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Connectionist Models of Recognition Memory: 
Constraints Imposed by Learning and Forgetting Functions 

Roger Ratcliff 
Northwestern University 

Multilayer connectionist models of memory based on the encoder model using the backpropagation 
learning rule are evaluated. The models are applied to standard recognition memory procedures in 
which items are studied sequentially and then tested for retention. Sequential learning in these 
models leads to 2 major problems. First, well-learned information is forgotten rapidly as new infor- 
mation is learned. Second, discrimination between studied items and new items either decreases or 
is nonmonotonic as a function of learning. To address these problems, manipulations of the network 
within the multilayer model and several variants of the multilayer model were examined, including 
a model with prelearned memory and a context model, but none solved the problems. The problems 
discussed provide limitations on connectionist models applied to human memory and in tasks where 
information to be learned is not all available during learning. 

The first stage of  the connectionist revolution in psychology 
is reaching maturity and perhaps drawing to an end. This stage 
has been concerned with the exploration of classes of models, 
and the criteria that have been used to evaluate the success of 
an application have been necessarily loose. In the early stages 
of development of a new approach, lax acceptability criteria are 
appropriate because of the large range of models to be exam- 
ined. However, there comes a second stage when the models 
serve as competitors to existing models developed within other 
theoretical frameworks, and they have to be competitively eval- 
uated according to more stringent criteria. A few notable con- 
nectionist models have reached these standards, whereas others 
have not. The second stage of  development also requires that 
the connectionist models be evaluated in areas where their po- 
tential for success is not immediately obvious. One such area is 
recognition memory. The work presented in this article evalu- 
ates several variants of the multilayer connectionist model as 
accounts of  empirical results in this area. I mainly discuss mul- 
tilayer models using the error-correcting backpropagation algo- 
ri thm and do not address other architectures such as adaptive 
resonance schemes (Carpenter & Grossberg, 1987). 

Before launching into the modeling of recognition memory, 
I need to specify the aims and rules under which this project 
was carried out. This is important  in a new area of inquiry be- 
cause there are many divergent views about what needs to be 
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done to advance theory. In a systematic application of  connec- 
tionist models to an empirical domain, examining the whole 
range (possibly infinite) of potential models is not possible. 
There is always the suggestion that " i f  you only t r y . . .  "' This 
response to the failure of  a particular model can be short- 
sighted. Although a new fix might deal with one ditt~culty, it will 
probably not deal with the range of phenomena that need to be 
explained, unless the implications are thoroughly understood. 
Of course, a variant that handles the failures I discuss (as well 
as other empirical phenomena in recognition memory) is the 
outcome of this work that is most desirable. 

The approach I take in this article is to examine the more 
obvious variants of  a class of  models and apply them systemati- 
cally to empirical results in recognition memory. The aim is to 
provide a cumulative study of the models, examining both their 
strong and weak points, and to establish recognition memory 
as an empirical area for further theoretical development using 
connectionist models. The focus on different variants across 
classes of  models allows general strengths and weaknesses that 
apply across the classes to be examined, and so this approach 
makes inappropriate the if-you-only-try response. 

An important corollary to this approach concerns the appli- 
cation of  the models to domains that are similar or related to 
those in which the models have previously failed. This kind of 
application should be viewed with suspicion. For example, a 
multilayer model that has problems with learning and forgetting 
in recognition memory should not be applied in related do- 
mains (e.g., frequency judgment or categorization) for which 
recognition can be shown to be a special case unless the previ- 
ous failures can be adequately addressed. 

The presentation in this article includes considerable detail 
in some sections. For a more rapid reading, summaries or pre- 
views are provided for some of the main conclusions of the de- 
tailed sections. 

Connec t ion i s t  Mode l s  

The neurally inspired connectionist models have recently be- 
come major challengers to the more traditional information- 



286 ROGER RATCLIFF 

processing models in cognitive psychology. Although there has 
been work on such neurally inspired models for several years 
(e.g., J. A. Anderson, 1972, 1973; J. A. Anderson & Hinton, 
1981; J. A. Anderson, Silverstein, Ritz, & Jones, 1977; Gross- 
berg, 1980, 1988; Kohonen, 1978), recent interest has been 
fueled by the finding that earlier limitations of  simple one- 
layer models, such as their inability to compute various func- 
tions (Minsky & Papert, 1969), do not hold when there is more 
than one layer and when nonlinearity is introduced into pro- 
cessing (Rumelhart & McClelland, 1986). In addition, a body 
of  successful applications of  these connectionist architectures 
to several domains of  study in cognitive psychology has been 
produced. 

In this first stage of  the connectionist revolution, the empha- 
sis has been (properly) on accounting for major findings within 
various areas. Individual models have been quite successful, but 
the success has brought some skepticism. The focus of  the skep- 
ticism concerns the issue of  constraints on the models. No mat- 
ter what the successes of  the models, there is an additional need 
for information about the limitations of  the models and about 
phenomena that the models cannot explain. One major goal of 
this article is to use the memory domain to investigate limita- 
tions on the multilayer connectionist architecture, and in so do- 
ing provide results that will help to develop an understanding of 
general constraints on the models. 

The particular area I address is recognition memory. Recog- 
nition memory is an important area of  study because it is a 
fundamental aspect of  memory and one that has an extensive 
data base. Equally important, responses in recognition tests are 
rapid (for single words, typically 500-800 ms), so that the rec- 
ognition process is less susceptible to the effects of  conscious 
strategies than other, slower tasks. Thus, it can be argued that 
the processes underlying recognition memory belong in the cat- 
egory of  the microstructure of cognition, the term that has been 
used to describe the basic parallel processing approach to the 
elementary processes underlying cognition (Rumelhart & 
McClelland, 1986). Memory is also an area in which there are 
substantive quantitative models that can be used as benchmarks 
for these investigations (Gillund & Shiffrin, 1984; Hintzman, 
1986; Murdock, 1982; Ratcliff & McKoon, 1988). These global 
memory models have been developed to explain a range of  ex- 
perimental data across a range of experimental paradigms. The 
model of GiUund and Shiffrin (1984) was designed to explain 
both recall and recognition performance as a function of a 
number of independent variables. Hintzman (1986, 1988) has 
applied his model to recognition, frequency judgments, and 
data from categorization procedures. Murdock (1982, 1983), 
Eich (1982, 1985), and Pike (1984) have applied their models 
to subsets of  data from recognition, serial recall, cued recall, 
and free recall. All of  these models are primarily concerned 
with explaining patterns of  data across experimental para- 
digms, with a major effort toward capturing quantitative rela- 
tionships. 

The initial aim of  the research described in this article was 
to develop a multilayer connectionist model and apply it to the 
domain of  memory phenomena as a competitor for the global 
memory models. Besides providing a connectionist account of  
recognition memory, the model would be useful in providing 
competitive and contrasting comparisons. However, the more 

obvious connectionist models failed, as did several variants. 
Thus, in this article, I document these failures and attempt to 
explain in detail the properties of  the models that led to the 
failures. 

The empirical phenomena to be examined in this article con- 
cern learning and forgetting in the standard recognition mem- 
ory paradigm. In a typical experiment, subjects study a list of  
words, and then they are given a test list of  words for recogni- 
tion. The test list contains half old words that were on the study 
list and half new words that were not on the study list. The old 
and new words are presented in random order, and the subject's 
task is to decide for each word whether it is old or new. For 
example, with a study list of  16 words, the test list would con- 
tain 32 words, half old and half new. Typical measures of  perfor- 
mance are accuracy in terms of  proportion correct and discrim- 
inability between old items and new items (another important 
measure is reaction time, but I do not consider it here; see Rat- 
cliff, 1978, 1988). Learning in this context is defined as im- 
provement in discriminability (d') between old and new test 
items as a function of  amount of  study. Forgetting is defined as 
the decrement in accuracy as a function of  intervening informa- 
tion presented between study and test of  the item. 

The first and main model I evaluate is the encoder network 
(Ackley, Hinton, & Sejnowski, 1985), using the backpropaga- 
tion learning algorithm. The encoder model was originally de- 
vised as a test of learning algorithms; the model reproduces any 
one of  a previously trained set of  input vectors at its output 
layer, with a narrow channel (fewer hidden units than input or 
output units) between the input and output layers (see Figure 
1 ). As the model is implemented in the work described in this 
article, items entered into the system are assumed to be vectors 
of  features, typically of  length 32 (although some initial demon- 
strations use vectors of  length 4). The system is made up of an 
input layer of  this number of  units, a hidden layer of fewer units 
(1/2 to 3/4 the number of  units in the input layer), and an output 
layer of the same size as the input layer. The hidden units have 
no direct connections to or from the external input or output. 
Instead, the hidden units project to units at the input and out- 
put layers so that each unit in the hidden layer is connected to 
each unit in the input layer and also to each unit in the output 
layer. The task of  the system is to reproduce an input signal as 
an output signal. During learning, an item vector is presented 
at the input layer, and activation is transmitted through the net- 
work, resulting in a set of values at the units of  the output layer. 
The differences between the values of the input and the values 
at the output layer are used as the training signals to modify the 
weights in the network. Weights are changed in proportion to 
the difference between the actual output value and the required 
output value for a particular unit. In this model, the location of  
memory can be conceptualized as being distributed across the 
interconnections between the input and hidden layers and the 
hidden and output layers. 

The tests of  the model that follow move from examination of  
a simple system of four vectors to examination of  larger systems 
for which statistical properties are averaged over large numbers 
of  Monte Carlo simulations. The simple system was studied to 
examine the behavior of  individual elements within a vector as 
a function of  learning and forgetting. The larger systems were 
studied as potentially viable models of  recognition memory in 
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Figure 1. The multilayer encoder model. 

which statistical properties of the data could be examined. To 
model recognition, a set of  vectors is trained (the old items), and 
then at test, these old vectors and some new vectors (randomly 
chosen with the same statistical properties as the old vectors) 
are presented to the system. The backpropagation algorithm 
takes an input vector and produces an output vector with ele- 
ments that vary between 0 and 1. For the encoder model, the 
desired output is the same as the input, and to quantify the de- 
gree of match between the output and the input, a match value 
based on the dot product of the two vectors is used. From the 
match values for tests of  old and new vectors and the variability 
in these values (over the Monte Carlo trials), the discriminabil- 
ity between old and new items is computed. 

The input vectors used in the simulations are random vectors 
with elements either 0 or 1, and this is a potential limitation. In 
many tasks, information is organized and structured, and issues 
of  representation are of  major concern. Some of the problems 
encountered in the simulations might disappear if reasonable 
representations were used instead of  random vectors. In the 
evaluation of variants of  the encoder model, some representa- 
tion issues are examined (e.g., learning as increments to pre- 
learned memory, and stimulus vectors as variants on a proto- 
type), but these examples are by no means exhaustive. Until 
further theoretical development of feature representations, this 
is probably the best that can be done (see also the representation 
assumptions made by McCIoskey & Cohen, 1989, that produce 
results similar to those presented later). 

A Multi layer Dis t r ibuted Connect ionis t  
Model  o f  Recogni t ion M e m o r y  

The multilayer model was chosen for study because it is an 
architecture that is currently being applied to many different 
domains in psychology. In addition, it allows computation of 
functions that linear models (single or multiple layer) are unable 
to compute (Rumelhart, Hinton, & Williams, 1986), a problem 
that was used to argue against neural models (Minsky & Papert, 
1969). A further reason for choosing the nonlinear backpropa- 
gation algorithm in contrast to linear models is that some linear 
models cannot account for performance in recognition mem- 
ory because they predict that discrimination between studied 
items and nonstudied items remains constant as a function of  
amount of study (J. A. Anderson, 1973; Murdock, 1982). 

