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Global memory models are evaluated by using data from recognition memory experiments. For
recognition, each of the models gives a value of familiarity as the output from matching a test item
against memory. The experiments provide ROC (receiver operating characteristic) curves that give
information about the standard deviations of familiarity values for old and new test items in the
models. The experimental results are consistent with normal distributions of familiarity (a predic-
tion of the models). However, the results also show that the new-item familiarity standard deviation
is about 0.8 that of the old-item familiarity standard deviation and independent of the strength of
the old items (under the assumption of normality). The models are inconsistent with these results
because they predict either nearly equal old and new standard deviations or increasing values of old
standard deviation with strength. Thus, the data provide the basis for revision of current models or

development of new models.

In the long tradition of modeling the structures and pro-
cesses that underlie memory, there have been two main consid-
erations in theory building. The first has been the ability of a
theory to cover a wide range of the phenomena under examina-
tion. This consideration has become especially important in
response to the plethora of simple models that were developed
for extremely limited domains 15 or more years ago. The second
consideration is the standard criterion in modeling in all disci-
plines, that is, modeling detailed aspects of data. In memory
research, many early models were flawed in one or the other of
these respects and, in particular, most were criticized because
they dealt with only a handful of experimental procedures. In
contrast, the global memory models (e.g., Eich, 1985; Gillund &
Shiffrin, 1984; Hintzman, 1986, 1988; Murdock, 1982, 1983,
1989; Pike, 1984; Ratcliff & McKoon, 1988) that have been
developed recently have gone beyond the earlier models in their
scope of application. They are capable of explaining a variety of
phenomena across a range of experimental paradigms, and
they can account for functional relationships with coherent vari-
ation of model parameters. The approach so far has been one of
making the models as wide-ranging as possible by applying
them in as many different domains as possible. This effort is of
tremendous importance because of the serious criticism con-
cerning lack of scope of earlier models. It is unfortunate that,
concurrent with the ability of the models to fit a range of phe-
nomena comes the suspicion that the models are too flexible to
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allow tests of their basic assumptions. This suspicion arises
because models with quite different structures and processes
seem to account for a wide range of data equally well and be-
cause new phenomena can be accommodated in the models by
adding post hoc assumptions. However, the suspicion is un-
founded; the models are testable and falsifiable. Some results
require only minor changes in the structure of the model,
whereas other results necessitate radical revisions of the mod-
els. For example, Ratcliff, Clark, and Shiffrin (1990) provided
data with which, at that time, all of the global memory models
were inconsistent. Our article provides additional tests of the
current global memory models—tests that deal with basic as-
sumptions of the models.

The global memory models are designed to account for per-
formance across a range of tasks, including recall, recognition,
frequency judgment, categorization, and serial-order recall.
Each model deals with only a subset of the tasks, but all of the
models attempt to deal with recognition. Thus, with recogni-
tion the models can be directly tested, both individually and
against each other. The recognition paradigm is elementary: A
list of words is presented to the subject for study and then a test
list is presented that is composed of some old words from the
study list and some new words that were not on the list. The
subject is required to indicate whether each word is o/d or new
by pressing one of two response keys, and the accuracy and
reaction time of responses are recorded. The models account
for recognition performance by supposing that a test item inter-
acts with all items in memory to produce a value of match or
familiarity or strength ( familiarity is used interchangeably with
the terms strength, degree of match, and relatedness, and all
denote the output of the match between the probe and mem-
ory). The match value is used in a signal detection analysis to
determine a response: If the value is higher than a criterion
value, respond old; if lower, respond new. Although the familiar-
ity response dimension is the same for the various models, the
structures of the models are radically different. TODAM (Mur-
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dock, 1982) assumes that an item is a vector of attributes and
that each studied item is added to a common memory vector.
For recognition, the dot product between the test vector and
the memory vector gives the match value. In MINERVA 2
(Hintzman, 1986), items are also vectors of features but are
stored separately in memory. At retrieval, a (modified) dot prod-
uct is calculated between the test item and each item in mem-
ory, and then the value of each dot product is cubed and all of
the dot products are summed to give a match value. In the SAM
model (Gillund & Shiffrin, 1984), strengths between each item
as a cue and every item in memory are built up during encod-
ing, and at test, the sum of the strengths between a test item and
each item in memory serves as the match value. In all of these
models, the test item interacts with all of the information in
memory,

The critical tests of the global memory models presented in
this article are concerned with the relative behaviors of the
variances of the distributions of familiarity for old and new
items. All of the predictions of all of the models are based on
the way variance is introduced into the model and substantive
alterations to the assumptions about variances would change
many of the published predictions of the models. Thus, tests of
the variance assumptions are critical to evaluating the models.
Each of the models makes strong predictions about the behav-
ior of old- and new-item familiarity variances as a function of
strength of the old items. For example, the models of Gillund
and Shiffrin (1984) and Hintzman (1986, 1988) predict that the
variance in old-item familiarity is greater than the variance in
new-item familiarity and that this difference becomes greater
as the average value of familiarity or strength of the old items
becomes greater. Murdock’s (1982) model, in contrast, predicts
that new-item familiarity has about the same variance as old-
item familiarity for all values of strength of old items.

Predictions of the Memory Models

For the three memory models that we consider in detail,
predictions are derived using similar methods. In each of the
models, memory comprises a representation of the studied
items. In SAM and MINERVA 2 (instance-based models), the
items are kept separate, whereas in TODAM (a composite
model), the items are stored in a composite trace. At test, a test
item is compared with all of memory, and the value of the
overall degree of match or familiarity is computed. In all of the
models, familiarity is computed by summing the match values
between the test item and each stored item in memory. In the
instance-based models, this is easy to understand, but in the
composite model, it is more difficult because items are jumbled
together in memory and not represented separately. However,
to derive predictions, the vectors stored in the composite mem-
ory are assumed to be independent, which means that from a
computational point of view, the contribution from each stored
item can be treated separately. Thus, in the composite model (as
in the instance-based models) the match between the test item
and each stored item is assessed, and familiarity is the sum of
these individual match values.

Variance in familiarity values across either different items or
the same item presented on different occasions is introduced
differently in each of the models. In the vector models (TO-

DAM and MINERVA 2), variability is a consequence of the
assumption that the features or attributes that make up items
take random values. In SAM, variability is derived from the
process by which items are encoded into memory. To test the
models against data, estimates of the mean familiarity value
and the variance in the familiarity value are required for both
old and new test items. The estimate of the mean value of
familiarity is derived by computing the expected value (mean)
of the match between a test item and each item in memory and
summing these values over all items in memory. Similarly, for
the estimate of variance in familiarity, the variance in the
match value between a test item and each item in memory is
computed, and these are summed over all the items in memory.

The predictions of the models for the means and variances in
the familiarity values of old and new test items are critical. For
MINERVA 2 and SAM, the difference in variance between old
and new test items depends on the strength of the old items. An
old test item matches one item in memory and mismatches all
of the rest, whereas a new test item mismatches all items in
memory. For a test item that matches an item in memory, the
value of the match will depend on how strongly the item was
encoded. When the match value becomes large, the variance in
the value for the one match becomes as large or larger than the
sum of the variances for all of the nonmatches; thus, variance
for an old item dominates the sum of all of the nonmatching
variances for new items. In other words, when old-item strength
is high, old-item variance is larger than new-item variance. In
contrast, for TODAM, the difference in variance of familiarity
values for old and new test items is small for all values of
strength of old items. The contribution to variance when an old
item matches an encoded item is only about two times that for a
nonmatch. Thus, SAM and MINERVA 2 predict increasingly
large differences in variances for old and new items as a func-
tion of strength of the old items, whereas TODAM predicts
about equal variances for all strength values.

