracy were mainly due to varia- 
tions in the decision process, and so this result adds some valid- 
ity to the quality of  the fits. Other parameter values remain 
within 10% of  each other as a function of  test position (a, z, and 
v) except u, which varies by a factor of  2. Loosely speaking, this 
is best interpreted by assuming that diffusion process bound- 
aries are fixed as a function of  test position, that the relatedness 
of  negative test items is constant, and that the relatedness of  
positive items drops as a function of  test position (i.e., forget- 
ring). Thus this set of  parameter estimates is nicely interpret- 

able in terms of  one parameter varying as a function of  test 
position. Given the parameter values from the fits of  the regular 
trials, the next step involves computing the accuracy of  guesses 
using the derivations in Appendix C. 

Fits of the diffusion model to guessing accuracy. The results 
for guesses are shown in Table 6 and Figure 11. Figure 11 shows 
the fit o fd '  as a function of  time to the accuracy of  guesses from 
Experiment 1. Table 6 shows the hit and false alarm rates for 
the theoretical predictions. As can be seen, the fit is excellent 
for both long and short test positions, given the lack of  freedom 
in parameter values. 

Along with the values of  the hit and false alarm rates, Table 
6 shows the values of  the criterion setting. It should be noted 
that to fit the hit and false alarm rates accurately, it is necessary 
to allow the criterion to drift slightly as a function of  t ime (note 
that often memory models do not at tempt to fit hit rates and 
false alarm rates; they are content with fitting d').  

The theoretical predictions fall within 2 standard errors of  
the data (d' of  +. 13). Although the theory shows that the guess- 
ing accuracy peaks and then declines, it is possible that the the- 
ory could predict a much flatter function. For example, if  the 
onset of  any of  the processes such as test item encoding or re- 
sponse signal processing were variable, then this would tend to 
flatten out the theoretical function shown in Figure I I. Thus 
the predicted peak seen in Figure I l may be hard to obtain 
experimentally. 

To illustrate an extreme version of  the variable encoding and 
signal processing possibility, I took the theoretical predictions 
o fd '  as a function of  time from Table 6 and averaged the curve 
with a copy that was shifted to the right by 50 ms. The top panel 
of  Figure 12 shows the shifted function rising to a peak and then 
falling slightly (this is the prediction for test positions 2-16 in 
Figure 1 l). In the bottom panel is the average of  the two. The 
average shows a more gradual rise (this could be taken to be a 
linear r ise--see Kounios et al., 1987; Meyer et al., 1988, Experi- 
ment 5), followed by a leveling offin which the decline in d '  is 
not particularly pronounced. Although this example is ex- 
treme, the effects of  variability need to be considered in evaluat- 
ing the fits, and I conclude that such effects would allow fitting 
the qualitative pattern of  data more closely. 

Other data. Besides fitting the group data, I fitted the individ- 
ual subject data and found that the results were not quite as 
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of  t shown in Table 6 and Figure 11, the theoretical d' values 
were .568, .738, .796, .788, and .755. These values rise more 
rapidly than the multiple process model, peak earlier, and de- 
cline more slowly. The main discrepancy between the predic- 
tions and the data is the rapid rise; the data show a more gradual 
rise. In these and the other fits I have attempted with the single 
diffusion process model, I have found significant differences be- 
tween the theory and data. This failure further supports the 
claim that the paradigm of Meyer et al. (1988) provides reason- 
ably stringent tests for the sequential sampling and continuous 
models. 

Discussion 

Figure 10. Cumulative reaction time distributions for the data from reg- 
ular trials from Experiment 1. (Also shown are fits of the diffusion 
model.) 

The new response signal procedure developed by Meyer et al. 
(1988) has produced important results that provide strong tests 
for a class of sequential sampling models of  decision processes. 
The procedure allows the examination of  evidence available to- 
ward a decision during the time before the decision is initiated. 
This is extremely important because it provides a new class of  
tests that are paradigm independent (each experimental para- 
digm could have a different pattern of  guessing accuracy). Most 
models prior to those presented in this article and those exam- 
ined by Meyer and colleagues have not been used to predict 
guessing accuracy results, so this work provides new tests for all 
reaction time models. Results using this procedure show that 
the accuracy of guesses is much lower than the accuracy of  regu- 
lar processes and that the accuracy of  guesses either grows 
slowly or remains constant (perhaps after slow growth) as a 
function of  time. The stochastic models presented here (the 
runs, simple random walk, and the diffusion models) all make 
good qualitative predictions about the growth of  accuracy of  
guesses, and the multiple process diffusion model is shown to fit 
the data from a recognition memory experiment quantitatively. 