In the multilayer model, items are represented as vectors, 
with each feature or element having a value between 0 and 1. 
An input vector with elements oj and the weights between the 

nodes in the input and hidden layers are used to compute the 
input to the hidden layer: 

neh = ~ wijo j. (1) 
J 

This net input to the hidden layer is transformed to activation 
(the output of  the hidden layer) by a logistic sigmoid transfor- 
mation that transforms neti values from a range o f - o o  to +oo 
to the range 0 to 1: 

oi = 1 / [1  + exp (-neh)]. (2) 

The activation oi and the set of  weights between the nodes in 
the hidden and output layers are used to produce the net input 
to the output layer by Equation 1. This net input is transformed 
with the logistic transformation to activation at the output layer, 
which is the final output from the system. Once activation val- 
ues are obtained for the output layer, they are used in conjunc- 
tion with the desired or target output values to modify the 
weights in the system. The weights are modified to minimize 
the sum of the squared error between the value of each target 
element and the corresponding element of  the obtained output. 
This is analogous to minimizing the energy in a physical system, 
where energy is defined as the sum of squared differences be- 
tween the desired target vector and the output vector produced 
by the system. With the logistic function (Equation 2), the error 
signal at an output element is given by 

hi = (ti -- Oi)oi(l  --  Oi), (3) 

where ti is the teaching signal (or desired output) for element i 
(Rumelhart et al., 1986). Then this error value is used to change 
the weights between the hidden and output layers with 

AWij = ~ i O j ,  (4)  

where n is a learning rate parameter. Once the weights between 
the output and hidden layer are modified, the weights from the 
hidden layer to the input layer have to be modified. The error 
signal is computed by propagating the error from the output 
layer to the hidden layer from 

~i ---- o i ( l  -- Oi) ~ Wik~k. (5) 
k 

The change in the weights between the hidden and input lay- 
ers is given by Equation 4 with ~i from Equation 5. Weights were 
updated after each presentation of  a vector to the system during 
learning but not during testing. 

There are two other factors to consider before proceeding to 
simulations. First, if the sum of squares or energy space is highly 
variable as a function of  parameters and i fa  high learning rate 
is used (large ~ in Equation 4 leading to large changes in 
weights), the system can oscillate and so produce slow conver- 
gence to an adequate solution. To avoid this problem, weight 
modification is based on a linear combination of the current 
computed weight change and the prior weight change. The com- 
ponent of  weight change that is based on earlier weight changes 
is termed m o m e n t u m  and refers to the fact that prior weight 
modifications as well as the newly computed changes guide 
weight modification (see Rumelhart et al., 1986). In many of 
the simulations presented later, a value of  momentum set to 0.5 
was used, but to check the generality of  the results, the qualita- 
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tive behavior of  the model was compared to the case for which 
the value of  momentum was set to 0 (i.e., weight changes based 
only on current computation). Results showed few differences 
(except in the case of  mixed vs. pure list presentation; see spe- 
cific examples presented later). 

The second factor to consider is called symmetry breaking by 
Rumelhart  et al. (1986), and the term refers to the fact that if 
weights start with equal values, modifications can only keep the 
weights equal because the hidden units will all receive the same 
error signal back from the output layer. To overcome this prob- 
lem, small random unequal values are assigned as initial values 
to the weights (e.g., from a uniform distribution in the range 
-0 .3  to +0.3). Again, variation in the size of  these initial values 
was examined, and the effects are noted later in the article. One 
additional factor sometimes used in the multilayer model is bias 
on the nodes. This adds a term in the exponent of  Equation 2 
(see Rumelhart  et al., 1986) and is used to capture the average 
match across all nodes. No biases on the weights were used in 
these simulations. 

Last, a measure of  the degree of  recognition for a test vector 
is required. With the encoder model, the appropriate measure 
is the dot product between the input and output vectors (trans- 
formed to the range - 1 to + 1 and divided by the vector length). 
The model attempts to reproduce the input at the output, and 
the dot product measures how well this is accomplished. To 
form the dot product, each element is transformed to a new 
value 2 times the old value minus 1; this provides values of the 
elements in the range - 1  to + 1. The dot product between the 
transformed vectors is then divided by the number of elements 
to provide an overall value of match between - 1 and + 1. With 
several Monte Carlo replications, the mean in the match value 
and its standard deviation can be obtained for both old and new 
items and be used to calculate the standard discriminability sta- 
tistic between old and new items: d '  = (mean of  old match - 
mean of  new match)/SD of new match. 

A Modi f i ca t ion  to  the  P ro to typ i ca l  Connec t ion i s t  
Mode l :  Serial  P resen ta t ion  

A major focus of  the research reported here involves a depar- 
ture from the usual training method for stimuli in a multilayer 
connectionist system. In the usual system, the vectors to be 
learned are trained in sweeps through the set of  all the vectors 
to be learned. Thus, all vectors are available to the network 
throughout training. For example, if four vectors, A, B, C, and 
D, were to be learned, the system would be presented with the 
sequence ABCDABCDABCDABCD • • • until some learning 
criterion for the joint  solution was reached. I define this as re- 
mote rehearsal because after item D is presented, the remote 
item A is brought back for another presentation. In domains 
such as perception, one can imagine repeated exposures to a set 
of  stimuli to be learned that would approximate this remote 
sequence (in fact, some recent models such as Seidenberg & 
McClelland's, 1989, rotate training through stimuli according 
to their frequency of  occurrence in English). In contrast, in rec- 
ognition memory, when the items in a study list are presented 
at fast presentation rates, items are learned largely in the order 
in which they are presented, with little opportunity for remote 
rehearsal. For example, it is unlikely that a subject could retain 

all the items in a 16- or 32-item list in order to sweep through 
the whole list. Note that for remote rehearsal, the memory sys- 
tem that retained the whole list would need to be modeled 
within a connectionist framework, and this would lead to re- 
dundancy in memory systems (one to retain it for the other to 
learn it). In addition, it is possible to use study materials of a 
kind that cannot be easily rehearsed throughout presentation of  
the study list (e.g., pictures presented at fast rates). Because of  
these considerations, models in the class I examine use only lo- 
cal rehearsals; that is, only the item presented last is rehearsed, 
or only the last small group of  presented items is rehearsed, 
where the number of items in the group is typically set to 4 (e.g., 
see the rehearsal scheme presented in Gillund & Shiffrin, 1984). 

A second departure from many connectionist models is that 
only positive instances are presented to the system. Only old 
items that require a positive match from the system are pre- 
sented at study; new items (requiring a negative response) are 
not presented for training. This means that the system receives 
no discriminative training between old and new items, only dis- 
criminative training among positive instances. Yet, the primary 
requirement for the system is to discriminate new items from 
old items. 

The first set of  studies I discuss explores forgetting in systems 
with small vectors followed by large vectors, and the second set 
of studies investigates amount of  learning as a function of  the 
number of learning trials. 

Forget t ing Resul t ing  F r o m  Subsequen t  Learn ing:  
In te r fe rence  Effects 

Studies With Four-Element (Small) Vectors 

The first set of simulations uses the encoder model with small 
vectors to examine the feature-by-feature behavior of  the sys- 
tem before and after forgetting. There are four orthogonal vec- 
tors to be learned (1 0 0 0, 0 1 0 0, 0 0  1 0, and 0 0 0  1) and a 
multilayer system with four input units, four output units, and 
three hidden units (cf. Ackley et al., 1985). When all four vec- 
tors are learned as an ensemble (remote rehearsal) by repeat- 
edly sweeping through the whole set, the system successfully 
learns them all. The learning criterion typically used is to con- 
tinue sweeping until the output values are close to the input 
values, that is, within some small percentage of the input values, 
for example, 6%. 

Interference is examined by observing what happens when 
three of  the vectors are learned to criterion in sweeps (e.g., 
1 2 3 1 2 3 1 2 3 1 2 3 • • .), taking approximately 90 sweeps, 
and then the fourth (e.g., 4 4 4 4 4 • • • ) is learned to criterion 
by itself (approximately 40 presentations). The questions to be 
answered are whether and how performance on the first three 
vectors is degraded as a result of  learning the fourth item. The 
results show high degrees of  interference. These results are de- 
scribed in the next section, and then a sequence of modifica- 
tions of the model follows, with each modification an attempt 
to reduce the interference. 

Modifying all weights. In the first implementation, all 
weights were allowed to change during training of  the first three 
vectors, and all weights were also allowed to change during 
training of  the fourth vector. Table 1 shows the results of  testing 
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Table 1 
Modifying All Weights in the System 

Table 2 
Modifying Only the Small Weights 

Training set Test vectors Response Training set Test vectors Response 

1 0 0 0 .94.04.05.02 
0 1 0 0 .05.94.04.02 
0 0 1 0 .04.05.94.02 

1 0 0 0 .77.01.01 .90 
0 1 00 .01.75.01.92 
00 1 0 .01 .01.73.92 
0 0 0 1 .03.04.04.95 

1 1 1 1 .02.03.04.95 
0 1 1 0 .00.36.33.91 

1000 
0 1 0 0  
0 0 1 0  

0001  

1000  
0 1 0 0  
0 0 1 0  

0001  

1 0 0 0 .94.04.05.02 
0 1 0 0 .05.94.04.02 
0 0 1 0 .04.05.94.02 

1 0 0 0 . 6 0 . 0 5 . 0 0 . 6 3  
0 1 00 .01.85.01.36 
00 1 0 .01.01.19.98 
0 0 0 1 .04.02.05.94 

1 I 1 1 .02.02.02.94 
0 1 10 .01.45.11.81 

each of the four vectors after the fourth was learned and shows 
that there were serious distortions in the reproductions of the 
first three vectors. For each of these three output vectors, there 
was an entry for the feature trained for the fourth vector. So, for 
example, the response to 1 0 0 0 after training on the fourth 
vector (0 0 0 1) was 0.77, 0.01, 0.01, and 0.90. These results 
indicate that weights in the system were altered by the training 
of the fourth vector so that almost any test vector would evoke 
a response in the fourth feature position. Thus, any output is a 
blend of  the correct output and the vector that was trained last; 
an item presented earlier for test retrieves the last-studied item 
modulated b~, the earlier item. The general conclusion is that 
training new vectors after training an earlier set, with no repeti- 
tions of  the earlier set, will result in loss of  the ability of the 
network to reproduce the earlier set. (Also included in Table 1 
are the results for testing two other vectors, 1 1 1 1 and 0 1 1 0. 
These are included to show what happens when a new item is 
tested; in this example, 'the last feature is turned on for these 
new items as well as for the old items.) 

Modify only low weights. After the items in a set have been 
learned to criterion, the weights on the connections between 
units will vary in how much they have been modified from the 
initial values. For the system to learn more items, perhaps the 
weights that were modified least in original learning should be 
used for new learning, leaving the other weights unaltered (the 
notion would be that altered weights become more resistant to 
change, or less plastic). To implement this scheme, three items 
were learned to criterion (as in the previous simulation). I then 
empirically determined a cutoff value of weight strength so that 
approximately half the weights were large (either positively or 
negatively); these were not modified during training of the 
fourth item. The other half of the weights were small and could 
be modified. Table 2 shows results parallel to those in Table 1 
for the output vectors produced when each of six input vectors 
are tested. The results show somewhat better reproduction of 
the input vectors than when all weights are modified (cf. Table 
1), but the improvement is not large and does not change the 
general conclusion that later learning distorts earlier learning. 
Note that reproductions of the diagonal elements for the first 
three patterns after training the fourth vector were quite vari- 
able (0.85-0.19). This is a joint  effect of  dividing the weights 
into two classes, fixed and adjustable, and of the variability in 
starting values of weights. I fa  different set of  randomly selected 

initial weights are chosen, the diagonal elements are just as var- 
ied, but instead of the second vector reproducing itself well, the 
first or third vector might. 

Add new hidden units. If neural systems are taken seriously 
as the inspiration for connectionist models, then the notion that 
uncommitted nodes and connections can become committed 
during learning is worth examination. Bringing in uncommit- 
ted nodes is simulated by assuming that even after considerable 
training, there are still uncommitted nodes available to be re- 
cruited during further training. By this model, learning new in- 
formation is viewed not as reorganizing already existing mem- 
ory but as training new resources alone or as modifying old 
memory plus new resources. These two possibilities are exam- 
ined in the next simulations. 

The first simulation adds one extra hidden unit for training 
the fourth vector, and all the weights in the network are allowed 
to change. One might expect that much of the new learning 
would be accomplished through the new connections. However, 
although the results (Table 3) show that recovery of the first 
three vectors is better than in the simulations described earlier, 
performance is not perfect. For example, after learning 0 0 0 l, 
responses in the fourth position of the first three vectors (origi- 
nally 0) varied from 0.46 to 0.50, indicating considerable inter- 
ference. 