The second variance prediction of the models that is tested is
the behavior of new-item familiarity variance as a function of
strength of the old, studied items. To illustrate the prediction,
consider a stereotypic vector model such as that of Anderson
(1973). In this model, items are vectors with features having
values randomly selected from a normal distribution, with a
mean of zero and a variance P/N (where P is usually set to one).
Memory is another vector that is the sum of all of the item
vectors. If the numerical values of all elements in each studied
vector were doubled (representing twice as much strength), then
the mean familiarity and the standard deviation in the familiar-
ity of a test item would be twice as large for both new items and
old items. This prediction of increased variance holds for TO-
DAM, SAM, and MINERVA 2, though for different reasons in
each model. (See Ratcliff et al., 1990, and Shiffrin, Ratcliff, &
Clark, 1990, for details, including a SAM variant that does not
make this prediction,) Full discussion is given in the sections
that follow presentation of the various experiments.

To test the predictions about variance, we used a combina-
tion of two methods: receiver operating characteristic (ROC)
curves to assess the relative variances of old and new familiarity
values, and a “mixed/pure” experimental design in which some
study lists have only strongly encoded items, some only weakly
encoded items, and some in which the two kinds of items are
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mixed. The mixed/pure design allows the variance of new
items to be measured in a situation in which it would be pre-
sumed to change as a function of strength of the old items, that
is, when strength increases from a pure weak list to a pure
strong list; or in a situation in which there is only one variance,
that is, when the weak and strong items are mixed. These two
methods for testing variance are described in detail in the next
sections.

Variance Estimates From ROC Curves

The method used to determine the ratio of old-item variance
to new-item variance is based on the ROC curve. The method
has been used for over 30 years (see Egan, 1958). However, its
application to the recent global memory models has been over-
looked.

In the first two experiments presented here, empirical ROC
curves were obtained by varying the proportion of old and new
test items in a test list. This manipulation leads subjects to vary
their old/new criteria in responding so that when old items
predominate, subjects are more likely to respond old, whereas
when new items predominate, a new response is more likely.
Figure 1 shows two normal distributions of familiarity with five
criterion settings (vertical lines). An ROC curve is produced by
plotting hit rate against false alarm rate as a function of crite-
rion setting. By transforming the hit and false alarm rates to z
scores (assuming normal distributions of familiarity), two sim-
ple equations can be written in terms of the criterion position ¢
and the means and standard deviations of the signal (old) and
noise (new) distributions, as follows:

Zhit = _“(C - #s)/as
and
Zg = (C - f"n)/o'm

where u, and g, and gy, and o, are the mean and standard
deviation of the signal and noise distributions, respectively.

If the criterion position is eliminated from these equations,
then

Zhit = (O'n/a's)zfa + (/"s - ﬂ'n)/as,

as shown in Figure 1. The bottom panel of Figure 1 depicts a
z-transformed ROC curve (under the assumption of normality,
as before).

There are three aspects of analyses based on this latter equa-
tion that are important for testing the global memory models.
First, if the underlying signal and noise distributions are nor-
mal (as the models either assume or predict), then the result of
plotting z;, versus z, is a straight line, as in the bottom panel of
Figure 1 (Green & Swets, 1966; McNicol, 1972). If the distribu-
tions are not normal, then under many conditions, the resulting
curves will be indistinguishable from straight lines (Lockhart
& Murdock, 1970). Second, the slope of the z, versus z, line
(the z-ROC curve) provides an important test of the models
because, for normal distributions, the slope gives the ratio of
the noise standard deviation to the signal standard deviation.
Third, the intercept of the linear z-ROC line (for normal distri-
butions) is the difference between the two distribution means
divided by the signal distribution’s standard deviation. This

provides an estimate of d’, the discriminability between old
and new items. Varying strength of the old items will produce a
set of z-ROC curves, and the ¢’ values obtained from this set of
curves can be used to measure the discriminability difference
between strong and weak studied items and thus test (for some
models) predictions for the effects of strength on the variances
of old- and new-item familiarity values.

Note that there are several measures of ¢’ that could be used
when the signal and noise distribution variances are different
from each other (McNicol, 1972, pp. 87-90), but as long as one
is used consistently, others can be calculated as needed from the
2z-ROC plot. We will mostly use u,/o,, setting u, to zero.

Mixed/Pure List Designs

In a typical experiment, three kinds of lists are presented to
subjects: a pure weak list in which all items are intended to have
weak strength because they are either presented for only a short
time or for only a few repetitions; a pure strong list in which all
items are intended to have high strength because their presenta-
tion time is long or their number of repetitions is large; and a
mixed list in which half of the items are weak and half are
strong.

A mixed/pure design allows examination of the effect of the
strong items in a mixed list on the weak items in the list, and
vice versa. Performance on weak items in a mixed list can be
compared with performance on the weak items in a pure list to
determine the effect on them of the strong items in the mixed
list. Also, performance on strong items can be compared in the
mixed and pure lists to determine the effect on them of weak
items. If performance on weak items is poorer in a mixed list
than in a pure list, and strong items are better in a mixed list
than in a pure list, then this is termed a list-strength effect
(Ratcliff et al., 1990).

The modelis predict this list-strength effect, and the predic-
tion rests on the behavior of the variance of the noise distribu-
tion. In the example presented earlier using a stereotypic vector
model, the noise variance will be larger in a pure strong list
than in a mixed list and larger in a mixed list than in a pure
weak list. Given that the mean strengths of items are predicted
to be the same in mixed and pure lists (for all the models consid-
ered here, see Shifirin et al.,, 1990), then the noise variance
differences entail the list-strength effect: 4’ for strong items in a
mixed list will be greater than 4" for strong items in a pure list;
in a similar manner, 4’ for weak items in a mixed list will be
smaller than &’ for weak items in a pure list. The statistic used
to assess this difference between mixed and pure list d' is the
ratio of ratios of &' values: the ratio of d’ for mixed strong to &’
for mixed weak divided by the ratio of @' for pure strong to d’ for
pure weak, Rr = (0, /d 1)/ (dps/d ). This measure is used be-
cause in the models, mean strength values divide out, leaving a
simple expression in terms of standard deviations, Rr= SD(ps)/
SD(pw), where SD is the standard deviation in the noise distri-
bution.

The ratio of ratios allows a critical test: The models predict
that standard deviation of the noise distribution for a pure
strong list must be greater than the standard deviation of the
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IHlustration of normal distributions with different criterion settings and the resulting z-trans-

formed receiver operating characteristic curves. (fa = false alarm)

noise distribution for a pure weak list; therefore, the ratio must
be greater than one, and this ratio must increase as the strength
of the strong items is increased relative to the weak items.
When the mixed/pure list design was used by Ratcliff et al.
(1990) to test the global memory models, the models all failed.
In results from a number of experiments, the pure and mixed
list conditions did not show strength differences between weak
items and between strong items (Ratcliff et al., 1990; Shiffrin et
al.,, 1990); therefore, the ratio of ratios was about one, not
greater than one. Thus, the results show that noise variance did
not change as a function of pure versus mixed list types.

In this article, we combine the tests by using ROC curves and
mixed/pure list designs to examine both the relative variances
of old and new items and the variance of new items in mixed
and pure lists as a function of the strength of the old items in the
lists. This combination will provide stringent tests of the behav-
ior of variances for old- and new-item distributions in the mod-
els, which, as we show later, constrain the models severely. The
next sections present experiments designed to vary the strength
of the items in a mixed/pure design using ROC curves. Follow-
ing the experiments, the various models and their detailed pre-
dictions are presented.

Experiment 1

The aim of Experiment | was to vary jointly the probability
of old and new items in the test list and the strength of items in
the study list by using a mixed/pure list design. The study list
was composed of pairs of words, and old/new recognition test
lists were interspersed with occasional cued-recall test lists.
Strength of items was manipulated by varying the amount of
study time per pair from I s to 5 s. Probability was manipulated
by varying the ratio of old and new test items in the test list
from 1:4 to 4:1.

Method

Subjects. There were 4 paid subjects recruited from the student
population at Northwestern University. Each subject took part in ei-
ther 19 or 20 sessions, each lasting about 50 min.