In the next section, critiques of the diffusion model's ac- 
counts of  the new response signal paradigm and of  error reac- 
tion times are discussed. In the final sections, the diffusion 
model is applied in a new way to results from the previously 
used response signal procedure (Reed, 1973, 1976) and the cas- 
cade model is evaluated with respect to the results presented in 
this article. 

good as those found for the group. The regular trial reaction 
time distributions and accuracy were fitted by the diffusion 
model and the parameter values were used to calculate the accu- 
racy of guesses. It turned out that for 2 of the subjects the esti- 
mate of  guessing accuracy was too high by about 10% and for 
the other subject it was too low by 15%. However, these fits were 
within 2 standard errors of  the data. 

Gillund and Shiffrin (1984) noted that they would prefer a 
model in which there was only one random walk instead of sev- 
eral operating in parallel. I tried fitting the single diffusion pro- 
cess to the data for regular trials and then using the parameter 
values to obtain guessing accuracy as a function of  time. Fits to 
the reaction time distributions and error rates for test positions 
2-16 for regular trials were performed and were close to the fits 
for the multiple diffusion process model (above). The parameter 
values obtained were as follows: a = .200, z = .  103, u = .  1376, 
v = - .  133, Ter =.309, s = .20, and ~ = .  166. For the same values 

Meyer et al.'s (1988) Critiques of  the Diffusion Model 

There is one important issue that Meyer et al. (1988) raised 
with respect to the account provided by the diffusion model for 
the data from their response signal procedure. It concerns the 
dormant period before accuracy begins to rise above chance. 
They argued that the results from their experiments show that 
the diffusion model has to accommodate high accuracy of  the 
fastest regular processes immediately after the dormant period 
of  low guessing accuracy. Thus, the model requires "a large and 
very rapid rise in response strength, whose onset occurs at 
about the same time as the fastest normal processes reach their 
final high information level" (Meyer et al., 1988, p. 232). The 
basis for this conclusion is the assumption that the process of  
making a decision based on crossing a response boundary for a 
regular process takes the same amount of  time as the process of  
making a decision based on partial information (see this as- 
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Table 6 
Guessing Accuracy for the Fits of the Diffusion Model 

251 

Test Position I (2-16) Test Position 2 (17-32) 

t False False 
(seconds) Hits alarms Criterion d' Hits alarms Criterion d' 

.05 .536 .371 .0575 .432 .472 .363 .060 .283 

.10 .594 .335 .0625 .640 .514 .344 .065 .438 

.15 .639 .329 .065 .798 .548 .346 .0675 .511 

.20 .641 .324 .0675 .818 .546 .338 .070 .538 

.25 .647 .355 .0675 .749 .530 .335 .0725 .488 

Note. To scale time t to the real reaction times shown in Table 4 and Figure 8, it is necessary to add Ter = .243 s and a response signal processing 
time of.207 s. 

sumption in footnote 30 of  Meyer et al., 1988). My assumption 
is different. When a regular process crosses a response bound- 
ary, a fast automatic response preparation and execution pro- 
cess is initiated; in fact some of  the response preparation may 
be performed as the process moves to the boundary (e.g., see 
the discussion of  evoked potential measures in Meyer et al., 
1988). In contrast, when the comparison process is interrupted, 
processes have to be executed to determine current position in 
the diffusion process relative to some criterion. I assume that 
these processes require significantly more time than firing off a 
response as a result of  crossing a boundary. Meyer et a l ' s  (1988) 
criticism does not hold with this alternative assumption be- 
cause within the framework of  the diffusion model, guessing 
accuracy and regular responses are actually measured at differ- 
ent points in processing. Guessing accuracy represents the state 
of  affairs about 200 ms (from theoretical estimates) earlier than 
regular processes that produce their response at the same physi- 
cal time. 

It should be stressed that this assumption about the time re- 
quired to initiate a response to a signal is the only addition to 
the diffusion model that is required to account for the data from 
the study-test experiment using Meyer et al.'s (1988) new re- 
sponse signal procedure. 