Add new hidden units and modify only weights on connections 
to and from the new units. In the simulation just described, the 
network as a whole (the old connections plus the new connec- 

Table 3 
AddingExtraHiddenUnitsandModifyingAllConnections 

Training set Test vectors Response 

1000  
0 1 0 0  
0 0 1 0  

0001  

1 0 0 0 .94.04.05.02 
0 1 0 0 .05.94.04.02 
0 0 1 0 .04.05.94.02 

1 0 0 0 . 8 6 . 0 1 . 0 1 . 4 6  
0 1 00 .02.85.01.50 
0 0 1 0 .02.02.82.49 
0 0 0 1 .04.04.04.94 

1 1 1 1 .03.04.05.94 
0 I 1 0 .00.48.41.59 
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Table 4 
Adding Hidden Units and Modifying Only the 
Connections to the Hidden Units 

Training set Test vectors Response 

1000  
0 1 0 0  
0 0 1 0  

0001  

1 0 0 0 .94.04.05.02 
0 1 0 0 .05.94.04.02 
0 0 1 0 .04.05.94.02 

1 000  .93.00.01.13 
0 1 00 .04.60.01.15 
00 1 0 .04.00.80.15 
000  1 .17.00.03.51 

I 1 1 1 .12.00.04.49 
0 1 1 0 .01.19.38.20 

tions to and from the new hidden unit) could not preserve learn- 
ing of  the first three items when the fourth was trained. In the 
next simulation, only the weights to and from the new hidden 
unit were modified during training the fourth item. At final test, 
all connections entered into calculating the output values for a 
test item. Results are shown in Table 4, and performance is sim- 
ilar to that shown in Table 3. The main difference is that the 
fourth item did not reproduce itself as well at final test because 
training did not include the whole network. However, the three 
initial vectors reproduced themselves better than in the earlier 
simulations. These two results suggest a tradeoff." The last vector 
can be reproduced better at the expense of  earlier vectors or the 
earlier vectors can be reproduced better at the expense of  the 
last vector. 

More than one interfering item. In the simulations described 
so far, three items were trained to criterion first, and then a 
fourth was trained to criterion. In the next simulation, fewer 
items were trained initially, and more items were trained subse- 
quently to determine whether this would result in poorer repro- 
duction of  the initially trained items. First, the vectors 1 0 0 0 
and 0 1 0 0 were trained to criterion, and then two more vec- 
tors, 0 0 1 0 and 0 0 0 1, were trained to criterion. The results 
for the test items are shown in Table 5. The disruption to repro- 
duction of the initial two items after training the last two is 
large. In fact, comparing the response to the two new vectors 
tested (1 1 1 I and 0 1 1 0), there is little information in the out- 
put to identify the initially trained vectors. The conclusion from 
this simulation is that the greater the number of  vectors trained 
in a group after original training, the less likely the earlier 
trained vectors are to be accurately reproduced. 

Summary for Four-Element Vectors 

Each of  the simulations showed that when items or sets of  
items are trained sequentially, training on the later items dis- 
rupts learning of  the earlier items, The simulations used small 
vectors of  length 4, with one set of  items trained to criterion 
and then a second set trained to criterion. Results showed that 
a test of  an item from the first set after training the second set 
resulted in massive interference: The output vector was more 
similar to one of  the items from the second set than it was to 
the test item. Attempts to reduce interference by modifying 

only some weights, adding hidden units, and coding the two 
training sets by different hidden urfits reduced interference a 
little but did not solve the interference problem. 

McCIoskey and Cohen (1989) have obtained similar results 
for two different tasks: learning arithmetic facts (using a coarse- 
coding vector representation) and the Barnes and Underwood 
(1959) A-B, A - C  interference paradigm. McCloskey and Co- 
hen conceptualized the rapid forgetting caused by interference 
in terms of  a multidimensional space (an energy or sum-of- 
squares space), where each dimension in the space is a connec- 
tion weight and where the learning algorithm searches through 
this space for a minimum energy. The learning algorithm ad- 
justs the weights to bring the sum of the differences between 
the values of each output feature and its training signal to a 
minimum (e.g., an energy minimum). Thus, learning a set of  
items involves gradient descent in a multidimensional space 
where each dimension or weight is gradually adjusted to pro- 
duce the energy minimum. If the number of  hidden units is 
large, then there will be several (if not very many, e.g., 10 9) solu- 
tions; that is, there will not be a unique minimum (Pavel & 
Moore, 1988). Then, the particular solution obtained for one 
set of items will serve as the starting point for training of subse- 
quent items (see Grossberg, 1987), and the new solution will be 
near the old solution in the multidimensional space. This new 
solution will not generally be a solution that maximally satisfies 
both the set of  constraints on the initially learned items and 
the constraints for the subsequently trained items; rather, it will 
satisfy only the last items trained. Thus, reproduction of  the 
earlier items will be degraded. The initially trained items will 
be reproduced to some extent because the solution to the new 
set of  items is not too far from the solution for the earlier learn- 
ing. In contrast, when a set of  items is to be learned all at once, 
the method of  sweeps leads to an iterative path through the pa- 
rameter space to converge on a joint  solution. 

In the simulations I have described, attempts to constrain the 
space of  possible solutions by allowing only a subset of the 
weights to be modified were of  limited success. The reason for 
this is that the network is highly interconnected, and learning 
is distributed across the whole network so that all weights, both 
small and large, are carrying part of  the solution. The same con- 
ditions hold in the simulations in which extra hidden units and 
connections are added. The solution is still carried by the whole 
network, and despite adding new resources, there is still move- 
ment of  the whole system through the solution space to a new 

Table 5 
Training Two Vectors, Then Two More, Modifying All Weights 

Training set Test vectors Response 

1000  
0 1 0 0  

0 0 1 0  
0001  

1 0 0 0 .95.04.02.02 
0 1 0 0 .06.94.05.05 

1 0 0 0 .05.00.90.15 
0 1 0 0 .00.40.08.87 
0 0 1 0 .05.01 .94.06 
0 0 0 1 .00.03.05.95 

I I 1 1 .00.03.05.95 
0 1 1 0 .00.10.57.30 
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Figure 2. Results for a simulation examining forgetting functions with 
larger vectors in which all weights are modified in training. 

point. The only difference between these latter simulations and 
the earlier simulations is that reproduction of  old vectors is 
somewhat better because, with extra resources, a solution can 
be found nearer to the starting point (the prior solution). 

Forgetting and Interference in a Larger System 

The simulations with a small set of short, orthogonal input 
vectors allowed the effects of  new learning on prior learning to 
be observed easily and conceptualized feature by feature within 
a vector. However, a limitation of these simulations might be 
that such short vectors do not provide a complex or rich enough 
system to acceptably mimic the human processing system. 
Most vector models of memory use vectors of  length greater 
than l0 (because long vectors would be needed to represent all 
the words in a mental dictionary, for example) and assume that 
properties of the solutions scale up; that is, they remain qualita- 
tively the same as vector length is increased. For the next set of 
studies of forgetting, I used a system with input and output vec- 
tors of  32 units and a hidden layer of  16 units. Only a maximum 
of  12 items were trained so that rapid forgetting could not be 
attributed to lack of resources in the network (i.e., a vector 
length too short for the number of items to be learned). In addi- 
tion, the vectors for the items to be trained were not orthogonal; 
values for each feature for each item were selected randomly so 
that random correlations between items would be present as 
they would be with real items in memory. 

The simulations presented in this section parallel the manip- 
ulations examined in the first section with simulations in which 
all weights are modified, subsets of  weights are modified, or ex- 
tra hidden units and weights are added to the system for each 
new item to be learned. In these simulations, the system was 
first presented with four vectors in a group, with the elements 
of  each vector chosen randomly to be either 0 or 1. Training 
sweeps through the whole group continued until the vectors 
were learned to criterion. Then, eight random vectors were 
trained individually. After each of the items reached criterion, 
that item and all previously trained items were presented for 
test. The match between each of the trained items and its output 
was computed, yielding forgetting functions for the four ini- 
tially trained items as well as the successively presented single 
items. The items were learned to a criterion of 0.94 (unless oth- 

erwise noted), and a typical range of  training trials was 50-120. 
Twenty replications of this basic simulation were performed to 
generate estimates of variability in performance; the results re- 
ported are based on means over these replications. 

For the first set of  simulations, all connections were available 
for modification during each training trial (both for the initial 
four items and for each successive new item). The results are 
presented in Figure 2 and show that there was rapid forgetting 
for the initially learned four items as a function of successive 
learning trials on the single items. The match value fell from 
0.94 to 0.51 after training one intervening item. By six or seven 
intervening items, the match had fallen to 0.23. For singly pre- 
sented items, after one intervening item, the drop in match was 
worse, falling from the initial value of  0.94 to 0.29, and after six 
or seven further items had been learned, the match dropped to 
0.10. This last value is close to the match for new items (random 
vectors with the same statistical properties as the trained vec- 
tors). The match for new items was 0.125 when they were tested 
immediately after the four initially trained items and 0.046 +_ 
0.046 when they were tested after the successive single items. 

The decrease in the match value for new items can be under- 
stood by considering how well the new items match the trained 
items. For a new item tested immediately after the initial four, 
its output will be like the item of the first four that is most sim- 
ilar to it: The new item is trying to reproduce the item most like 
it. The output will match the test item to the extent that both 
are similar. For new items tested after single items are trained, 
the last item trained (or with lower probability, the item before) 
will be reproduced to some degree, and this will match the last 
item learned best (or to a smaller extent, the item before). This 
will lower the average match relative to testing after the initial 
four are learned because by chance, one of the four will match 
better than only the last one (or two). 

Overall, from this set of  results, two conclusions can be 
drawn: First, as with the short four-element vectors, items 
learned singly are poorly reproduced after several intervening 
learning trials. Second, items encoded in groups are signifi- 
cantly more resistant to forgetting than items learned individu- 
ally. 

In the second set of  simulations, the items learned individu- 
ally (after the initial four items) were trained with only the low- 
valued weights altered. To accomplish this, the weights were di- 
vided in half after examination of  the results of  training the 
four initial vectors. The smaller weights were allowed to change 
during training, but the larger weights were not. The cutoff 
value dividing the large and small weights was fixed for subse- 
quent learning of  individual items so that when any weight ex- 
ceeded this value, it was not allowed to change during training 
of  any further items. Occasionally, the system would fail to 
reach the learning criterion for one of  the later individual items. 
In this case, 1,000 training sweeps of the item were completed 
to ensure that training asymptoted before proceeding to the 
next item. Results presented in Figure 3 show that the asymp- 
tote is higher than the corresponding asymptote in Figure 2, 
both for items learned in the group of four and items learned 
singly. For new random vectors tested immediately after the first 
four, the mean match was 0.125, and for new items tested later, 
the mean match was 0.045 _+ 0.039. Although performance was 
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Figure 3. Results for a simulation examining forgetting functions with 
larger vectors in which small weights are modified in training. 

better than in the first study, there was still rapid forgetting of  
highly learned information as a function of  later learning. 

The third study was designed to examine the issue of adding 
resources to the system: Two new hidden units and their con- 
nections were added for each additional item to be learned. 
Each additional item was trained by modifying only the weights 
to and from the new hidden units, but connections to and from 
all the hidden units determined the output during training. 
Items in the initial group were retained better than in the first 
set of simulations (Figure 4) because the weights to and from 
the 16 hidden units were not altered in later training and they 
dominated over the effects of  new learning. The single items 
learned subsequently were retained much more poorly for the 
same reason. By the time seven or eight subsequent items had 
been trained, the match for these items was close to 0. 

In the fourth study, two new hidden units were added for each 
single item to be learned. Only connections to and from these 
two new hidden units were altered during training, and only 
the new hidden units were used to determine the output during 
training, so that training of  the single items was carried out in- 
dependently of  the rest of  the network (this contrasts with the 
previous simulation, in which connections to and from both the 
old and new hidden units were used to produce the output dur- 
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Figure 4. Results for a simulation examining forgetting functions with 
larger vectors in which two new hidden units are added per learning trial 
and all units provide input for weight modification and match values. 
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Figure 5. Results for a simulation examining forgetting functions with 
larger vectors in which two hidden units are added per new item learned 
and weights are updated in isolation from the rest o f  the network. (At 
test, all units and weights participate.) 

ing training). At test, all connections were included to produce 
outputs. As in the example in Table 3 for the four-element vec- 
tors, immediate tests of  the single items learned last did not give 
high matches because previously set weights were involved at 
test, but these weights had not been involved in training the 
item. Also, as in the two studies discussed earlier, there was a 
rapid drop in the match for the initial four items as a function 
of  subsequent learning (see Figure 5). However, compared with 
the first study, the match was better for both the initial items 
and the single items because the effects of interference were not 
in learning but at test, where subnetworks (the different hidden 
units and weights used in learning the different items) were 
combined. 

To show that this result is due to keeping learning separate 
and combining only at retrieval and not due to simply providing 
more hidden units, a further simulation was carried out with all 
weights modified and more hidden units provided (32 instead 
of 16). Figure 6 shows the results. Values of match for items 
encoded in the 4-item set were only a little below those in Figure 
5 when the new hidden units were trained in isolation, but the 
single-item match was approximately half that of the values 
shown in Figure 5. In fact, performance is comparable to that 
in Figure 2, showing that extra resources have little effect on 
performance. 