Procedure. There were two kinds of study lists presented to a sub-
ject: pure lists and mixed lists. In a pure list, each of 16 pairs of words
was presented for the same amount of time, 1 s for weak or 5 s for strong.
In a mixed list, sequential blocks of pairs in a study list had different
study times: the first 2 pairsat1 s, the next 6 pairsat 5 s, the next 6 pairs
atls, and the last 2 pairs at 5 s (the first and last pairs were buffer pairs),
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or the reverse ordering of presentation times. Subjects were instructed
to learn the pairs for later cued-recall tests. The cued-recall tests were
included to encourage the subjects to rehearse each pair of words to-
gether and not rehearse across pairs (see Ratcliff et al., 1990, for further
discussion). A recognition test followed each study list. The probabil-
ity of old and new test items was varied in the test list: There were 8 old
and 32 new, 16 and 32, 32 and 32, 32 and 16, or 32 and 8. Subjects were
informed of these probabilities after the study list and before the test
list. There were 20 recognition lists per session, leading to one list of
each type per session (4 mixed/pure X 5 test-item probability). After
the study phase of a list, subjects pressed a key to begin the test phase.
In the test phase, old and new items were presented in random order,
and subjects were instructed to be fast without sacrificing accuracy.
After each response, there was a 250 ms blank interval followed by the
next test item. For two of the study lists, the recognition test list was
followed by a cued-recall test (the left member of the study pair was
presented and the subject was required to recall the right member).
Instructions recommended that pairs be learned for cued recall and
the test lists were preceded by one practice list in which recognition
was followed by cued recall.

Materials. The words for each session were chosen randomly with-
out replacement from a pool of 1,650 two-syllable common English
words not more than eight letters long.

Results

Responses with reaction times below 300 ms and above
2,500 ms and test items from the buffers (the first and last two
studied pairs) were discarded from the analyses. For mixed
lists, performance was averaged over the two mixed-list orders.
Table 1 gives the hit and false alarm rates for each mixed/pure
and weak/strong condition for each test-list probability aver-
aged across subjects (later analyses examine performance of
individual subjects).

The analyses of importance for the global memory models
concern the ROC curves. The global memory models predict
that both the old and new test-item familiarity distributions
will be normal in shape. If the data are consistent with normal
distributions, the z transformation of the hit plotted against the
z transformation of the false alarm rate will be linear. Note that
linearity does not necessarily mean that the distributions are

Table 1
Results From Experiment 1

normal; other nonnormal distributions can produce linear or
approximately linear functions (Lockhart & Murdock, 1970).
Figure 2 shows the z-transformed functions averaged across
subjects for mixed and pure, and weak and strong items (using
only the first 40 test items in each test list 1o equate test position
as a function of old/new test-item frequency). The graphs show
nearly linear curves with approximately equal slopes. Table 2
shows linear regression analyses on the group data for the slope,
the intercept, and the standard deviation in each. The same
linear regressions were carried out on the data from the individ-
ual subjects, and the means of the slopes and intercepts are also
shown in Table 2.

The main results to note from the linear regression analyses
are that the slope of the z-transformed ROC curve is about 0.84
on average and that the slope is independent of the strengths of
the items. In all but one case, the slope is significantly less than
one, and none of the slopes are significantly different from each
other (using the standard errors given in Table 2). These resuits
clearly contradict predictions of the models. First, the 0.84
slope shows that the variance for new-item familiarity is less
than that for old-item familiarity, which contradicts TODAM’s
prediction. Second, this value of slope is constant as a function
of the strength of the old items, which contradicts SAM and
MINERVA 2.

Another prediction of the models is that variance of new-
item familiarity should increase with strength of the old items,
leading to a larger &’ difference between strong and weak items
in mixed lists than in pure lists. Contrary to this prediction,
there is little, if any, difference between performance in mixed
and pure lists, replicating results of Ratcliff et al. (1990). Rat-
cliff et al. obtained &' values from one criterion value only (i.c.,
only one value of old/new test-list probability); here, they are
obtained from the whole ROC curve. As noted earlier (and in
Ratcliff et al., 1990), the ratio of ratios of @', Rr = (d\s/d')/
(d}s/d,), which reduces to SD,/SD,,, for the models, is used to
test the models. For the data in Table 2, 4’ is calculated from the
intercept divided by the slope; this gives the difference between
old and new familiarity divided by the standard deviation in
the new-item familiarity, The ratio of ratios, Rr, is 1.04, based

Mixed list

Probability Presentation Hit F/A Hit F/A
condition time per item rate rate rate rate

1 new/4 old Is 0.817 0.510 0.849 0.586
Ss 0.928 0.510 0.907 0.505

1 new/2 old Is 0.691 0.405 0.751 0.402
5s 0.828 0.405 0.820 0.363

I new/1 old is 0.636 0.270 0.685 0.313
5s 0.788 0.270 0.757 0.270

2 new/1 old ls 0.498 0.196 0.561 0.224
5s 0.680 0.196 0.694 0.179

4 new/1 old 1s 0.419 0.096 0.446 0.111
5s 0.595 0.096 0.554 0.083

Note. F/A = false alarm.
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Figure2. Z-transformed receiver operating characteristic curves for the group in Experiment | ; presenta-
tion time is varied to produce changes in strength. (The diagonal lines represent slopes of 1. The curves
represent mixed strong, pure strong, pure weak, and mixed weak, reading top to bottom on the left-hand

data points. fa = false alarm)

on the data from all subjects combined, and 0.99, based on the
average of the values for the individual subjects. These values
replicate those presented in Ratcliff et al. (1990) and show that,
counter to the predictions of the models, the new-item familiar-
ity variance is not larger for pure strong lists than for pure weak
lists. In other words, new-item familiarity variance does not
change as a function of strength of the old items.

Experiment 2

Experiment 2 was designed to vary strength by varying the
number of repetitions of studied items instead of varying study
time. This method was used by Ratcliffet al. (1990) and leads to
the same predictions by the models as does the study time
manipulation (Shiffrin et al., 1990).

Table 2
Linear Regression Fits to the Z-Transformed ROC Curves for Experiment 1

Slope Intercept SxS SXS§

Condition Slope Intercept SD SD slope intercept

Mixed weak 0.824 0.809 0.054 0.044 0.792 0.774
Mixed strong 0.872 1.316 0.115 0.089 0.809 1.328
Pure weak 0.841 0.876 0.041 0.029 0.842 0.903
Pure strong 0.827 1.271 0.054 0.044 0.801 1.277

Note. S X S slopes and intercepts were derived from the fits to individual subjects’ data, which were
averaged over subjects. ROC = receiver operating characteristic.
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Method

Subjects. There were 7 paid subjects recruited from the student
population at Northwestern University. Each subject took part in 20 to
25 sessions, lasting about 45 min each. One of these subjects had partic-
ipated in Experiment 1.

Procedure. In the study list, single words were presented in either
pure or mixed lists. In a pure strong list, each of 20 words was repeated
five times in a random order (total list length was 100 words). In a pure
weak list, each of 20 words was presented once (total list length was 20
words). In a mixed list, 10 words were repeated five times, and 10 words
were presented once (randomly intermixed; total list length was 60
words). The only constraint on the presentation order was that repeti-
tions of words could not occur within a lag of four. Subjects were
informed before each study phase which type of list would be pre-
sented (all fives, all ones, or half and half). Each word in a study list was
displayed for 750 ms.

Each study list was immediately followed by a recognition test list.
The probability of old and new test items was varied so that there were
4 old and 20 new, 8 and 16,12 and 12, 16 and 8, or 20 and 4. Before the
beginning of the test phase, subjects were told what the composition of
the test list would be (17% old, 33% old, 50% old, 67% old, or 83% old).
Old and new items were presented in random order.

In the recognition test phase, subjects were instructed to be fast
without sacrificing accuracy (responses longer than 1,500 ms were fol-
lowed by a “too slow” message for 500 ms). Error feedback was given
after every incorrect response, displayed for 500 ms. To encourage
subjects to make use of the probability information, an error in the
extreme probability conditions (83% old and 17% old) was given a
2,500-ms time penalty (the word “error” was spelled out letter-by-letter
at 500 ms per letter). Otherwise, the next test item followed the re-
sponse immediately A summary of performance was also given to
subjects after every three study lists of trials.

There were 30 study-test lists per session, two lists of each type: 3
mixed/pure study lists X 5 test-item probability conditions.