Limitations of the Diffusion Model 

The diffusion model has one weak spot in fitting data, and 
that is error reaction times. The model predicts that error reac- 
tion times are very slow; however, the experimental results show 
them to be either slightly slower or slightly faster (depending on 
the subject) than correct reaction times. The results from the 
experiment reported here are similar in this respect to those 
reported in Ratcliff (1978, 1981) and show the major weakness 
in the present implementation of  the diffusion model. The way 
to fix the model is to assume nonnormal relatedness distribu- 
tions (i.e., distributions of  drift rate that are not normal). Rat- 
cliff (1978) performed some simple tests varying the shape of  
the relatedness distribution by including high tails and found 
that both accuracy and the shape of  the reaction time distribu- 
tion were robust to changes in shape of the relatedness distribu- 
tion, whereas error reaction times varied from twice as slow to 
faster than correct responses. While it would be easy to assume 
some kind of high-tailed distribution here and fit all the data, 

such an assumption would be ad hoc. It is generally very diffi- 
cult to work back from data to derive the shape of  the signal and 
noise distributions in signal detection theory (e.g., Lockhart  & 
Murdock, 1970), yet this is what would be needed here to fit the 
reaction times for error responses. Rather than provide an ad 
hoc fit, I decided to simply use the model as formulated before 
(Ratcliff, 1978, 1981) and indicate the problem with error reac- 
tion times. The qualitative fits of  the model would be the same 
with nonnormal relatedness distributions, and extrapolating 
from experience with nonnormal distributions, the quantitative 
fits would be altered little. 

Other Experimental Studies 

Meyer et al. (1988) consider a study by Kounios et al. (1987) 
that examines the time course of  retrieval in a semantic verifi- 
cation task. Kounios et al. (1987) find that the time course of  
guessing accuracy shows a slow rise in accuracy of  guesses, with 
an almost linear trend over a range of  about 150 ms. This is 

Figure 11. Fits to the data for guessing accuracy for Experiment 1. (Test 
Positions 1 and 2 refer to Positions 2-16 and 17-32, respectively, in the 
test list.) 
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Figure 12. An example of the prediction of the diffusion model for 
guessing accuracy (from Figure 11) and the effect of averaging two of 
these curves separated by 50 ms. 

similar to the results found in Meyer et al's (1988) single-word 
lexical decision Experiment 5 but possibly differs from the re- 
suits from double-word lexical decision experiments (as noted 
earlier, the full range of the function needs to be examined in 
the double-word lexical decision task before a step function can 
be assumed). There are two things to note about Kounios et al's 
results. First, from the diffusion model (see Figure 4) the rise in 
accuracy of guesses follows the initial portion of the response 
signal curve. In Ratcliffand McKoon (1982), data are presented 
from the response signal procedure in which the initial rise in 
accuracy is quantitatively similar to the rise in the guessing ac- 
curacy curve obtained by Kounios et al. (1987). Thus there is 
every reason to believe that a model of the class of random walk 
or diffusion models (see Ratcliff& McKoon, 1982) could fit this 
rise in guessing accuracy. Specifically, to fit this data, it would 
have to be assumed (as in Figure 12) that the onset of the growth 
of accuracy was quite variable across trials because of variabil- 
ity in reading horizontally spaced words in the test sentences 
(this can be seen in Ratcliff & McKoon's, 1982, Experiments 
1-4). The second point to note is that the accuracy of guesses 
in Kounios et al's (1987) studies is higher (e.g., d' up to 3) than 
that found in Experiment 1 above or in Meyer et al's (1988) 
experiments. The ratio of guessing accuracy to the accuracy of 
regular responses in Experiment 1 in this article is about .25 to 
.5, and in Meyer et al's (1988) experiments, it ranges from .2 to 
.5. However, it is hard to examine this ratio for Kounios et al's 
data because the accuracy.of r__r_z~ular processes is very high and 
95% confidence intervals (Vpq/N) include 100% correct. With- 
out reasonably precise estimates of the accuracy of regular pro- 
cesses, it would be hard to quantitatively evaluate the diffusion 
model. 