Summary of Interference in a Larger System 

Results showed that if a set of  items is trained and then an- 
other item is trained without retraining items from the first set, 
then there is a huge drop in recognition performance on the 
first set. In addition, recognition performance for a single item, 
trained to criterion after the first set, drops even more after an- 
other single item is trained to criterion. There was little im- 
provement when low weights were trained while keeping larger 
weights fixed. There was a reduction in the amount of  interfer- 
ence when extra hidden units were added to the system for each 
item trained, but only when the rest of the network was held 
fixed while each new item was trained. When all weights were 
allowed to change, increasing resources (numbers of hidden 
units and connections) did not improve performance. 
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Figure 6. Results for a simulation examining forgetting functions with 
larger vectors and twice the number of hidden units (32) in which all 
weights are modified in training. 

Discussion of Forgetting Functions 

The rapid decay of  early learning as a function of  interference 
from later learning suggests that the encoder model is inade- 
quate as an account of  recognition memory. The model pro- 
duces forgetting of well-learned information at a much faster 
rate than that found for human memory. After learning three 
or four items to a high criterion, learning only one new item to 
criterion causes the earlier items to be reproduced poorly. This 
is like studying the word cat 100 times, studying the word table 
100 times, and then finding that cat is not well recognized and 
that when cat is presented for recognition, table is retrieved (see 
Grossberg, 1987). 

Although forgetting in the above simulations is clearly too 
rapid to model forgetting in human memory, the diseriminabil- 
ity between old and new items after the initial rapid forgetting 
is examined in the next sections to provide information about 
another basic characteristic of human memory. In the multi- 
layer model, after several interfering learning trials, d' values 
from the simulations with 32 feature vectors are in the range of 
1 to 3, and these values are consistent with human performance 
in list-learning memory experiments. So, despite the serious 
problems with rapid forgetting, other aspects of  performance of  
the model are still worth examining to gain further understand- 
ing of its properties and structure in case some solution to the 
forgetting problem can be discovered. The issue of  amount of 
rehearsal is considered in the next section. 

Learn ing  as a Funct ion  o f  A m o u n t  o f  Rehearsal  

The second main set of  studies examines old-new discrimi- 
nation as a function of  the amount of  learning (defined as the 
number of learning trials). Results from experimental manipu- 
lation of amount of  learning have been important in memory 
research because they have provided a diagnostic for classes of 
models. Linear-distributed (vector) models such as those of 
J. A. Anderson (1973) and Murdock (1982) have a serious prob- 
lem in that old-new discrimination does not increase as a func- 
tion of  amount of learning (although see Murdock, 1989). In 
these models, if each item in a list is presented once, then the d' 
value will be the same as if each item were presented several 

times. The reason for this is that even though the mean of the 
match for old items increases as the number of  presentations 
increases, the standard deviation in the match for new items 
also increases to keep d' constant (i.e., means and standard devi- 
ations are all scaled up equally as a function of the amount of 
learning). Because constant old-new discriminability is a key 
problem for some memory models, predictions from the multi- 
layer encoder model are evaluated with this diagnostic. 

Theoretically, in the encoder model, the behavior of old-new 
discrimination as a function of amount of  learning is related to 
the problem of rapid forgetting demonstrated in the last section. 
When items are learned sequentially, memory for items learned 
earlier is substantially degraded. The information left in the sys- 
tem is the modulation that remains from the learning of  earlier 
items superimposed on the learning of the later items. The im- 
plications of this forgetting problem for old-new discrimina- 
tion are examined in the following simulation studies. Specifi- 
cation of the encoder model requires implementation of  a re- 
hearsal scheme, and that is described first. Then, the next 
section presents an overview of  the results obtained from the 
model, followed by detailed discussions of the results. Finally, 
possible modifications of the basic model are considered. 

Rehearsal Buffer Model 

Empirical work has shown that in list learning, groups of 
items are rehearsed together (Atkinson & Shiffrin, 1968; Run- 
dus & Atkinson, 1970). To provide group rehearsal for the en- 
coder model, a simplified rehearsal buffer was used (as in Gil- 
lund & Shiffrin, 1984). The items of  a list to be learned are 
entered into the buffer in small groups (e.g., four items). Then, 
each item in the buffer is rehearsed for some number of sweeps 
(N = the number of  learning trials) across the whole buffer. Af- 
ter N sweeps, the first item in the group is dropped out, and the 
next item in the list is added to the buffer, and another set of 
learning trials proceeds (another N sweeps across the buffer). 
This process continues through the list of  items. The studies 
presented earlier show that items learned in groups are more 
resistant to forgetting than items learned singly, so one advan- 
tage of training items in groups is that memory performance is 
improved. Of course, the rehearsal process is also designed to 
fit with existing knowledge about human rehearsal processes. 

Specification of the Model 

The multilayer encoder model to be used in this set of  studies 
has 32 input and 32 output elements and 16 hidden units, input 
vectors have randomly selected elements that are either 0 or I, 
and buffer size is either 1 or 4 items. When the buffer size is 1 
item, each item is trained N times before moving to the next 
item to be trained. When the buffer size is 4, the first item to be 
learned is encoded by itself on each of  N sweeps. Then, the sec- 
ond item is presented and encoded with the first item on each 
of  N sweeps, and then the third item is presented, and all of  the 
first 3 items are encoded. After that, each of  the N sweeps 
through the buffer for each group has the current item plus the 
3 prior items. Thus for N sweeps, each item is presented (buffer 
size) × Ntimes. Thus, if number of  weight updates for different 
buffer sizes are to be compared, the number of  sweeps must be 
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scaled by buffer size. The total list length is 16 items. The first 
12 items are used in measuring performance, and the last 4 
items are used to eliminate short-term memory effects. All test- 
ing of  the system occurs after all 16 items have been trained. At 
test, the first 12 items are presented, and these provide a mean 
and standard deviation in the match for old items. Twelve ran- 
domly selected new items are also tested, and these provide the 
mean and standard deviation for new items. In most of  the fol- 
lowing simulations, the results shown are for the averages of  100 
replications of each condition. 

Overview and Summary 

Several factors need to be examined to provide explanations 
for the results presented later. This section summarizes the 
main points and provides a framework for the results. In es- 
sence, an understanding of the model's performance begins 
with the finding from the previous section that studied items 
are quickly forgotten when other items are trained. When the 
system is given a test item from earlier in the study list, it does 
not produce anything similar to that item as output. Given this 
finding, then, the questions to be addressed are, What does the 
system produce in response to a test item? and How does this 
output vary with amount  of  learning? 

To begin the overview, the simplest result is for Buffer Size 1: 
The system rapidly forgets each item after training, and any test 
vector (old or new) reproduces the last vector learned to a 
greater extent as amount  of learning increases. 

When the buffer size is 4, so that items are rehearsed in 
groups, the results are more complicated and depend on the 
learning rate, that is, on the amount the weights are altered each 
time an item is trained (the learning rate 71 is a multiplicative 
constant in Equation 4 and controls the amount the weights are 
modified). For low learning rates and few learning trials, the 
system learns to reproduce an average or prototype of  the vec- 
tors that are most similar to each other in the last group of  four 
rehearsed. Both old and new test items produce this prototype 
(to a greater or lesser magnitude) when they are tested. With 
larger numbers of  learning trials, higher learning rates, or both, 
old and new test items reproduce one of  the last four items re- 
hearsed (not the prototype of  the four), the item to which they 
are most similar. It is as though the system has set up four at- 
tractor states, and any test vector is drawn to the state most 
similar to itself in producing an output. This transition from a 
test item reproducing a prototype of  the most similar of  the 
last-learned vectors to a test item reproducing a specific vector 
corresponds to the transition from largely linear behavior of  the 
net input-to-activation transformation (Equation 2), when net 
inputs are small, to significant nonlinear behavior, when some 
net inputs are very large, either positive or negative. Significant 
nonlinear behavior is the result of  large values of  weights either 
from many learning trials at lower learning rates or from more 
than one or two learning trials at high learning rates. 

Although an old test vector from early in the list best repro- 
duces either one of  the last items studied or the prototype of  
the last items studied, this output is modulated by a systematic 
deviation that shows a residual effect of  the test vector itself. 
Figure 7 shows this effect for a list of  two items. The top panel 
shows the vector studied first in the list, a sawtooth, with lines 

ma~h 

vector studied first 

match 

vector studied second 

J 

ma~h 

combination of two vectors with 
severe interference on first vector 

Vector Elements 

Figure 7. An example in which one vector is learned; a second vector is 
learned, interfering with the first vector; and the output is a combination 
of the two (in the models examined here, this would represent the result 
of testing the first vector). 

joining the adjacent elements to show patterns; the middle 
panel shows the vector studied second (and last), a ramp; and 
the bottom panel shows the output reproduced in response to 
the sawtooth test item with a reduced (through interference) 
sawtooth superimposed upon the ramp. This figure illustrates 
the reproduction of the vector learned last dominating at out- 
put, with memory for earlier items as a modulation on that out- 
put. This behavior shows that the system could not perform a 
recall task (only the item learned last would ever be recalled). 
However, the system could still have potential validity for recog- 
nition because recognition requires a different behavior, namely 
discrimination between studied old items and nonstudied new 
items. 

For new test items, an unexpected result is that the value of  
match between a new test item and memory increases as a func- 
tion of  the number of  learning trials for the studied items. The 
system seems to be learning to reproduce the new test item bet- 
ter as a function of  training on study items. However, this is not 
the correct interpretation. At high learning rates, the value of  
match for a specific new item depends on the extent to which 
the new item is similar to an old item in the last rehearsal group. 
Over all the items in the last rehearsal group, the average match 
between the new item and an item in the group is 0. However, 
of  these match values, some will be greater than 0 (by chance), 
and one oftbese will be largest. This item is the one that is pro- 
duced by the system in response to the new item. The more 
learning trials the old item (and its rehearsal group) has re- 
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Figure 8. Serial-position effects for learning rates of 4.0 (weight starting values _+ 0.3) and 0.05 (weight 
starting values + 0.05; right column and left column, respectively), with one- and four-item rehearsal groups 
(bottom row and top row, respectively). 

calved, the better it will be produced in response to the new 
item, and the greater the match. 

At low learning rates with few learning trials, new test items 
give the same behavior as old test items; they reproduce the pro- 
totype of the last group of  old items. Because only the one pro- 
totype vector is retrieved, the average value of  match of  new 
items will be 0 because a new item will match the single-proto- 
type 0 on average. 

These patterns of  behavior for old and new test items are 
complicated and were not predicted before the results were ob- 
served. These patterns are demonstrated in the detailed presen- 
tation of the results below. The reader not needing details of  the 
summary just presented can skip to the Effects of  Similarity 
Among Vectors section. 

Serial-Position Effects 

The first set of  results to examine are serial-position effects 
for old test items. These provide the primary evidence for the 
dominance of the last learned items. Figure 8 shows the values 
of match for old test items as a function of  serial position for 
Buffer Sizes 1 and 4 and two learning rates (high --- 4.0; low = 
0.05). The patterns of results are similar across learning rates 
with a l-item recency effect for Buffer Size 1 and a 4- to 6-item 
recency effect for Buffer Size 4. For Buffer Size 4, the value of 
match as a function of serial position peaked at Item 13 (be- 

cause it is the item that was rehearsed most often in the last and 
earlier rehearsal groups) and fell from there to the last item. 
The serial-position functions in Figure 8 show the same profiles 
(e.g., Item 4 match greater than Item 3 match) across buffer 
size, number of learning trials, and learning rate because the 
same randomly selected set of  vectors was used in each simula- 
tion, leading to consistent variations across serial position. The 
use of momentum in the learning algorithm had small effects 
on the serial-position functions. It led to slightly elevated match 
values on earlier items in the recency part of the curve and 
slightly reduced values of match for the last item. Thus, setting 
momentum to 0 tended to make the recency effect a little 
shorter. 

Old-New Discriminability as a Function of  Learning 

The next results to be reported are d '  values as a function of  
amount of  learning. Understanding the d '  values requires that 
the results be broken down into values of match for old and 
new test items, and these values are also presented. Figure 9 
summarizes the results for d '  as a function of the two variables, 
learning rate and number of learning trials, for Buffer Size I. 
For high or medium learning rates, d' decreased or was constant 
as a function of  number of learning trials. For low learning 
rates, the d '  function was nonmonotonic: As the number of  
learning trials varied from small to large, d '  first increased to a 
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Figure 9. Old-new discrimination as a function of number of learning trials 
and learning rate for Size 1 rehearsal groups. 
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peak, then decreased, and then increased (to asymptote for 64 
learning trials). The reason for this nonmonotonicity is dis- 
cussed later. 