Materials. The words for each session were chosen randomly with-
out replacement from the same word pool used in Experiment 1.

Results

Responses faster than 300 ms and slower than 2.5 standard
deviations above the mean for each subject and condition were
eliminated from the analyses. Study-list lengths varied as a
function of list type. For pure weak lists (1 repetition), study-list
length was 20 words; for the mixed lists, list length was 60
words; and for the pure strong lists, list length was 100 words.
For the analyses of slope of the z-transformed ROC curves, two
analyses can be performed: one in which responses are aver-
aged over all serial positions and one in which responses from
early study positions in longer study lists are discarded so that
weak items in a pure list are compared with weak items in a
mixed list equated over equally recent study positions (analyses
of strong items are performed in a similar manner). This latter
equated analysis was used to examine the mixed/pure list dif-
ference and to form the ratio of ratios for the mixed/pure list
analysis.

Figure 3 shows the z-transformed hit and false alarm rates for
the group average data over all serial positions, and Figure 4
shows the equivalent results for the data with recency of study
position equated. The functions are linear functions with equal
slopes, replicating Experiment 1. Table 3 shows the hit and false
alarm rates, and Table 4 shows the linear regression analyses

separately for weak and strong items equated for study posi-
tions. The slopes lie between 0.70 and 0.90 for the group data
and between 0.68 and 0.80 by fitting data for individual sub-
jects and averaging. As noted earlier, the prediction of SAM
and MINERVA 2 is for the slope to decrease as old items get
stronger. In fact, although the differences are not significant
(but close), the slope increases as old items get stronger.

The ratio of ratios computed from the group datais1.21,and
the average of each individual subject’s ratio of ratios is I.13.
Given that the strong items were presented five times and the
weak items were presented only once, the models would predict
a value much larger than one (e.g., Gillund & Shiffrin, 1984,
would predict a value of 2.2). The obtained values are only a
little larger than one and are again consistent with the results of
Ratcliff et al. (1990). Therefore, the results again contradict the
prediction that the variance of new-item familiarity will in-
crease as the strength of old items increases.

Experiment 3

Experiment 3 was designed to use an alternative method for
obtaining ROC curves, a confidence judgment procedure. In
the confidence judgment procedure, subjects are required to
make a recognition response on a 6-point scale with values
ranging from sure old to sure new. The response probabilities in
each confidence category can be used to construct an ROC
curve, as in Experiments | and 2. The confidence judgment
procedure was used to make sure that our results were not spe-
cific to the probability manipulation used in these two experi-
ments. Markowitz and Swets (1967) compared the two methods
in auditory detection and found differences between results
from the two procedures that they attributed to practice on the
signal stimult when the signal probability was high. In recogni-
tion memory procedures, this possible confound is not a prob-
lem because practice at test on one old word will not transfer to
another old word because each word is tested only once per list.
However, similar results on the two procedures will improve
our confidence in their generality.

Method

Experiment 2 was similar to Experiment 1, except that old and new
test items were presented with equal probability, and responses were
on a 6-point scale from sure old, probably old, maybe old, maybe new,
probably new;, to sure new response categories. The keys on the cathode-
ray tube keyboard used for the confidence judgments were the x
through m keys on the bottom row of the keyboard. As in Experiment
1, both pure and mixed lists of pairs of items were studied, and single
items were tested for recognition. Strong items were studied for 5 s per
pair and weak items for 1 s per pair (as in Experiment |, instructions
required pairs to be learned for cued recall). After the recognition
phase of a practice list and after one other randomiy chosen list, a
cued-recall test was given to the subjects to encourage learning of
pairs.

Subjects were 19 paid volunteers from the Northwestern undergradu-
ate population. They each participated in one 45-min session with 16
study-test lists per session. The same experimental materials were used
as in Experiment 1.
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Figure3. Z-transformed receiver operating characteristic curves for the group in Experiment 2 for all the
data, that is, study position for the items not equated for the pure and the mixed lists. {The curves represent
mixed strong, pure strong, pure weak, and mixed weak, reading top to bottom on the lefi-hand data

points. fa = false alarm)

Results

Data analyses used only study items from the middle of the
blocks in the mixed lists (Items 2-5 in the blocks of six pairs)
and items matched on serial position in the pure lists. Reaction
times less than 250 ms and greater than 5,000 ms were also
eliminated.

Figure 5 shows z-transformed ROC curves for the group aver-
age data. To derive these, cumulative ROCs are derived by cu-
mulating the raw frequencies for each key, converting to proba-
bilities, and then taking a z transformation (see McNicol, 1972).
This contrasts with Experiments { and 2, in which the hit and
false alarm rates were obtained directly from the probability
conditions. As in the prior experiments, the functions are paral-
lel and do not differ much from linearity (Experiment 3 shows
the most systematic deviation of all the experiments, but the
deviations are still smail). Table 5 shows the regression analyses
for the four conditions. As in Experiments | and 2, the slopes

are in the 0.8 range, are significantly different from one, and do
not vary as a function of strength of the old items.

The ratio of ratios was calculated by collapsing the old and
new confidence judgments into two categories (old and new)
and using these to compute &’ values for the four conditions.
The ratio of ratios was 1.03, again little different from one.
Calculating the ratio of ratios from the slopes and intercepts of
the ROC curves, for p, /o, the value is 0.99, and for u, /o, (the
intercept divided by the slope), the value is 0.94.

Serial and test position effects. 1t is possible that the 0.8 slope
of the z-ROC is an artifact of averaging over study or test posi-
tions. If the true state of affairs was that, for any study or test
position, the signal and noise familiarity distributions had
equal variances, then averaging across study and test positions
could produce a signal distribution with greater variance than
the noise distribution. The overall average signal distribution
would be a mixture of the individual signal distributions from
different study and test positions, and if these had different
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Figure 4. Z-transformed receiver operating characteristic curves for the group for Experiment 2 for the
data equated for study position, that is, study position for the items equated for the pure and the mixed
lists. (The curves represent mixed strong, pure strong, pure weak, and mixed weak, reading top to bottom

on the left-hand data points. fa = false alarm))

means, the probability mixture would have a greater variance
than the individual distributions. The 0.8 slope would be a
consequence of the mixture. Figure 6 illustrates this: The top
panel shows a noise distribution with two signal distributions,
and the bottom panel shows the same noise distribution with a
signal distribution that is a mixture of the two signal distribu-
tions above it. The mixture has a larger variance than each of
the signal distributions. There are two ways to address this
issue: first, to examine the data for evidence favoring the mix-
ture hypothesis, and second, to calculate how much separation
of the distributions in the probability mixture would be needed
to produce the observed slope of 0.8.

The mixture hypothesis can be tested with the data from
Experiments 1 and 3. In these experiments, the study lists had
primacy and recency buffers (two pairs each) that are not in-
cluded in the analyses. For the nonbuffer pairs of items, we
examined the effect of study position by partitioning the data
into first and second halves of the study list and calculating
slopes and intercepts of the z-ROC functions for each half. For

the data to support the mixture hypothesis, the individual
slopes for the first and second halves should be closer to one
than the slope for all of the data combined. In Experiment 1,
there is a small slope difference (0.06) as a function of first
versus second half, but the individual slopes are not both closer
to one; one is closer and the other is further away, with the
average of these two about the same as the group average. For
Experiment 3, the slope difference is reversed (-0.04), and as in
Experiment 1, the average of the two slopes is about the same as
the group average.

We also checked test position in Experiment 1. There was a
difference of only 0.01 in the slopes for first versus second half
of the test list (moreover, there was an intercept difference of
0.12, with early test items leading to higher accuracy). Thus, for
neither study position nor test position do the data support the
mixture hypothesis.