Response Signal Procedures 

Accounting for the data from the Meyer et al. (1988) response 
signal procedure suggests an alternative theoretical account of 
performance in the traditional response signal procedure in 
which subjects are presented with a test stimulus and are re- 

quired to respond only after the signal is presented (Reed 1973, 
1976; see also Dosher, 1979, 1981, 1984). The traditional tech- 
nique is one half of the method used by Meyer et al. (1988) and 
Experiment 1 here because it uses only signal trials, and sub- 
jects cannot respond before the signal. The account provided 
by Ratcliff (1978) assumed that the boundaries of the diffusion 
process are moved far from the starting point (or removed) and 
the subject responds on the basis of position in the process. A 
different explanation involves the assumption that responses in 
the response signal procedure are a probability mixture of 
guesses and regular processes (that have terminated earlier than 
the signal) in a process with regular response boundaries. In the 
following, these two accounts are compared and it is shown that 
they mimic each other. 

In the earlier account (Ratcliff, 1978), response boundaries 
are removed and the decision is based on position above or be- 
low some information-based criterion. The reason for this 
choice is that subjects would simply respond on the basis of 
information accumulated prior to the signal without any regard 
to response boundaries. With this assumption, it is possible to 
derive a simple expression for the growth of accuracy as a func- 
tion of time, based on the spread of the positive and negative 
relatedness distributions. The expression for accuracy in terms 
ofd '  is given by 

d'(t) = d ' /V1 + v/(t  - Ter), (4) 

where v is the ratio of the variances, s2/n 2. This expression has 
proved to be an excellent alternative to the more commonly 
used exponential approach to a limit, and there is little to 
choose between them based on goodness of fit (Dosher, 1981, 
1984; Ratcliff& Iverson, 1984). 

The account provided in this article for the Meyer et al. 
(1988) procedure suggests that response in the traditional re- 
sponse signal procedure could be a probability mixture of fast- 
finishing regular processes and guesses (see also Reed, 1976). 
The question is whether the diffusion model with boundaries 
set relatively close to the starting point (in positions normally 
found in fits to data) can produce functions that approximate 
Equation 4 above. Thus, at a particular time, some proportion 
of the processes will have terminated at diffusion process 
boundaries, leading to decisions that have some hit and false 
alarm rate, and the remaining decisions will be derived from 
guesses that have a different hit and false alarm rate. The two 
hit rates are combined and the two false alarm rates are com- 
bined and these are used to determine the overall accuracy and 
d'. Table 7 shows the probabilities of"yes" decisions for signal 
(old items in recognition memory) and noise (new items) cate- 
gories as a function of time for guesses and regular processes. 
Parameter values used for this example are typical of those in 
fits of the diffusion model (Ratcliff, 1978, 1981). Adding the 
proportion of "yes" decisions for old items for regular processes 
and guesses gives the hit rate, and adding the equivalent propor- 
tions for new items gives the false alarm rate. These can then 
be combined into a d' measure producing a function that is 
monotonic as a function of time. I fitted the diffusion expression 
(Equation 4) to this set of d' values, and the fits are shown in 
Table 7 along with the recovered parameter values. It is impor- 
tant to note that the d' from the mixture of regular and guesses 
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Table 7 
d' Computed From a Mixture of Regular Processes and Guesses and Fits of the Diffusion Model Equation 
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Guess Regular 
Time d' fit of 

(seconds) Hit False alarm Hit False alarm d' diffusion equation 

.05 .773 .227 .0 .0 1.48 1.46 

.10 .817 .167 .016 .0 1.91 1.93 

.15 .751 .136 .113 .0 2.16 2.19 

.20 .626 .117 .256 .001 2.35 2.36 

.25 .504 .103 .390 .003 2.47 2.48 

.30 .405 .093 .497 .005 2.57 2.58 

.35 .328 .084 .580 .008 2.64 2.64 

.40 .270 .076 .644 .010 2.72 2.70 

.45 .225 .070 .692 .013 2.77 2.75 

.50 .191 .064 .730 .015 2.81 2.79 

Note. The parameters of the fit of the diffusion model equation are as follows: Ter = 7.6 ms, V = 159.9 ms, d'a = 3.20. The parameters of the diffusion 
model leading to the accuracy of guesses and regular processes are as follows: Ter = 0, v = s2/~ 2 = 197 ms, d'a = 3.33. The criteria are set at z = .  1 
and a = .2, mean drift rates are u = .3 and v = -.3, and the variance parameters are set at values used in Ratcliff(1978), s = .08 and ~ = .  18. This 
example assumes only one diffusion process, not multiple processes in parallel. 

and the d '  function from the diffusion process without bound- 
aries mimic each other closely and that the recovered parameter 
values are close. This means that the diffusion expression 
(Equation 4) accurately describes the growth of  accuracy for 
two versions of  the model: (a) when the diffusion process bound- 
aries are nonexistent and accuracy is based on the position of  
the process relative to some criterion, and (b) when the diffusion 
process has boundaries and accuracy is a mixture of regular 
processes and guesses. 