For four-item rehearsal groups (in Figure 10), at low learning 
rates, d '  was nonmonotonic as a function of the number of  
learning trials; as the number of  learning trials increased, d '  was 
either initially constant or decreased, and then it increased to 
an asymptote. For high learning rates, there was a gradual de- 
cline in d'. Figure 11 contrasts d '  functions for which the initial 
starting weights were small versus large and the learning rate 
was low. When the values of  the initial weights were small, d '  
increased to an initial peak by two learning trials, then de- 
creased followed by a rise to asymptote. 

An explanation of  these d '  effects requires examination of  the 

components of  d', the values of  match for old and new items. 
The results were similar for the two buffer sizes. For a low learn- 
ing rate and low starting values of  the weights, the match value 
for old items increased, decreased (corresponding to the drop 
in d'), and then increased again as a function of the number of  
learning trials (see Figure 12). The match for new items stayed 
approximately at 0 until d '  began to rise after the early fall in 
d', and then it increased. The standard deviation in the new- 
item match increased steadily. The precise form of the changes 
in these three quantities gave rise to both the monotonic and 
nonmonotonic behavior of  d '  as a function of  the number of  
learning trials. For higher learning rates (e.g., ~/= 2 and n = 4), 
the values of  the initial weights were less important because the 
weights were driven to extreme values with relatively few learn- 
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Figure 10. Old-new discrimination as a function of number of learning trials 
and learning rate for Size 4 rehearsal groups. 
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1 40  

ing trials. An explanation of these patterns is given in the next 
section. 

Another property of the system that is displayed at high learn- 
ing rates concerns the lower asymptote in d' for larger numbers 

of learning trials. There are two sources that depend on the in- 
ability of the system to modify extreme weights. After large 
amounts of training, some weights become extreme. This re- 
sults in small modifications to the weights because the error sig- 
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Figure 13. Values for the transformation from net input to activation 
for hidden units and output units for learning rate of 4.0, starting 
weights _+ 0.3, and rehearsal groups of Size 4. 

nal involves a term % ( 1  --  Oi), and when the weight has large 
magnitude, oi, the activation value is either near 1 or near 0, 
leading to small changes in the weight (see Equation 3). As more 
weights become extreme, first, items to be learned that are in- 
consistent with the weights already driven extreme require 
many more learning trials to be learned (and so for fixed num- 
bers of  learning trials, performance is reduced)• Second, there 
are fewer weights available for modification as learning pro- 
ceeds. Both of  these factors contribute to the fall in asymptote 
as learning rate increases (see Figure 9). 

To demonstrate that high learning rates do give rise to ex- 
treme values of  weights and thus activation values near 0 or 
1, values of  the net input and output (activation) for a typical 
simulation with four-item rehearsal groups and two learning tri- 
als per rehearsal group were used. Plots of  the net input to a 
layer against the activation output are presented in Figure 13 
(these correspond to input and output values of  the sigmoid 
function shown in Equation 2). For the net input to and output 
from the hidden layer, there were approximately 22 of  96 units 
not at extreme values, and for the net input to and output from 
the output layer, there were approximately 47 of  96 units not at 
extreme values. These results show that the system has many 
units not easily able to be modified. In addition, for the model 
to mimic a linear model (such as discussed earlier with low 

learning rate and few learning trials), most points in the plots 
of  Figure 13 would have to fall between the extremes, in the 
roughly linear region• (This also shows that the model is far 
from mimicking a linear model like those of Murdock, 1982, 
and J. A. Anderson, 1973)• 

Examination of  data like those shown in Figure 13 (net input 
and the corresponding activation) shows that for low learning 
rates, and few learning trials, there are no values of  activation 
that are extreme, and all points lie on the approximately linear 
part of the net input to activation function (e.g., between activa- 
tion values of  0.2 and 0.8). When match values for old items 
drop and match values for new items rise above 0 (with increas- 
ing numbers of  learning trials), some values of  activation begin 
to reach ceiling and floor. This also corresponds to the transition 
from reproduction of the prototype to reproduction of  one of 
the last few items learned. 

Figures 9 through 12 show d' functions and match values for 
old and new test items• Now the question to be addressed is why 
the old and new functions show these particular forms. First, it 
is necessary to show what is produced by the system in response 
to a test item (old or new). The output of the system does not 
match the test item as well as it matches the item learned last 
(see Tables 6 and 7). For Buffer Size 1, the output matches the 
item learned last much better that it matches the test item itself. 
For Buffer Size 4, Table 6 shows the match of  the output for the 
test item against the last studied item. The output matches this 
last-learned item better than it matches the test item itself. 
However, the last item is only one of the last group of four re- 
hearsed, and a test item will reproduce the one of  the last group 
that matches it best. This output will match even better than for 
the single last item. 

For the higher of  the learning rates, new items match the item 
learned last better than do the old items. This is because old test 
items produce an output that is a combination of the old item 
itself and the last-learned item, and this leads to a lower match 
to the last-learned item compared with new test items (see Fig- 
ure 7). 

When the output of  the system for a test item matches a last- 
learned item better than it matches the test item, the reason 
could be that the output is matching a specific last-learned item 
or a prototype of  the group last learned. To examine this, the 
results can be examined for just one replication for a new test 
item. For a low learning rate, the output for a new test item 
matches a prototype of  the most similar to each other of  the 
last four learned items. This is demonstrated in Table 8. The 
argument is as follows: If the response to new test items is a 
prototype, then each of  the last four studied items will match 
the output given to the test items in the same ratio. If  the re- 
sponse was not a prototype, then the output for each test item 
would match the last four studied items differently. (Note that 
the same argument holds for old items with the caveat that there 
will be some weak effect of  an earlier presentation of  the old 
item•) This was demonstrated by taking 16 new items, deter- 
mining the output of  the system for each, and then determining 
the match between each of  these outputs and the item studied 
last (Item 16). Then this process was repeated for the other 
items of  the group studied last (Items 13, 14, and 15). This 
yielded 16 match values for each of the items in the last group. 
Table 8 shows the correlations across these sets of  16 match 
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Table 6 
Match of Output From Old and New Items to the Last List Member 

SDof 
Learning Rehearsal Initial No. Old-item New-item new-item 

rate group size weight rehearsals match match match 

4.0 4 -+0.3 2 .103 .128 .130 
4.0 4 +-0.3 4 .134 .199 .164 
4.0 4 +0.3 8 .200 .299 .180 
4.0 4 +0.3 16 .241 .266 .207 
4.0 1 +0.3 2 .036 .035 .041 
4.0 1 +0.3 4 .308 .337 .246 
4.0 1 +-0.3 8 .590 .629 .256 
4.0 1 +-0.3 16 .527 .584 .376 
0.05 1 +_0.05 2 .019 .019 .010 
0.05 1 +-0.05 4 .046 .045 .046 
0.05 1 +-0.05 8 .095 .094 .032 
0.05 1 +-0.05 16 .179 .176 .048 
1.0 1 +0.3 2 .076 .079 .034 
1.0 1 +-0.3 4 .131 .137 .074 
1.0 1 +-0.3 8 .326 .357 .201 
1.0 1 -+0.3 16 .457 .539 .161 
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values. For the low learning rate shown in the table, there is a 
high correlation between I tems 13, 15, and 16, and not  with 
I tem 14, indicating that I tems 13, 15, and 16 formed the proto- 
type. For example,  the match for I tem 16 with the output  o f  
New I tem 1 was .  19, with the output  of  New Item 2 , .  15, and 
with the output  of  New I tem 3, .26. The corresponding matches 
with I tem 15 show the same profile, .23 , .  19, and .32, respec- 
tively, and so are highly correlated. For the high learning rate, 
the correlations between I tems 13, 15, and 16 are lower but  still 
positive, indicating that the system was at tempting to repro- 
duce one of  those last four i tems rather than the prototype. 
These correlations mir ror  the correlations among the four 
i tems studied last, shown in Table 9. 

These results show that  o ld-new discr iminat ion as a function 
o f  learning can only be explained by examining several interact- 

ing factors. These include the transition from reproducing a 
prototype to reproducing single i tems in the last rehearsal 
group and the transition from linear to nonlinear  behavior in 
the net  input  to activation transformation.  The next step is to 
extend this investigation, moving from minor  modifications o f  
the encoder model  to major  changes in representational as- 
sumptions. 

Effects o f  Similarity A mong Vectors 

One criticism that might  be made of  these simulations is that  
the i tems used in the simulations are unrelated to each other, 
whereas in experiments with human subjects, the i tems are 
somewhat related to each other. For example,  the words in a 
study list are more similar to each other than they are to pic- 

Table 7 
Match of Output From Old and New Items to the Old and New Items 

Learning Rehearsal Initial No. Old-item 
rate group size weight rehearsals match 

New-item 
match 

SD of 
new-item 

match 

4.0 4 +0.3 2 .055 .004 .037 
4.0 4 _+0.3 4 .064 .008 .049 
4.0 4 _+0.3 8 .085 .017 .061 
4.0 4 _+0.3 16 .178 .048 .072 
4.0 1 +0.3 2 .057 .007 .038 
4.0 1 -+0,3 4 .069 .013 .086 
4.0 1 +0.3 8 .077 .027 .120 
4.0 1 +-0.3 16 .085 .026 .133 
0.05 1 +_0,05 2 .015 .000 .011 
0.05 1 +_0.05 4 .038 .001 .048 
0.05 1 +0.05 8 .035 .001 .036 
0.05 1 +_0.05 16 .029 .002 .052 
1.0 1 +0.3 2 .059 .011 .028 
1.0 1 +0.3 4 .099 .021 .041 
1.0 1 +0.3 8 .155 .040 .072 
1.0 1 +_0.3 16 .191 .058 .097 
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Table 8 

Correlations (R e) Between the Match Values for the Outputs 
of New Items With the Last Four List Items 

List item 

List item 16 15 14 

Low learning rate (n = 0.05) 

15 + .99  - -  
14 -.39 -.32 - -  
13 + .99  + .99  - . 4 2  

High learning rate (n = 4.0) 

15 + .74  - -  
14 -.05 -.05 - -  
13 +.19 +.36 -.59 

Note. Each item received 16 rehearsals, with four-item rehearsal groups. 

tures. To examine the effect of varying the amount of similarity 
among items, simulations were performed in which all the 
items were variants on a prototype. To accomplish this, for each 
simulation, a random vector of zeros and ones was generated, 
and each of  the study and test vectors in the simulation were 
distortions of this vector. The distortions were obtained by 
making some proportion of the elements of the vector different 
from the elements in the prototype. Various learning rates were 
examined, and the results were much the same as in the previ- 
ous section. For low learning rates, d '  as a function of number 
of learning trials was nonmonotonic: rising, falling, and then 
rising to a higher asymptote. For higher learning rates, d'  rose 
from a low value with one learning trial to asymptote by six or 
eight learning trials. For Buffer Size 1, the d' function fell from 
an initially high value. Thus, the only way the addition of simi- 
larity among items changed the pattern of results was to give 
a more gradual initial rise under some high learning rate and 
similarity conditions. 

Scaling Up Vector Length 

Another potential criticism of  the simulations is that a vector 
length of  32 is too small to be a realistic representation of  stimu- 
lus information. To address this, the vector length was increased 
to 128 and 256 for the input and output vectors (with half that 
length for the hidden units). The results showed the same pat- 
terns as for the smaller vector lengths, with the absolute level of  
d '  somewhat higher for the longer vector lengths. 

ing is small. However, this prediction holds only when amount 
of  learning is varied across lists, with all items in some lists re- 
ceiving a large amount of  learning and all items in other lists 
receiving a small amount. When amount of  learning is varied 
for items within a list, with some items getting a large amount 
of  learning and others only a small amount, then there can only 
be one value of match for new items. It follows that differences 
in d '  (as a function of  amount of learning) must be greater when 
amount of learning is varied within a list than when varied be- 
tween lists (as long as old-item match values are comparable). 
This prediction that d '  differences will be greater in mixed lists 
than in pure lists was termed the list strength effect by Ratcliff 
et al. (1990) and Shiffrin et al. (1990), and the measure used to 
describe the effect is a ratio of  ratios: the ratio of d '  values for 
the two conditions in the mixed list divided by the ratio of  d '  
values for the corresponding conditions in the pure lists. 