To examine the mixture hypothesis theoretically, we used
simple calculations to determine how much separation of the
distributions in the mixture would be needed to produce a
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Table 3
Results From Experiment 2 for the Conditionalized Data
Mixed list Pure list
No. of
Probability repetitions Hit F/A Hit F/A
condition per item rate rate rate rate
1 new/S old 1 0.921 0.427 0.935 0.421
5 0.985 0.427 0.978 0.334
1 new/2 old 1 0.803 0.190 0.848 0.275
5 0.967 0.190 0.924 0.202
1 new/1 old i 0.770 0.144 0.794 0.199
5 0.937 0.144 0.930 0.134
2 new/1 old 1 0.675 0.093 0.732 0.109
5 0.870 0.093 0.843 0.084
5 new/1 old 1 0.560 0.034 0.621 0.034
5 0.829 0.034 0.734 0.026

Note. F/A = false alarm.

2-ROC slope of 0.8. To obtain a mixed distribution, two normal
signal distributions, each with standard deviation of one and
means of 1 and 2.5 were combined. With a normal noise distri-
bution with standard deviation of one and mean set to zero, the
slope is 0.79, about the same as for the empirical data. However,
the 4’ difference between the two signal distributions is about
1.5, compared with &’ differences in the data of only about 0.1
(for different study and test positions). Mixtures of several
rather than just two signal distributions similarly required large
separations between the signal distributions to obtain slopes
around 0.8. Thus, the observed differences between different
parts of the study and test lists were much too small to mix to
produce the observed slope of 0.8.

The last point about this mixture hypothesis is that there
might be large enough differences among individual study or
test items so that mixing them would produce slopes around
0.8. However, such item differences are part of every model: In
each of the models, item differences are introduced as the
source of variance and so are exactly what the z-ROC tests
evaluate.

Analyses of Other Data

Earlier research provides data that give ROC curves for recog-
nition. Although these data generally confirm our findings, the
strength of old items was not manipulated (except by Egan,
1958), nor was a mixed/pure design used.

Table 4

Murdock and Dufty (1972) examined recognition memory
by using confidence judgments. Subjects were required to re-
spond on the same 6-point confidence scale as was used in
Experiment 3. Slopes and intercepts of ROC curves for z trans-
formation for individual subjects are shown in Table 6, and the
plots of the z transformations are quite linear. The z trans-
formed functions are linear and the slopes are less than one
(they range from 0.53 to 1.05, with a mean of 0.80).

The results shown in Table 6 for individual subjects have
important implications for models. One subject had a reliable
z-ROC slope of 0.5, which was significantly different from the
average slope of the group. Although the individual subjects in
Experiments | and 2 did not show such large differences from
each other (their data were somewhat noisier), other experi-
ments in our lab have found subjects with slopes that are signifi-
cantly different from each other. Thus, not only do the models
have to account for the average values of slopes but also they
must be capable of accounting for individual differences in
these values.

Mandler and Boek (1974) also used confidence judgments in
a recognition memory experiment. As the study phase, they
had subjects engage in a word-sorting task in which 100 words
were sorted into two to seven categories. After each sort, the
deck was reshuffled and another sort was performed, and this
sequence proceeded until two consecutive sorts produced 95%
overlap in assignment. One week later, subjects were brought
back to perform a yes/no recognition test (each recognition

Linear Regression Fits to the Z-Transformed ROC Curves

for the Conditionalized Data in Experiment 2

Slope Intercept S XS SXS

Condition Slope Intercept SD SD slope intercept
Mixed weak 0.776 1.542 0.035 0.042 0.710 1.434
Mixed strong 0.803 2.372 0.123 0.146 0.772 2.246
Pure weak 0.709 1.526 0.094 0.103 0.680 1.450
Pure strong 0.895 2.332 0.119 0.149 0.802 2.368

Note. S X S slopes and intercepts were derived from the fits to individual subjects’ data, which were
averaged over subjects. ROC = receiver operating characteristic.
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Figure 5. Z-transformed receiver operating characteristic curves for the group for Experiment 3. (The
curves represent pure strong, mixed strong, pure weak, and mixed weak, reading top to bottom on the

left-hand data points. fa = false alarm))

decision was followed by a confidence judgment) on the words
from the prior session. We analyzed the confidence judgment
data and found that the slope and intercept of the z-trans-
formed ROC curves were 0.787+ 0.042 and 1.51+ 0.04, respec-
tively, in agreement with the results presented earlier.

Egan (1958) performed a recognition memory experiment in
which 100 words were studied (either once or twice) and 200

Table 5
Linear Regression Fits to the Z-Transformed
ROC Curves for Experiment 3

Slope Intercept
Condition Slope Intercept SD SD
Mixed strong 752 1.128 075 .061
Mixed weak .829 .651 058 .047
Pure strong 718 1.263 .056 051
Pure weak 832 721 .064 .052

Note. Weak items were studied for | s per pair and strong items for 5 s
per pair. ROC = receiver operating characteristic.

words (100 old and 100 new) were tested. Responses were col-
lected on a 7-point confidence scale. Results showed that for
both once- and twice-presented items, the slopes of the z-trans-
formed ROC curves were around 0.7 (0.675 for twice-presented
items, intercept 2.7; and 0.713 for once-presented items, inter-
cept 1.4) and thus roughly independent of strength of the old
items, again agreeing with the results from the experiments
presented earlier.

Glanzer and Adams (1990) used confidence judgments to
examine the mirror effect in recognition memory. Out of 36
z-transformed ROC slopes in their experiments, one slope was
1.03, one was 1.00, and the rest were below 1.00, with the small-
est being 0.56. The mean was 0.762. The phenomenon of inter-
est in that article was the mirror effect (Glanzer & Adams,
1985). A large number of results show that, in general, in exper-
iments in which one set of stimuli is recognized more accurately
as old when old (e.g., low-frequency words compared with high-
frequency words), they will be more accurately recognized as
new when new. The slopes of the ROCs showed systematic dif-
ferences as a function of word frequency, abstract/concrete, and
reversed/standard letter order. Typically, slopes for the more
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Figure 6. Tllustration of the effect of averaging over study or test posi-
tions. (The top panel shows a noise distribution and two signal distri-
butions. The bottom panel shows the result of averaging: a single noise
distribution and a signal distribution with larger variance)

extreme stimulus types (e.g., low frequency) were around 0.7,
and for the less extreme stimulus types around 0.8. Thus, these
data may show systematic differences in the slopes of the z-
transformed ROC curves as a function of material type such
that the materials with the highest &’ values (e.g., low-frequency
words) have the lowest slopes. However, the conditions with the
lowest d’ values appear to have their 4’ values near 0.5, which is
the point at which the slope starts to rise toward 1.0 as discrimi-
nability falls to zero (see Figure 7). This suggests that, in fact,
the differences may be smaller as a function of material type
than those reported by Glanzer and Adams (1990).

Summary of the Empirical Results

There are three main results to constrain modeling. First, the
z-transformed ROC curves presented earlier and by Murdock
and Dufty (1972), Mandler and Boek (1974), Egan (1958), and
Glanzer and Adams (1990) appear to be linear. This means that
the functions are consistent with the assumption that the old-
and new-item familiarity distributions are normal (though they
do not imply the distributions are normal).

Table 6
Linear Regression Fits to the Z-Transformed ROC Curves
Jor the Data of Murdock and Dufty (1972)

Slope Intercept
Subject Slope Intercept SD SD
1 0.847 2.026 0.033 0.057
2 0.829 1.821 0.023 0.034
3 1.045 1.525 0.103 0.119
4 0.735 1.680 0.022 0.041
5 0.763 1.578 0.010 0.012
6 0.722 1.447 0.033 0.048
7 0.535 1.621 0.021 0.036
8 0.894 2.474 0.123 0.199
M 0.796 1.772

Note. ROC = receiver operating characteristic.
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Figure 7. Slope of the z receiver operating characteristic (z-ROC)
curve as a function of study time per item and as a function of strength,
or intercept, for each condition. (For studied pairs, the study time per
pair was divided by 2, and for multiple presentations, the time was the
sum of the study times.)