Cascade Model  

Meyer et al. (1988) argued that the cascade model of  McClel- 
land (1979) is inconsistent with the results from their experi- 
ments. In addition, Ashby (1982) has shown that the predic- 
tions of  the cascade model for reaction time distributions do 
not fit experimental data adequately (but see Meyer et al., 1985, 
footnote 33) and that the model allows a proportion of pro- 
cesses to never reach the response criterion. The central feature 

�9 of  the cascade model that is responsible for all of these problems 
is the lack of  a stochastic component (i.e., there is no source of  
noise in the model). For example, the probability of making a 
particular response is determined by a ratio of  activations of 
the competing alternatives (using Luce's choice model; Luce, 
1959). Also, the model cannot legitimately produce predictions 
for d '  because there is no variance component in the model (the 
same is also true of  McClelland & Rumelhart,  1981, but not 
true of the more recent model, McClelland & Rumelhart, 
1985). To address this problem, it is necessary to introduce a 
noise component into the model. For example, McClelland 
(personal communication, March 1985) has suggested allowing 
each node to pass along activation with some probability within 
a time slice. This would allow activation to grow stochastically 
and would also overcome some of the problems raised by 
Ashby. In fact, processes of  this kind with decision rules using 
response boundaries may mimic the discrete random walk. An- 
other alternative is to use the activation function produced by 
the cascade model as the drift rate in a diffusion model (Ratcliff, 

1980; see also Heath, 1981). In this way the continuous nature 
of the process is maintained and the combined model would 
produce noise in the decision (errors) and allow the kinds of  
data produced by Meyer et al. (1988) and Experiment 1 here to 
be at least qualitatively fitted. 

Conc lus ions  

The method that Meyer et al. (1988) have developed is impor- 
tant to cognitive psychology. With their method it is possible to 
extract the accuracy of  responses based on information gath- 
ered prior to a decision. Although some of  the results to date 
are consistent with several discrete models, these models are 
post hoc in their construction. However, the results provide im- 
portant qualitative and quantitative support for some members 
of  the class of  stochastic sequential sampling models. 
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A p p e n d i x  A 

The  R a c e  Mode l  and  Guess React ion T i m e  Distribution 

The derivation presented here outlines that presented in Meyer et al. 
(1988). The aim is to use the signal reaction time distribution and the 
regular trial reaction time distribution to extract the distribution of 
guesses. The race model assumes that responses on signal trials are com- 
posed of a probability mixture of fast-finishing regular trials and 
guesses. Thus, the response time on a signal trial is the minimum of the 
time taken on a regular trial and the time taken for a guess. If the two 
processes are independent, h = min(t,,ts). This can be rewritten as 

Pr(ts > T)  = Pr(tr > T)Pr( t  s > T)  (A l )  

because if time t is greater than some time Tfor a signal trial, then the 
individual times for regular responses and guesses must also be greater 

than T. Given that Pr(t > C) = 1 - F(C) (where F(C) is the cumulative 
distribution function), it is possible to substitute in Equation Al and 
obtain 

Fg(C) = (F~(C) - F~(C))/(I - F~(C)). (A2)  

In performing the calculations leading to the estimates of the guessing 
cumulative distribution function, it is assumed that the guessing distri- 
bution is the same for responses independent of the stimuli, so that cor- 
rect and error responses are combined. Thus, Equation A2 represents 
two equations, one for "yes" responses and another for "no" responses. 
Once the guessing distribution is obtained, the accuracy of the guesses 
can be obtained, as outlined in Appendix B. 
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A p p e n d i x  B 