The prediction is not upheld by experimental results. With 
amount of  presentation time per item and number of repeti- 
tions per item to manipulate amount of  learning, the data from 
many experiments (Ratcliffet al., 1990) clearly show no differ- 
ences between the mixed and pure lists; that is, the ratio of  ra- 
tios was always either 1 or less than 1. Amount of  learning fails 
to affect the difference between mixed and pure lists for recogni- 
tion, even though it affects the difference for recall and even 
though accuracy of  recognition for old test items increases with 
amount of  study. Theoretical analyses show that some forms of  
some models can account for some aspects of  the results, but 
currently these modifications are somewhat unsatisfactory 
(Shiffrin et al., 1990). 

Because the memory models make such a strong prediction 
that is violated by the data, additional insight into the encoder 
model may be gained by examining its predictions for the 
mixed-list-pure-list design. To do this, an encoder model with 
learning rate ofn = 0.25, initial weights of_+0.3, and Buffer Size 
1 was used. The study list of  16 items was divided into three 
groups of items: the first 6, the next 6, and the last 4. Different 
numbers of  learning trials were given to the items in these three 
groups as shown in Table 10; the code represents the number of 
rehearsals given to each group, and the match values in the table 
are for the group with the slash ( / )  next to it. First, the main 
effect on performance seems to be retroactive interference. The 
match value for the second 6 items is almost completely deter- 
mined by the number of learning trials for the last group of  4 
items. For example, comparing the 4-4/-2 and 4-4/-8 condi- 
tions, one can see that the match value for the 4 /g roup  when 
the last group was given two learning trials is approximately 2 
times larger than the match value when the last group is given 

More Sensitive Tests of  Learning 

Ratcliff, Clark, and Shiffrin (1990; see also Shiffrin, Ratcliff, 
& Clark, 1990) have presented a new experimental manipula- 
tion with which to evaluate models of  old-new discrimination 
as a function of  learning. Many models (Gillund & Shiffrin, 
1984; Hintzman, 1986; Murdock, 1982; Pike, 1984) require 
that variance in the amount of  match for new items increase as 
a function of the amount of learning of  old items. When the 
amount of learning per item is large, then the standard devia- 
tion for new items will be higher than when the amount of  learn- 

Table 9 

Correlations (R 2) Among the Last Four Input Vectors 

List item 

List item 16 15 14 

15 +.36 - -  
14 +.13 +.00 - -  
13 + .07  +.21 - . 3 1  

Note. Each item received 16 rehearsals, with four-item rehearsal groups. 
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Table 10 
Results for the Mixed-Pure Manipulation 
of Amount of Rehearsal 

Old-item New-item SD of Group 
match match new match d '  typea 

.0381 .00547 .0338 0.965 2/-2-2 

.0583 .00410 .0294 1.844 2/-1-1 

.0212 •00899 .0482 0.253 2/-4-4 

.0251 .00636 .0410 0.457 2/-4-2 

.0482 .005 ! 2 .0330 1.305 2/- 1-2 

.0448 .00436 .0332 1.218 2/-2-1 

.0270 .00773 .0493 0.391 2/-2-4 

.0584 .00547 .0338 1.566 2-2/-2 

.0550 .00721 .0350 1.365 4-2/-2 

.0588 .00456 .0344 1.577 1-2/-2 

.0695 .00335 .0309 2.141 1-2/- I 

.0682 •00436 .0332 1.923 2-2/-1 

.0430 .00931 .0450 0.749 4-2/-4 

.0422 .00773 .0493 0.699 2-2/-4 

.0447 .0104 .0439 0.781 4/-4-4 

.0766 .00721 .0350 1.983 4/-2-2 

.0345 .0175 .0595 0.286 4/-8-8 

.0356 .0129 .0459 0.496 4/-8-4 

.0577 .00931 .0450 1.075 4/-2-4 

.0526 •00796 .0382 1.168 4/-4-2 

.0346 .0144 .0658 0.307 4/-4-8 

.0801 .0104 .0439 1.588 4-4/-4 

.0756 .0126 .0367 1.717 8-4/-4 

.0790 .00899 .0482 1.452 2-4/-4 

.105 •00636 .0410 2.406 2-4/-2 
• 100 •00796 .0382 2.401 4-4/-2 
.0623 .0175 .0556 0.806 8-4/-8 
.0561 .0144 .0658 0.634 4-4/-8 

.0683 .0204 .0537 0.892 8/-8-8 

.0859 .0126 .0367 1.997 8/-4-4 

.0638 .0323 .0827 0 .381  8/-16-16 

.0705 .0273 .0561 0.770 8/-16-8 

.0733 .0175 .0556 1.003 8/-4-8 

.0703 .0155 .0411 1.333 8/-8-4 

.0584 .0260 .0863 0.375 8/-8-16 

.109 .0204 .0537 1.650 8-8/-8 
• 116 .0267 .0496 1.800 16-8/-8 
.100 .0175 .0595 1.387 4-8/-8 
• 128 .0129 .0459 2.508 4-8/-4 
.130 .0155 .0411 2.785 8-8/-4 
.0915 .0332 .0806 0.723 16-8/-16 
.0805 .0260 .0863 0.632 8-8/-16 

a The group type code is as follows: The three numbers correspond to 
the number of learning trials for the first 6, the second 6, and the last 4 
items in a 16-item list• Numbers followed by slashes indicate the group 
of items tested. 

eight learning trials. In addition, the match values for new items 
are in the ratio of 2:3, and the ratio of  the standard deviations 
in the new-item match values is also 2:3. Thus, the last set of 
items rehearsed is a major determinant of  performance on ear- 
lier items. 

These effects can be understood in terms of  the way the sys- 
tem learns the items presented last (following from the discus- 
sion of learning effects in the prior section). When the last four 
items are rehearsed eight times, they dominate performance; 

the last item dominates most (in these examples with Buffer 
Size 1), and this leads to lower match values for items studied 
earlier. In addition, the greater the amount of learning of these 
items, the better the new test items will match the last two or 
three studied items (because, as discussed earlier, a new item 
will reproduce the one of  the last two or three items to which it 
is most similar, leading to a positive match between the new 
item and the output). Both of  these factors will serve to reduce 
d '  values. 

There is a small but reliable proactive interference effect that 
produces a positive facilitation rather than interference. This 
results from the use of  momentum in the learning algorithm• If 
the initial six items receive large numbers of  learning trials, then 
there will be a larger carryover from these learning trials to the 
next than if a small number of learning trials was used on the 
initial six items (e.g., 4-8/-8 vs. 16-8/-8)• Running these simula- 
tions with no momentum eliminates the facilitation but does 
not qualitatively alter any of  the other results. 

To examine the list-strength prediction of  the encoder model, 
the ratio o f d '  ratios (for strong and weak items) for mixed and 
pure lists was examined (see earlier text). It is easy to show that 
the encoder model predicts a large mixed-list-pure-list differ- 
ence. With the results in Table 10, the conditions equivalent to 
those examined experimentally in Ratcliff et al. (1990) for pure 
lists are (for the four- and eight-repetition case) 4-4-4 and 8-8- 
8, and for mixed lists, 4-8-4 and 8-4-8. The ratio of strong to 
weak for the mixed lists is 1 •76/0.66, and the ratio for pure lists 
is 1•27/1• 19. For the pure lists, these ratios were obtained by 
averaging the 4/-4-4 and 4-4/-4 numbers together for the four- 
repetition case and 8/-8-8 and 8-8/-8 for the eight-repetition 
case. For the mixed lists, the weak condition is the average of  
4/-8-4 and 8-4/-8 for the four-repetition case and 8/-4-8 and 
4-8/-4 for the eight-repetition case. The ratio of  ratios is 2.50, 
whereas the experimental data values are less than or equal to 
1.0. Thus, the multilayer encoder model shows the same qualita- 
tive behavior as many of  the other memory models and fails to 
predict differences in d' values for mixed and pure lists. 

Other Parameters and Manipulations 

One may think that performance of  the encoder model could 
be improved by changes in one or another of  its processing as- 
sumptions, parameter values, or representation assumptions in 
the if-you-only-try approach to dealing with the problems pre- 
sented earlier. In this section, two of  the simpler possibilities 
are considered; more complicated changes in architecture are 
examined in later sections. 

One parameter of  the model is the value of momentum, 
which is used to avoid effects of  large local variations in the 
solution space. When a vector is entered into the system, the 
value of momentum is the linear combination of the newly cal- 
culated update to the system and the prior update. All of the 
simulations presented earlier set momentum to 0.5 (i.e., the up- 
date includes half the prior update). For simulations for which 
momentum was reduced to 0, there were no alterations in the 
qualitative behavior of  d' as a function of  amount of  learning. 

A second possible way to modify the system is to use some 
kind of  sharpening process at test to enhance the output by 
feeding it back through the network to produce a cleaner output 
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(e.g., Hintzman, 1986). When this modification was added, 
there was no improvement in d '  as the number of  learning trials 
was varied from two to eight, although both d's were slightly 
higher than with unsharpened outputs. Considering the infor- 
mation that a test item actually retrieves from the system, one 
can easily see that sharpening simply gives a better reproduction 
of one of the last four items (assuming a high learning rate or a 
large number of  learning trials). This result leads to a better 
match for the test item but little change in the pattern of d' 
values across conditions. 

Summary for Old-New Discriminability 
as a Function of Learning 

The behavior of  d '  as a function of  number of  learning trials 
is the result of several interacting factors. The value of  learning 
rate and the initial values of  weights are critical because alter- 
ations in these values can change the qualitative behavior of the 
d '  functions. For example, low learning rates and few learning 
trials lead to the reproduction of  a prototype of  the most similar 
of  the last few items learned. With more learning trials, the sys- 
tem begins to reproduce the individual vectors because weights 
become large, leading to nonlinearity in the net input to activa- 
tion transformation. This produces a nonmonotonic function 
of  d' as number of  learning trials increases. In addition, any 
new test item (as well as any earlier studied old test item) will 
reproduce the item in the last-learned group to which it is most 
similar. The reproduction of  this item becomes better as num- 
ber of  learning trials increases, and so the match value for both 
old and new test items increases. 

The mixed-pure  list manipulation that has been used to test 
models of  memory gave the same problem for the encoder 
model as for the other models. The models predict larger d '  
differences between weak and strong items in a mixed list than 
they do in pure lists, contrary to data. 

Autoassocia t ive  M e m o r y  M o d e l  

Before continuing to examine variants on the encoder model, 
I consider the autoassociative memory model proposed by 
McClelland and Rumelhart  (1985). This model was developed 
specifically to account for human memory, and it is related to 
the encoder model because it uses the same error-correcting 
rule (or delta rule) for learning. It is also related to the single- 
layer autoassociative models proposed by J. A. Anderson (J. A. 
Anderson et al., 1977; Knapp & Anderson, 1984; see also Hin- 
ton, 1981) because there is only one layer of  nodes, with connec- 
tions from the output of  each node to the input of  each other 
node. Because the encoder model cannot correctly model hu- 
man behavior in learning, it is natural to consider the autoasso- 
dative model as an alternative. It may have the same problems 
because it uses the same delta or error-correcting rule for learn- 
ing. As with the encoder model, the autoassociative model was 
tested with simulations that examined the discriminability be- 
tween old and new items as a function of  the number of  learning 
trials. 

The autoassociative model assumes that the processing sys- 
tem consists of  a set of  nodes that are highly interconnected. 
Every node in the system receives both external input from out- 

side the system and internal input from each other node except 
itself. Thus, the single layer of  nodes serves both for input and 
for the final output when activation to the system has stabilized. 
Each node takes on activation values between 0 and I. At input, 
activation values are simply the external inputs. On the first 
update cycle, each node passes activation to each of the other 
nodes multiplied by the interconnection weights, and feedback 
is added to the activation value from the external input to pro- 
duce new activation values. After several iterations of combin- 
ing external input and feedback from the network, the activa- 
tion values stabilize. Then, the weights are updated by a term 
consisting of a constant multiplied by the activation level multi- 
plied by the net input, where the net input is defined as the 
difference between the external and internal inputs. If the exter- 
nal and internal inputs were equal, the weight would not 
change. After the weight update, activation is allowed to stabi- 
lize again before another weight update, and this process con- 
tinues until learning is terminated by a limit on the number of  
learning trials or by learning's reaching asymptote. The model 
was applied by McClelland and Rumelhart (1985) to data from 
the time course of growth of  activation at test as a function of  
variables such as familiarity and priming condition. The model 
was applied in the domain of  categorization and was quite suc- 
cessful in accounting for a range of  qualitative effects. 