The second major result is that the slopes of the z-ROC
curves average about 0.8, independently of the strength of the
old items. In other words, the ratio of the standard deviations in
the new-item and old-item familiarity distributions does not
change as a function of strength (assuming normal distribu-
tions). The results from all of the experiments can be summa-
rized by plotting the slope of the z-ROC functions for each
condition (all combinations of mixed and pure and weak and
strong) of each experiment as a function of the study time per
item and as a function of & (the intercept of the z-ROC func-
tion) for that condition. These two plots are presented in Figure
7. It is clear that there are no systematic differences in the slope
of the z-transformed ROC curves as a function of strength over
the range of 4’ values from about 0.5 to 2.5. The value of the
slope of the z-ROC is constant at about 0.79. Linear regression
on the data points in Figure 7 (for slope of the z-ROC function
plotted against intercept) including those from Egan, Mandler,
and Boek (1974) and Murdock and Dufty (1972) and excluding
points with intercept below 0.5, gives a slope (in the slope of the
z-ROC vs. intercept) of 0.025, with a standard error in that
slope 0f 0.025. Thus, statistically, there is no effect of strength of
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the old items on the ratio of the standard deviations (s, /o).
Whatever the strength of old items, the variance of new-item
familiarity is less than the variance in old-item familiarity in
the ratio of 0.79. In contrast, SAM and MINERVA 2 predict a
decreasing variance ratio as a function of strength and TODAM
predicts a variance ratio of about one. (The values for the low
strength values obtained using rapid presentation times and
were from experiments in Ratcliff, McKoon, & Tindall, 1992;
see also Ratcliff & McKoon, 1991).

The third result is the mixed/pure ratio of ratios result. The
ratios of ratios of 4’ values for the three experiments are shown
in Table 7. These values are consistent with those found by
Ratcliff et al. (1990) and show that, in contradiction to most of
the models (Shiffrin et al.,, 1990), the variance in new-item fa-
miliarity is about the same for strong and weak lists. The values
for the ratios of ratios range from 1.13 to 0.94.

The whole pattern of results translated to familiarity distri-
butions is shown in Figure 8 (which assumes the normal distri-
butions predicted by the models). It is this pattern of results that
constrains the existing models and provides important criteria
for developing new models. Figure 8 shows that the noise distri-
bution has the same standard deviation for pure weak, mixed,
and pure strong lists. The standard deviation in the signal dis-
tribution is [.25 times greater than the standard deviation in
the noise distribution and is constant as a function of strength
(if d’ is greater than about 00.5) and constant as a function of list
type (mixed or pure). Note that this is an empirical description
of the data. There may be theoretical accounts in which theoret-
ical familiarity is only one component of the empirical familiar-
ity; the empirical familiarity distributions might arise from a
combination of theoretical familiarity and some other factor
(such as recall; personal communication, R. M. Shiffrin, Jan-
uary 1991).

The critical issue 1s whether the various models are capable
of fitting these sets of data, in other words, whether a model can
simultaneously produce unequal standard deviations for old
and new items (in the ratio of 0.8) and constant standard devia-
tions in mixed and pure lists as a function of the strength of old
items.

Table 7
Values of the Ratio of (Mixed Strong/Mixed Weak)/(Pure
Strong/Pure Weak) for Experiments 1, 2, and 3

Presentation time

Expertment per item Ratio of ratios
1 0.5,2.5 0.99
2 0.75, 3.75 1.13
3 0.5,2.5 0.94 (1.03)

Note. The values of the ratios of ratios are calculated from the slope
and intercept of the receiver operating characteristic curves and repre-
sent (u, — py)fo,. The value in parentheses is computed by taking a
simple split in the confidence judgment range (old vs. new) and calcu-
lating the ratio of ratios from the computed d values. The presemtation
time per item is computed from the average amount of time an item is
presented (for a pair, the presentation time is divided by 2; for a repeti-
tion, the time for one presentation is multiplied by the number of
repetitions).

Mixed List

Familiarity o}ﬁrength

Weak

Pure Weak List ltems

New

ltems
Strong

\ lte71s

Familiarity or Strength

Pure Strong List

Familiarity or Strength

Figure8. Anillustration of the behavior of the strength distributions
as a function of mixed versus pure list and as a function of strength
differences. (The new-item strength standard deviation remains con-
stant as a function of list type; the standard deviation of the old-item
distribution remains constant as a function of strength and is larger
than the standard deviation for new items)

Theoretical Analyses
Hintzman’s MINERVA 2 Multiple-Trace Vector Mode!

In the MINERVA 2 model, studied items are assumed to be
represented separately in memory. A test item is compared with
each stored item and an overall familiarity value is calculated
by summing over these comparisons.

Specifically, the MINERVA 2 model proposes that items are
vectors of features in which the features take valuesof -1, 0, or
+1. Encoding proceeds by copying item vectors into memory
vectors by using a probabilistic encoding process: For each fea-
ture, either its value or O is copied into the memory vector with
some probability L, where L is larger for strong items (i.e., items
with more study time or more repetitions). At test, the value of
overall familiarity for a test item (echo intensity) is calculated as
follows: If there are n vectors in memory and m features per
vector, then the similarity of test vector P(j) to a memory vec-
tor T(i, j) is as follows:

SG) = (1/Np)Z;PO)TG, §),

where N, is the number of features relevant to the comparison,
that is, the number that are nonzero in either P(j) or T(, j). To
get echo intensity (), the similarity for each item is cubed to
give an activation value, A(1) = S{i)°, and these activation values
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are summed over items, I = 2, 4(i). Echo intensity (familiarity) is
the basis for a recognition decision through signal detection
theory.

The model makes strong predictions about the relative values
of the standard deviations of echo intensity for old and new
items. The standard deviations of the similarities of old items
are comparable with the standard deviations of the similarities
of new items. However, the standard deviations are not compa-
rable for activation values. For new items, mean similarity is
near zero, whereas for old items it is greater than zero. Thus,
when similarity is cubed, the standard deviations in the result-
ing activation values for new items are attenuated relative to the
standard deviations for the old-item activation values. Typi-
cally, the mean and variance for activation in the single mem-
ory item that matches an old test item are comparable with the
sums of the means and variances of activation values for new
test items that do not match any memory item. To compute
means and variances for echo intensity, the means and vari-
ances of the activation values are summed over all items in
memory; thus, the means and standard deviations in echo in-
tensity are larger for old items than for new items.

As study time per item increases, the similarity of old test
items to matching items in memory increases, resulting in
larger means and larger standard deviations in activation values
and echo intensities for the old items. When the number of
repetitions of a study item increases, the activation values for
the repeated items are added into the calculation of echo inten-
sity, and the variances for old test items matching repeated stud-
ied items in memory dominate over the nonmatching variances
for new items. Thus, with increases in either study time or num-
ber of repetitions, the model predicts that the standard devia-
tion in echo intensity is larger for old items than for new items.

Sample values of echo intensity from the model (for reason-
able parameter values) are shown in Table 8. (In addition, in-
spection of Figure 4, Hintzman, 1988, illustrates the increasing
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variance with repetition) The results in Table 8 were produced
by using a recursive exact solution for Hintzman’s model (Sheu,
in press). First, the distributions of echo intensity are approxi-
mately normal, which fits well with the linear z-ROC func-
tions. Second, as the encoding probability increases (learning
rate in Table 8), both ¢, and ¢, increase but their ratio decreases
(until the learning rate gets near one, when the standard devia-
tion for old items begins to decline to zero); this decrease is
inconsistent with the empirically obtained constant slope of
the z-ROC functions. Moreover, because o, increases, the
model predicts that the difference in 4’ for mixed lists will be
greater than the difference in @’ for pure lists; that is, the model
predicts that the ratio of ratios will be greater than one, which is
inconsistent with the empirical ratios. Third, as the vector
length increases, the ratio of ¢,/s, decreases. This means that
increasing vector length will only make the predictions for the
ratio of the standard deviations in echo intensity worse. Fourth,
the only conditions that give the right range of values for the
ratio of standard deviations are for low vector lengths, long list
lengths, and extreme learning rates (low or high). However, the
ratio of standard deviations changes as a function of (u, — )/,
which is inconsistent with the data.

Thus, one can conclude that in its current formulation, MIN-
ERVA 2 has significant problems in dealing with the behavior
of the standard deviations of the echo intensity distributions as
a function of strength of items in lists.