Derivation o f  Guessing Accuracy  

Again the derivation follows Meyer et at. (1988). As noted in the body 
of the text, there are three ways a positive response can occur. It can 
occur as the result of (a) both regular processes and guesses producing 
a positive decision; (b) a regular process producing a positive decision 
and a guess producing a negative decision, with the regular decision 
faster than the guess; and (c) a guess producing a positive decision and 
a regular response producing a negative decision, with the guess faster 
than the regular process. For a particular stimulus type (e.g., positive) 
we can write the probability that a positive response is made: 

P~{ = PlPI~ + pI(1 - P l g ) P a + ( 1  -- Pl)PlgPb, (B1)  
where the subscript 1 denotes a positive response (substitute 2 for a 
negative response), g refers to a guess, the asterisk refers to a signal trial 

response, and ea = P(h < t2s) and Pb = P(hs < t2) where the absence of 
a g subscript refers to a regular process, and t s is the time for a guess. 
Rewriting Equation B 1 leads to 

Pig = (P~ -- P,Pa)/(Pl( I - ea) + P2Pb), (B2)  

where p~ is the probability of a hit on regular trials, P2 is the accuracy 
of correct rejections on regular trials, and p~' is the accuracy of signal 
trial hits. All the quantities on the right side of the equation are derivable 
from the data. Note again that all the quantities are conditioned on one 
stimulus type (e.g., I denotes positive, thusptg refers to hits; if the nega- 
tive stimulus type was used, P~R would refer to false alarms). For more 
details see Meyer et at. (1988). 

A p p e n d i x  C 

Predict ions f o r  Partial  In format ion  f o r  Parallel Dif fusion Processes 

There is a complication in moving from the predictions for a single 
diffusion process to the predictions for several diffusion processes in 
parallel (exhaustive on negative termination, self-terminating on posi- 
tive termination; see Ratcliff, 1978). There are two factors to be consid- 
ered: First, it is necessary to consider all combinations of processes not 
yet terminated when the processes that have terminated have termi- 
nated with negative decisions. Second, the results have to be conditioned 
on no previous positive termination since a positive termination results 
in a response. Thus for a "yes" decision, the quantity to be calculated is 
Pr(one or more processes above the criterion and one or more diffusion 
processes not terminated and none have previously terminated at the 
positive boundary). For false alarms, this can be written as 

i 

(r!(i - r)!/ i!)p r-  1(1 - p ) i - r ( l  - (1 - y ) r ) w i - r  ( C I )  

r = l  

where iis the number of processes left in the comparison, p is the proba- 
bility that a process is still left in the diffusion process, y is the probabil- 
ity that a single process is above the criterion, and w is the probability 
that any process has terminated previously at the positive boundary. 
The quantities r and p are derived from the generalization of Equation 
1, and w is derived from the expressions in Ratcliff (1978) for regular 
processes. 

For hits there are two terms similar to those above, one representing 

the case in which the match comparison has not terminated and one in 
which it has terminated earlier with a negative decision: 

i - I  

E 
r = l  

( r ! ( i -  r -  1 ) ! / ( i -  l ) [ ) f f ( l  _ p ) i - r - 1  

• (1 - p h ) ( 1  - (1 - y ) r ) w i - r - l w h  

i - - I  

+ ~, ( r ! ( i -  r -  1 ) ! / ( i -  1)!)pr(1 - p ) i - r - ~ p h  
r = l  

• (1 - (1 - y)r(1 - yh) )w ~-~, (C2)  

where ph and wh are parameters for the positive comparison that are 
equivalent to p and w. Note, to calculate accuracy for d' calculations it 
is necessary to conditionalize on (i.e., divide the Expression C2 by) the 
total number of processes still not yet terminated. This is done in Ex- 
pression C2 by dropping the terms in y and yh and leaving the terms in 
w and p (and wh and ph). A check on this last expression can be made 
by setting y equal to yh and p equal to ph. The result is expression C1. 
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C o r r e c t i o n  to  K o s s l y n  

In the article "Seeing and Imagining in the Cerebral Hemispheres: A Computa t ional  Ap- 
p roach"  by Stephen M. Kosslyn (Psychological Review, 1987, Vol. 94, No. 2, 148-175), an 
error in wording appeared on page 165. In co lumn 1, paragraph 3, the  second sentence should 
read as follows: "Taylor and Warrington (1973), Warrington and Rabin (1970), and Hannay, 
Varney, and Benton (1976) all found that right-hemisphere damage disrupts dot  localfzation 
more  than left-hemisphere damage does." 