In the simulations reported herein, discriminability between 
old and new items is examined as a function of  the number 
of  learning trials. The number of learning trials is assumed to 
correspond to the number of  updates of  the weights (allowing 
activation to stabilize between each weight update). Vector 
length was 16, decay and excitation multiplication constants for 
weight updates were both assumed to be 0.15, and the constant 
for weight updates was 0.05, following McClelland and Rumel- 
hart (I 985). The number of  cycles used to allow activation val- 
ues to stabilize before a weight update was 20. List length was 
assumed to be 16 items, each item a random vector with ele- 
ments l or 0. There were 40 replications per learning condition, 
and means and standard errors in the means were quite stable. 

Table 11 shows discrimination as a function of the number 
of weight updates. Essentially, discriminability decreased as the 
number of  weight updates increased. This result is mainly due 
to the increase in variance in match values as the number of  
weight updates increased. In addition, the match for old items 
actually increased and then, after seven weight updates, slowly 
decreased, with the parameters used here and the match for new 
items decreased, leading to decreasing d's. In sum, the autoas- 
sociative model produces the same problematic behavior as the 
encoder model. 

Al te rna t ive  Arch i t ec tu res  for the  
Mul t i l aye r  E nc ode r  M o d e l  

The architectures that were investigated in the studies so far 
described represent the most direct implementations of  mem- 
ory and learning within the multilayer and autoassociative 
schemes. The results show that these implementations all fail to 
give increases in old-new discrimination as a function of  
amount of  training. A common response to these problems is 
to argue that these architectures are not the most appropriate 
ways of  implementing memory within a distributed connec- 



CONNECTION1ST MODELS OF MEMORY 303 

Table 11 
Old-New Discrimination as a Function of Number of  Weight 
Updates in the McClelland and Rumelhart (1985) Model 

Old items New items 
Weight 
updates M SD M SD d' 

1 .541 .013 .498 .015 2.87 
2 .565 .016 .495 .025 2.87 
3 .575 .018 .498 .033 2.61 
4 .579 .019 .483 .038 2.53 
5 .578 .022 .477 .042 2.41 
7 .574 .026 .469 .048 2.19 

10 .570 .029 .464 .051 2.08 
15 .568 .030 .462 .052 2.04 
20 .567 .030 .462 .052 2.02 

tionist framework and to suggest that there are alternative archi- 
tectures that would be more consistent with prior work that has 
used more traditional approaches to memory. For example, 
some have argued that the correct way to view learning is not 
to assume that items are being learned for the first time but 
to assume that associations are being constructed between the 
context of  a list and already-known items in permanent mem- 
ory (e.g., J. R. Anderson & Bower, 1972). In the following sec- 
tions, connectionist implementations of this and other schemes 
are examined. 

Training Response Nodes 

An architecture that has been used to model discrimination 
between two different alternatives is one in which the output 
node is a response node (e.g., the T - C  problem, Rumelhart  et 
al., 1986). The system is designed so that the response node will 
be turned on whenever one alternative is presented and turned 
offwhenever the other alternative is presented. This scheme can 
be applied to recognition memory, with one difference from the 
usual applications: Only positive instances, and not both posi- 
tive and negative instances, are trained. The reason for this 
difference is that in most memory experiments, it is difficult to 
imagine that nonstudied items could be rehearsed. To add a 
response node to the encoder model, there was an output layer 
of the same size as the input layer (31) plus one additional out- 
put node connected to each hidden unit. In training, the input 
vector was used as the training signal, and the response node 
was turned on, that is, set to 1. The aim was for the system to 
adjust weights so that on presentation of an input vector, the 
output would reproduce the input, and the single output re- 
sponse node would be turned on (see Figure 14). 

The simple four-item rehearsal encoding scheme was used. 
Results were disappointing and perhaps obvious; every vector, 
both old and new, turned on the output node, and the average 
activation values for that node were near 1, and the same for old 
and new items. In hindsight, this result is not surprising because 
the system was given no information that would allow it to dis- 
criminate between positive (trained) and negative (not trained) 
items. Inspection of  the matrix of  weights provides insight into 
the solution obtained by the system. For the response node to 
have Activation 1, the net input to that node must be positive 

and large (so that the logistic transformation will convert it to 
1). For the response node to be 0, the net input must be large 
and negative. Because the net input is the sum over all hidden 
units of tbe  value of activation at the hidden unit multiplied by 
the weight (Equation l) and because the activation values range 
between 0 and l, the weight matrix values determine the sign 
of  the net input function to the response node. If the weight 
values are large and positive, any hidden unit activations will 
produce a positive output. For the simulation of  the response- 
node model, I found that the matrix weights from the hidden 
layer to the response node were all positive and large, which 
means that any nonzero activation at the hidden layer produced 
a positive value in the response node, as was observed in the 
simulations. 

Connectionist models of discrimination (e.g., the model for 
the T - C  problem, Rumelhart  et al., 1986) appear to be success- 
ful because both positive and negative instances are trained. 
One might then think that the application to recognition mem- 
ory could be modified by presenting negative instances at train- 
ing and that this would allow old-new discrimination at test. 
But in psychological terms, this modification would require 
that when learning a list, items noI in the list would also be 
processed with the response node set to O. In memory proce- 
dures, at least, the assumption of rehearsal of large numbers of 
nonpresented items is implausible. 

Item-to-Context Model 

A related potential model is one in which an item is repre- 
sented as a vector in the input layer and context is represented 
as a vector in the output layer. Then, in list learning, the set of 
items in the list is trained to produce a common output-context 
vector. At test time, old items and new items produce an output 
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that is matched to context to give a match value. For the model 
to work, an old-item vector should produce the context vector 
at test, and a new-item vector should not. The problem with 
this item-to-context model is exactly the same as the problem 
for the response-node model: The system will learn to respond 
with the context vector no matter what test item is presented. 
For a context node set to 1, the connection strengths from the 
hidden nodes to the context node will be set positive, and for a 
context node set to 0, the weights will be set negative. This will 
result in almost any test vector reproducing the context vector, 
and so result in no old-new discrimination. 

New Information as Increments to Previously 
Learned Information 

Because meaningful material is usually used in most memory 
procedures, it may be better to conceive of learning newly pre- 
sented information as incrementing existing information in 
memory. In addition, the results concerning between-lists ver- 
sus within-list discriminability as a function of learning (Rat- 
cliff et al., 1990) may be addressed within this model: If mem- 
ory consists of a large number of items, then the goodness of  
match and variability in new items will be determined mainly 
from contributions from items in the preexisting memory sys- 
tem. These contributions from preexisting items may lead to 
constant variability in new items as a function of  amount of  
rehearsal of  old items, leading to a prediction of  no difference 
in the mixed-pure manipulation and thus fitting experimental 
results. 

To implement this scheme, a standard encoder model was 
taught 100 random vectors, and then the system learned lists of 
16 items randomly selected from the pool ofprelearned vectors. 
The new items were other items from the set of  100 that were 
not selected as part of the study list on that trial. The next trial 
again randomly selected 16 items from the pool and could in- 
clude some of  the 16 items trained on the previous trial. The 
initial learning of the list of  100 vectors used input and output 
vectors of length 32 with 16 hidden units. The 100 vectors were 
trained for 100 sweeps of  the whole pool, leading to average 
goodness-of-match values of  approximately 0.7, which were at 
asymptote for learning. 

In analogy to list learning, the learning process used the four- 
item buffer. The main variable manipulated was the number of  
rehearsals. Results showed a small increase in d' as a function 
of  number of  rehearsals (see Table 12), which is consistent with 
experimental data. However, the reason for the improvement in 
d '  was not that goodness of match for old items improved as 
a function of  number of  rehearsals, because this quantity was 
constant at the value obtained in initial learning. Instead, the 
goodness of  match of  new items decreased with larger numbers 
of  rehearsals of  the old items. Thus, the model does not show 
better memory for old items; instead, there is more forgetting 
for the new items as a function of  the amount of  rehearsal of  
the old items. 

This study was replicated with more resources for the system. 
With 100 vectors with 32 input and output elements and 16 
hidden units, match was approximately 0.7, and old-new dis- 
crimination d'  was approximately 0.8. With addition of  many 
more hidden units (48 as opposed to 16), initial learning for the 

Table 12 
Learning as Increments to Prior Learning: Three Replications 

Old items New items 

Sweeps M SD M SD d' 

Replication 1 

1 .834 .089 .766 .108 .630 
8 .841 .088 .725 .117 .991 

Replication 2 

l .743 .183 .686 .158 .360 
8 .756 .169 .635 .166 .729 

Replication 3 

1 .815 .089 .758 .117 .487 
8 .813 .104 .711 .133 .767 

100 sweeps was excellent, but there was no difference between 
old- and new-item match values after list learning (match for 
both was approximately 0.99). Thus, the system had reached 
almost perfect performance, so changes due to list learning pro- 
duced no change in performance (cf. Table 12). Therefore, 
viewing list learning as retraining existing knowledge does not 
lead to an adequate account of  memory because improvements 
in old-new discrimination as a function of  amount of  learning 
are the result of degradation in performance of the items that 
are not retrained (items that are meant to represent permanent 
knowledge) rather than enhancement of the items that are re- 
trained. 

Context and Increments to a Permanent Memory 

With the next set of simulations, I attempted to model the 
effect of adding context to a model that is based on increments 
to permanent memory. I assumed that in list learning, the whole 
of memory is not adjusted and that only part of  the vector that 
represents context is adjusted (see Figure 14). This is one way 
of  implementing context-based models of  memory (e.g., J. R. 
Anderson & Bower, 1972) within the connectionist framework. 

For the context model, I assumed that part of the memory 
vector represented context and part represented the item, as 
in Figure 14. Specifically, the first 8 elements were assumed to 
represent context and the last 24, the item. At study, the context 
elements were set to (a neutral) 0.5, and the item elements were 
set to random numbers, either 0 or 1. One hundred random 
vectors were generated, and these were trained for 100 sweeps 
through the set of 100 vectors using learning rates of 0.25 and 
4.0. This produced learning at asymptote (additional sweeps 
produced little change in weights). In list learning, a single ini- 
tial-context vector of  8 elements was chosen (randomly selected 
zeros and ones). Then, 16 vectors were chosen from the set of 
100 as old items, the context elements were added, and the vec- 
tors were learned with the four-item buffer described earlier. 
However, only the weights to and from the context elements 
were allowed to change during this list-learning phase, and item 
weights were not changed. All weights participated in produc- 
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Table 13 
Learning for the Context Model 

Old items New items 

Sweeps M SD M SD d' 

Learning r~e = 4.0 

0 .648 .058 .648 .060 .000 
1 .853 .077 .837 .086 .186 
2 .868 .068 .850 .081 .222 
8 .885 .063 .871 .073 .192 

Learningr~e = 0.25 

1 .786 .0976 .765 .0988 .213 
2 .818 .0969 .796 .0989 .222 
4 .841 .0946 .820 .0983 .214 
8 .855 .0914 .837 .0961 .187 

ing activation at the output layer. At test, the old vectors were 
tested along with a set of 16 new vectors (selected from that set 
of  100) with context elements set to the context elements used 
for the old items. 

The main result was again that there was little change in per- 
formance as a function of  number of rehearsals. Table 13 shows 
d' as a function of  the number of sweeps and shows that d'  was 
roughly constant at a very small value for one to eight sweeps 
for learning rates )1 = 0.25 and 4.0. In addition, the increments 
to discriminability from list learning were small for this con- 
text-learning scheme because item weights are responsible for 
much of the match so that context learning produces little 
differential discrimination. 

This context-learning scheme seemed quite attractive be- 
cause it maintains the separation of context from information 
about an item itself. Furthermore, learning by modifying con- 
text serves as a connectionist implementation of the traditional 
context model for memory. However, the results of  the simula- 
tions show that the ,context model does not provide increases in 
old-new discriminability as a function of  learning, and so the 
model is not adequate as a model of  recognition memory. 

D. Rumelhart  and S. Sloman (personal communication, 
March 18, 1989) are working on a version of  a context model 
to overcome the problem of interference in the Barnes and Un- 
derwood (1959) transfer paradigm (McCloskey & Cohen, 
1989). In that paradigm, subjects were trained to criterion on 
an A-B list, and then forgetting on the A-B list was examined 
as a function of number of  training trials on an A - C  list. In 
Rumelhart  and Sloman's model, the input vector has pairs of 
items plus context represented in a single vector (the first set of 
elements encodes A, the first item; the second set encodes B 
and C, the second item; and the third set encodes context). The 
output vector contains only the pair of  items. For the Barnes 
and Underwood paradigm, all combinations of pairs of items 
are pretrained in a neutral context to form a permanent (per- 
haps semantic) memory. In the model, the pairs are trained to 
reproduce themselves (i.e., an autoencoder). During list learn- 
ing, the A-B pairs are trained in one context in sweeps (as in the 
experiments), and then the A - C  pairs are trained in a second 
orthogonal context in sweeps without repeating the A-B pairs. 