Murdock’s TODAM Distributed, Single-Trace
Vector Model

In the TODAM model, items are represented as vectors of
attributes (or features). Memory is represented as a single vector
that is a weighted sum of all studied items. Each feature of an
input vector is sampled from a feature distribution that is nor-
mal, with a mean of zero and a variance of P/N, where P is the

Table 8

Sample Predictions of Hintzmans (1986) MINERV A 2 Model

Vector Learning List

length rate length o5 o, a./6, [T
20 2 32 .033 .0228 .685 0.48
20 4 32 .094 0469 .498 0.92
20 6 32 A71 0686 401 1.46
20 8 32 225 .0872 .387 2.40
20 9 32 213 .0952 447 3.51
20 .99 32 120 0953 .794 8.11
20 2 16 029 .0161 553 0.55
20 4 16 088 0332 377 0.98
20 .6 16 .164 .0485 .296 1.52
20 .8 16 216 0617 287 2.51
20 9 16 202 0673 333 3.70
20 .99 16 .099 .0674 678 9.79
40 4 32 .054 0158 293 1.39
40 8 32 151 .0307 .203 3.48
40 .99 32 .066 .0361 .549 14.80
40 4 16 .053 011t 210 1.42
40 .8 16 150 0217 .145 3.51
40 .99 16 .060 0255 423 16.10

Note. The expected value of u, is 0.
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power of the vector and N is vector length (P is usually set to 1,
so the variance is 1/N). At retrieval, a test vector is matched
with the memory vector by computing the dot product. The
equation for encoding is as follows:

M, = oM;_, + pf,

where p represents probabilistic encoding, « is a forgetting pa-
rameter, f is the new input vector, j is the number of the item in
the list being encoded, and M is the memory vector. The equa-
tion for recognition matching is as follows:

f-M =g,

where s is a scalar quantity denoting degree of match. When a
pair of items is studied, each item of the pair is stored in the
memory vector, and an association (another vector) formed by
convolving the members of the pair of vectors is also stored.

The predictions for the standard deviations of old- and new-
item familiarity values (denoted as s in the last equation) can be
complicated but tractable (Murdock, 1982, 1983; Weber, 1988).
To derive predictions, it is assumed that the stored vectors are
independent. Then each stored item adds a component to the
overall variance. In the simple case, with no forgetting and
other parameters set to 1, each stored item that does not match
the test item adds 1/N to the variance, and each item that
matches the test vector adds 2/N (the 1/N and 2/N are the
expected values of the variances). For example, for study lists
with a length of 32 words, for a new test item the variance will
be 32/N. For an old test item matching ! studied item and not
matching the other 31, the variance will be 33/N. Thus, the
ratio of the variances is 32/33 and this is close to 1, that is, old-
and new-item familiarity standard deviations are about the
same. Thus, for long lists, the contributions of items that do not
match an old test item dominate the contribution from the
single matching item (in contrast with the Hintzman MIN-
ERVA 2 model, in which a single matching item can dominate
all nonmatches). To explain learning in this model, Murdock
(1989) introduced probabilistic encoding (as in MINERVA 2),
such that the probability that a feature is encoded at study is a
function of presentation time. This does not alter the qualitative
predictions of the model.

The predictions of the model can be illustrated with the con-
ditions of Experiment 1. In that experiment, a list of 16 pairs of
words was studied, and single words were tested. We used a full
version of the model with several additional parameters, such
as weighting at retrieval, attention weights at encoding, and
probabilistic encoding (Murdock, 1989). Moreover, several
simplifying assumptions allow tractability (these do not affect
the conclusions; for detailed analyses, see Shiffrin et al., 1990):
Strong and weak pairs alternated at study, the tested item was
encoded at study serial position 8, the attention weight -y was set
to .7, the attention weight  was set to .9, and the retrieval
weights g and w were set to 1.0. Using vector length 181, we were
able to obtain &’ values near those found in Experiment ! for the
pure strong condition (the probabilistic encoding parameter
p = 0.9) and for the pure weak condition (p = 0.35); these are
shown in Table 9. Also shown are results for increased vector
length and for the forgetting parameter set to one. This allows

evaluation of how the predictions would change as a function of
these parameters.

The main predictions of the model under these conditions
are as follows: First, the distributions of familiarity are approxi-
mately normal, which is consistent with the linear z-ROC func-
tions in the data. Second, the old- and new-item standard de-
viations are nearly equal. This is inconsistent with the ratio
from the data of about 0.8. Third, the model predicts that the
difference between strong and weak d’ values for mixed lists
should be greater than that for pure lists; thus, the ratio of ratios
of the d’ values should be about 1.61 (see Table 9), much larger
than the empirical values. As with MINERVA 2, the model
makes this prediction because the variance in the new-item
familiarity distribution changes from a pure weak list to a pure
strong list (whereas for the mixed list, there is only one new-
item familiarity distribution) and because the mean match val-
ues are the same for both pure and mixed conditions.

It should also be noted that Eich’s (1982) model, as well as
Pike’s (1984) and Anderson’s (1972, 1973) composite matrix and
vector models, make the same prediction as TODAM: nearly
equal standard deviations for old- and new-item familiarity
values.

Gillund and Shiffrins Search of Associative Memory
Model (SAM)

Gillund and Shiffrin developed the SAM model to account
for performance in recall and recognition. In the SAM model,
items to be encoded are placed in a short-term buffer, and
strengths between each of the items as a cue and each as an
“image” in memory are increased as a function of time spent in
the buffer. What is stored is how strongly each item, when it is
presented as a cue (or test) item, is related to items in memory.
There are three encoding parameters: b is the interitem
strength between an item in the short-term buffer as a cue and
images in memory of the other items in the buffer; ¢ is the self
strength between each item in the buffer as a cue and its own
image in memory; and a is the context strength. Each parame-
ter determines the amount of strength accumulated per unit
time, so that in ¢ seconds, af units of context cue to buffer item
strength accumulate, ¢z units of self strength accumulate for
each item in the buffer, and bt units of strength accumulate
between each pair of items in the buffer. In addition, there isa
parameter ¢ that represents the preexperimental residual
strength assumed to exist between any cue and any image in
memory. Variability is introduced into the model by assuming
that if the mean strength value computed from the encoding
process is X, then the value of strength encoded is set according
to the following probabilities:

SXwithp =1/3
Xwithp=1/3
1.5X with p = 1/3.

It is this assumption that makes variability greater as strength
becomes larger: If X = 1, the values stored are .5, 1, and 1.5,
whereas if X = 4, the values stored are 2, 4, and 6, showing a
greater absolute range and hence greater variability. This as-
sumption (necessary for fitting the model to some data sets) is



ROC CURVES AND MEMORY MODELS 533

Table 9

Sample Predictions of Murdock (1982, 1989) TODAM Model

Condition a N 5 o, a,/0, LA
ps 98 181 .386 377 977 1.388
pw 98 181 .239 235 985 0.885
ms 98 181 324 314 969 1.654
mw 98 181 318 3i4 .988 0.656
ps 1.0 181 415 406 978 1.516
pw 1.0 181 257 253 985 0.954
ms 1.0 181 .349 .339 969 1.803
mw 1.0 181 341 339 991 0.717
ps 98 361 273 267 979 1.962
pw 98 361 169 167 .986 1.232
ms 98 361 229 222 .969 2.337
mw 98 361 225 222 992 0.926

Note. The expected value of u, is 0. o = forgetting parameter; N = vector; ps = pure strong; pw = pure

weak; ms = mixed strong; mw = mixed weak.

fundamentally responsible for the prediction that the variance
in familiarity for old items is larger than for new items.

For recognition, the overall match between the cue (in prac-
tice, the combination of the context cue and the test item) and
memory is computed; this is called familiarity and serves as the
basis for a recognition decision. For images1,. . . , k in mem-
ory and cue I;, the familiarity is defined as the following:

F(C, L) = Z,8(C, I)"S(1;, 1™,

where the sum is over all images (1, . . . , k) in memory, C
represents the context cue, W, is the weight given to the context
cue, and W] is the weight given to the item cue.