In addition, the learning rate on context weights is assumed to 
be larger (larger changes) than on item weights. With this model, 
interference on the A-B pairs after study of  the A-C  pairs is 
reduced. 

However, this model clearly is only the beginning of  an at- 
tempt to deal with the interference problem. The model will 
certainly have the kinds of  problems with old-new discrimina- 
tion that were demonstrated earlier. McCloskey and Cohen 
(1989) criticized an earlier version of  this model on three 
grounds. First, they considered the combinatorial explosion in- 
volved in pretraining all possible pairs of  items. Assuming a 
50,000-word vocabulary, there are 2.5 billion associations to be 
learned. Pretraining becomes even less plausible when nonsense 
letter strings are considered, as used by Barnes and Underwood 
(1959). Although anyone can work out a relationship between 
any two pairs of words, this does not mean that they are preas- 
sociated in memory, and so both the representation of knowl- 
edge and the processes that are used to compute such relation- 
ships would need to be modeled, a task well beyond current 
modeling efforts. The second criticism is that preexperimental 
training of all combinations of  the pairs requires concurrent 
training, or else the forgetting problem simply reappears during 
preexperimental training. It is hard to believe that all possible 
pairs are repeatedly available for training in a concurrent 
scheme. The third criticism is the assumption of orthogonal 
context patterns. One would like to assume that there is no 
abrupt change to completely different context moving from list 
A-B to list A-C  in an experiment. Clearly, this attempt to over- 
come interference is just an initial step, and there are serious 
limitations to be addressed before any kind of  comprehensive 
solution is found. 

Another model worth contrasting with these connectionist 
schemes is the closed-loop model described in Murdock and 
Lamon (1988). This model views memory as a single-layer vec- 
tor as in models by J. A. Anderson (1973) and Murdock (1982), 
but when an item is encoded into memory, what is encoded is 
the item multiplied by 1 minus the dot product of the item with 
the memory vector. The idea is that if the item to be stored is 
close to what is retrieved from memory, little is stored because 
information that represents that vector is already there (by stor- 
age, prototype formation, or chance). If the dot product is near 
0, then nothing like the vector to be stored is encoded, and rela- 
tively large values are stored. On the face of it, this model looks 
like an error-correcting scheme similar to the multilayer model. 
However, this closed-loop model differs from the multilayer 
model because the multiplying factor applies equally to all 
nodes, whereas the backpropagation learning algorithm modi- 
fies weights to reduce error on individual nodes according to 
the size of the error on that node, not the average error as in 
the closed-loop model. Although the closed-loop model shows 
improvements in d '  as a function of the amount of learning, it 
does not handle data as well as other models do (Murdock & 
Lamon, 1988). 

Discuss ion  

The aim of  the research described in this article was to de- 
velop, examine, and test a set ofconnectionist models for recog- 
nition memory. I initially hoped to develop a competitive model 
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to the currently successful models of  memory (e.g., Gillund & 
Shiffrin, 1984; Hintzman, 1986; Murdock, 1982). The results 
are, on the one hand, discouraging because they have not pro- 
duced a model that can handle the most central phenomena of  
recognition memory: learning and forgetting. On the other 
hand, the results are encouraging because they show general 
limitations on the class of  connectionist models that was exam- 
ined. The more obvious models can be falsified, so there exist 
constraints on the behavior of  the models that seem central to 
their structure. 

The models I have considered differ from prototypical con- 
nectionist models (of the kind used by McCleUand & Rumel- 
hart, 1985) because items are learned one at a time or in small 
groups, not all at once. I argue that this sequential presentation 
is the way traditional list-learning procedures must be modeled 
because remote rehearsal probably cannot be used, especially 
at fast presentation rates, and because the models provide no 
mechanism for recovery of  earlier items for later rehearsal. 
With sequential presentation, the main problems with the 
models are, first, that there is rapid forgetting of  extremely well- 
learned information because of  learning of  subsequent infor- 
mation and second, that discrimination between (studied) old 
items and (not studied) new items decreases to asymptote as a 
function of  the amount of  training on the old items. 

Forgetting was examined first with small four-element or- 
thogonal vectors that served as study and test items. A subset of  
these vectors was trained to a high criterion (corresponding to 
almost perfect reproduction), and then forgetting was examined 
as a function of training another subset to a high criterion. Re- 
sults showed that the output produced when one of  the earlier 
set of  vectors was tested was a blend of  both the old vector and 
the vector learned last. In fact, sometimes the output in re- 
sponse to one of  the earlier items actually matched the last-stud- 
ied item best (i.e., the model only retrieved the last item pre- 
sented). Several manipulations were carried out to try to correct 
this problem. First, only smaller weights were adjusted, and sec- 
ond, extra resources were provided to the network by adding 
hidden units. Both of  these schemes helped the system some- 
what to reproduce more accurately earlier learned vectors, but 
there was still considerable interference from subsequently 
learned items, and no scheme appeared capable of  adequately 
overcoming this problem. 

For larger vectors with randomly selected elements (l or 0), 
the same kinds of  results were obtained. There was rapid reduc- 
tion in the match between an input vector and the output of  the 
system as a function of  intervening learning. For items learned 
in groups, there was less forgetting than for items learned singly. 
However, forgetting even for a group was large, and this was true 
even after only one additional iten~was trained to criterion. 

These results speak to a more general issue that has been 
raised for this class of  error-correcting models, and that is their 
instability in a variable training environment (Grossberg, 1987; 
McCloskey & Cohen, 1989). Grossberg has forcefully argued 
that many of  the recent network models are unstable under 
temporally changing training environments, and the problem 
is illustrated with reference to the backpropagation learning al- 
gorithm. The results presented here demonstrate that these 
effects apply even to smaller domains such as learning a list of 
items. In addition, the results I have presented provide a quanti- 

tative account of  the size of  the effects. The results show that 
the system tracks the item presented last (any test item will re- 
produce it) with some memory for earlier information superim- 
posed on this output (see Figure 7). This finding suggests that 
the error-correcting backpropagation scheme may not be a good 
model of  human memory for recently presented information. 
However, in conditions in which the training environment is 
stable (on average), such as in early visual experience, in early 
reading, or in early auditory experience, the environment may 
be stable enough for the model to apply (but my results should 
be taken as a warning that the system should be tuned so that it 
does not track just the latest information presented at the ex- 
pense of  other information). 

The next set of  studies examined discrimination between old 
vectors (those trained in the sequential list-learning procedure) 
and new vectors that were not trained. The result that was most 
disturbing was that old-new discrimination decreased or was 
nonmonotonic as the amount of  learning for each item in- 
creased until an asymptote in old-new discrimination was 
reached. This result clearly is contradicted by data from recog- 
nition memory studies that all show increasing d'  as a function 
of  the amount of  learning. A summary of  the models and their 
problems is shown in Table 14. 

An interesting contrast worth reviewing concerns the connec- 
tionist models that use error-correcting schemes and the linear 
models ofJ. A. Anderson (1973) and Murdock (1982) for recog- 
nition. In these latter models, items are vectors, and an item is 
stored in a common memory vector by adding each element to 
the corresponding element in the memory vector. These linear 
models have some of  the same problems as the multilayer model 
described earlier. When a set of  vectors is learned, the models 
produce a constant d '  as a function of  the number of repetitions 
of  the vectors. This result occurs because although the mean 
match of old items increases, the standard deviation in the noise 
increases in the same ratio to keep discriminability constant. 
The behavior of  the multilayer connectionist model is somewhat 
similar. For small numbers of  rehearsals, the mean match for 
studied items increases, but the match for new items and the 
standard deviation in new-item match increase more rapidly, 
leading to a drop in d '  or constant d'. Although the behavior of  
these models is not quite the same, the same problem is indi- 
cated: the increase in noise as a function of  the amount of learn- 
ing for old items. Although increases in noise are built in to 
several of  the global memory models, there are schemes that 
reduce the effect so that discrimination increases as a function 
of  learning (see Gillund & Shiffrin, 1984; Hintzman, 1986; 
Murdock, 1989). However, as noted earlier, these approaches 
all have problems because data from mixed-pure list design 
experiments show that noise either does not increase as a func- 
tion of  the amount of  learning or that the mean match for old 
and new items in a mixed list design is different than in a pure 
list design, thereby canceling the increase in noise (Ratcliff et 
al., 1990; Shiffrin et al., 1990). 

Several alternative models were considered that embodied 
theoretical constructs often used in theories of  memory. For ex- 
ample, first, a model was examined that assumed that in list 
learning a response node was trained to signal that a test item 
had been studied. This model failed because old-new discrimi- 
native information was not provided at training, and so the re- 
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Table 14 
Summary  o f  Some o f  the Models Tried 

Model Description 

Backpropagation 

Yes node using backpropagation 

Semantic memory 

Context model 

Autoassociative model 

Items are random vectors; sequential learning; an item is trained to 
reproduce itself at output. Problems: rapid forgetting; old-new 
discrimination decreases to a constant level or is nonmonotonic as a 
function of learning; mixed versus pure list d's. 

In training, a single node (yes node) is turned on for each item trained. 
For each pattern learned, the yes node is turned on. Problem: At test 
it is turned on for all patterns; this same problem would occur for 
any multilayer model that used a common context with item-to- 
context links being trained. 

Learns 100 vectors to criterion prior to list learning; list learning then 
selects 16, retrains them, and tests that subset (old items) versus 
another randomly selected subset (new items). Problem: At test, old 
items retain their match value as a function of presentation time, 
new match values are lower the more the old subset is retrained, i.e., 
increases in d' are due to forgetting of new items. 

One fourth oftbe vector designated context; trains a semantic 
memory of the noncontext elements; at list learning, modifies only 
the context-hidden-context elements. Problem: d' increased from 
no list learning to some but was constant from then on. 

Problem: Same problems with lack of improvement in old-new 
discriminability as a function of learning. 

sponse node was active for all test vectors, both old and new. 
Second, a model in which list learning was viewed as increment- 
ing preexisting memory had the problem that list learning did 
not increase the match for old items but rather produced forget- 
ting in the items not rehearsed in the study list. The problem 
with this result is that learning should result from strengthening 
of old items, not forgetting of untrained permanent knowledge. 
Third, a model that used a part of the input and output vectors 
as context failed because old-new discrimination was constant 
as a function of learning after one learning trial. 

These problems, derived from a range of models, provide 
constraints on potential connectionist models of memory. Fur- 
thermore, these results can serve as benchmarks for future con- 
nectionist models of memory by providing phenomena that 
need to be addressed as a first step in model building. There are 
classes of models not addressed in these studies, models using 
the Hebb rule for learning and others that do not use the error- 
correcting scheme (e.g., J. A. Anderson, et al., 1977; Carpenter 
& Grossberg, 1987; Kosko, 1987). An interesting conjecture 
based on these results is that the problems arise from the use 
of the error-correcting scheme and distributed representations. 
Further work will be needed to demonstrate that this is true and 
that other classes of learning rules do not have these problems. 

The issue of how information is represented has not been 
addressed in these simulations and models. The issue of repre- 
sentation is important and could influence the kinds of models 
that will be developed in the future. These models will have to 
take into account representational constraints as well as the 
kinds of results I have presented. The rationale for use of ran- 
dom vectors in these simulations and not structured vectors is 
common to many memory models. The models assume a ho- 
mogeneous set of items in which individual items are no more 
or less related to each other on average. Many of the successes of 
the connectionist program use assumptions about the featural 
representation of the stimulus information. However, little sys- 

tematic progress has been made in developing general princi- 
ples for the selection of representations for use in these connec- 
tionist models. When a choice of representation has bee/a made, 
the system can abstract from the desired input and output re- 
lations to obtain an internal mapping between these two (some- 
times with interpretable hidden units). However, there is no dis- 
covery procedure for the representation of input and output 
features. For lower level perceptual and motor processes, guid- 
ance from the kinds of representations and transformations 
that these systems use may be obtained. However, such an ap- 
proach is necessarily limited by knowledge of the physiological 
system, and this is currently available only for the more periph- 
eral processing systems. 

The main conclusion to draw from this work is that the obvi- 
ous connectionist schemes for memory that use multilayer 
models have severe problems. The results presented in this arti- 
cle provide a challenge for connectionist models and a set of 
criteria that must be reached if connectionist models are to 
compare with the established global models of memory. 
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