First, the resulting distributions of familiarity are approxi-
mately normal, which is consistent with the linear z-ROC func-
tions. Second, to derive predictions from this model for Experi-
ment for pure lists (in which paired associates are studied), we
make some standard assumptions about the encoding process
(cf. Gillund & Shiffrin, 1984). It is assumed that the encoding
buffer only contains the single pair of items under study and
that interitem strength is accumulated between those two items
only. Thus, the expression for d' can be derived (both from notes
by R. M. Shiffrin, 1986, and our own calculations), as follows:

d = K{[(b/d)t + 112 + [(c/d)t + 112 - 2}.

For lists of N items (N/2 pairs), the expression for the ratio of
variances for noise to signal is as follows:

o./0s = Nd/(Nd + bt + ct)
= 1/(1 + L),

where L = (b+ ¢)/(Nd). According to this expression, the ratio of
standard deviations must change as a function of ¢ (time spent
in the buffer). The ratio cannot be 0.8 for both of two values of
time that differ significantly, for example, t=1s,and = 5s. To
demonstrate this, we performed the following computations:
For a set of values of the parameters b/d and ¢/d, we set t =1 for
weak items and found a value of ¢ that gave a value of d’ two
times larger for strong items. (Note that it is possible to repara-
meterize the expressions in terms of b/d and ¢/d so that these are
the only model parameters that enter the expressions for ¢’ and
the ratio of variances) Then we substituted the values of ¢ into

the expression for the ratio of standard deviations and found
that over a range of parameter values, there were no values for
b/d and ¢/d that gave nearly constant standard deviation ratios
of about 0.8 (e.g., for varying values of b/d and ¢/d, values for the
ratio of standard deviations for the strong (s) and weak (w) items
weres= 0.48, w=0.73;s=0.53, w= 0.76; and s = 0.59, w =
0.80). Thus, the model cannot produce the constant ratio of
standard deviations as a function of strength of old items found
in the data. Third, as with TODAM and MINERVA 2, the
model predicts that the difference in d’ values between strong
and weak items in a mixed list is greater than the difference in
d’ values between two pure lists, contrary to data (as docu-
mented by Shiffrin et al., 1990).

Differentiation Variant of SAM

To deal with the results from mixed/pure list experiments,
Shiffrin et al. (1990) introduced a differentiation version of the
SAM model. In this variant, it is assumed that the better en-
coded an item, the more clear are the differences between it and
nonmatching test items. Thus, instead of the residual (preex-
perimental) strength of a distractor item to an image remaining
constant, it will decrease the stronger the image is encoded into
memory. This can be quantified with the assumption that the
residual strength is an inverse function of context strength, d =
kfat. With this assumption, the variance in the new-item distri-
bution is independent of strength of old items; thus, the differ-
ence between d' values for weak and strong items is predicted to
be the same in mixed and pure lists (i.e, the ratio of ratios is
predicted to be one).

The ratio of variances for old- and new-item matches again
provides strong predictions. The prediction for the ratio of vari-
ances is similar to that in the original SAM model, as follows:

o./0, = Nk/(Nk + ab® + act®)
= 1/(1 + M),
where
M = a(b + ¢)/Nk.

Comparing this expression with the earlier one for the origi-
nal SAM model shows that the new version of SAM predicts a
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variance ratio similar to the original model, with time squared
in this case. For parameter values that produce a 2:1 difference
in d' values, the ratio of the standard deviations is about the
same as the original model. Thus, although this modification
to the SAM model can account for the empirical mixed/pure
list ratio of ratios, it is unable to produce adequate predictions
of the ratio of standard deviations for the familiarities for old-
and new-item distributions. It produces predictions that are
essentially the same as the predictions of the old version
of SAM.

General Discussion

In this article, an old issue in the application of signal detec-
tion theory to recognition memory is reopened. ROC curves
have been used in the past to draw conclusions about recogni-
tion memory (Egan, 1958; Wickelgren & Norman, 1966, for
short-term memory; see Murdock, 1974, for further discus-
sion), but there has been no application of the ROC methodol-
ogy to the recent global memory models. The three experi-
ments presented in this article, as well as results from four pre-
vious studies in the literature, provide a consistent and simple
pattern of results. First, the z-ROC functions do not deviate
significantly from linearity. Thus, any model that predicts nor-
mal distributions will be consistent with this aspect of the data,
although the distributions underlying the data are not necessar-
ily normal because many distributions are consistent with lin-
ear z-transformed ROC curves (Lockhart & Murdock, 1970;
Murdock, 1974). Second, the slope of the z-transformed ROC
curve is constant at an average value of about 0.8 as a function
of strength of the studied items. Assuming that the signal and
noise distributions are normal, then this constant means that
the noise distribution standard deviation is 0.8 times the signal
standard deviation on average, varying from 0.5 to 1.0 for indi-
vidual subjects. Third, the standard deviation in the noise dis-
tribution does not change as a function of strength of the old
items in the study list.

To summarize (under the assumption that the underlying
distributions are normal), (a) the new-item familiarity standard
deviation is independent of the strength of old items; (b) the
old-item familiarity standard deviation is independent of the
strength of old items; (c) the new-item familiarity standard de-
viation is about 0.8 the value of the old-item familiarity stan-
dard deviation; and (d) the z-transformed ROC functions ap-
pear to be linear.

Overall, the data give a clear idea of the behavior of signal
and noise distributions in recognition memory (assuming nor-
mal distributions). The pattern of results is summarized in Fig-
ure 8. We believe that these data are extremely constraining for
the global memory models and also for connectionist models of
memory and that they should provide some of the initial data to
be tackled in any new modeling attempts. Of course, if a model
does not predict normal distributions of familiarity, then the
z-transformation of the predictions can be used to compare
with the results reported here.

The current global memory models make strong predictions
about the relative standard deviations of the signal and noise
distributions. The composite vector models (and composite
matrix models) such as TODAM make the prediction that the

signal and noise distributions have about equal variance. This is
because, although a match of an old test-item vector with an-
other identical vector in memory has a higher variance than the
match of a new test item against an item in memory, the old-
item match is swamped by nonmatches from the comparisons
with all of the other items in memory. The SAM model (and the
SAM model with the differentiation assumption) has the prob-
lem that as mean familiarity of old items increases, the variance
in familiarity must also increase because noise is introduced
through multiplication and match values are summed over
items. The MINERVA 2 model makes similar predictions to
the SAM model: It predicts that as item strength increases, the
variance in the signal distribution increases. This is because
cubing large values of similarity (for matches) leads to larger
results (activations) with larger variances than cubing small val-
ues (for nonmatches) of similarity.

The question now is where to go from here. It is possible that
some new variants on the global memory models may have
some success with the ROC data, but significant changes to the
models will be required as well as considerable effort in refit-
ting the models to the data bases from which they were devel-
oped. The class of connectionist models offers some promise
simply because these models are relatively unexplored, and
there are many possible architectures from which to choose.
However, our initial attempts with the adaptive resonance
theory architecture (Carpenter & Grossberg, 1987) and with
backpropagation-based connectionist models (e.g., Kortge,
1990; Ratcliff, 1990) have not proved successful. Much more
work is required on these connectionist models because the
models have not been applied to the range of available memory
data and because, unlike the global memory models, it is impos-
sible to gain any understanding of the behavior of the variances
in the match distributions as a function of experimental vari-
ables without simulations. Coupled with this problem is the
possibility of myriads of variants on any individual model, any
one of which might solve the problem. The challenge is to un-
derstand them.

The prescription for further theoretical development is to
account for such central empirical effects as list length and
presentation time and, at the same time, abide by the con-
straints on the variances of the familiarity distributions pro-
vided by the ROC methodology. Any model that produced pre-
dictions consistent with the ROC data naturally (and not justas
a consequence of ad hoc assumptions) would be particularly
appealing.

To conclude, we have models that apply over a wide range of
paradigms with much success. Although they are flexible, pow-
erful, and account for a range of data, the results we have pre-
sented here and found in the literature provide tight constraints
and falsify the current versions of the models. The challenge is
to use these results to modify the existing models or to develop
the next generation of models, or both.
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